Understanding Complex Systems ?3&3&%&5 :

Santo Banerjee
Lamberto Rondoni Editors

Applications of
Chaos and Nonlinear
Dynamics in Science
and Engineering -
Vol. 3

@ Springer



Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and
academic-level teaching on both fundamental and applied aspects of complex systems —
cutting across all traditional disciplines of the natural and life sciences, engineering,
economics, medicine, neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to
generate a new quality of macroscopic collective behavior the manifestations of which are
the spontaneous formation of distinctive temporal, spatial or functional structures. Models
of such systems can be successfully mapped onto quite diverse “real-life” situations like
the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems,
biological cellular networks, the dynamics of stock markets and of the internet, earthquake
statistics and prediction, freeway traffic, the human brain, or the formation of opinions in
social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the
following main concepts and tools: self-organization, nonlinear dynamics, synergetics,
turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs
and networks, cellular automata, adaptive systems, genetic algorithms and computational
intelligence.

The three major book publication platforms of the Springer Complexity program are the
monograph series “Understanding Complex Systems” focusing on the various applications
of complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative
theoretical and methodological foundations, and the “SpringerBriefs in Complexity” which
are concise and topical working reports, case-studies, surveys, essays and lecture notes of
relevance to the field. In addition to the books in these two core series, the program also
incorporates individual titles ranging from textbooks to major reference works.

Editorial and Programme Advisory Board
Henry Abarbanel, Institute for Nonlinear Science, University of California, San Diego, USA
Dan Braha, New England Complex Systems Institute and University of Massachusetts Dartmouth, USA

Péter Erdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy
of Sciences, Budapest, Hungary

Karl Friston, Institute of Cognitive Neuroscience, University College London, London, UK
Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany

Viktor Jirsa, Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée, Marseille,
France

Janusz Kacprzyk, System Research, Polish Academy of Sciences, Warsaw, Poland
Kunihiko Kaneko, Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan
Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA

Markus Kirkilionis, Mathematics Institute and Centre for Complex Systems, University of Warwick,
Coventry, UK

Jiirgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany

Andrzej Nowak, Department of Psychology, Warsaw University, Poland

Linda Reichl, Center for Complex Quantum Systems, University of Texas, Austin, USA

Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria
Frank Schweitzer, System Design, ETH Zurich, Zurich, Switzerland

Didier Sornette, Entrepreneurial Risk, ETH Zurich, Zurich, Switzerland

Stefan Thurner, Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria



Understanding Complex Systems

Founding Editor: S. Kelso

Future scientific and technological developments in many fields will necessarily
depend upon coming to grips with complex systems. Such systems are complex in
both their composition — typically many different kinds of components interacting
simultaneously and nonlinearly with each other and their environments on multiple
levels — and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) promotes
new strategies and paradigms for understanding and realizing applications of
complex systems research in a wide variety of fields and endeavors. UCS is
explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts,
methods and tools of complex systems at all levels of description and in all scientific
fields, especially newly emerging areas within the life, social, behavioral, economic,
neuro- and cognitive sciences (and derivatives thereof); second, to encourage novel
applications of these ideas in various fields of engineering and computation such as
robotics, nano-technology and informatics; third, to provide a single forum within
which commonalities and differences in the workings of complex systems may be
discerned, hence leading to deeper insight and understanding.

UCS will publish monographs, lecture notes and selected edited contributions
aimed at communicating new findings to a large multidisciplinary audience.

For further volumes:
http://www.springer.com/series/5394



Santo Banerjee « Lamberto Rondoni
Editors

Applications of Chaos and
Nonlinear Dynamics in
Science and Engineering -

Vol. 3

@ Springer



Editors

Santo Banerjee Lamberto Rondoni

Institute for Mathematical Research Dipartimento di Matematica
University Putra Malaysia Politecnico di Torino
Serdang Torino

Malaysia Italy

ISSN 1860-0832 ISSN 1860-0840 (electronic)

ISBN 978-3-642-34016-1 ISBN 978-3-642-34017-8 (eBook)

DOI 10.1007/978-3-642-34017-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013938159

(© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



SB: To my parents, Saraswati and Raghunath
Banerjee
LR: To my parents, Annita and Elio Rondoni






Preface

This is the third volume of the collection of essays entitled Applications of Chaos
and Nonlinear Dynamics in Engineering and Science, which has been designed
to introduce nonspecialists to the applications of the modern theory of dynamical
systems and complexity. Indeed, we believe that the exchange of ideas which
takes place when different disciplines make use of a common language, such as
that provided by the modern mathematical techniques of dynamical systems and
complexity, is beneficial to both the experts of the different disciplines and the
experts of the language itself. This requires that such a language be presented in
a digested form, which takes it immediately closer to the expected applications. We
have thus decided to pursue this purpose by means of essays written in the form of
tutorials. Volume 1 consists of ten chapters organized in five parts, each concerning
one field of present-day engineering:

I. Nonlinearity and Computer Simulations
II. Chaos and Nonlinear Dynamics in Electrical Engineering
III. Chaos and Nonlinear Dynamics in Building Mechanism and Fluid Dynamics
IV. Chaos in Robotics
V. Chaos and Nonlinear Dynamics in Communication

Volume 2 also contains ten chapters, subdivided into the following five sec-
tions:

I. Nonlinearity in Control Systems and Geo Engineering
II. Nonlinear Dynamics and Chaos in Electronics
III. Nonlinear Dynamics in Stochastic Networks
IV. Nonlinear Dynamics in Transport and Mechanical Engineering
V. Chaos Theory in Communication and Cryptography

The ten chapters of this volume cover a wider spectrum of disciplines, organized
in five sections, as follows:

I. Fluctuation Relations and Chaotic Dynamics in Physics
II. Monsoon Chaos and Wind Turbine System

vii



viii Preface

III. Fractal and Its Applications in Epileptic Seizure
IV. Chaos Synchronization A: Communications and Symbolic Analysis
V. Chaos Synchronization B: Systems and Circuits

The first contribution to this volume, by Colangeli and Rondoni, addresses a
problem of current interest, in the development of response theories suitable in
biophysical and nanotechnological contexts. The second contribution, by Bakka
and Karimi, uses a bond graph methodology as a graphical approach for modeling
wind turbine generating systems. The third paper, by P. Carl, concerns monsoon
dynamics and some hypothesis on the potential evolution of the climate. The fourth
paper, by Uthayakumar, tries to understand electroencephalograms of epilectic
siezures from the point of view of a fractal analysis of nonlinear time series. The
fifth paper, by Jalan, Atay, and Jost, gives one method to detect global synchrony
in coupled systems. The sixth contribution, by A.A. Dmitriev, A.S. Dmitriev,
Andreyev, Efremova, Antoniades, Miliou and Anagnostopoulos, is devoted to
chaotic synchronous response for the purpose of cryptography. The seventh paper,
by Hegazi and Matouk, illustrates synchronization of a chaotic system and the
behavior of a modified Van der Pol-Duffing circuit. The eighth contribution, by
Middya, Basak, Ray, and Roychowdhury, considers experimental verifications
of synchronization within a network and among different networks of Rossler
Oscillators.

Chapter 9, by Stavrinides and Anagnostopoulos, is devoted to experimental
tests of the robustness and stability of synchronization and shows how chaotic-
synchronized communication systems may desynchronize. The tenth contribution,
by Theesar, Banarjee, and Balasubramaniam, completes this book with a study of
synchronization of delayed chaotic systems, providing analytical conditions for the
occurrence of projective synchronization of time-varying delayed chaotic systems.

As for the articles published in volumes 1 and 2, we hope that this third collection
of papers will be useful to professionals as well as to undergraduate and graduate
students of applied sciences.

We will conclude the series with volume 4, which will be published in 2013.

We wish to express our gratitude to the staffs of Springer Verlag, for their
invaluable help and support throughout this work. In particular, we would like to
thank Dr. Christian Caron (editor, Springer Physics), Gabriele Hakuba (editorial
assistant), Benjamin Feuchter, and the other members associated with this project.

Finally we would like to thank Prof. M. Mitra, who is not actively associated in
this present volume but her inspiration has always been there throughout the project.

Torino S. Banerjee
December 2012 L. Rondoni
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Chapter 1
Fluctuation Relations and Nonequilibrium
Response for Chaotic Dissipative Dynamics

Matteo Colangeli and Lamberto Rondoni

Abstract In a recent paper [Colangeli and Rondoni, Physica D 241:681, 2011] it
was argued that the Fluctuation Relation for the phase space contraction rate A could
suitably be extended to non-reversible dissipative systems. We review here those
arguments, by discussing the properties of a simple irreversible nonequilibrium
baker model. We also consider the problem of the extension of the Fluctuation-
Dissipation Theorem to dissipative deterministic dynamical systems, which enjoy
a nonvanishing average phase space contraction rate. As noted by Ruelle, the
statistical features of the perturbation and, in particular, of the relaxation, cannot
be understood solely in terms of the unperturbed dynamics on the attractor. Never-
theless, we show that the singular character of the steady state does not constitute a
serious limitation in the case of systems with many degrees of freedom. The reason
is that one typically deals with projected dynamics, and these are associated with
regular probability distributions in the corresponding lower dimensional spaces.

1.1 Introduction

One of the central aims of nonequilibrium statistical physics is to find a unifying
principle in the description of nonequilibrium phenomena [1]. Nonequilibrium
fluctuations are expected to play a major role in this endeavour, since they are ubiq-
uitous, are observable in small as well as in large systems, and a theory about them
is gradually unfolding, cf. [2-7] for recent reviews. A number of works have been
devoted to the derivation and test of Fluctuation Relations (FRs), of different nature
[8—16]. It is commonly believed that, although nonequilibrium phenomena concern
a broad spectrum of seemingly unrelated problems, such as hydrodynamics and

M. Colangeli (<) - L. Rondoni

Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy

e-mail: matteo.colangeli @polito.it; lamberto.rondoni @polito.it

S. Banerjee and L. Rondoni (eds.), Applications of Chaos and Nonlinear Dynamics 3
in Science and Engineering 3, Understanding Complex Systems,
DOI 10.1007/978-3-642-34017-8_1, © Springer-Verlag Berlin Heidelberg 2013



4 M. Colangeli and L. Rondoni

turbulence, biology, atmospheric physics, granular matter, nanotechnology, gravita-
tional waves detection, etc. [6, 17—19], the theory underlying FRs rests on deeper
grounds, common to the different fields of application. This view is supported by
the finding that deterministic dynamics and stochastic processes of appropriate form
obey apparently analogous FRs [6,7,13,14], and by the fact that tests of these FRs on
systems which do not satisfy all the requirements of the corresponding proofs typi-
cally confirm their validity. Various works have been devoted to identify the minimal
mathematical ingredients as well as the physical mechanisms underlying the validity
of FRs [7, 15,20, 21]. This way, the different nature of some of these, apparently
identical but different, FRs has been clarified to a good extent [4,7,14,15]. However,
analytically tractable examples are needed to clearly delimit the range of validity of
FRs, and to further clarify their meaning. In this work, the assumptions of time rever-
sal invariance, required by certain derivations of FRs for deterministic dynamical
systems, are investigated by means of simple models that are amenable to detailed
mathematical analysis. In particular, we will introduce, in Sect. 1.2, a deterministic
map in which one may distinguish relevant from irrelevant variables, as long as the
observable of interest is the phase space contraction rate, denoted by A. Next, we
will add a source of irreversibility in the dynamics, which concerns only the irrele-
vant variable but also affects the structure of the steady state probability distribution.

We will discuss, hence, in Sects. 1.3 and 1.4, the implications on the condition of
detailed balance in the projected space and on the validity of the FR for the quantity
A, hereafter called A-FR.

A further crucial aspect of the emerging nonequilibrium theories concerns the
application of the Fluctuation-Dissipation Theorem (FDT) in beyond-equilibrium
systems. The celebrated FDT was originally developed in the context of Hamil-
tonian dynamical systems, slightly perturbed from equilibrium, and it was later
extended to stochastic systems obeying a Langevin Equation [6,22]. The importance
of the FDT rests on the fact that it sheds light on the crucial relation between
the response Ry () of a system to an external perturbation and a time correlation
function computed at equilibrium [23]. In other words, having perturbed a given
Hamiltonian Hy with an external field /., to obtain the perturbed Hamiltonian Hy —
h.V, where V is an observable conjugated with ., the FDT allows us to compute
nonequilibrium quantities, such as the transport coefficients [24—26], solely in terms
of the unperturbed equilibrium state. On the other hand, a generic dynamical system
is not Hamiltonian: for phenomenological practical purposes, one typically deals
with dissipative dynamics, as in the important case of viscous hydrodynamics
[6]. The classical approach, which considers infinitesimal perturbations out of
the stationary state of interest, still applies to these cases, if the steady state is
represented by a regular probability density, as appropriate in the presence of noise,
cf. [6,27]. Nevertheless, the invariant measure of a chaotic dissipative system, p say,
is typically singular with respect to the Lebesgue measure and is usually supported
on a fractal attractor. This is not just a mathematical curiosity, it is a potential source
of difficulties for the applicability of the FDT in dissipative systems. Indeed, the
standard FDT ensures that the statistical features of a perturbation are related to
the statistical properties of the unperturbed system, but that cannot be the case in
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general, in dissipative systems. The reason is that, given an initial state x(0) on
the attractor and a generic perturbation §x(0), the perturbed initial state x(”)(0) =
x(0) +6x(0) and its time evolution may lie outside the support of 1, hence their sta-
tistical properties cannot be expressed by w, which attributes vanishing probability
to such states. From the mathematical point of view, this fact is rather transparent.
On the other hand, it should not be a concern in statistical mechanics, except in
pathological cases. Indeed, a series of numerical investigations of chaotic dissipative
systems shows that the standard FDT holds under rather general conditions, mainly
if the invariant measure is absolutely continuous with respect to Lebesgue, cf. [6] for
a review. Moreover, although dissipative systems have singular invariant measures,
any small amount of noise produces smooth invariant measures, which allow gener-
alized FDTs to be expressed solely in terms of the unperturbed states, analogously to
the standard equilibrium case. Apart from technical aspects, the intuitive reason for
which the FDT in systems with noise can be expressed only in terms of the invariant
measure, is that x” (0) remains within the support of this measure.

Thus, in Sects. 1.5 and 1.6, we will shed light on the extension of the FDT to
dissipative dynamical systems. We will discuss the case of chaotic deterministic
maps and show that FDT continues to hold as long as one works in some suitable
projected space of the full phase space. Indeed, marginals of singular phase space
measures, on spaces of sufficiently lower dimension than the phase space, are
usually regular [28,29].

1.2 Global Conservativity vs. Local Dissipativity

Let us introduce the dynamical system (%, M, i), with phase space % := T? :=
R?/7Z?* and mapping M : % — % defined by:

1 +1
— X+ =
26 21 forO0 <x, </?{
(E_q)yn + (E +Q)
Xn { |
1-2¢ 1-2¢ forffxn<§
(X,,.H) - M. (xn) _ (I=20—q)yn+ 2L+ q) (L.1)
Yn+1 Yn ) 1
T 1
for - < x, < -
l_'_ 2 4
3 q ) Yn
3
2xp — = 3
2 forzfxnfl
(ZZ-I—CI)J’n
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Fig. 1.1 The map M in (1.1) 1 1
for general values of the A
parameters £ and ¢ B
M 1/2+q
A B C | D
20+q C
D

for g € [0, %] and £ € (0, %], cf. Fig. 1.1, and with natural measure p. The Jacobian
determinant of this map takes the values:

I g

JA:ﬂ_ﬁ forO§x<€
1
JB:l_lq—ze for€§x<§
Ju(x) = . 3 (1.2)
Jc=1+2q f0r§§x<z
3
Jp =4L + 2¢q forzfxfl

in the four different regions of %/ . This model generalizes the one introduced in [30],
as it features the two parameters £ and ¢, which can be tuned to produce different
forms of “equilibrium”, i.e. of natural measures p, which are called non-dissipative
steady states because are characterized by vanishing phase space contraction rates.
In our case, it proves convenient to determine the projection of the invariant
probability density on the x-coordinate of this map. This can be accomplished by
integrating over the y-direction the Perron-Frobenius equation [31] for the measures
defined on the square. This, indeed, yields the evolution equation for the probability
measures defined on the x axis which are evolved by the map of the interval [0, 1]
obtained by projecting M on the x axis.

The calculation of the marginal invariant probability measure can the be per-
formed by introducing a Markov partition of the unit square, consisting of two
regions: [0,1/2) and [1/2, 1], respectively furnished with the invariant densities
p1(x) and p,(x). Then, the transfer operator T associated with the projected
dynamics, via the projected Perron-Frobenius equation, can be written as:

o1 (n+1) Y _ o P1(xXn)
(Pr(xn+l))_T (pr(xn)) (-

_(1-=2t1/2
T_( 20 1/2) (1.4)

where T is defined by:
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25
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8 09

Fig. 1.2 Result of a numerical simulation for the invariant density of the equilibrium reversible
map derived from (1.1) with ¢ = 0 and £ = 0.15, obtained by evolving a set of 2 - 10’
initial conditions randomly (and uniformly) chosen on the square [0, 1] X [0, 1]. This shows an
invariant density p(x, y) which is uniform along the y-coordinate and piecewise constant along the
x-coordinate, attaining the values p; (x) and p, (x) for, respectively x € [0,1/2) and x € [1/2,1],
given in (1.5)

The matrix T satisfies the Perron-Frobenius Theorem, hence its largest eigenvalue,
A = 1, is separated from a spectral gap from its other eigenvalue. Then, the calcula-
tion proceeds by evaluating the eigenvectors of the transfer operator corresponding
to the dominant eigenvalue. The result of this procedure shows that the invariant
probability density of the map (1.1), projected onto the x-axis, depends on the value
of £, but not on ¢, because g only affects the dynamics along the vertical direction.
The corresponding projected density, cf. Fig. 1.2, is given by the piecewise constant
function:

2 1

= for0 <x < <

T )
p(x) = , (1.5)

14 1

p,(x):m for- <x<1
The marginal probability density p suffices to compute the statistical properties of
phase functions such as the phase space contraction rate A(x, y) = —log J(x, y),

because of the special form of the Jacobian determinants (1.2), which depend on the
x-coordinate only. In this case, one has:

1
(1) = = [ tog s dy) = = [ tog sty

The quantity (A) is represented in Fig. 1.3 as a function of the parameters (¢, g).
The figure shows that “equilibrium”, i.e. by definition the condition in which (A)
vanishes, holds only for ¢ = 0, independently of the value of £. The dynamical
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<A>(Lg)

Fig. 1.3 The average phase space contraction rate {A), as a function of the parameters £ and ¢

system of [30] can be seen as a special case of our map, in which g = % - 24
and, correspondingly, the only possible equilibrium state of that map is given by the
further choice £ = %.

In this section, we focus on the case ¢ = 0 and begin by considering the average
phase space contraction rate which, in this case, vanishes V¢ € (0, i] and can be

written as: o
(A) =—anAp1€—anDIr =0 (1.6)

The choice £ = %, in particular, ensures that the mapping is locally conservative,
i.e. that A(x,y) = O uniformly on %, as all Jacobians (1.2) are unitary. In
particular, £ = ‘—1‘ leads to a uniform invariant measure @, which we call “micro-
canonical” by analogy with the statistical mechanics of an isolated particle system
with given total energy. The projection of p is then uniform along the x-axis.

For £ # ‘—1‘ and ¢ = 0, the invariant density along the x-axis remains smooth,
except at one point of discontinuity, x = 1/2 and, in spite of the fluctuations of
the phase space volumes, the invariant measure is still uniform along the stable
manifold, i.e. the vertical direction, as illustrated by a numerical simulation reported
in Fig. 1.2. Thus, for £ # i, we obtain a form of fluctuating equilibrium, which we
call “canonical” by analogy with the statistical mechanics of a particle system in
equilibrium with a thermostat at a given temperature [17].

Let us also observe that our equilibrium dynamics (¢ = 0) are time reversal
invariant, according to the standard dynamical systems notion of reversibility [32],
because there exists an involution G : % — % such that
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Fig. 1.4 Involution G 1 1
defined in (1.8). Blue lines:
the two diagonals, along D
which the map G reflects the G B
two halves of the phase space 4 /B ¢, D 12
2/ ¢
A
‘ 12 34 1 12 1
M| s | 1]G M| B P
Al B|c|D D| B |C|A4
p | € a | €
G| B |7 MGM=G
A C

Fig. 1.5 Check of reversibility for the map (1.1)

MGM =G (1.7)
which attains the form:
2x 1
1 for0 <x < =
27 2
(xc):G_(x): (1.8)
Y6 y e 1 |
1 for—- <x <1

The mapping G in (1.8) reflects the half squares [0, 1/2) and [1/2, 1] along the
respective diagonals, drawn from their lower left to their upper right corners, cf.
Fig. 1.4.

Hence, according to the definition (1.7), the baker model in (1.1) with ¢ = 0 is
T-symmetric for all values of the parameter £, as shown in Fig. 1.5.

Consider, now, a trajectory of n time steps, {x,, x,,...,X,}, along which the
average phase space contraction rate is given by:

n—1

An(xg) = —% > Iy (MFx,) (1.9)
k=0
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The average phase space contraction rate over the time reversed path is given by:

n—1

_ 1
A (GM™(x,)) = - Z InJy (M¥GM" x,)
k=0

n—I1
1
— > InJy (GMM "D x) (1.10)
k=0

Then, the relation Jy (x) = J;;'(GM x), yields the known result [30]:
A, (GM"x,) = —A, (x9)-

Since the Jacobians (1.2) depend only on the x-coordinate and are piecewise
constant, the expressions (1.9) and (1.10) take the simple form:

o 1 n—1
An(io) = == > I Jas (ix) (1.11)
k=0
_ 1! _
An(Qin1) = == I Iy (Qi1y—4) = —Anio) (1.12)
k=0

with i; the region containing the point M k X,, out of the four regions {4, B,C, D}
and Q = GM, where

QA=D, OD=A, QOB=B, QC=C. (1.13)

Thus, the computation of A,, for the forward (respectively, time reversed) path, can
be conveniently performed by keeping track only of the coarse-grained sequences
of visited regions:

ik} = (o, i1, -y in—1) (1.14)
{Qi-1—k} = (Qin-1., Qin—2. ..., Qio), (1.15)

rather than relying on the more detailed knowledge of the sequence of points { M*x}
and {GM"*x} in the phase space. The last regions in each sequence, i, and
Qi_, need not be taken into account, as they are unessential in the evaluation of
the A,, see [30] for details. A considerable amount of information, regarding the
microscopic trajectory in the phase space, is lost by passing from the phase space
deterministic dynamics to the effectively stochastic process arising from the projec-
tion of the dynamics onto the x-axis. Such a process is described by a Markov jump
process, which yields sequences such as those of (1.14) and (1.15). Nevertheless,
this loss of information is irrelevant to compute the phase space contraction rate
of sets of phase space trajectories. In particular, we may disregard variations of the
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dynamics internal to the single regions, as long as the resulting internal, or “hidden”,
dynamics preserve phase space volumes and do not affect (1.11) and (1.12). These
observations are relevant for the stochastic descriptions of physical phenomena,
which are thought to be based on reduced (projected) dynamics of phase space
deterministic dynamics. Indeed, the projected Perron-Frobenius equation (1.3) is
a time-integrated Master equation for the probability densities p; and p, over
the coarser, projected, state space defined by the chosen Markov partition. These
considerations are reminiscent of the fact that thermodynamics, to a large extent,
does not depend on the details of the microscopic dynamics, hence is consistent
with many different phase space evolutions. This is consequence of the fact that
thermodynamics describes the object of interest by a few observable quantities,
i.e. in a space of reduced dimensionality, which can be seen as a projection of
the whole phase space. Thus, in order to compute the quantities of interest, one
may conveniently choose the detailed microscopic dynamics which most easily
represent the phenomenon under investigation. For instance, in our idealized setting,
the equilibrium dynamics and the existence of some symmetries relating forward
and reversed paths in a subspace of the phase space, may be investigated by means
of the map M with ¢ = 0, which is reversible via the involution G depicted in
Fig. 1.4, and by means of the projections of M on the relevant directions. The class
of dynamics which are equivalent from a given, restricted or projected, standpoint
could include maps which are not even time reversal invariant. Indeed, one may
consider microscopic dynamics obtained from map (1.1) introducing an irreversible
transformation N which does not contract nor expand phase space volumes. This
can be simply done by e.g. letting N flip the y-coordinates of the phase space points
of a vertical strip of width € in the region B:

2

X X l_yn
( ”+1)=N( "): (1.16)
Yn+1 Yn

1
(xn) forx € [X,X + €] andy € [5 1]

1
( *n ),forxe[fc,fc—i—e] andyE[O,—)

Yn

cf. Fig. 1.6 for a graphical representation.

As pointed out in [30], the composed map K = NM is irreversible because it
does not admit an inverse. Moreover, the irreversible mechanism of the dynamics
described in (1.16) gives rise to an invariant measure which is fractal along the
vertical direction, cf. Fig. 1.7, and which is strongly at variance with its reversible
equilibrium counterpart shown in Fig. 1.2. Nevertheless, it is clearly seen that (1.11)
and (1.12) still hold true for the map K, despite the irreversible feature of the
equations of motion. In fact, although the irreversible dynamics K no longer admits
an involution (hence, (1.9) and (1.10) can no longer be fulfilled), (1.11) and (1.12)
remain unaltered, because N maps a point x € i into a point x" € i, and it neither
contracts nor expand phase space areas. Thus, if we replace the dynamics M with
the dynamics K and, accordingly, we take Q0 = GK, the sequences (1.14) and
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Fig. 1.6 The map N defined in (1.16), which spoils the reversibility of the model
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Fig. 1.7 Result of a numerical simulation for the invariant density of the equilibrium irreversible
map derived from (1.1) and (1.16) by setting g = 0, = 0.15, X = £ and € = % — £, obtained
by evolving a set of 2 - 107 initial conditions randomly (and uniformly) chosen on the square
[0, 1] x [0, 1]. The density p(x, y) is not smooth along the y-coordinate, which is a signature of the
strongly irreversible dynamics given by the map N in (1.16)

(1.15) remain unaltered, since they are invariant under the action of an irreversible
perturbation of the y-coordinate.

Now, let w(ig,n — 1) C ip and w(Qi,—1,n — 1) C Qi,—; denote, respectively,
the sets of points corresponding to the forward (1.14) and to the time reversed (1.15)
sequences. Trivially, the sets of points corresponding to these symbolic sequences
have invariant measures u(w(ip, n)) and w(w(Qi,—1,n)), as in the reversible case.
Therefore, in spite of the irreversible modification N, we may say that the dynamics
enjoy a form of reversibility which is weaker than the standard reversibility in phase
space, but which cannot be distinguished from that if observed from the stochastic
(reduced) viewpoint of the projections on the horizontal direction.

As a matter of fact, time reversibility is contemplated in stochastic dynamics and
amounts to the requirement that a sequence of events have positive probability if its
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reverse does [33]. Because our projected dynamics are not affected by the action of
N, on the level of the stochastic description, the phase space reversible dynamics
of M are equally stochastically reversible as the phase space irreversible dynamics
of K. Furthermore, the fact that N reshuffles phase space points within vertical
strips of the square implies that the redistributions of mass due to the phase space
contraction rate of M and to the rearrangement of phase space volumes produced
by N are indistinguishable on the projected horizontal space and can be quantified
by the same observable A. In particular, (1.5) holds for both M and K, hence
the statistics of all projected observables is the same. Only in the case that one
is interested on observables which explicitly concern the y coordinate would the
two dynamics be distinguishable, but as long as one focuses on quantities which do
not depend on y, or which result from a projection on the x axis, M and K lead to
the same conclusions: the corresponding reduced stochastic evolution is exactly the
same, as in the case of felt dynamics introduced in [34].

Therefore, we may state that the map K with ¢ = 0 represents a kind of equi-
librium but irreversible dynamics. Although this might appear contradictory, it is
simply explained by the observation that the equilibrium behavior concerns the
level of the horizontal projection, which is stochastically reversible, while the
irreversibility concerns the phase space. This situation differs from that of [32], in
which time reversible nonequilibrium systems are recognized to be common—see,
e.g. the standard models of nonequilibrium molecular dynamics—while equilibrium
irreversible systems are thought to be rare, as far as phase space is concerned.

Our study concerns, instead, the bridge between deterministic and stochastic-like
descriptions. In particular, we are going to show that the x-projection of K, being an
equilibrium model, satisfies the principle of detailed balance (DB), from the point of
view of the stochastic dynamics, in spite of its irreversibility in the phase space. Note
that DB is often referred to as the principle of microscopic reversibility [35], which
is, then, to be understood as a notion of reversibility in the reduced space, not in
the full phase space. This naturally connects with the distinction between relevant
and irrelevant coordinates which underlies the statistical mechanics reduction of
deterministic descriptions in the phase space to stochastic descriptions, which
typically concern the one-particle space [36, 37]. Clearly, our dynamical system
is too simple to allow a physically meaningful distinction between relevant and
irrelevant variables. Therefore, we merely focus on one of them (the x-coordinate)
and regard the other as irrelevant (the y-coordinate), without implying that one
subspace of our subspace is endowed with any special meaning.

1.3 From Phase Space to Detailed Balance

In this section we introduce the notion of detailed balance in the phase space
(PSDB) which constitutes a strong concept of equilibrium dynamics. We will show
that the standard notion of DB descends from PSDB through a projection of the
phase space dynamics onto a suitable subspace. It will also be shown that the
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Fig. 1.8 Set of points, in
phase, belonging to the sets U
and V in the forward (upper
path) and in the time reversed
(lower path) trajectories

DB condition is insensitive to the reversibility properties of the full phase space
equilibrium dynamics. Let

X, =My, xe¥

be the microscopic dynamics, where M is time reversal invariant, with involution
G. For sake of simplicity, we deal with discrete time, ¢t € Z, but flows S*, ¢t € R
could be treated similarly.

Consider two sets in phase space, U,V C %Z.Let W = MXUNV = {xeV:
M~*x € U} be the set of final points of trajectory segments starting in U, which
fall in V after k iterations of M, and let M ¥ W be the corresponding set of initial
conditions. Take an invariant measure p for M, so that (W) = (M ~¥W), and let
Ay (x) be the phase space contraction along the trajectory starting in x € M ~*W.
Its time reverse trajectory, which gives rise to the opposite phase space contraction,
cf. (1.10) and (1.12), starts in X = GMM*x € GMW . Call

W =MGMW = M*GM (M*U N V) = GMU N M*GMV

the set of final conditions of all trajectories which are time reverses of those ending
in W, cf. Fig. 1.8, where the second equality comes from the definition of W and
the third equality follows from the property M¥*G = GM ¥ of the involution G.
The measure of this set is given by:
w(W) = wW(M*GMV N GMU)

= uM*MT'GV N MTIGU) = u(M*F'(GV N M~*GU))

= u(M*Y(GV N GM*U)) = n(GV N GM*U)

= u(G(V N M*U)) = n(GW) (1.17)
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We define the phase space detailed balance (PSDB) as the condition for which the
probability of having opposite phase space contractions are equal:

WM W) = W(M™W)  ie. (W) = p(W) (1.18)
Because of (1.17), this condition may also be written as
pW) = p(GW) (1.19)

which is to say that PSDB requires the M -invariant measure [ to be also
G-invariant, since W may be any subset of % . Calling a function ¢ odd with
respect to time reversal if @(Gx) = —®(x) forall x € %, and defining equilibrium
the situation in which the mean value of all such odd observables vanishes, we
obtain that (1.19) implies equilibrium. Indeed, take any @ which is odd with
respect to the time reversal and choose W = {x € % : ®(x) > 0}, so that
GW ={x € % : ®(x) < 0} and &(x) = Oforall x € Z \ (W UGW).
Then the following holds:

(@) = /W O () dp(x) + /G oW
— [ ewdne+ [ #G1)Ia0d) (1.20)
w w
- / @) dp(x) / S(y)dpu(y) = 0
w w

where Jg = 1. In particular, the PSDB implies that the average of the phase space
contraction rate A(x) = log Jr(x)~' vanishes, as required for equilibrium in
Sect. 1.3.

Is there any relation between PSDB and the standard DB, which implies
equilibrium on the level of the projected dynamics (the caricature of the one particle
or p-space)? We notice, in passing, that some authors distinguish DB dynamics
from detailed balance steady state, which proves to be a convenient tool in the
analysis of stochastic processes [22]. In this case, a given evolution law is called
DB dynamics if its steady state is a DB state. To derive standard DB, let us eliminate
the irrelevant coordinates, which only contribute to noise, by projecting (1.19) on
the subspace of relevant coordinates, which we call p-space. This can be done for
sets of the form W = WU x %,_; and W = W(l) X %n_l, where W(1)~and W(l)
denote the projections of the sets W and W onto the u-space and 6,—1, €,—1 span
the remaining, noisy, space, cf. the hyper-cylinders illustrated in Fig. 1.9, where
WO and WO denote, respectively, the event on the pu-space. Then, if we denote
by 1V the measure in the p-space induced from the invariant measure on the phase
space, we have that:

p(wh) = / wdx), p (W) = /A pu(dx) (1.21)

<€n71 an—l
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Fig. 1.9 The sets W) and GW D, after reduction from phase space to the z-space

Detailed balance holds if
uO (W) = (Wu)), or u® (WD) =puM(GwD) (1.22)

Thus, PSDB implies the standard DB, since DB amounts to the condition of PSBD
restricted to sets W and W of the form here introduced. Moreover, the projection
procedure typically smoothes out singularities, hence the induced invariant measure
uD usually is regular and has an invariant density p"). For instance, the map
(1.1) with h = % — 24 which, for arbitrary ¢, is dissipative but still equipped with a
projected invariant density which is smooth along the unstable manifold, [30]. In the
derivation of the stochastic description as a projection of some deterministic phase
space dynamics, the DB condition (1.22) is usually assumed to be the consequence
of the time reversal invariance of the microscopic dynamics, once equilibrium is
reached. In our investigation this amounts to require the existence of the involution
G, defined in the phase space. We are now going to see that this requirement may
be relaxed in simple cases, such as those of the irreversible dynamics K discussed
above. Using the same notation, (1.19) can then be written as:

w(Minj)=uMGMj N GMi) (1.23)

where w(Mi N j) is the conditional probability of being in the region j one time
step after having been in region i, with i, j € {A4, B, C, D}, our finite state space.
The quantity w(Mi N j) may be rewritten as w(Mi N j) = p(jli) = pij,
with notation reminiscent of stochastic descriptions. The p;;’s then constitute the
elements of the transition matrix:
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Fig. 1.10 Sets undergoing MQCNQ A
the forward path (4 — C,
blue arrow) and the time
reversed path (QC — QA
black arrow) for the map

(1.1) withg = 0

MANC

11
0o 0 ==
22

P = 2“_2“1)(1) (1.24)
0o 0 ==
22
201-200 0

which defines a stochastic process for the dynamics of the state in {4, B, C, D}.
Application of the Perron-Frobenius theorem to the matrix P reveals the existence
of one left eigenvector of P, associated with the eigenvalue A = 1 (i.e. the geometric
multiplicity of such eigenvalue is 1), which, thus, implies the existence of a unique
(coarse-grained) steady state measure (i 4, B, e, 4D ), Where:

20
_2° _if i=A.C.D:
1+a0 " !

Wi = . (1.25)

Equation (1.25) highlights the fact that the measure in the full phase space is
uniform along the stable manifold and piecewise constant along the unstable one,
as previously illustrated in Fig. 1.2. This comes from the fact that, since the regions
{A, B,C, D} are determined only by the x-coordinate, the stochastic transition
matrix P does not depend on the dynamics along the stable manifold, and, hence,
pij = J‘.‘)_l. As a result, the invariant measure in (1.25) depends only on x and is
constant on y.

Consider, for instance, the one-step transition A — C, whose probability is the
measure of W = M A N C, which equals that of the set of the corresponding initial
conditions M ~'W = A N M ~'C. The probability of the reverse transition QC =
C —> QA = D, where we have recalled the relations (1. 13) is the measure of the
set W = MQC N QA, cf. Fig. 1.10. Since the sets W and w span the whole range
[0, 1] in the vertical direction, as in Fig. 1.9, the measures (W) and p,(W) can be
calculated just in terms of the transition probabilities (1.24) and of the projected
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invariant measures (1.25). The result is

14

MANC) = =
w( ) = [apac 1+ 4¢

= pcpep = w(MC N D) (1.26)

for any £. Hence, DB holds as expected, because we are dealing with an equilibrium
case, although the underlying dynamics is irreversible. It is now interesting check
what happens when the microscopic dynamics is pulled out of equilibrium. For
instance, consider K = NM, with N as in (1.16) and M the time reversible
mapping (1.1), withg = % — 24. For this map M, we may consider an involution G
which is consistent with the following equalities (cf. (36) in [30]):

QA=A, QB=C, QC=B, QD=D (1.27)

hence which differs from the G in (1.8). Then, the time reverse of the transition
A — Cisgivenby QC — QAie. B — A, and we get:

14
U(MANC) = papac = Trac (1.28)
_ (=202
UW(MBNA) = pppps = 1140 (1.29)

which shows that (1.28) and (1.29) do not coincide, and that PSDB and DB are
violated for g # O, i.e. outside the equilibrium defined via the chosen G. In this
case, only { = 4—11 leads to the equilibrium state which is, in addition, microcanonical.
In fact, the map with g = % — 2/ attains equilibrium for ¢ = 0, which gives £ = %,
corresponding, as discussed in [30], to a microcanonical equilibrium distribution.

1.4 The Fluctuation Relation and Nonequilibrium Response

The fluctuation relation for A, the A-FR, originally proposed by Evans et al. [8], and
developed by Gallavotti and Cohen [9, 10], concerns the statistics of the mean phase
space contraction rate A,, over the steady state ensemble of phase space trajectory
segments of a large number of steps, 7. Equivalently, it concerns the statistics of A,,,
computed over segments of a unique steady state phase space trajectory, broken in
segments {xi, ..., x,} of length n.

The dynamics are called dissipative if

(A) = /% A) u(dx) > 0

where (A) is the steady state mean of A, i.e. it is computed with respect to the
natural measure p on 7% . Itis convenient to introduce the dimensionless phase space
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contraction rate e, = A, /(A) because its range, [ Amax/(A), Amax/{A)], does
not change with n, while the values taken by e, tend to more and more densely fill it
as n grows. Further, we denote by 7, (B)s) the probability that e,, computed over a
segment of n-steps of a typical trajectory, falls in the interval B, s = (p —§, p + ),
for some fixed § > 0. In other words, one may write

n(Bps) = w(wan), where wa,={x€ U :e, € Bps} (1.30)

For growing n, , peaks around the mean value {e,) = 1, but fluctuations about this
mean may occur with positive probability at any finite n. In particular, under certain
conditions, [9, 10, 14, 15,38], m, obeys a large deviation principle with a given rate
functional ¢, in the sense that the limit

nlggo ﬂn(Bp,s) — o ll(p)tes) (1.31)

exists, with €5 < §. In particular, if the support of the invariant measure is the whole
phase space %/, time reversibility guarantees that the support of 7, is symmetric
around 0, and one can consider the ratio

Tty (Bp,é)
Tty (B—p,S) .

In our case, this ratio equals the ratio of the measures of a pair of sets conjugated
by time reversal, as in (1.11) and (1.12). Then, the validity of the A-FR means that
there exists p* > 0 such that

1 uxien) € Bys))
P A e e By P TE (13Y

if |[p| < p*and § > 0.

So far, the proofs of this and other FR’s appeared in the literature, notably those
for the fluctuations of the Dissipation Function §2, [4, 15,39], rely on the existence
of an involution representing time reversal in phase space, while they rely on the
principle of microscopic reversibility in the state space of stochastic processes. So,
whatever the context, the relevant notion of time reversibility has always been used.
Therefore, if time reversibility is broken, but is broken as in the case of the map
K, which enjoys a weaker form of reversibility requiring only the existence of the
pairs of conjugate trajectories (1.14) and (1.15), the A-FR should remain valid.
Indeed, the existence of this weaker reversibility is consistent with the principle
of microscopic reversibility, adopted in the stochastic approach by e.g. Lebowitz
and Spohn [13].

Let us then investigate the validity of the A-FR for the deterministic model
K = NM with N given by (1.6) and M by (1.1), which may or may not lead to
equilibrium, depending on the value of the parameter ¢. As discussed in Sect. 1.2,
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Fig. 1.11 Probability measure 7, (B, s)

K is irreversible, M is reversible and the mapping 0 = GK, appearing in the
definition of the time reversed path (1.15), is properly defined in both cases. Take
q= % —2¢, with £ # %, consistently with [30]. Then, the A-FR may be written as:

1 ] —1
p—6< lim log pwlio,n — 1))

S 1.33
A (A) 8 @@= =P (1.33)

with |p| < p*, for some p* > 0 and any § > 0. To prove (1.33) for the map
K = NM, one must compute the invariant probability measure m,, and let n grow
without bounds.

This is guaranteed by the proof of the validity of the A-FR given for M in [30],
which only relies on the invariant measure in the projected space.

We illustrate this result by means of numerical simulations, which we have
performed for different values of n, with £ = 0.15, cf. Fig. 1.11. The numerical
simulations, shown in Fig. 1.12, show how the large deviation rate functional ¢ is
generated, and that it is smooth and strictly convex in the whole range of observed
fluctuations, as required by the theory of the A-FR. In Fig. 1.13 we also plotted the
expression in the center of (1.33), which is consistent with the validity of the A-FR.
Once the A-FR is proven to hold for the map K, one may be tempted to assess the
validity of the Green-Kubo formulas as well as of the Onsager reciprocal relations,
by following e.g. the strategies of [40-43], in the limit of small external drivings,
as summarized in [4, 6]. To this end, we consider A as the entropy production
rate, although this identification must be done cum grano salis, as explained in e.g.
[5,40,44-46], and we briefly summarize the argument, for sake of completeness.

The main steps are the following [6,41]:

¢ Assume that the system is subjected to k fields F = (F}, F», .., Fy), that A
vanishes when all drivings vanish and that
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Fig. 1.12 Rate functional ¢, associated with 7, for different values of n. As expected from theory,
the curves ¢, are expected to move downwards for growing n, so that, in the n — oo limit, {(p)
intersects the horizontal axis only in p =1
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Fig. 1.13 Check of the A-FR, (1.33) for the irreversible dynamics dictated by the map K = NM.
Blue points: results of the numerical simulations with n = 2 - 102

k
A) =Y FJ)x) + O(F?) (1.34)

=1

which defines the currents J, which are proportional to the forces F,.
* The decay of the A autocorrelation function required for the A-FR to hold, leads
to the following expansion for the rate function ¢:

0

_ 12 _ 1\3r3
{(p) = 2C; (p—=1D"+0(p—-1)7F") (1.35)
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Fig. 1.14 Rate functional {(p) associated to m,(B)s). Blue points: results of the numerical
simulation with n = 10%. Red line: fitting of numerical data with the parabola a(x — 1)> + b,
with parameters a = 2.66- 10~ and b = 2.68 - 1072

where C, is related to the time autocorrelation of A. In other words, the rate
functional is quadratic for small deviations from the mean p = 1, in accord with
the Central Limit Theorem.

* Introduce the nonlinear currents as Jy(x) = 0Jr A(x), and the transport
coefficients Ly, = 9, (J¢)|r=o0. Then, one obtains:

k k
1 1

A = — , oy F, = = Lo+ Lo)F Fe (1.

(A) 2Z§r=l(3F,(Jz)+3n(J DIF=0F¢ 2[?:1( o+ L) FrFr (1.36)

to second order in the forces.

* Equation (1.33) implies (A) = % Thus, equating the latter expression with
(1.36) and by considering (L¢, + L,¢)/2 with £ = r, one obtains the Green-
Kubo relations.

In our case, the rate functional is clearly quadratic, as shown by our simulations
of the dynamics of K. In particular, the red quadratic curve in Fig. 1.14 reproduces
nicely the behavior of the numerical data for the rate functional ,, corresponding
to trajectory segments of n = 200 steps. The necessity for a parameter b # 0 in
the parabola is due the finiteness of n: indeed » — 0 when n — oo. However,
in spite of the validity of the A-FR for the irreversible map K, which entails that
the irreversible map behaves to some extent equivalently to the reversible map M,
the argument of [47] leading to the Green-Kubo relations cannot be reproduced
here. In fact, it relies on the differentiability of the SRB measure as well as on
the reversibility of the microscopic dynamics, which are both violated in the case
of K. Alternatively, one may think of deriving linear response from the A-FR
through the approach of [40] (SRE, hereafter), which does not explicitly require
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the differentiability of the invariant measure and the reversibility of the dynamics.
In particular, SRE deals with a Nosé-Hoover thermostatted N -particle system and

obtains: ) ,
FV 2L(F)kpT F,
2 e e e

= (F,) = ol— 1.37

noA”( %) (ZKO) [ v + N (1.37)

for the variance a% of A,, provided A can be identified with the dissipation

function §2. Here, where K, is the target kinetic energy for the thermostatted
particles, which corresponds to the inverse temperature 8, N is the number of
particles, V is the volume and F, denotes the external force (i.e. the bias) acting
on the system. The quantity L(F,) is defined by

L(F) = BV [0 A1 (W (1) — (U)) (P (0) — (¥))) (1.38)

and L(0) = limf, .9 L(F,) is the linear transport coefficient. The derivation of the
Green-Kubo formulae is completed by comparing (1.37) with the relation (A) =
(U)F, = %a% (F,), which is implied by the FR, which yields:

L(©) = lim % = ,BV/OOO dt (W (t)¥(0)) (1.39)

—0

In our framework of simple dynamical systems, the “current” ¥ could be defined

as:
0 forx e A,D

Uix)=1{ 1 forxe€ B . (1.40)

-1 forx e C

which implies an average current (¥) = (1 — 4£)/(1 + 4£), cf. (41) in [30], where
the role of the external force F, was played by the bias b = 2 — 1/(1 —2{).
Nevertheless, following SRE may be problematic, as N is required to be large
enough in order to derive (1.39) from (1.37), something which cannot be granted
in low-dimensional systems as the map under consideration. Indeed, our numerical
simulations reveal that an interesting scenario arises in the computation of the
quantity L(F,), which may be conveniently approximated by:

(Nit('r_l) Nens
1 A .
LF) = o > [re el - @) (1.41)
k=0 j=I

where the upper limit of the integral in (1.38) is replaced by N, and the
correlations are computed over an ensemble of fully decorrelated initial conditions

{x_éj ) }, with j = 1,..., N.us, picked at random so that they occur in the ensemble
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Fig. 1.15 Numerical computation of L(0) from (1.41), for the irreversible map K = M N derived
from (1.16) and (1.1), withg = % — 24, for different values of N,
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Fig. 1.16 Computation of L(0) for the irreversible, K = M N, and the corresponding reversible
map, K = M, with N,,;, = 5-10°. The irreversibility does not affect the convergence in (1.41)

with the frequency corresponding to the natural invariant measure of the dynamical
system. Then, the coefficient L(0) may be computed from (1.41) by considering the
limit of vanishing bias, i.e. by taking (¥) = 0 and a microcanonical equilibrium
ensemble of initial conditions {x_éj )}. The values N,,; and N;;., must be chosen
with care, in order to guarantee the convergence of the sums in (1.41), cf. Fig. 1.15.

Our simulations show that the irreversible character of the dynamics, which
affects the “irrelevant” variable y, has no influence on the convergence of the Green-
Kubo, formula (1.41), cf. Fig. 1.16.

To study the linear response for the irreversible map, that is the existence of
the limit L(0) = limg,—o L(F,), we varied the value of bias within four different
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Fig. 1.17 Numerical computation of the coefficient L (F,) as a function of the bias F, at different
orders of magnitude of the bias. The coefficient L(F,) presents a very irregular structure, which
may prevent the existence of the limit L(0) = limp, o L(F,)

windows of magnitude, cf. Fig. 1.17, and obtained that, in spite of the validity
of the A-FR, no linear response can be claimed for our low-dimensional system,
unless this is verified at exceedingly small bias. This fact cannot be blamed on the
irreversible nature of the evolution, since we have observed that the response of the
irreversible map coincides with the response of the corresponding T-symmetric one,
cf. Fig. 1.18. It is more related to the irregularity typical of transport phenomena in
low dimension [5]. Therefore, the dynamics of the map K = M N proves that its
irreversible component, the map N, affects neither the validity of the A-FR nor the
response of the system to an external bias.

Per se, the fact that neither the approach of [47] nor that of SRE are applicable
does not imply that no linear response can be established. However, this a clear
observation for our model, which does not enjoy many properties of the systems
of [47] and many others of the systems of [40]. More importantly, as pointed out
in e.g. [17,43, 48], the physical linear response relies on the occurrence of local
equilibrium, in the sense that real space may be thought of as a “collection” of cells,
each of which contains a statistically significant number of interacting particles.
Clearly, our two-dimensional dynamical system may mimic only a few features of
areal N -particle system, and the local equilibrium property is out of question.
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Fig. 1.18 Transport coefficient L(F,) for the irreversible, K = MN, and the corresponding
reversible map, K = M, with N,,;, = 5 - 10°. The irreversible component of the dynamics,
N, leaves the response of the system unaffected

1.5 Some Results on FDT in Chaotic Dissipative Systems

We now turn our attention on the FDT, which, since its early developments, due
mainly to the works of Onsager and Kubo [37,49-51], represents a cornerstone
along the construction of a theory of nonequilibrium phenomena [52]. To this
aim, let us briefly review Ruelle’s approach to linear response in deterministic
dissipative dynamical systems [53]. Let (.#, S’, ) be a dynamical system, with .#
its compact phase space, S’ : .# — .# a one parameter group of diffeomorphisms
and p the invariant natural measure. Following Ruelle [53], who considers axiom A
systems, one may show that the effect of a perturbation §F(t) = §F(t) + 6FL(¢)
on the response of a generic (smooth enough) observable A attains the form:

§A(t) = / RVt — D)8Fy(n)dT + / Rt — 0)8F (v)dt (1.42)
0 0

where the subscript | refers to the dynamics on the unstable tangent bundle (along
the attractor), while | refers to the transversal directions, cf. left panel of Fig. 1.19.
Ruelle’s central remark is that RI(IA) may be expressed in terms of a correlation

function evaluated with respect to the unperturbed dynamics, while RT) depends
on the dynamics along the stable manifold, hence it may not be determined by pu,
and should be quite difficult to compute numerically [6].

To illustrate these facts, the authors of [54] study a 2-dimensional model,
which consists of a chaotic rotator on a plane and, for such a system, succeed to
numerically estimate the RT) term in (1.42). Nevertheless, in the next section, we

argue that Rf) may spoil the generalized FDT only if the perturbation is carefully
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Fig. 1.19 Left panel: In Ruelle’s approach, the perturbation is expressed as the sum of one
component parallel to the unstable manifold and one parallel to the stable manifold. Right panel: In
the present work, the reference frame is rotated so that the direction of the perturbation coincides
with one of the basis vectors

oriented with respect to the stable and unstable manifolds. This is only possible
in peculiar situations, such as those of [54], in which the invariant measure is the
product of a radial and angular component and, furthermore, the perturbation lies
on the radial direction, leaving the angular dynamics unaffected.

A different approach to the FDT has been proposed in [27], which concerns
deterministic dynamics perturbed by stochastic contributions. Here, the invariant
measure u can be assumed to have density p: diu(x) = p(x)d x. Then, if the initial
conditions are modified by an impulsive perturbation x, — x, + x,, the invariant
density p(x,) is replaced by a perturbed initial density pp(x,; 8x,) = p(x, — 8x,),
where the subscript 0 denotes the initial state, right after the perturbation. This
state is not stationary and evolves in time, producing time dependent densities
pr(xy; 8x,), which are assumed to eventually relax back to p(x,). Thus, given the
transition probability W(x,, 0 — x,¢) determined by the dynamics, the response of
coordinate x; is expressed by:

5500 = [ [ 30l —830) — o) Wso, 0 > x00dzod (143
and one may introduce the response function R;; as [27]:

Sxi(t)
55, (0)

dlogp
8xj

Rij (1) = —<Xi(f)

> (1.44)
1=0

which is a correlation function computed with respect to the unperturbed state. It
is worth to note that it makes no difference in the derivation of (1.44) whether the
steady state is an equilibrium state or not; it suffices that p be differentiable.

Let us consider again (1.43) and, for sake of simplicity, assume that all
components of §x(0) vanish, except the i-th component. Then, the response of x;
may also be written as:
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() = / x / [0y — 8x) — plxg)] Wi(xg, 0 — x, 1)dxo [ dx; |
J#i

= /xiB,-(xi,S&),t)dxi (1.45)

where B, (x;,8x,,t), defined by the term within curly brackets, may also be written
as:
B;(xi, 8x0.1) = pr (xi38x) —'p(xi) (1.46)

where p(x;) and p; are the marginal probability distributions defined by:

w0 = [p@ [Tdv.  Ftuias) = [ ptaiaxy [T
j#i J#Ei

As projected singular measures are expected to be smooth, especially if the
dimension of the projected space is sensibly smaller than that of the original space,
one may adopt the same procedure also for dissipative deterministic dynamical
systems, as also shown in [55]. Indeed, the response function B; (x;, §x,, t) in (1.46)
is also expected to be smooth, and to make the response of x; computable from the
invariant measure only. In the next section we investigate this possibility.

1.6 Coarse Graining Analysis

In terms of phase space probability measures, the response formula (1.43) reads:

50 = [ 5 dussbxy) - [ dutw) (1.47)

where dpu,(x;8x,) is the time evolving perturbed measure whose initial state is
given by
dpto(xg: 8x9) = po(Xe:8x,) dxg = plxy —8xo) dxy.

Because dissipative dynamical systems do not have an invariant probability density,
it is convenient to introduce a coarse graining in phase space, to approximate the
singular invariant measure p by means of piecewise constant distributions.

Let us consider a d-dimensional phase space .#, with an e-partition made of a
finite set of d -dimensional hypercubes Ay (¢) of side € and centers x, . Introduce the
e-coarse graining of u and of p, defined by the probabilities Py (¢) and Py x(€; 5x,)
of the hypercubes Ay (¢):

Py (e) :A()dﬂw, Pt,k(e;gio)://l()dﬂt(l;(gio)- (1.48)
k(€ k(€



1 Fluctuation Relations and Nonequilibrium Response for Chaotic . . . 29

This leads to the coarse grained invariant density p(x; €):

Pi(e)/€e? if x € Ar(e)

1.49
0 else ( )

p@dzZm@d,mmm@az{
k

Let Z; be the number of bins of form [xl.(q) —€/2, xl.(q) + 6/2), qge{l,2,....Z;},
in the i-th direction. Then, the marginalization of the coarse grained distribution
yields the following set of Z; probabilities:

(@) ¢

@ e
q —
b (6)_/x.<«>_

/p@; €) l_[ dx; ¢ dx; = Prob (x,- € [xi(") - E,xi(q) + E))
3 J#i

2 2
(1.50)

each of which is the invariant probability that the coordinate x; lie in one of the
Z; bins. In an analogous way, one may define the marginal of the evolving coarse
grained perturbed probability pt(z) (€; 6x,). In both cases, dividing by €, one obtains

the coarse grained marginal probability densities pf") () and p;ff.) (e;6x,), as well as

the e-coarse grained version of the response function B; (x;, §x,,?):

B, 8xy, 1,6 = — [ pe8x0) — p7()] = o2 e.520) 67 (15D
In the following, we will show that the r.h.s. of (1.51) tends to a regular function
of x; in the Z; — 00, € — 0, limit. Then, in the limit of small perturbations §x,,
Bl.(") (xi,8x,,t, €) may be expanded as a Taylor series, to yield an expression similar
to standard response theory, in the sense that it depends solely on the unperturbed
state. The difference, here, is that the invariant measure is singular and represents a
nonequilibrium steady state.

To illustrate this fact, we run a set of N trajectories with uniformly distributed
initial conditions in the phase spaces of two simple, but substantially different,
2-dimensional maps: a dissipative baker map, and the Henon map.

1.6.1 The Dissipative Baker Map

Let us consider one of the simplest examples of dissipative discrete dynamical
systems. Let .#Z = [0, 1] x [0, 1] be the phase space, and consider the evolution
equation

(x”/l), for0 <x, <I;
FVn

() (2)- -
Yn+1 Yn ((xn _l)/r) forl <x, < 1.

r+ly,

(1.52)
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Fig. 1.20 Invariant probability distribution of the map defined by (1.52)

whose Jacobian determinant is given by

Ja=r/l, for 0<x<I;
JB=l/r=JA_1,forl§x§1.'

Ju(x) = (1.53)

and shows that the M is dissipative for / < 1/2. The map M is hyperbolic, since
stable and unstable manifolds which intersect each other orthogonally are defined
at all points x € ., except in the irrelevant vertical segment at x = /. The
directions of these manifolds coincide, respectively, with the vertical and horizontal
directions. It can also be shown that this dynamical system is endowed with an
invariant measure (1 which is smooth along the unstable manifold and singular along
the stable one, cf. Fig. 1.20. In particular, pu factorizes as du(x) = dx x dA(y),
similarly to the case of [54].

In order to verify whether the functions corresponding to the above introduced
Bl-(q) (x;,6x,,t, €) become regular functions in the fine graining limit, let us consider
first an impulsive perturbation, directed purely along the stable manifold, i.e. §x, =
(0, 6y0). Ruelle’s work on singular measures is clearly relevant, in this case, because
the support of the marginal perturbed probability measure, obtained projecting
out the y-direction has simply drifted preserving its singular character, while the
state may have fallen outside the support of the unperturbed invariant measure,
cf. left panel of Fig. 1.21. Consider now an initial impulsive perturbation with one
component, no matter how small, along the unstable manifold, §x, = (8xo., 8yo) and
rotate the vectors of the basis of the 2-dimensional plane, so that the coordinate x lies
along the direction of the perturbation. We find that Biq) (x,8x,,t,€)isregular as a
function of x. Indeed, the projections of u and of its perturbations onto the direction
of 8x,, have a density along all directions except the vertical one. Hence, a small
perturbation does not take the state outside the corresponding projected support.
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Fig. 1.21 Left panel: singular distribution of the unperturbed system, obtained projecting the
invariant measure onto the vertical direction y, which is the direction of the stable manifold. Right
panel: projected invariant density along the direction of the perturbation, which forms an angle
o« = m/8 radiants with the y-direction. z = 1 — (x cos(a) — y sin(«) + sin(«)) is the coordinate
along this direction. Although hardly differentiable, this projected distribution has a density

As already noted in [54], this baker map shows that the response to very carefully
selected perturbations, cannot be computed in general from solely the invariant
measure. However, similarly to the case of [54], the factorization of y makes the
present case rather peculiar. Indeed, for the overwhelming majority of dynamical
systems, it looks impossible to select directions such that the projected measures
preserve the same degree of singularity as the full measures. This is a consequence
of the fact that stable and unstable manifolds have different orientations in different
parts of the phase space, provided they exist. Clearly, the higher the dimensionality
of the phase space and the larger the number of projected out dimensions, the more
difficult it is to preserve singular characters.

1.6.2 The Henon Map

Consider for instance the Henon map defined by:

2
(x"+1) =M (x") = (y" +1 “xn). (1.54)
Yn+1 Yn bx,

one the phase space .#Z = —%, %] X [% %], where ¢ = 1.4 and b = 0.3 imply a
chaotic dissipative dynamics, with a fractal invariant measure w, which is not the
product of the marginal measures obtained by projecting onto the horizontal and the
vertical directions. These marginals are indeed regular and would yield a regular
product. As stable and unstable manifolds wind around, changing orientation, in a
very complicated fashion, it seems impossible, here, to disentangle the contributions
of one phase space direction from the other.

Then, because no direction appears to be privileged in phase space, an initial

perturbation along one of the axis should not lead to any singular perturbed projected
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Fig. 1.22 Left panel: plot of the function BY (x,8xy,1, €), introduced by (1.46), for the Henon
map, after # = 2 iterations, with an initial perturbation along the x direction, §x, = (2.5-1072,0),
and different numbers of bins Z, on the x-axis, as well as different numbers N of trajectories, to
keep the statistics in the € — 0 limit: N = 3-10°, Z, = 1320 (green curve), N = 5-10°, Z, =
1650 (purple curve), N = 8 -10°, Z, = 1980 (blue curve). Right panel: plot of the function

B y(q) (y,6x,,t, €) after t = 2 iterations, for the same initial perturbation considered in the left panel,
and different values of bins Z, on the y-axis and different values of N: N = 3-10%, Z, = 336
(green curve), N = 5-10°, Zy, = 420 (purple curve), N = 8 - 10°, Zy, = 505 (blue curve). The

curves largely overlap, but the figure does not clarify whether BX(L’), B;") get smoother as Z, and

Z increase with N

35

25

pX(Q)
N

-1.5 -1 -0.5 0 0.5 1 1.5 2

Fig. 1.23 Plot of the projected invariant probability density p,(;’) (¢€), for the Henon map, with N =
5-10%, Z, = 1650 (purple curve, with green errorbars) and N = 8-10°, Z, = 1980 (blue curve).
The figure does not clarify whether the invariant distribution is singular or not

measure, or irregular response function, see e.g. [28, 29]. Unfortunately, this is
not obvious from the histograms constructed with growing numbers of bins, as
they seem to be quite irregular and to develop singularities in some parts of the
phase space, cf. Figs. 1.22 and 1.23. However, this does not necessarily prevent
the projected measures from having a density. Therefore, to clarify whether the
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Fig. 1.24 Numerical simulations of the Shannon Entropy S, (¢) for the Henon map, where Z,
denotes the number of bins considered on the x-axis and N denotes the number of trajectories.
The curves collapse onto each other, approximating the asymptotic value of S associated with the
N, Z, — o0 limits

projected probability density pf(q) (e) exists or not in the € — 0 limit, we have

examined the behavior of the Shannon Entropy, defined as

Zi
Si(e) = —€ Y p”(€) log(p{” () (1.55)
q=1

with € the size of the bin along the direction of the perturbation. Note that
this entropy is often defined differently; our definition is meant to introduce a
quantity whose ¢ — 0 limit is finite if a density exists, while it diverges if the
measure is singular. We approximated S, (¢) by running different sets of trajectories,
with different sizes of the coarse graining of the x-axis. Our simulations with
N = 2-10°, show that S, has substantially converged to its asymptotic N — 00
limit, cf. Fig. 1.24. Moreover, for fixed N, S, decreases as the number Z, of bins
grows, and appears to tend to a constant as 1/Z, — 0, cf. Fig. 1.25.

Figures 1.26 and 1.27 further prove that S, is always a finite quantity in the
Henon case while, in the baker case, it diverges logarithmically only when S,
tends to 7/2, which is the only angle for which the projected invariant measure
is singular. Therefore, the response can be obtained from the invariant measure at
all perturbation angles in the case of the Henon map, and at all but a single angle for
the Baker map. This confirms the applicability of a generalized FDT, which yields
the response function in terms of the unperturbed state only, even if supported on a
fractal set, except in very special situations, such as a negligible set in cases in which
the invariant measure is the product of regular and singular measures. In particular,
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Fig. 1.26 Numerical data with error bars, for the Shannon Entropy S, of the Henon map (1.54),
as a function of the angle « € [0, 7r/2] with respect to the horizontal direction, at increasing orders
of magnification. The top right panel is a magnification of the framed part of the fop left panel.
The bottom left panel is a magnification of the framed part of the top right panel. The bottom
right panel is a magnification of the framed part of the bottom left panel. The quantity S, is quite
structured, especially for « close to /2, but it is a finite quantity

for the baker map, the response to a perturbation may be expressed just in terms of
the smooth projected invariant measure if one does not perturb uniquely the vertical
coordinates. For the Henon map, all directions lead to the existence of a projected
invariant measure, although very finely structured.
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Fig. 1.27 Left panel: Numerical data, supplemented by error bars, for the Shannon Entropy S, of
the Baker map (1.52), as a function of the angle o € [0, 7r/2] with respect to the x-axis. Right panel:
Fit of S, for the Baker map, with the curve f(«) = alog(5 —a)+b,a = —0.101524+0.002768,
and b = 0.0411212 £ 0.01401. In this case, S, is a much simpler function of « than in the Henon
case, and it diverges in the « — /2 limit, because the projected invariant measure is singular at
a=m/2

1.7 Conclusions

In this work, we reviewed two fundamental tools of nonequilibrium statistical
mechanics, the Fluctuation Relations and the Fluctuation-Dissipation Relations,
from a novel perspective. We aimed at investigating, in particular, the relevance
of the time-reversal symmetry in the derivation of the so-called A-FR as well as
the extension of the standard FDT to dissipative dynamical systems. We focused
on some simple deterministic chaotic maps which are amenable to a mathematical
description. The map studied in Sects. 1.2—1.4, is a version of the classical baker
model, proposed in [56], whose properties are determined by two parameters, one of
which, ¢, may be suitably tuned in order to fix the distance from “equilibrium”. This
low-dimensional dynamical system represents just a caricature of a real particle sys-
tem subjected to an external driving, but it can be studied in detail and is, therefore,
useful to understand the role of the projection procedures used to obtain a coarser,
stochastic-like, description from a microscopic, deterministic, one. If the specific
observable of interest is, e.g., the phase space contraction rate A, our model allows
one to readily identify the relevant and the irrelevant variables: the phase function
A depends on the Jacobians of the mapping, and the Jacobians only depend on x,
which is, hence, the only relevant variable. This implies that the addition of a source
of irreversibility concerning only the “irrelevant” degree of freedom y, affects
neither the equilibrium state, defined by (A) = 0, nor the validity of the A-FR. In
spite of the irreversibility of the phase space dynamics, the projection onto the space
of the relevant variable not only produces a smooth marginal probability density but,
aslong as (A) = 0, also yields a projected dynamics satisfying detailed balance. We
also considered the validity of the A-FR when the considered irreversible dynamical
system is pulled out of equilibrium. So far, the validity of the A-FR has been derived
as a property of time-symmetric dynamical systems. Our analysis, also supported
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by numerical tests, showed that as long as the source of irreversibility affects only
the “irrelevant” degrees of freedom, the A-FR and the transport laws (linear and
nonlinear response) hold indistinguishably for both reversible and irreversible phase
space dynamics. Our results extend, hence, to deterministic phase space dynamics
some of the considerations reported in [57,58], which refer to stochastic dynamics.

Next, in Sects. 1.5 and 1.6, we reviewed the methods introduced in [53] and
in [6, 27, 55], concerning the derivation of response formulae for systems in
nonequilibrium steady states. In particular, we showed that the approach traced
in [27], based on the existence of a smooth invariant probability density, can be
extended to dissipative deterministic dynamics [55].

The presence of noise, in any physically relevant dynamical system, does
contribute to smoothing out the invariant density, but even in the absence of noise,
the fact that statistical mechanics is typically interested in projected dynamics allows
an approach to FDT which only requires the properties of the unperturbed states, as
in standard response theory. Clearly, this is better and better justified as the dimen-
sionality of the phase space grows. In particular, it is appropriate for macroscopic
systems in nonequilibrium steady states, because the dynamics of interest take place
in a space whose dimensionality is enormously smaller than that of the phase space.
Then, as projecting out more and more produces smoother and smoother distribu-
tions, one finds that the approach of [27] can be used to obtain the linear response
function for nonequilibrium steady states from the unperturbed measure only.

Our results support the idea that the projection procedure makes unnecessary
the explicit calculation of the term discovered by Ruelle, which was supposed to
forbid the standard approach. This does not mean that Ruelle’s term is necessarily
negligible [54]. The singularity of the phase space distribution may even have rather
dramatic consequences [59]. However, except in very peculiar situations, such as
our baker map which has carefully oriented manifolds, and for carefully chosen
perturbations, that term does not need to be explicitly computed and the calculation
of response may be carried out referring only to the unperturbed dynamics, as in the
standard cases.
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Monsoon Chaos and Wind Turbine System



Chapter 2

A Bond Graph Approach to Modeling
and Simulation of Nonlinear Wind
Turbine System

Tore Bakka and Hamid Reza Karimi

Abstract This chapter addresses the problem of bond graph methodology as a
graphical approach for modeling of wind turbine generating systems. The purpose
of this chapter is to show some of the benefits of the bond graph approach in
contributing a model for wind turbine systems. We will present a nonlinear model
of a wind turbine generating system, containing pitch, drive train, tower motion and
generator. All which will be modeled by means of bond graph. We will especially
focus on the drive train, and show the difference between modeling with a classical
mechanical method and by using bond graph. The model consists of realistic
parameters, but we are not trying to validate a specific wind turbine generating
system. Simulations are carried out in the bond graph simulation software 20-
sim [Kleijn, “20-sim 4.1 Reference Manual” Enschede, Controllab Products B.V.
(2009). ISBN 978-90-79499-05-2].

2.1 Introduction

The demand for energy world wide is increasing every day. And in these green times
renewable energy is a hot topic all over the world. Wind energy is currently the most
popular energy sector. The growth in wind power industry has been tremendous
over the last decade, its been increasing every year and it is nowadays one of the
most promising sources for renewable energy. Since the early 1990s wind power
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has enjoyed a renewed interest, particularly in the European Union where the annual
growth rate is about 20 %. The growth in the wind energy sector is illustrated in
Fig.2.1.

Whenever we are talking about models of wind turbine systems, the turbine
model becomes a critical part of the discussion. Over the years it has been some
discussion about how to model the wind turbine accurately. In [1-3] they perform
dynamic analysis on a one-mass-model, in [4-7] they examine a two-mass-model.
In [8] they use actual measured data from a wind turbine and compare it with both
a one-mass and a two-mass-model. They validate the model using a recorded case
obtained in a fixed speed, stall regulated wind turbine. In [9] a six-, three- and a
two-mass model are compared. They argue that a six-mass-model is needed for the
precise transient analysis of the wind turbine system, and they develop a way to
transform a six-mass-model into a two-mass-model. The goal of that paper is not to
use the model in the control scheme, but in the use of transient stability analysis of
grid connected system.

The pitching of the blades are usually executed by means of a hydraulic system,
but for system modeling purposes it is often considered as a first or second order
system.

We are here dealing with variable speed generating system, therfore a wound
machine or a double fed induction generator is needed. These can be modeled in
different ways, ranging from complex electric equivalent circuits to a first order
system.

Several advanced wind turbine simulation softwares has emerged during the
last decade. HAWC?2 [10], Cp-Lambda [11] and FAST [12] are a few examples.
They are developed at RIS@ in Denmark, POLI-Wind in Italy and NREL in
the US, respectively. In these codes the turbine and structure is considered as
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complex flexible mechanisms, and uses the finite-element-method (FEM) multibody
approach. An aero-servo-elastic model is introduced, which consists of aerodynamic
forces from the wind, the servo dynamics from the different actuators and the
elasticity in the different joints and the structure. Both FAST and HAWC2 can
simulate offshore and onshore cases while Cp-Lambda is limited to the onshore
case.

As seen above there are many ways to model a wind turbine generating system,
some are simple and some are very complex. In a simulation point of view it is
desirable that the model is as simple as possible and can capture as much of the
dynamics as appear in reality. This is an absolute demand, another important issue
is to keep the central processing unit (CPU) labor to a minimum. For example if
we are dealing with hardware in the loop (HIL) simulation, then it is necessary
to download the model to a programmable logic controller (PLC). This argues in
favor of the importance in having a fast C-code. Things that can potentially have a
negative effect on the execution of our C-code are for example algebraic loops and
differential causality on the different elements in the system. These topics bring us to
the use of the bond graph methodology. This is a unified approach to model all types
of physical systems, producing both linear and nonlinear mathematical models.
Engineers must work and interact in many different disciplines. An understanding
of the intersections of these different disciplines is a valuable asset for any engineer.
Using the language of bond graphs, one may construct models of electrical-,
magnetic-, mechanical-, hydraulic-, pneumatic- as well as thermal-systems. It is
a systematic way to model these dynamic systems, and there are standard ways
to translate them into differential equations or computer simulation schemes. After
constructing the bond graph one can easily spot algebraic loops and whether you
have integral causality on the dynamic elements by inspecting the graph. There are
various ways to spot these things in typical simulation software such as MATLAB,
but it is beneficial to spot them before the implementation. It is a quite intuitive
way in setting up the bonds and connecting the elements, this will be discussed
in a later section. The outcome from the bond graph model is a set of first order
differential equations, which afterwards can be used for systems response or for
example controller design. After constructing the bond graph one gets a better
understanding of what actually happens in the system. In an educational point of
view one can easily understand which element decides what element in the system.
For example in a simple mass-spring-damper system, one can easily see which
component decides the speed and which component decides the force.

The wind turbine generating system can be divided into several subsystems, see
Fig.2.2.

The system setup is adopted from [13], where V,, is the wind speed, V, is the
wind speed for power production, z is the tower speed, F; is the thrust force acting
on the tower, B, is the pitch angle reference, B is the actual pitch angle, 7, is the
aerodynamic torque, 2 is the hub speed, ¢ is the generator speed, Tgysy.r is the
generator torque reference and Tgy, is the actual generator torque.
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Fig. 2.2 Setup for wind turbine generating system

The expression for power produced by the wind is given by [14]:
P, = LprR2C, (0 2
a—zp” v p(slg) 2.1
The dimensionless tip-speed ratio (TSR) A is defined as:
A= — (2.2)
v

where vy, is the tip speed of the blade and v is the wind speed. From (2.1) we can
find the aerodynamic torque and the thrust force acting on the tower:

1
T, = Ean?’vch A, B) (2.3)

F, %anzvch A, B) (2.4)
where P, is the aerodynamic power, p is the air density, R is the blade radius.
C, gives the relation between how much power is available in the wind and how
much can be converted to electrical power. Not all the available power can be
converted, this is due to the fact that the wind cannot be completely drained of
energy, otherwise the wind speed at the rotor front would reduce to zero and the
rotation of the rotor would stop. It can be proven that the theoretical upper limit of
C,is 16/27 ~ 0.59, this is known as the Betz limit. A general modern wind turbine
has a maximum power coefficient of about 0.5. C; is the thrust force coefficient,
both these coefficients are dependent on the TSR A and the pitch angle §.

This chapter starts with an introduction to wind turbine generating system
modeling. Section 2.2 gives a short overview on the bond graph methodology and
its different elements. Section 2.3 describes the different parts of our system model;
aerodynamics, pitch, drive train, tower motion and generator. Section 2.4 states the
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simulation results and Section 2.5 gives the conclusion and states some suggestions
regarding future work.

2.2 Introduction to Band Graph

Bond graph is a graphical way of modeling physical systems. All these physical
systems have in common the conservation laws for mass and energy. Bond graph,
originated by Paynter [15] in 1961, deals with the conservation of energy. This
gives a unified approach to modeling physical systems. Further follows a short
introduction to this modeling tool, more information can be found in [16, 17]. The
bond graph based modelling has several advantages over conventional simulation
methods as follows: (1) providing a visual representation of the design; (2)
controling the consistency of the topological settings of the design; (3) providing the
hierarchical modelling of designs; (4) extracting the system equations symbolically
in a structured way.

Within physical systems, energy is transported form one item to another. This
energy is either stored or converted to other forms. But the important thing is that
it does not dissipate. If the energy is changing in one place, it also changes in an
opposite way at another location. The definition of power is the change in energy
(E) with respect to time:

d

This power is transferred between the different parts in bond graph model with the
use of power bonds, see Fig.2.3. Power can be expressed as the product of an effort
and a flow variable, thus the general expression:

P@t) = e()f(1) (2.6)

The symbols e(¢) and f(¢) are used to denote effect and flow quantities as functions
of time. Table 2.1 shows what the effort and flow quantities can be in some familiar
domains.

2.2.1 System Elements

In bond graph modeling there are a total amount of nine different elements. We
will also here introduce the causality assignments, but first we have to explore the
cause and effect for each of the basic bond graph elements. Only elements with its
preferred causality will be discussed. The importance of causality will be dealt with
later in the chapter.
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2.2.1.1 Junctions

There are two different types of junctions that connects the different parts in a
bond graph model, the O-junction and the 1-junction. The O-junction is an effort
equalizing connection, see Fig. 2.4 and its corresponding equation in (2.7). Since the
efforts are the same, only one bond can decide what it is. The 1-junction is a flow
equalizing connection, see Fig.2.5 and its corresponding equation in (2.8). Since
the flows are the same, only one bond can decide what it is. Which bond decides the
flow and which one decides the effort is indicated with the vertical causality stroke.
If the vertical line is closest to the junction, then this element decides the effort,
furthest away from the junction decides the flow.
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Fig. 2.6 Effort and flow source with their causality assignment
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2.2.1.2 Source Element

We can divide the source elements into two different kinds, effort- and flow-source.
The effort source gives an effort into the system, then it is up to the system to decide
the flow. This is what is meant with cause and effect, and its vice versa for the flow
source. Figure 2.6 shows how the causality is indicated on the graphical elements.
For the source elements these causality assignments are fixed.

2.2.1.3 Compliance Element

The causality assignment for the C-element has two possibilities, but one is
preferred in contrast to the other. This is discussed at the end of this section. The
preferred case is seen in Fig.2.7 and its corresponding equation in (2.9). We see
from both the equation and the figure that flow is given to the element/equation and
it gives the effort in return.

The variable g is called the generalized displacement. For example, this can be
rotational position of the rotor in a wind turbine.

2.2.1.4 Inertia Element

There are two choices for the causality assignment for the I-element, also here
one is preferred in contrast to other. The preferred case is seen in Fig.2.8 and its
corresponding equation in (2.10).

The variable p is called the generalized momentum. For example, this can be
rotor inertia times rotor velocity in a wind turbine.



48 T. Bakka and H.R. Karimi

e . g e = Rf (2.11)
f
1
e R f = Ee
f
Fig. 2.9 Example of resistive elements
ey = mep (2.12)
e, o Hh=mf
}; TF };
f1 f2
e e 1
N N 0 = —e 2.13)
fy | fp | m
1
Fig. 2.10 Example of the two transformers fi= ;fz
ep =rf (2.14)
e =r
e, oy 2 i
f1 f2
e e 1
N fi=-e (2.15)
f; | | f, r
1
Fig. 2.11 Example of the two gyrators fa= ;el

2.2.1.5 Resistive Element

Itis a bit more freedom when it comes to the causality assignment for the R-element.
Its equation do not include any dynamics, it is only an algebraic expression. The two
causality choices are shown in Fig. 2.9 and its corresponding equation in (2.11).

2.2.1.6 Transformer

The transformer element can work in two ways; either it transforms a flow into
another flow or it transforms an effort into another effort. Figure 2.10 corresponds
to (2.12) and (2.13), where m is the transformation ratio.

For example, this can represent a mechanical gearing or an electric transformer.

2.2.1.7 Gyrator

The gyrator can also work in two ways; either it transform a flow into an effort or it
transform an effort into a flow. Figure 2.11 corresponds to (2.14) and (2.15), where
r is the gyrator ratio.
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Fig. 2.12 The tetrahedron of
state
fdt

Tt

This can for example be an electric motor, where you have voltage as input and a
rotational speed as output. The importance of integral causality is nicely explained
in [18]. First imagine a step in effort is imposed on a C-element, then the causality
assignment will be opposite of what is shown in Fig.2.7. This means the flow
output is proportional to the derivative of the input effort. From calculus we know
that the derivative of the step function at the beginning is infinite, i.e. this do not
give any physical meaning. We can imagine a simple electric circuit containing a
voltage source coupled with a capacitor, if a step input were to be imposed on the
voltage source, the capacitor would experience a very high current and it would
blow up. From this we can conclude that nature integrates and only mathematicians
differentiate!

On the other hand, the ability to spot algebraic loops is one of the benefits
with the use of bond graph as a modeling tool. These loops can be spotted simply
by inspection of bond graph representation, if the causality assignment on the R-
elements are different from each other, then we have algebraic loops in the system.
If they have the same causality, there are no algebraic loops. These loops occur for
example if you have two resistors in series. In this circuit both resistors will try to
decide on the current, i.e. they depend on each other. This will not necessarily cause
problems to the simulation, but it might. Especially if the resistors are nonlinear,
then the simulation could easily crash. The simulation program will also be forced
to spend time to solve this algebraic loop. If we can easily spot these loops early in
the modeling process, then we can try to fix them by simply adding an element. For
example, regarding our circuit with two resistors in series, we can add an inductive
element to the circuit. Then it would be the inductive element who decides on the
current and not the resistive elements, the resistive elements would simply have to
take what current the inductive element lets through. We can give the inductive
element a value such that the voltage drop over the element is very low, i.e. it
does not play any major role in the circuit. Now when our model has no algebraic
loops and all the dynamic elements have integral causality, the simulation should go
smooth. If we have a large set of equations or a Simulink model it is not easy to spot
these things right away, but with a bond graph representation of our model we can
spot them simply by inspection.

To simple remember the aforementioned relations we can use what Paynter called
the tetrahedron of state, shown in Fig. 2.12.
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The procedure of how to extract the algebraic and dynamic equations from a
bond graph model is not included in this short overview, but it can be done in a very
systematic way and it will partly be shown in the next section.

We will end this section with a small example. We want to show how to set up
a bond graph of a simple system, and also show the difference in relation to block
diagrams. Figure 2.13 shows two equivalent circuits in two different domains, and
they have exactly the same governing equations. The corresponding bond graph
is shown in Fig.2.14. The easiest way to set up a bond graph when having a
mechanical system, is to start with setting up 1-junctions. One junction for each
mass, this gives two 1-junctions in our example. We add a O-junction in between,
because we know the speed is different but the force is the same. Force is transfered
through the C-element (spring). The right side of the damper has the same speed as
m1, R-element and I-element is therefor connected to the left 1-junction.

Regarding the electric circuit, we know that the source and L; have the same
current 7;. We know that L, and R have the same i, and we know that the parallel
branches have the same voltage. In this way we end up with the exact same bond
graph. We also note that the graph has integral causality. The two I-elements receive
effort and give flow in return, the C-element receives flow and gives effort in
return.

We will now find the governing equations. First we find p;, second we find ¢;.
In mechanical terms this is mX; and X, respectively. Subscript i corresponds to in
which bond we are at.
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In mechanical domain terms, (2.16) correspond to (2.17).

mzjéz =F — KX() (21721)
mljc'l = k)C() — Dxl (217b)
X0 = X2 — X1 (2.17¢)

These are exactly the same equations we will end up with if we do it in the classical
Newtons 2nd law approach. The block diagram for these equations are shown in
Fig.2.15. Block diagrams represent the structure of the mathematical model and
displays which variables must be known in order to compute others. They do not
reflect the physical structure. The reason is that feedback is represented in separate
feedback loops.

By using bond graph as the modeling tool we get a good overview of the model’s
physical structure and we can do simulations in one step, instead of first deriving
the equations and then drawing the block diagram.
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2.3 Model Description

In the following section, the bond graph based modelling for the different subsys-
tems, shown in Fig. 2.2, will be presented. It is shown that the bond graph method
provides a hierarchical modeling for the entire wind turbine generating system as
well as the system equations can be extracted symbolically in a structured way.

2.3.1 Aerodynamics

In the aerodynamics part we need to find a way to convert the wind into torque and
thrust force, i.e. transform a flow into efforts. This is done by means of a modulated
gyrator. We use the torque and thrust equations given in (2.3) and (2.4). The only
difference between a MGY and a GY is that the gyrator ratio is not a constant
parameter, but it is a varying parameter. In this case the transformation is dependent
on two varying parameters, the pitch angle f and the rotor rotational speed w;,
(Fig.2.16).

A generic equation is used to model C,. This equation, based on the modeling
turbine characteristics of [19], is shown in (2.18). The power coefficient used in
the calculation of the torque is given in (2.18). A plot of the C, curve is shown in
Fig.2.17, the plot is made with different pitch- and A- values. Similar formulas can
be found regarding the thrust force coefficient Cr, in our calculations only a simple
relation is used.

R
A= (2.18a)
v
1
20088 — Br+1
C _¢
C,=c (A——C3,3—C4)€ %+ oA (2.18¢)
i

where ¢; = 0.5176, ¢, = 116, ¢35 = 0.4, ¢4 =, c5 = 21, ¢ = 0.0068.
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Fig. 2.17 C, curve

Fig. 2.18 Mass spring

damper | K F
7
7

2.3.2 Pitching System

The pitching mechanism can be modeled as a second order system;
020,r = 04200 + w20 (2.19)

where 6, is the reference pitch angle, w, is the natural frequency and ¢ is the
damping ratio. By setting up the dynamic equation of the mass spring damper
system in Fig.2.18, we can compare the elements in the equation with (2.19). In
this way we can set up the bond graph in Fig. 2.19 with appropriate coefficients.

1
F=6s. M=—.D=>=,K=1
wn

w2
wn

2.3.3 Drive Train

A sketch of a two-mass drive train model is seen in Fig.2.20. As discussed in
the introduction there are many types of drive train models, ranging from for
example one- to six-mass models. For simplicity we will assume a two-mass-model
is enough. To derive the governing equations out of a two-mass-model is not too
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hard, but if we are talking about a six-mass-model the work can be quite extensive,
and the possibility of making a mistake in the process is high. This is one of the
reasons bond graph is a safer choice. As the complexity of the mechanical system
grows, our work as modelers stays about the same. If we have a six-mass-model
with many springs and dampers, this gives us many equations and to translate this
into a block diagram can take quite some time. As for dealing with bond graph the
work is to set up the graphical representation, and if we want to see the equations,
these can be derived in a very specific way. Or, off course we can choose to get them
from our bond graph simulation program 20-sim.

By utilizing Newton’s second law on rotational form of the wind turbine sketch
in Fig. 2.20, we end up with the following differential equations:

T, = Loy + ¢aDa + paKy (2.20a)
2Wg
—TygN, = IgNgN— —¢aDa — PaKa (2.20b)
g
where p
— 8 by
¢A - ¢1 Ng ’ ¢A wr Ng

In a quite intuitive way we can translate the mechanical system in Fig. 2.20 into
a bond graph representation, as shown in Fig.2.21. This can again be simplified
a bit in order to make a minimal bond graph representation, see Fig.2.22. The
bond graph model consists of two 1-junctions and one 0-junction. The 1-junction
connected to the rotor inertia describes the rotor rotational speed. Since there are
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dynamics in between the rotor inertia and the generator inertia they do not have the
same speed. This is the reason for the O-junction, because we know the transferred
torque is the same (no loss included in the drive train). The 1-junction connected to
the resistive- and the compliance- element indicates the rotational speed difference
between the two inertias. This connection also indicates that the compliance- and
resistive- element have the same rotational speed (flow), but different torque (effort).

Once the bond graph representation is made, the procedure for extracting its
governing equations is quite straight forward. One have to follow some certain rules,
and at the end the equations will be the outcome. We can also choose to get the
equations from the simulation software. The equations can be derived as follows.

From the bond graph representation we see there are three dynamic elements,
two inertias and one spring, i.e. three dynamic equations must exist. These first
order differential equations are given in (2.21).

Dr=e = e —e3

=T,— L _ Ry (2.21a)
Cs
4s=fs = fi—f1
P2 P9
=—=—N,— 2.21b
A 7, ( )
Do=¢e9 = eg+ej
1 qs
=-T,+—|—=—+R 2.21
+ N, (C6 + sfs) ( c)

With some manipulations this is exactly the same as in (2.20).
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Fig. 2.23 Sketch of wind
turbine structure

Foundation

2.3.4 Generator

There are many ways to model the generator dynamics. One of the recurring ways
is with equivalent circuit. In our system we assume a first order transfer function
will capture its dynamics. We do this in the same way as for the pitching system,
but since it is first order we do not include the spring,

Top = tT, + T, (2.22)

where T, is the reference torque and 7 is the time constant. In this way we can set
up the bond graph similar to Fig. 2.19 with appropriate coefficients.

F=Ty,M=1t,D=1

2.3.5 Tower

It is assumed that the tower movement do not influence the mechanical system, it
only affects its input, i.e. the wind speed (Fig,2.23). The bond graph model of the
tower can be seen in Fig. 2.24. Since the deflections of the tower are assumed to be
small, we assume tower movement only in horizontal direction.
The dynamic equation from the bond graph model, shown in Fig. 2.24, is given
in (2.23).
P2 43

pr=S.—RF -7 (2.23a)

_P”

G = (2.23b)
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Fig. 2.25 Bond graph of wind turbine generating system
We can rewrite (2.23) in a non bond graph notation:
mtz = Fl‘ — D[Z — KIZ (2.24)

where m; is the tower mass, F; is the thrust force acting on the tower, D; is the
tower damping and K; is the tower stiffness.

2.4 Simulation Results

In this section we want to validate the bond graph design. The procedure is
to first connect together all the subsystems from Section IIl. Second, the same
model is implemented as block diagrams in MATLAB/Simulink. This software
is widely established throughout the academic community and the result from
MATLAB/Simulink will act as a reference output for validation purpose.

The bond graph representation of the system setup in Fig. 2.2 is shown in
Fig. 2.25. The inputs to the systems are pitch angle, reference power and wind speed.
The simulations are made with maximum pitch angle, maximum wind condition,
maximum power and with initial conditions on the rotor and generator. All wind
turbine parameters used in the simulations are found in [20]. Once the simulations
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Fig. 2.26 Time behavior of the selected signals from 20-sim

are carried out in the two softwares, time behavior of the most important dynamics
are inspected. As seen in Figs. 2.26 and 2.27, the behavior of the two systems are
identical. This confirms the fact that we eventually end up with the same governing
equations whether one uses the classical Newton’s 2nd law or the bond graph
approach.
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Fig. 2.27 Time behavior of the selected signals from MATLAB/Simulink

2.5 Conclusions

The purpose of this chapter is to make a nonlinear model of a wind turbine
generating system by using the bond graph approach. We are not looking to validate
a specific turbine system, but we want to show a simple and suitable way to model
it. The nonlinear wind turbine consists of drive train, pitching system, tower and
generator. Modeling dynamic systems in the classical way and the bond graph
way is quite different, but the outcome is exactly the same governing equations.
We have tried to emphasize that using the bond graph approach will give a better
understanding of what actually happens in the system. It is a unified approach
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Table 2.2 Wind turbine generating system parameters

Pitch
Natural frequency

Damping ratio
Maximum pitch angle
Minimum pitch angle

Drive train

Nominel power
Rotor inertia

Generator inertia

Drive train stiffness
Drive train damping
Gear ratio

Generator

Time constant

Nominal generator speed

Minimum generator speed

Structure/Tower

Rotor radius
Hub height
Tower mass

Tower stiffness

Tower damping

w, = 0.88 [4]

¢ =09~
ﬂmwc =25 [O]
:Bmin =-5 [O]
Prom = 5e6 [W]

I, = 5.9154¢7 [Kg - m?]
I, =500 [Kg-m?]
K, = 8.7354e8 [A]

Dy = 8.3478¢7 [-2-]
N, = 97[-]

T =0.1 [s]
Ogmax = 122.91 [4]

Ogmin = 70.16 [ 244 ]

R =63 [m]

h =90 [m]

m, = 4.2278e5 [Kg]
K, = 1.6547¢6 [X]

D, =2.0213¢3 [L]

m-s

to model all types of physical systems. Most engineers work in many different
disciplines, an understanding of the intersection of these disciplines is a valuable
asset for any engineer. Based on the results in the chapter, interesting future research
is to design controller based on the bond graph modeling. This can be done in the
bond graph simulations program 20-sim, but it is also possible to export the model
to MATLAB via S-function.

2.6 Appendix

The wind turbine parameters used for this study in the model system are given in
Table 2.2.
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Chapter 3
A General Circulation Model en Route
to Intraseasonal Monsoon Chaos

P. Carl

Abstract Since the seminal work of Lorenz, chaotic behaviour of truncated atmo-
spheric equations bears conceptual grounds in the issue of weather predictability.
As for climatic scales, low-order models of the El Nifio—Southern Oscillation system
show chaotic motions as well. The gap to General Circulation Models (GCMs) has
been bridged in conceptual studies using a coarse spatial resolution—but temporally
and physically resolved—tropospheric GCM. Cross sections of its attractor set
across the boreal summer hint at an inverse period doubling route (‘out of chaos’) in
the active-break cycle of the global monsoon system. These dynamics, best visible
in integrals of motion, represent a distinct sub-regime of the seasonal cycle, borne
in topological changes between spring and autumn bifurcations. Computational
problems of first-generation simulations notwithstanding, the paper summarizes the
GCM’s ‘geometry of behaviour’ and its observational analogues. The concluding
conceptual discussion updates a ‘monsoon hypothesis’ and addresses hints at the
dynamical status and potential evolution of the climate system.

3.1 Introduction

For half a century since Lorenz’ celebrated paper [62], conceptions of dynamic sys-
tems theory have fundamentally influenced our qualitative understanding of atmo-
spheric and climate dynamics (e.g., [40, 42]). Midlatitude vacillation phenomena
and their rotating-annulus experimental analogues stood godfather to momentous
progress in the theory of weather regimes and their transitions (e.g., [30,39,63]),
leant upon idealized equations of atmospheric flow (e.g., [61, 64]). Climate dynam-
ics were mainly addressed during the first decades from a paleoclimatic perspective,
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using simple energy and (ice sheet) mass balance models (e.g., [9, 38, 48, 75]).
As alternative to the evolving class of General Circulation Models (GCMs;
e.g., [7,35]; cf. also [73]), either approach stands for the power of conceptual
modelling.

Based on ‘primitive’ transport equations of mass, momentum and energy, and on
parameterized subgrid scale processes, GCMs are the physically most comprehen-
sive members of a hierarchy of climate models. Their complexity goes with spatial
resolution and grid scale detail of sources and sinks, and with functional coupling of
subsystems. Since atmospheric GCMs (AGCMs) grew up from numerical weather
prediction (NWP) models to spatial and physical completion, whereas the Lorenz
attractor was borne in an adverse effort toward maximum simplification of the NWP
equations [61], there is a notion (calling GCMs with their nonlinear equations
to witness) of low-dimensional behaviour and related conceptions of nonlinear
science belonging to a world quite apart from climate reality. ‘Perpetual’ GCM
climates were run until the 1990s and beyond (annual or seasonal mean boundary
forcing [68, e.g.]), but a systematic GCM based verification of qualitative dynamics
as addressed by lower-order models is largely missing.

The evolution of computational capabilities since the mid-1980s posed into
relief a class of models coined with the poorly defined, floating term of ‘inter-
mediate’ complexity (ICMs). ICMs soon became charged with the expectation of
substantial contributions, by ‘exhaustive’ computational experimentation [41, e.g.],
to the understanding of climate dynamics. Justification of this hope, and intriguing
insights into the potential role of nonlinear dynamics at timescales much below
paleoclimatic ones, emerged from a series of studies on the origin and performance
of the El Nifio—Southern Oscillation (ENSO) system of the tropical Pacific. Based
on extensive simulations using intermediate coupled atmosphere—ocean models
[27,28,51, 86, 87], the nature of the observed irregularity and phase preference to
the seasonal cycle (SC) of an ENSO cycle as hypothesized by the delay oscillator
conception [8,77] has successfully been addressed until the mid-1990s.

Induced by a set of AGCM projections on the emerging 1991 Kuwait oil well
fire problem showing sensitive, oscillatory response to lower tropospheric smoke
loads ([11, 12]; Fig.3.1, left panel), a ‘civilian’ study using the same GCM led
to a hypothesis on the dynamic constitution of the global monsoon [13, 24]. As
a ‘natural’ (not astronomically driven) oscillator in the 40-60 days band with
interacting regional branches, this GCM’s boreal summer monsoon rules a distinct
global climate regime of the season [14, 84]. Its dynamic ‘skeleton’, probed in
extensive intraseasonal attractor soundings, became most clearly visible in variables
that relate to global integrals of motion [23]: an inverse route to (planetary scale!)
“monsoon chaos”.

Here an extended presentation is given of the work [17], together with a more
comprehensive list of references. Section 3.2 introduces the GCM, Sect. 3.3 outlines
the ‘architecture’ of its boreal summer monsoon system, and Sect.3.4 discusses
monsoon retreat dynamics and their interannual aspects. Effects of changing
boundary conditions are addressed in Sect.3.5, and a new Sect.3.6 presents a
completely updated monsoon hypothesis of the 1990s. Section 3.7 offers a range
of conclusions.
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zonal mean surface pressures (hPa)

Fig. 3.1 Left panel: GCM response to lower tropospheric smoke immission scenarios of the
Kuwait oil well fire study ([11, 12]; constant immission rates start March 1 each—simulations
done before the fact): Control run (no smoke; thick line), lower edge scenario (‘nominal’ smoke
load, corresponding to Kuwait’s pre-war oil production of ~220kt/d; thin line), reference case
(doubled smoke; dashed), upper edge scenario (fourfold smoke; dotted); shown are zonally
averaged evolutions of surface pressure at latitudes 30°N and 54°N; right panel: 12°lat x 15°lon
land—sea mask of the coarse resolution CCAS GCMs

3.2 A (Very) Coarse Resolution Mintz—Arakawa AGCM

A family of AGCMs, coined “Mintz—Arakawa” after their original authors [7],
emerged from early efforts at the University of California at Los Angeles (UCLA;
[6, 56]) and spread around the world to seed a number of climate modelling
activities, both in development and training (cf. also [73]). It includes the RAND
Corporation [35] and Oregon State University (OSU; [37]) models which found
their way to Moscow for use at the Computing Centre of the USSR Academy of
Sciences (CCAS) with their Earth system model GEA [69]. To this end, a coarse
resolution version of the OSU AGCM had been developed in cooperation [2] and
became equipped with a simple model of the oceanic upper (mixed) layer [74] to
form the ‘CCAS model’ [3].

A similar RAND version (coined CCAS-M here) was used in Moscow for first
GCM simulations of climatic effects of nuclear war [80], and then in Berlin within
arelated cooperative endeavour [20,25,76]. After in-depth regeneration in order to
make of it a fexible tool of dynamic systems analysis for research and education
[10], this ‘CCAS-B’ AGCM unveiled intriguing monsoon dynamics [13] not known
before from GCMs, when used in diurnal and seasonal cycle mode in the Kuwait oil
well fire study [11, 12]—in contrast to annual mean forcing in the ‘nuclear winter’
case (e.g. [20,76]).

3.2.1 Brief Model Description

The AGCM is a hydrostatic (‘shallow water’; SW) model with a ‘rigid lid’ top
of the dynamic atmosphere, at mean tropopause pressure pr = 200hPa. For two
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tropospheric layers of 400hPa ‘thickness’ each, wind speeds in zonal and merid-
ional direction (u, v), temperatures 7', water vapour ¢ (mixing ratio) and surface
pressure p, (via w := py; — pr) are computed at a 90 min-timestep, composed of
five 18-min substeps. At standard horizontal resolution of 12°lat x 15°lon, the grid
consists of 16 x24 = 384 meshes (Fig. 3.1, right panel; polar latitude extensions are
halved and single polar cells emulated by zonal averaging of prognostic variables).
A vertical ‘sigma’ coordinate, 0 := (p — pr)/m, represents atmospheric pressure
p in hydrostatic approximation.

As a grid model, the CCAS GCM solves the set of transport equations on its
fixed spatial mesh. Spectral GCMs, in contrast, advance their solutions in terms of a
zonal wavenumber hierarchy of spherical harmonics. Numerical schemes of RAND
and OSU versions of the GCM are different; CCAS-B applies an alternating-
direction predictor—corrector scheme due to Arakawa [35]. Dynamic layers are
labelled 1 (upper troposphere) and 3 (lower one), the interface between both 2,
the tropopause 0, near-surface layer 4, and ground level s. The (purely radiative)
stratosphere is parameterized.

The RAND model [35] has eight prognostic variables (u;, v;, T;, g3, w;1 = 1, 3),
the OSU GCM [37] ten, including snow cover s and upper tropospheric water
vapour ¢;. In either case, both stratospheric and near-surface layer variables are
locally determined once a timestep—as are the ‘sigma velocity’ at level 2, o
(and related vertical exchange processes), the transport of radiation across the
layers, elements of the atmospheric water cycle (ground wetness, evaporation,
condensation, convection, cloud formation, rainfall generation etc.) and other
source and sink terms. Atmospheric tracers (CO; or smoke, for example) may be
transported in analogy to water vapour g.

3.2.2 Reference AGCM Climates: Seasonal Cycle(s)

The present paper focuses on the AGCM solution, which bears the dynamics
of interest. Sea surface temperatures (SSTs) and seaice distributions thus are
not interactively computed in general, but prescribed in their seasonal march
by daily interpolation from monthly mean climatology [4]. Non-climatological
lower boundary forcing is applied in Sect.3.5.2 to highlight both sensitivity and
structural robustness of this model’s atmospheric water cycle—and thus climate—
dynamics. The mixed-layer ocean (MLO) model [74] is ‘switched on’ for reference
in Sect. 3.5.3.

Three qualitatively different types of seasonal cycle (SC) have been simulated
so far: (i) a rather smooth seasonal march (a sort of ‘mean’ SC), (ii) an SC
that develops a regime of very active tropical-extratropical interactions in boreal
summer (“summer monsoon solution”—the one found in the Kuwait oil well fire
study [11]; cf. Figure 3.1), and (iii) a solution that exhibits high intraseasonal
monsoon activity in both summer and winter [13]. Whereas solution (i) is com-
putationally stable and robust, the other two are more difficult to get and turned
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Fig. 3.2 “Summer—winter—monsoon solution” of the coarse resolution CCAS-B GCM [13]:
Zonally averaged evolution of pentad mean precipitation (fop; level spacing 2.5 mm/d) and 400 hPa
zonal wind snapshots (bottom; level spacing 10 m/s; hatched: easterlies)

out to bear the risk of ‘spontaneous’ computational instability. Most tricky to find
in the GCM’s multidimensional parameter space is type (iii), the “summer—winter—
monsoon solution” (Fig. 3.2).

Change between types (ii) and (iii) has first been detected when introducing time-
dependence in the estimate of ¢4 (and g, the saturation water vapour pressure) and
‘playing’ with the corresponding numerical scheme (semi-implicit vs. explicit) [13].
Such type change in the intraseasonal monsoon activity may also have caused
differing GCM climates, with substantial distinctions in the hydrological cycle, as
presented in a study [47] that tested gridpoint vs. spectral numerics in a ‘perpetual
July’ simulation, using the physics of the two-layer OSU model at horizontal
resolution 4°lat x 5°lon. Concerns aside about spurious, numerically induced
planetary waves in SW models [59, e.g.], the “‘monsoon problem’ with present-day
GCMs might arise from their insufficient excitation or coupling (Sect. 3.7).

Qualitatively correct GCM dynamics, to which intraseasonal monsoon perfor-
mance holds a key, are not a question of fine tuning but of an adequate ‘operating
regime’ [88, e.g.]. Sensitive dependence on details of numerical scheme or physical
parameterization of hitting or failing when searching for reasonable intraseasonal
monsoon performance, hints at existence of critical transitions between climate
regimes; that is, at their nonlinear construction.

3.2.3 On Monsoon Definition: A Biased Note

Major attributes of the classical monsoon definition are the seasonally reversing
wind regimes and the wet—dry transition [93, e.g.]. Elementary mechanisms in the
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back are borne in the Earth’s rotation, the distribution of land and sea, and in the
orography of the landmasses—notably the location and elevation of the Tibetan and
Mexican plateaus [90]. Differential heating between land and sea in boreal spring,
reinforced by the emerging elevated heat sources of the plateaus, drives a huge
sea breeze circulation, with a dominant meridional component that merges with
the southern Hadley cell as the season advances and the meteorological equator
shifts northward. Rising air masses over the northern continents ‘suck in’ low-level
airflow from the oceans and set up this way a strong positive feedback cycle of the
wet atmosphere. The two ‘conventional” hypotheses on the causation of monsoons,
namely differential heating and seasonal migration of the intertropical concergence
zone [32, e.g.], are thus not necessarily competing.

The winds collect latent energy in form of water vapour from the ocean surface,
which is released to the atmosphere in the cloud formation process. Since the
tropical atmosphere is unstable in general above the condensation level, it may form
huge precipitating convective towers often reaching the tropopause level and form-
ing the typical anvil-shaped cap. In combination with synoptic and planetary scale
wave activity, collective processes may be initiated that generate organized cloud
clustering at a hierarchy of spatial scales [71]. (In a general sense, this calls to mind
the classical phenomenon of Bénard convection in a liquid layer heated from below.)

The self-enhancing supply with energy blows up the southern Hadley cell into
the monsoon cell which strengthens and extends further northward thereby, fans the
subtropical zonal jets and shifts them to the north until they finally ‘tip over’ to
pass the plateaus at their northern side (active monsoon at planetary scale). A major
break monsoon commences if this northward shove has built up restoring forces
(e.g., pressure gradients) which cannot any longer be balanced by tropical supply.
The system ‘falls back’ and starts its activity anew in collecting excess budgets of
integrals of motion in the tropics to prepare their export to the extratropics. Whereas
onset is an abrupt process, however, monsoon revival proceeds more smooth.
Besides this ‘lateral’ monsoon, zonal circulation cells extend from the ascending
air masses, in boreal summer over South Asia, both eastward and westward [93].

The active-break cycle, a broadband phenomenon in the “40-60 days” range of
period, is a salient feature of the present-day monsoon (e.g., [53,95,96]) but has not
entered any monsoon definition [93, e.g.]. The same holds for abrupt onset and fast
retreat which extend the spatial range of the system beyond that of its classical
definition [98]: Monsoons are circulation regimes from pole to pole [52,e.g.].
Indispensable ingredients (including the role of the ‘Madden—Julian wave’ [66]),
and even the very nature of the system and its dynamics, are under persistent debate
[44,49,85,89,99].

3.2.4 Boreal Summer Monsoon Solution: Rainfall Patterns

A qualitatively correct spring-to-summer evolution of the GCM’s global rainfall
fields is illustrated in the six pentad-averaged panels of Fig.3.3 [13] (top left to
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Fig. 3.3 Pentad-mean evolution of rainfall patterns of the coarse resolution CCAS-B GCM [13],
from the beginning ‘Mei-Yu’ rainy period in China to the first break of the Indian Southwest
monsoon (ISM); left-to-right, top: pentads 22, 27, 32; bottom: pentads 35, 38, 41 (cf. mark at the
ruler below each individual panel); level spacing 5 mm/d

bottom right: pentads 22 (April 16-20), 27 (May 11-15), 32 (June 5-9), 35 (June
20-24), 38 (July 5-9), and 41 (July 20-24)). Pre-monsoon rains over the Bay of
Bengal (pentad 27) develop together with a rainband along the East Asian shoreline
(‘Mei-Yu’). Northward shift and strengthening of the convective center over the
Bay and its merger with the East Asian frontal zone in early June (pentad 32) are
close to observation, as is the northwest shift of the merged rainbelt in the Indian
Ocean-Tibetan sector. Thereby, the center of action moves around India until it
jumps to the subcontinent in early July (Indian summer monsoon (ISM) onset;
pentad 38).

The GCM’s seasonal march of rainfall for grid cells representing South and
Southeast Asia [14] is shown in comparison to observations [53, 58] in Fig.3.4
(bottom). The latter area comprises the Yangtse basin which repeatedly suffers from
catastrophic inundation. Computational access to intraseasonal monsoon dynamics
there, as demonstrated here in terms of timing and structure of major rainfall
episodes, is of high societal relevance.

Though simulated East Asian rainfall in Fig.3.4 amounts to about half the
climatological level, whereas the Indian monsoon rains are clearly stronger than
those observed around 1970, the structural features of both are striking. Note also
that another such type East Asian monsoon simulation, though showing lesser
timing accuracy and structurally less pronounced rainfall spells after ‘Mei-Yu’
termination (and a much weaker rainfall amplitude) [60], has been obtained from an
advanced version of the two-layer Mintz—Arakawa AGCM of the Beijing Institute of
Atmospheric Physics (IAP) of the Chinese Academy of Sciences—applied at higher
(4°lat x 5°lon) resolution.
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Fig. 3.4 “Summer monsoon solution” of the coarse resolution CCAS-B AGCM under climato-
logical forcing [13]: Seasonal march of global rainfall and upper troposphere zonal winds (top;
cf. also Fig.3.2) and regional rainfall over the Indian subcontinent (bottom left) and Southeast
Asia (bottom right) [14] vs. observation [53, 58]

When Asian climate dynamics run into the first break monsoon (early in July
here; Fig. 3.3), monsoonal intensification over the western Pacific to the north of
the equator prepares a marked structural change that activates the west African and
Carribean/Mexican monsoons. It terminates ‘Mei-Yu’ over Southeast Asia and is
about to develop into break over India (second half of July; pentad 41), with typical
zonally streched rainbelts and rainfall maxima over the seas, notably the Indian
Ocean and Western Pacific [33, e.g.].

This overall dynamic picture of the planetary scale boreal summer monsoon
and its individual branches reflects a proper model climate regime of the season.
Figure 3.5 displays a 100 year segment of the GCM’s rainfall under climatological
boundary forcing, exhibiting variability in the tropics and subtropics close to
observation. In contrast, the weak rainfall variability found in [43] to hold for all
participating GCMs was largely driven by variable SSTs (1979-1991 observed), i.e.
the GCMs’ hydrological cycle fundamentally differed from observation (cf. also the
related comment in [44]).

It has early been understood [12] that global organization of the real-world
monsoon system—the nowadays ‘emerging’ concept of “global monsoon” [29, 89]
is not really new [52, e.g.]—must be blamed for the fact that a GCM with
extremely coarse spatial resolution may show its dynamic essentials. Intraseasonal
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Fig. 3.5 100 year segment of total precipitation (mm/d) in the coarse resolution CCAS-B
AGCM'’s “summer monsoon solution” under climatological boundary forcing (365 days moving
averages): (a) global (90°S-90°N; mean 2.76 mm/d, standard deviation 0.01 mm/d); (b) deep
tropics (12°S—12°N; mean 10.46 mm/d, standard deviation 0.19 mm/d); (c) tropics (24°S—24°N;
mean 20.53 mm/d, standard deviation 0.28 mm/d)

monsoon dynamics are difficult to simulate, now as before [49, e.g.]; neither high
spatial resolution nor dynamic atmosphere—ocean coupling provided the missing
ingredients (e.g., [15,44]).

3.3 ‘Architecture’ of the GCM’s Boreal Summer Monsoon

Lorenz’ suggestion on the potential role of (intra-) seasonal attractor sets in
shaping climate variability [65] appears to have died away largely unlistened in
the community he addressed. Climate model intercomparison focuses on simulated
trajectories, even if taking ensemble means or other statistics, without considering
the ‘systems-dynamical core’ in the rear. Topological structures (or the “geometry
of behaviour” [1]) that define the dynamical status of the system, remain unknown.
It makes thus sense to recall a contribution [23] to the First Scientific Conference of
the Atmospheric Model Intercomparison Project (AMIP [34]). It demonstrated the
conceptual use of a GCM in order to unveil its attractor sets and suggested those
objects and the method as appropriate supplementary approach to climate model
intercomparison.
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Fig. 3.6 Cross sections of the coarse-grid CCAS-B AGCM’s attractor set from boreal spring to
autumn [23] (other than in Fig. 3.4, a “summer monsoon solution” with only two activity spells is
used; cf. also [22]): Anomalies of SH tropospheric mass (in Pt) vs. relative angular momentum of
the troposphere, scaled to length-of-day fluctuations (Al.o.d.; in ms); black/violet/turquoise diurnal
mean trajectories represent computationally stable/unstable perpetual-day simulations and their
transient motions, respectively; red circles are snapshots at the respective day from a 198 year
seasonal run; (a) spring fixpoint (June 14), (b) subcritical Hopf bifurcation around monsoon onset
(June 24), (c) period-2 monsoon activity cycle (August 8), (d) period-1 cycle (September 2),
(e) slow irregular wander between two unstable fixpoints, representing an ‘intraseasonal’ Southern
oscillation (SO; September 12), (f) autumn fixpoint (September 22)

3.3.1 Opverall Perspective

Figure 3.6 exemplifies attractor soundings using perpetual-day runs (orbital revolu-
tion stopped at specified day, Earth’s rotation maintained) with the CCAS-B AGCM,
from boreal spring to autumn. Variables closely related to global integrals of motion
turned out to best unveil the very nature of this model’s boreal summer ‘architecture’
[23] that controls its intraseasonal dynamics: The seasonal cycle, if understood as
a forced limit cycle, blows up into a torus segment during the season, of which the
minor circumference is made up of the (dynamically stable) 40-60 day monsoon
activity cycle.

Coordinates in Fig.3.6 include southern hemisphere (SH) tropospheric mass
anomaly, representing interhemispheric mass exchange, and atmospheric angular
momentum (AAM) relative to the solid Earth, scaled to length-of-day (l.0.d.)
variations [5, e.g.]. Whereas studies on interhemispheric mass exchanges at
subseasonal scales focus on boreal winter [26, e.g.], the fact of 40-60 day
co-variations in AAM and monsoon activity in boreal summer is well established
[54, e.g.]—as is the interhemispheric organization of the Asian monsoon systems
[53, e.g.]. The Al.o.d. amplitude in Fig. 3.6 (~2.5-3 ms) exceeds the observed one
by a factor of ~2-3 [5] (recall the GCM’s coarse resolution—and enhanced zonal
flow over mean, not envelope, orography).
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Fig. 3.7 Mean global precipitation fields (mm/day) at June 24 on the ‘pre-monsoon’ (left panel)
and ‘interactive’ summer monsoon attractors (right panel), respectively, as found in the coarse
resolution, two-level CCAS-B AGCM (cf. Fig. 3.6b)

The model’s boreal summer torus segment bears a non-trivial structure. Embed-
ded between spring and autumn fixpoints (Fig.3.6a, f), it starts with coexisting
oscillatory states (Fig.3.6b) that bear hard transition into a chaotic July regime
(cf. Sect. 3.3.3), runs than backward as the season advances via period-2 (Fig. 3.6¢c)
and period-1 (Fig.3.6d) cycles, and ends up in a wrinkled shape of torus. The
“40-60 day” cycle shows pronounced frequency drift across the season, which
contributes to its broadband nature [84]. Off the late-summer torus wrinkle, an
‘intraseasonal’ Southern Oscillation (SO) remains as degenerate monsoon cycle
(Fig. 3.6¢; cf. also [22])—another hint at the kinship between both subsystems [92].

Abrupt seasonal transitions have early been observed over the Eurasian landmass
[98]. Elementary monsoon mechanisms [90] and related models [91, e.g.] do not
explain these large-scale, fast dynamics, and GCMs do not simulate them in general.
Using an idealized potential vorticity equation to address midlatitude oscillations in
the 30-60 days band [50], regimes of “jet shifting oscillations” were found in the
flow over topography, which come into effect via Hopf bifurcation and may show
period multiplication. Two-level stability analysis [57] provides mechanisms of
quickly growing unstable waves in boreal summer and makes their absence during
the winter season plausible.

Given clear signatures of monsoon activity in the dynamics of tropospheric
jets [78, e.g.], such mechanisms may participate indeed in tropical-extratropical
interactions inherent to the monsoons [97, e.g.] (cf. Figs.3.2-3.4), and might be
blamed for the observed abruptness of monsoon onset. Other than with the summer
monsoon, difficulties to stably find the “summer—winter—monsoon solution” may
hint at a problem of two-layer models in representing unstable processes of generic
multilevel character [57].

3.3.2 Subcritical Monsoon Onset

Coexistence of GCM solutions in early boreal summer hints at a subcritical transi-
tion into the ‘interactive’ (tropical-extratropical [67]) global monsoon. Figure 3.7
shows mean precipitation fields on either June 24 attractor of Fig. 3.6b. The spring
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fixpoint (Fig.3.6a) evolves supercritically into a ‘breathing’ oscillation which
may computationally be followed into the range of coexistence when settling on
this attractor and gradually advancing the boundary conditions. The last day of
coexistence, after which the inner attractor ceases to exist, was experimentally
found this way to be July 3 (for the AGCM version used, and under climatological
boundary conditions).

Distinctions between the two attractors in their precipitation fields might bear
paleoclimatic relevanve. In northern middle and higher latitudes three centers of
substantial terrestrial rainfall are found at the ‘pre-monsoon’ attractor (Fig. 3.7, left
panel): to the north of Tibet (where a large paleo lake existed), to the north of the
Gulf of Alaska, and the larger area of the Great Lakes. Over the Indian subcontinent
a spatially stagnant (yet ‘breathing’) rainfall center resides, whereas the ‘interactive’
monsoon (right panel) shows two weaker centers over the head Bay of Bengal
and the Arabian Sea off the Somali coast, indicating a moving center in contrast.
The West African monsoon is active at that date in either solution, but the inner
attractor shows much more extended African rainfall—calling to mind the “green
Sahara”.

Due to ‘screening’ of the inner solution when the outer one exists (cf. seasonal
snapshots in Fig. 3.6b), the pre-monsoon attractor may be consulted only by ‘tun-
neling’ trajectories—or if the outer solution does not exist due to changed boundary
conditions. A real-world analogue of tunneling might have happened in 2003, when
the major intraseasonal activity cycle was missed, at least in midlatitudes where it is
normally felt by changes between blocking and zonal circulation regimes. Figure 3.8
shows for a perpetual June 19 run an initial transient, both in elements of the Indian
monsoon system (left column) and of the global circulation (right), that ‘feels’ either
monsoon attractor.

Rainfall over India (Fig.3.8c) most clearly reflects structural changes in the
Indian summer monsoon branch after about day 180, when the activity cycle extends
meridionally to grasp both the ‘Somali jet’ (Fig.3.8d) and the Tibetan plateau
(Fig.3.8a). As may be seen from Hovmoeller plots of zonal winds, for example
([14,22]; not shown here), the stagnant yet ‘breathing’ pre-monsoon oscillation is
orographically excited. Al.o.d. fluctuations (Fig. 3.8j) are not subrotational in the
real system, which has more contributors to the AAM balance than a tropospheric
GCM, and surface friction (Fig.3.8f) is only extrapolated from the lower tropo-
sphere here.

3.3.3 Monsoon Chaos

Hidden in a mine field of computational instability the first generation of simulations
stumbled across, the attractor set of the model version used for Fig.3.6 is not
sufficiently uncovered from mid-June until the beginning of August. A regime with
various types of coexisting attractors (fixpoints, cycles, chaotic oscillations) has
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Fig. 3.8 Initial transient 360 days of the June 19 perpetual-day simulation [14,22], reflecting both
‘pre-monsoon’ and ‘interactive’ monsoon behaviour in elements of the ISM system (left column)
and the global circulation system (right column)—(a) Tibetan surface heat balance (W/m?),
(b) Gangetan plane 800 hPa zonal winds (m/s), (¢) Central India rainfall (mm/d), (d) 800 hPa
equator-crossing winds (m/s) over the Arabian sea (‘Somali jet’), (e) ‘Madagascar’ surface pressure
(hPa), (f) globally averaged surface friction (N/m?), (g) 48°N zonally averaged 400hPa zonal
winds (m/s), (h) 12°N zonally averaged 400 hPa zonal winds (m/s), (i) zonally averaged 800 hPa
equator-crossing meridional winds (m/s), (j) changes in the length-of-day (Al.o.d.; ms)

been found there, however, in a slightly different version [21]. Figure 3.9 shows
those chaotic oscillations of the global circulation system, with a basic period of the
40-60 days monsoon activity cycle, which appear to be borne in irregular changes
between coexisting attractors. The physics of monsoon clearly allows for substantial
amplitude and frequency modulation (AM, FM) of the major activity cycle, and in
contrast to common wisdom, chaotic dynamics of the (wet) atmosphere may be
preserved when expanding the spatial scale. Global integrals of motion even most
clearly unveil the system’s dynamic ‘architecture’ here.

3.3.4 Out of Chaos: Inverse Period Doubling

The ‘post-chaotic’ August 8 attractor (Fig.3.6c) exhibits the basic structure of
period-2. Aside of tropospheric mass and relative angular momentum, the rotational
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Fig. 3.9 Planetary scale chaotic motions on the GCM’s intraseasonal attractor set; fop to bottom:
Perpetual-day simulations at June 29, July 16, and July 21; Al.o.d. (left column), SH tropospheric
mass anomaly (center), phaseplot of both variables (right; cf. Fig. 3.6)

(non-divergent) part of atmospheric motion, measured in terms of global enstrophy,
may be used as a third dimension of attractor representation—into which the two
‘leaves’ of the period-2 cycle split in fact (Fig. 3.10). This midsummer state shows
highest ‘attractivity’: The seasonal trajectory most closely approaches the attractor
set there (Fig.3.6), and within the pronounced frequency drift across the season
[14,84], the major activity cycle reaches its shortest period (~52.5 days).

That highest attractivity means highest internal synchronization, may be inferred
from Fig.3.11 showing transition from period-2 to period-1 in a long transient at
the border between midsummer and post-midsummer attractors. Accompanied by a
swing in the SO index (Fig.3.11d), the transition bears loss of internal synchrony
among a hierarchy of planetary waves, as seen in the Fourier spectra of Fig.3.11b.
A set of ~12/20/30/60 day oscillators (frequency relationships ~1/2, 2/3, 1/3, 3/5,
2/5, 1/5) turns into one that loses both the 1/5 relationship and a sharp peak in the
mediating ~20 day period. Low rational frequency relationships, at top of the Farey
tree of rational numbers, may characterize well-organized dynamic systems [55].

Whereas the midsummer attractor (Fig. 3.6¢) completely resides in the range of
atmospheric subrotation, Al.o.d. < 0, the system enters a regime of superrotation
during break-monsoon conditions at transition to the post-midsummer state
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Fig. 3.11 Spontaneous, slow transition between midsummer and post-midsummer attractors [23],
initiated by a common jump of three planetary waves with low rational frequency relationships
(periods ~20/30/60 days), which breaks a fourth (1/5) synchrony; (a) ‘Tahiti’ surface pressure
(hPa) and (b) corresponding Fourier spectra, (¢) August 23 perpetual-day trajectory (cf. Fig. 3.6),
(d) SO index (SOI; 365-days running average)
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Fig. 3.12 365 day segment of the monsoon activity cycle at perpetual August 23 conditions; upper
panel: Al.o.d. fluctuation, entering superrotation at breaks; lower panel: North—South Hovmoeller
plot of 800 hPa zonal winds at 120°E, showing patches of near-equatorial westerlies toward the
dormant state each of the monsoon cycle (cf. Fig. 3.11c; [23])

(Fig.3.12, upper panel). This dormant phase of monsoon activity, which bears a
memento of the winter circulation [91], is announced by “westerly wind bursts”
(WWBs) over the Western Pacific (lower panel) which are potential real-world
precursors of an evolving El Nifo [93, e.g.].

3.3.5 Post-Midsummer Torus Wrinkling

When the separate period-2 surfaces past together, a ‘scar’ is left as signature of their
former split (Fig. 3.13). The re-united, period-1 cycle slows down, continues to shift
into the range of superrotation, and clearly loses ‘attractivity’ until it degenerates—
just at the Julian day when its center passes atmospheric co-rotation (Al.o.d. ~0).
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Fig. 3.13 As in Fig. 3.6, but post-midsummer evolution of the attractor set into an ‘intraseasonal’
SO [82]; (a) August 23 (Fig.3.11c), (b) August 28, (c) September 2 (Fig. 3.6d), (d) September 7,
(e) September 12 (Fig. 3.6e), (f) September 17

The remnant ‘scar’ of the former period-2 split develops into a ‘wrinkle’ on the
torus where the activity cycle tends to stay longer and longer—as if the system
has to collect ‘power’ before returning to active conditions. Recall, collection of
excess budgets of integrals of motion prepares the export phase in the reviving
monsoon [67].

3.3.6 An ‘Intraseasonal’ Southern Oscillation

Having passed the state of co-rotation by its center, the monsoon activity cycle is
extinguished and the center itself shows up (for a few Julian days only) as an unsta-
ble fixpoint of the fading boreal summer. Figure 3.14 displays the corresponding
slow SO index fluctuation, roughly in concert with the evolution of the global
enstrophy budget, which together reflect the system’s irregular wander between
unstable fixpoints of both summer and winter circulation (Figs.3.6e, 3.13e). The
period of this generically intraseasonal SO [16] amounts to ~500 days [14].

Five Julian days later (September 17), the unstable summer fixpoint is only
temporarily visited by a long transient which lately settles on the winter fixpoint
(Fig.3.13f). Remarkably, the latter became stable (and the ‘intraseasonal’ SO
extinguished) just when the unstable summer fixpoint reached the center of the plot,
i.e. a state of simultaneous atmospheric co-rotation and balanced mass distribution
between the hemispheres.
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Fig. 3.14 3,650 day segment of a perpetual September 12 simulation using the coarse resolution
tropospheric AGCM’s “summer monsoon solution”: SO Index (bottom; cf. Fig.3.13e), global
tropospheric enstrophy budget (top; in 10~ s~2), and 365 day moving averages of both (center;
shifted each)

‘Warm’ and ‘cold’ phases of the SO (which normally refer to Eastern Pacific
SSTs during the ENSO cycle), are inferred from weaker and stronger zonal
circulations here, respectively [83]. Both differ in their divergent circulations as
expected. Figure 3.15 (upper panel) shows the difference (‘cold’ minus ‘warm’)
of the velocity potentials, indicating enhanced convection over the Western Pacific
and India during the ‘cold’ phase. Enhanced Western Pacific convection and upper
tropospheric outflow over the region belong to the ENSO ‘cold’ phase indeed. The
lower panel displays slow changes between the two phases for a 1,825 day segment
of vertical air flow over the equator; corresponding global circulation patterns [16]
confirm correct assignment.

Existence in the real climate system of an SO that results from the dynamic
organization of the monsoon system would be conceptually relevant with a view on
the two types of ENSO that have recently been ‘re-discovered’ (e.g., [45, 46, 81]).
Moreover, it is of interest with respect to forecasting since the ‘monsoon borne’ SO
described here has precursor states during the season which might hint at the course
the autumn climate will take.

3.4 Monsoon Retreat Behaviour and Interannual Effects

As with a roulette, the phase of the monsoon cycle when the system passes the
retreat bifurcation controls the autumn circulation in a sensitive manner (Fig. 3.16).
Three general retreat types may roughly be distinguished among the scatter of
trajectories provided by a long seasonal simulation (Fig.3.16, left panel): from
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Fig. 3.15 Upper panel: Difference of the upper troposphere velocity potential (in 107 m?/s)
between ‘cold’” and ‘warm’ phases (c-w) of the GCM’s ‘intraseasonal’ SO at September 12
(cf. Fig.3.14); lower panel: 1,825 days of equatorial vertical mass flux, indicating phases of
enhanced deep convection over the Western Pacific as part of this SO (15-days running average)

dormant, active, or revival phases. As can be inferred from the right panel (cf. also
Fig.3.17), this topologically conditioned situation may be blamed for the observed
difference between spring and autumn circulations [31]. Moreover, ‘breathing’ of
the seasonal cycle due to variable monsoon retreat as shown directly translates into
interannual variability.

(i) Dormant phase retreat (La Nifia prone): Export to NH extratropics of excess
budgets of integrals of motion is completed, their ‘mining’ by internally
organized backward transport is similarly efficient as at mid-season—and is
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Fig. 3.16 Left panel: Physical phase space projections (cf. Fig. 3.6); 198 year AGCM simulation
under climatological boundary conditions (“summer monsoon solution”); right panel: Monsoon
retreat behaviour in terms of northern hemisphere (NH) tropospheric mass anomaly (in 10'¢ kg),
showing three types of autumn circulation: La Nifia prone (LN), Indian summer type (IS), and
El Niio trigger (EN); displayed are seasonal trajectories of years 131-135 of the 198 years shown
in the left panel
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Fig. 3.17 Left panel: as in Fig.3.16 (right), but for years 85-89, showing two EI Niilo trigger
autumn trajectories, immediately followed by an exceptionally early La Nina prone one; right
panel: Monsoon retreat ensemble started from different phases of the activity cycle on the August 8
attractor [23] (long dashed), exhibiting all three retreat types, including two El Nifo trigger
trajectories (thick full lines; starting points emphasized)

supported by the coinciding seasonal transition. This results in a fast backward
swing, i.e. early commencement of NH winter conditions. The situation is
symmetric with respect to the monsoon season [84]: Both (sub)tropical and
extratropical planetary circulations retreat from the intraseasonal cycle roughly
along their spring trajectories.

(ii) Active phase retreat (Indian summer type): During its export phase, the
monsoon cycle is interrupted by the externally conditioned seasonal transi-
tion, leaving excess budgets of integrals of motion in both (sub)tropics and
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extratropics. Their dissipation does no longer take the break-monsoon path.
The situation is completely asymmetric with respect to the season [84]: Not
only (sub)tropical but also extratropical circulations experience hystereses at
retreat with respect to their spring trajectories.

(iii) Revival phase retreat (El Nirio trigger): The system has collected excess
budgets of integrals of motion in the (sub)tropics but is hindered to export
them to the extratropics via its lateral branch. The system adopts a non-lateral
dissipation path via zonal, predominantly eastward, transport. The situation is
partially asymmetric with respect to the season [84]: Whereas extratropical
circulations follow their spring trajectories backward, the (sub)tropics exhibit
more or less marked hysteresis.

Systematic study of the effects of diverse phase relationships at monsoon retreat
between the intraseasonal active-break cycle and the seasonal cycle has been
conducted with a focus on the El Nifio trigger type of monsoon retreat. In its right
panel, Fig. 3.17 shows an ensemble of ten trajectories, started from a set of roughly
equidistant phases of the midsummer attractor. Two of these trajectories temporarily
enter the range of tropospheric superrotation. Their mass displacements correspond
to type (iii) retreat—including WWBs (as demonstrated in Fig.3.12) and induced
eastward propagating large-scale convection cells in the sequel [21, 82].

In a highly excited model solution [14, 84], with a more detailed parameteri-
zation of the planetary boundary layer, an eastwards propagating, zonally oriented
equatorial (“Walker”) circulation cell was released at monsoon retreat and traversed
the Pacific in the course of 3-4 months—resembling the real-world 1982/1983
ENSO event. Note, this ‘atmospheric ENSO’ has been found in an AGCM with
climatological SST forcing, without interactive ocean. Close to structural retreat,
the same GCM bears a regional ISM attractor which controls the global circulation
and releases a very narrow ensemble of retreat trajectories [14, 84], in contrast to
Fig.3.17 (right).

3.5 Effects of Changing Boundary Conditions

Occupying problems of the AGCM’s computational tractability ruled out by itself
extended studies beyond the type of solution displayed. Exploratory excursions into
the conceptual, parametric, and functional ‘environment’ include varied insolation
(solar constant) under maintenance of the present-day lower boundary climatology
(Sect. 3.5.1), non-climatological SST forcing for 1982—-1988 as proposed by the
AMIP programme [34] (Sect. 3.5.2), and coupling with the thermodynamic mixed
layer ocean model [74] (Sect. 3.5.3).
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Fig. 3.18 Physical phase space projections (cf. Fig. 3.6) of the initial 10 year segments of a set of
AGCM simulation under climatological lower boundary conditions (‘“‘summer monsoon solutions’)
at varying insolation, from —5 % to +3 % of present-day (“reference”)

3.5.1 Varied Insolation

It goes without saying that a structurally sensitive dynamic object like this AGCM’s
boreal summer monsoon, which acts as a ‘modulation unit’ of the global climate
system’s seasonal cycle in fact and controls the worldwide patterns of seasonal
drought and flood, bears paleoclimatic relevance. When present-day climatological
lower boundary forcing is maintained, the ‘interactive’ monsoon ceases to show
up during the seasonal march at reduced insolation by about 11 % [22] (reference
case used here throughout: 1,396 W/m?). Even though such an attractor continues
to exist (at least down to —13 %; not shown here), it may no longer capture the
seasonal trajectory. The same effect appears with varied model parameterizations.
Increasing atmospheric background friction, e.g., may result in a complete loss of
the target of study, the ‘interactive’ boreal summer monsoon [22].

Figure 3.18 shows structurally changing seasonal trajectories under varied solar
constant (1 % steps, from —5 % to +3 %; 10 years each):

(i) With increasing (decreasing) insolation, the intraseasonal ‘rotation number’,
i.e. the (non-integer, in general) number of active-break sequences per season,
increases (decreases).
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(ii) With higher excitation, i.e. increasing ‘rotation number’, the system loses
retreat trajectories of the El Niflo trigger type—but these appear again at even
higher insolation (46 %; [21]).

(iii) At insolation below ‘present-day’, regimes are found of a substantially higher
number (—1 %), or even permanent (—2 %) monsoon retreat trajectories of this
type—recalling paleoclimatic evidence of “Super El Nifios”.

(iv) A simple case of permanent “La Nifla prone” trajectories, in contrast, shows
up at further reduced insolation (—5 %).

(v) Highest model climate variability is found in the vicinity of the reference state
(rotation number ~1.5 --- <2), whereas evolution into integer (“resonant”)
rotation numbers in either direction reduces interannual variability; its change
does not parallel the direction of changes in forcing.

The AGCM’s “non-resonant” or “resonant” variability types develop at only
gradually changing topological background. Time series of NH tropospheric mass
anomaly for the three cases emphasized in Fig.3.18 are given in Fig.3.19, two
examples each of five consecutive years are shown in detail in Fig.3.20 (cf. also
Fig.3.16 and 3.17).

The structural evolution of the midsummer attractor with varied insolation
(Fig. 3.21) shows maintenance of (weakening) midsummer period doubling down to
~ —2 % insolation. The drift into the range of subrotation with increasing insolation
is interrupted at +4 % (and + 7%; not shown) where the attractor shifts back toward
co-rotational break-monsoon conditions. Figure 3.22 (left panel) summarizes these
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Fig. 3.21 Phase space projections (cf. Fig.3.6) of 3,650 day segments of a set of perpetual
August 8 AGCM simulations under climatological lower boundary forcing (“summer monsoon
solution”) but varying insolation [82]; —4 % to +4 % of ‘present-day’ (reference)
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Fig. 3.22 Midsummer study as in Fig. 3.21; left panel: Torus segment for insolations from —13 %
to +7 %; right panel: Major Fourier modes of the Al.o.d. coordinate show preserved internal
synchrony (at —2 % a broadband spectrum without clear modal structure is found)

evolutions over the range from —13 % to +7 % insolation. The right panel shows a
result of paramount interest with regard to the dynamic organization of the boreal
summer monsoon: preservation of high internal synchrony among the hierarchy of
planetary waves over a substantial range of insolation (—7 % to 46 %). The gap at
—2 % is due to a broadband spectrum without clearly dominating peaks, pointing
to weakly chaotic behaviour (irregular alternation between period-1 and period-2).
The jump at +4 % is due to a long transient, very similar to Fig.3.11.

3.5.2 Non-climatological Lower Boundary Forcing

AMIP [34] SSTs and seaice distributions for 1982-1988 have been used for com-
parison with the AGCM’s solution under climatological lower boundary conditions.
Figure 3.23 shows such a 7-year trajectory. Though the GCM’s spinoff must be
considered and year 1981 is missing for sound conclusion, the strong 1982—-1983
El Nifo is reflected in shifted monsoon retreat loops, but these are not of the EI Nifio
trigger type, in contrast to the three trajectories before and during the 1987/1988
ENSO with its marked monsoon signature. This calls to mind again the two types
of El Nifo [45, e.g.]. Whereas the 1982/1983 case has been exceptional due to
a potential volcanic trigger (El Chichon eruption), the El Nifio that started 1986
belongs to the “Central Pacific” (in contrast to “Eastern Pacific”’) type [46]—
and might have to do with the monsoon retreat mechanism outlined (Sects. 3.3.6
and 3.4).

Though the AGCM version used here differs from the one in [84], weaker
excitation of its boreal summer monsoon for 1982—1988 lower boundary forcing
is confirmed. The 1987 drought over India had been traced back there to a mid-
season ‘tunneling’ of the interactive monsoon by a sort of blown-up ‘pre-monsoon’
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attractor [21, 82, 84]. The stronger zonal wind component of Fig.3.23 appears to
‘blow away’ part of the meridional wind structures, thus weakening the ‘lateral’
monsoon in the model version used here (the mean orography in the CCAS GCMs
makes them generally inclined to solutions with stronger zonal winds—which may
also be triggered by other factors, however).

3.5.3 Mixed-Layer Ocean

The coupled model preserves a reminder of the dynamics the AGCM alone shows
up, but the intraseasonal motion becomes substantially attenuated when ‘switching
on’ the thermodynamic MLO model. Figure 3.24 (left panel) illustrates this for a
highly excited “summer monsoon solution” from a series of experiments aimed to
find an appropriate coupling strength that does not extinguish the dynamic features
of the AGCM but shows some ocean response to leave the climatological lower
boundary forcing. In contrast to this seasonal monsoon response, the perpetual,
‘intraseasonal’ SO of the AGCM not only remains unattenuated, but even becomes
amplified in the coupled model (right panel).

To finally return ‘back to the roots’, a new Kuwait oil well fire experiment
was started from the stabilized solution of the coupled model. It exhibits strongly
enhanced intraseasonal response during the ‘smoky season’ (i.e. to the additional
persistent lower tropospheric heat source over the region) that approaches the
AGCM-only solution (Fig.3.25). South Asian lower tropospheric forcing thus
surmounts the attenuating effect of the global ocean on the GCM’s intraseasonal
monsoon activity. This is a remarkable result in view of mechanisms that drive the
global boreal summer monsoon, of its sensitivity and structural robustness. Note
also that even highly excited monsoon dynamics of the AGCM are extinguished by
an upper tropospheric smoke load, whereas they are kept alive, though strongly
attenuated, in the coupled case (upper troposphere smoke scenarios not shown
here).
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Fig. 3.24 Left panel: Highly excited “summer monsoon solution” of the AGCM and its response
to coupling to the thermodynamic mixed layer ocean (MLO) of the CCAS-B GCM; shown are
5 years of AGCM solution (bluish green), 10 years of transient response after MLO coupling
(pink/grey), and 3 years of stabilized AGCM-MLO (AOGCM) motion (black); right panel: SO
Index of two perpetual day September 12 GCM simulations, with climatological SST forcing
(black) and with interactive, thermodynamic mixed-layer ocean model (red); 10 days moving
average applied twice
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3.6 Hypothesis on the Global Monsoon: An Update

The basic question that emerged when discovering the sensitive oscillatory GCM
response to forcing scenarios [11] read: externally forced or internally gener-
ated? The hypothesis given in [12, 13] adopts the topological view of self-
maintained oscillations. Abruptness of monsoon onset, nearly ‘explosive’ evolutions
of (observed and simulated) wind regimes, an activity cycle within the observed
period band, etc., called for in-depth analyses of the CCAS-B AGCM’s phase
space trajectories. In conjunction with theoretical results (e.g., [50, 92]), detailed
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conclusions on the topology in the rear of observed monsoon dynamics could be
drawn [22], including the “roulette” situation at monsoon retreat [12]. Computa-
tional stability problems led to speculation about a chaotic July regime [24] which
later became confirmed [21].

The geometrical interpretation of boreal summer monsoon dynamics is
summarized first (Sect.3.6.1), based on the rigid-body Earth, atmosphere—land
model system under climatological boundary conditions (insolation, SSTs, seaice,
snowlines). The major observable consequence of low-dimensional behaviour of the
high-dimensional climate system rests in its internal organization which by neces-
sity bears synchronous motions [18]. Non-observability of the system’s attractor
sets and higher complexity of the real world notwithstanding, basic features of the
observed climate may appear in a new conceptual light when accepting this topo-
logical view (Sect. 3.6.2). Key monsoonal aspects of the Earth’s climatic evolution
have been found to be borne in the coupled atmosphere—land system (Sect. 3.6.3).

3.6.1 Topological Perspective

(i) The boreal summer monsoon constitutes a regime of planetary scale oscil-
lations in the 40—60 days band that is separated from the seasonal cycle by
Hopf bifurcations; the climate system’s intraseasonal attractor set thus forms
a torus segment in phase space with minor (poloidal) circumference made up
by the major active-break monsoon cycle.

(ii) This type of monsoon dynamics emerges in a two-stage process that starts with
a supercritically evolving, orographically excited standing planetary ‘pre-
monsoon’ wave, followed by passage of a subcritical Hopf bifurcation of the
global circulation system at abrupt onset of the ‘interactive’ monsoon with its
inherent tropical—extratropical interactions.

(iii) Subcriticality of the monsoon onset bifurcation may also be blamed for the
observed ‘predictability barrier’ in boreal spring [92].

(iv) Hard transition at onset of the major monsoon activity cycle kicks the system
into a regime of chaotic oscillations, followed by a backward running period
multiplication route ( ‘out of chaos’) across the season.

(v) The ‘interactive’ monsoon is organized by synchronized planetary waves, with
lowest rational frequency relationships at top of the Farey tree of rational
numbers, i.e. at strongest possible synchronous motion known from nonlinear
dynamic systems which are made up of a hierarchy of oscillators [55].

(vi) Highest synchrony and shortest period of the major monsoon activity cycle
are reached at midsummer, and are gradually lost again as the season
advances toward monsoon retreat, where the period becomes substantially
stretched: the cycle thus shows a marked intraseasonal frequency drift which
contributes to its broadband nature [84].

(vii) The subrotational spring fixpoint evolves into the ‘pre-monsoon’ oscillation
when the NH/SH atmospheric mass distribution approaches its seasonal
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(viii)

(ix)

(x)

(xi)

(xii)

mean; the ‘interactive’ monsoon commences when this balance is being
broken in favour of the NH; it evolves chaotically as long as both the
subrotational center of the cycle remains near that state of mass balance
and monsoon activity may enter atmospheric superrotation during break
conditions.

The period-2 structure is bound to an ‘enstrophy stage’ located in the
subrotational, NH mass excess phase of oscillation, it is lost in favour of
period-1 when mass balance is approached by the phase space location of this
stage and when the cycle enters superrotation at break monsoon conditions.
As the season advances, the geometrical center of the activity cycle diverts
from its ‘center of gravity’ due to an increasing density of states along an
evolving ‘wrinkle’ on the torus mantle; borne in the enstrophy stage, the
wrinkle runs along a mantle line that ends in a point of perfect relative
AAM and hemispheric mass balance, where the monsoon oscillation is
extinguished, leaving an unstable fixpoint of the boreal summer circulation.
As a ‘remnant’ of the torus wrinkle, for a short period after structural
monsoon retreat a slow irregular wander remains between unstable summer
and winter fixpoints, showing essentials of the Southern Oscillation—until the
(superrotational, SH mass excess) winter fixpoint stabilizes.

Monsoon retreat, which is governed by the relative phase between intrasea-
sonal activity cycle and seasonal cycle, determines the state of autumn climate
by selecting (in a kind of “roulette”) one of roughly three retreat classes: from
(a) active, (b) dormant, or (c) reviving monsoon phases.

Retreat from an active monsoon phase results in (a) ‘Indian summer’ type
autumn circulation, retreat from dormant monsoon supports (b) fast, ‘La
Nifia prone’ transition into the winter circulation, and retreat from reviving
monsoon activity generates (c) ‘El Nifio trigger’ autumn trajectories [84].

3.6.2 Conceptual Reasoning

(xiii)

(xiv)

The phenomenon of “global monsoon” with individual, but interacting
branches around the globe (which follow a common intraseasonal pace at
different phases of their respective activity cycles) is a consequence of strong
internal synchronization of the hierarchy of planetary waves that organizes
global teleconnections; topologically, the “global monsoon” reflects the
motion of individual monsoons across the basin of a common global attractor
set, or ‘monsoon manifold’.

Whereas there may be some channeling effect on the spring trajectory due
to the repellor surface of the subcritical monsoon onset bifurcation, which
tends to control the date of monsoon onset, there is no such topologically
conditioned focusing at monsoon retreat; this may not only explain observed
differences between spring and autumn circulations [31] but also those in the
variability of monsoon onset and retreat dates [70].
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3.6.3

(xvii)

(xviii)

(xix)

(xx)
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P. Carl

Monsoon definitions based on seasonally changing wet/dry and wind regimes
alone do not grasp essentials of the system, notably salient features including
the intraseasonal pulse, the dynamic organization as a separate climate
regime, abruptness of planetary reorganization, and intrinsic variability; a
topologically founded definition of the system is thus advocated.

The present-day climate regime on Earth is a “monsoon climate” in the
sense that the interactive, planetary scale monsoon governs the boreal
summer in general; occasional monsoon failure, however, might hint at a
dynamical status in the vicinity of a general “monsoon climate” bifurcation
of paleoclimatic dimension.

Paleoclimatic Relevance

Interannual climate variability borne in atmospheric dynamics may undergo
long-term structural change due to intraseasonal changes of monsoon
excitation; these include emergence or not of the regime of tropical—
extratropical interactions in boreal summer, with structural consequences
in the worldwide distribution of drought and flood, and transitions between
integer and non-integer number of activity cycles per season leading to
systematic, structural changes of the regime of boreal autumn climate.

The present-day monsoon climate regime of dominant Indian summer type
boreal autumn circulations (due to a non-integer rotation number in general)
may be superseded by regimes of lower interannual variability; no matter
what direction of monsoon excitation the system adopts, its atmospheric
contribution will probably develop toward more ‘resonant’ conditions in
boreal summer (integer rotation number).

Paleoclimatic “Super El Nifio” or “Super La Nifia” regimes may be borne
in dominant resonant dynamics of the (interactive) boreal summer monsoon,
notably if the boreal winter monsoon does not enter an own interactive
state—which would modulate the interannual climatic effects of the system’s
dynamical status in summer; focused upon here.

Lasting absence or return of interactive summer monsoon dynamics may
play a role as amplifier of glaciation cycles; the system’s operation in the
vicinity of its monsoon bifurcation in boreal summer might explain both
abruptness of climatic transitions in the Earth’s history and the very fact
that glaciations did not necessarily coincide (or even appear) at either
hemisphere.

Persistence of ‘pre-monsoon’ dynamics in boreal summer if the ‘interactive’
monsoon ceases to exist might bear a “green Sahara” regime, the existence
of a large paleo-lake to the north of Tibet, and paleoclimatic teleconnections
between the Indian monsoon region and the North Atlantic.
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3.7 Conclusions

Given the obstinate issue of monsoon simulation in GCMs and the persistent
challenge of monsoon forecasting, a dynamic-systems perspective as outlined helps
to understand the very nature of these problems and to develop ideas of solution. In
view of the reviving concept of “global monsoon”, it was time to retell the tale of
exploration of a qualitatively correct and quantitatively reasonable GCM solution
that allows to pose well-known dynamic essentials of the boreal summer monsoon
into a geometrical context.

A major topic was the nature of computational problems encountered. It may
hardly be due to a coding bug if a long-term “summer monsoon solution” runs
into computational instability during an exceptionally early monsoon onset of
its 199st year. The chaotic July regime found is just one aspect that might be
blamed. Occasional extreme excursions of purely dynamic origin near the turn of
the seasons, reminding of homoclinic orbits, also may drive such a model beyond
the limits of validity in any one of its parameterizations. One such excursion has
been traced back, for example, to passage during the seasonal march of a state of
simultaneous balance in the interhemispheric distribution of tropospheric mass and
in relative AAM, or Al.o.d. (that is, tropospheric co-rotation).

Due to unfortunate data losses over the more than 15 years of ‘frozen-in’
GCM based conceptual monsoon studies, efforts to reconstruct earlier results are
indicated. This includes the “summer—winter—monsoon” solution, a specific code
version which ran stably during attractor soundings across the chaotic July regime
(but turned out to be unstable in the seasonal run), and an ‘atmospheric El Nifio’
solution coincidentally found in a highly excited model version that also exhibits
a strong regional attractor of the Indian monsoon system close to monsoon retreat
(though source texts and log files are lost in part, compiled model versions have
been saved in general).

Having reached firm footing again with the coarse resolution AGCM, the range
of a second generation of computational exploration has to be substantially extended
into a variety of directions, including

(1) Detailed characterization of the chaotic July regime,

(2) In-depth analysis of the monsoon retreat bifurcation,

(3) Attractor sounding under non-climatological forcings,

(4) Retreat ensembles under non-climatological forcings,

(5) Study of the planetary wave hierarchy at varied horizontal resolution,

(6) Systematic exploration of the coupled AGCM/MLO model,

(7) TPCC and other scenario simulations.
Tracing of the monsoon solutions found into higher spatial model resolution
comprises the task as well to

(8) Refine the vertical model dimension (multi-level GCM).
To this end, it is of paramount importance to understand the monsoon
mechanisms at the coarse resolution model world in much greater detail via

(9) In-depth diagnostics of mechanism and feedbacks.



94 P. Carl

At the turn of the 1980s, the CCAS-B AGCM had been equipped with an
advanced diagnostic system which calls for certain regeneration today in order
to realize opportunities that result from present-day computational capabilities
and capacities. Finally, following original intentions and earlier developments
in the field of software engineering [10], the model should be kept in a
technical state so as to be applicable as a

(10) “Climate model for research and training” [36].

Confirmation of the monsoon dynamics found in related integrals of motion of
the real system is of fundamental importance since low-dimensional behaviour,
which emerges from the small scales, is not usually assumed to prevail at global
scale—and even to dominate there. Low-dimensional organization of the global
climate system via extensive internal synchronization of planetary waves might bear
a key to successful monsoon simulation. Whereas observational evidence exists for
AAM signatures of monsoon activity, interhemispheric exchanges of atmospheric
mass are apparently not measured in sufficient detail so as to follow these motions
into intraseasonal scales. There is hope to gain this access via the GRACE project
[79,94].

Though existence of a chaotic July regime might lead one to believe that
Lorenz’ idea of “chaos and intransitivity” as fundamental source of interannual
variability [65] is at work in the model, this may be posed into question. Passage
of the July regime in a seasonal simulation might proceed via some (intraseasonal)
unstable periodic orbit (UPO), without leaving a footprint of “chaos” in the
system’s trajectory. More important in this respect is the “complexity” issue, namely
the attractor surface of variable shape and ‘attractivity’ across the season and
the ‘rotation number’, which together control monsoon retreat and may govern
interannual variability. Whether the system’s trajectories show irregularity due to
a complex generating process or a chaotic one, cannot be decided by the argument
of ‘sensitivity to initial conditions’—which is a symptom, but not the essence of
chaos. More reliable is the search for UPOs, as part of the ‘dynamic skeleton’ of a
chaotic system. Related aspects of interannual data analysis are touched in [19].

Due to the bare existence of critical transitions within the annual cycle, the
climate system is a sensitive receiver (and amplifier) of signals. The oceans provide
a huge ‘collector surface’ to the monsoon circulation which acts to imprint solar
or thermal signals onto the water cycle. The monsoon hypothesis anticipates a
relatively simple basic structure in boreal summer, the torus segment, of nevertheless
rather complex fine structure. The system’s evolution proceeds via changes that
these (intra-) seasonal features may experience due to changed forcing. Effects of
coupled subsystems, notably atmosphere—ocean interactions, are an integral part
of these dynamics, but the monsoon system itself is known for long to play an
active role in shaping the climate system’s variability and evolution [72]. Out of
its intraseasonal scales, interannual to millennial climatic regimes may emerge.
Robustness of the present-day “monsoon climate” on Earth may crucially depend
on the degree of internal synchronization in boreal summer—which might even root
in the shortest scales at the very base of the hierarchy of planetary waves.
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Part I11
Fractal and Its Applications in Epileptic
Seizure



Chapter 4
Fractal Dimension in Epileptic EEG Signal
Analysis

R. Uthayakumar

Abstract Fractal Analysis is the well developed theory in the data analysis of
non-linear time series. Especially Fractal Dimension is a powerful mathematical
tool for modeling many physical and biological time signals with high complexity
and irregularity. Fractal dimension is a suitable tool for analyzing the nonlinear
behaviour and state of the many chaotic systems. Particularly in analysis of chaotic
time series such as electroencephalograms (EEG), this feature has been used to
identify and distinguish specific states of physiological function.

Epilepsy is the main fatal neurological disorder in our brain, which is analyzed
by the biomedical signal called Electroencephalogram (EEG). The detection of
Epileptic seizures in the EEG Signals is an important tool in the diagnosis of
epilepsy. So we made an attempt to analyze the EEG in depth for knowing
the mystery of human consciousness. EEG has more fluctuations recorded from
the human brain due to the spontaneous electrical activity. Hence EEG Signals are
represented as Fractal Time Series.

The algorithms of fractal dimension methods have weak ability to the estimation
of complexity in the irregular graphs. Divider method is widely used to obtain
the fractal dimension of curves embedded into a 2-dimensional space. The major
problem is choosing initial and final step length of dividers. We propose a new
algorithm based on the size measure relationship (SMR) method, quantifying
the dimensional behaviour of irregular rectifiable graphs with minimum time
complexity. The evidence for the suitability (equality with the nature of dimension)
of the algorithm is illustrated graphically.

We would like to demonstrate the criterion for the selection of dividers (minimum
and maximum value) in the calculation of fractal dimension of the irregular curves
with minimum time complexity. For that we design a new method of computing
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fractal dimension (FD) of biomedical waveforms. Compared to Higuchi’s algorithm,
advantages of this method include greater speed and the criterion to choose the max-
imum and minimum values for time intervals. Comparisons with the other waveform
fractal dimension algorithms are also demonstrated. In order to discriminate the
Healthy and the Epileptic EEGs, an improved method of Multifractal Measure such
as Generalized Fractal Dimensions (GFD) is also proposed. Finally we conclude that
there are significant differences between the Healthy and Epileptic Signals in the
designed method than the GFD through graphical and statistical tools. The improved
multifractal measure is very efficient technique to analyze the EEG Signals and to
compute the state of illness of the Epileptic patients.

4.1 Introduction

In the last decade, time series analysis based on chaos theory and the theory of
nonlinear dynamics, which are among the most interesting and growing research
topics, has been applied to time series data with some degree of success. Moreover,
a variety of experiments have shown that a recorded time series is driven by a
deterministic dynamical system with a low dimensional chaotic attractor, which is
defined as the phase space point or set of points representing the various possible
steady-state conditions of a system. Characterization and quantification of the
dynamics of nonlinear time series are also important steps towards understanding
the nature of random behaviour and may enable us to predict the occurrences of
some specific events which follow temporal dynamical patterns in the time series
[59]. Recently, methods developed for the dynamical analysis of complex time
series have been used with a relatively high degree of success in the investigation
of signals produced by real biological systems. Fractals are closely related to
chaotic systems. The fractal dimension of a waveform represents a powerful tool
for transient detection.

4.1.1 Analysis of Electroencephalogram (EEG)

The electroencephalogram (EEG) is a bio-signal representing the electrical activity
of the brain. Specifically, it mostly represents the electrical activity of the outer
layer of the brain, the cortex. EEG is measured as a potential difference (voltage)
between two electrodes placed on the scalp. It represents the time series that maps
the voltage corresponding to neurological activity as a function of time. EEG is an
observable property of large fields of real neurons [22]. Connecting EEG signals to
computers has become widely used technique in mapping the brain. The status of
EEG, despite for time being eclipsed by that of single neuron recording, has since
become a classical area of investigating dynamics at the neurosystem level [12, 13].

In real systems like EEG the complexity is very difficult to prove or exclude
[72]. The skepticism against finite dimension estimates is understandable. It is



4 Fractal Dimension in Epileptic EEG Signal Analysis 105

hard to believe that a complicated system as the brain, which is continually
interacting with many other complex systems, should manifest as deterministic
low-dimensional dynamics. Predominantly, it is a manifestation of a mixture of
noise, some cyclic processes and random fractal signals. Each part of such a
composition itself is frequently reported to fool the algorithms used to detect
chaotic dynamics. Therefore, the fractal dimension estimates should be interpreted
with extreme caution. Ascending number of experts believe that there is little
evidence for deterministic chaos in brain dynamics. In particular, in analysis of
electroencephalograms the fractal dimension feature has been used to identify and
distinguish specific states of physiologic function [5,53,76].

4.1.2 Epileptic Seizure

Herein, we direct our fractal dimension applications to bioengineering problems,
particularly epilepsy. Epilepsy is a disorder characterized by recurrent seizures. The
seizures (ictal states) cause temporary disturbances of brain functions (e.g., motor
control, responsiveness, recall), for periods ranging from seconds to minutes.
Seizures may be followed by a post-ictal period of confusion or impaired sensorium
that can last several hours. Seizures occur when a massive group of neurons in the
cerebral cortex suddenly begin to discharge in a highly organized rhythmic pattern
[48,49]. This pattern usually begins and terminates spontaneously, without external
triggers. The initiation and termination of epileptic seizures reflect intrinsic, but
poorly understood properties of the epileptic brain. A seizure involves large portions
of the cerebral cortex, thus, ten to hundreds of thousands of interacting neurons [59].

Therefore, it is likely that investigation into the epileptic brain as a system
will elucidate important mechanisms underlying seizures. The macroscopic and
microscopic features of the epileptogenic zone have been comprehended, the
mechanism by which these fixed disturbances in local circuitry produce intermittent
disturbances of brain function cannot be explained and understood. The devel-
opment of the epileptic state can be considered as changes in network circuitry
of neurons in the brain. When neuronal networks are activated, they produce a
change in voltage potential, which can be captured by an EEG. The best way of
understanding the epileptic brain is analyzing the EEG signals [59]. So we have
considered EEG seizure signals for our study.

Most of the researchers from the field of Nonlinear Dynamics used Lyapunov
exponents for their dynamical study [30, 35, 71]. They have shown that the rate of
divergence is an important aspect of the system dynamics and is reflected in the
value of Lyapunov exponents and dynamical phase. Due to the inconveniences of
the methods from nonlinear dynamics we have used fractal dimension as a tool
for the detection of critical cortical sites. It is sometimes desirable to identify a
brief seizure, occasional spike, single evoked potential, or other transient in the
EEG [75]. Transient detection in an EEG can be a difficult task, often requiring prior
knowledge of the characteristics of the transient. Regarding the EEG as a fractal,
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we have shown that transient deterministic data in the EEG have a fractal dimension
different from the quasirandom background [5]. From the obtained results presented
in this chapter, analysis by fractal dimension is shown to be a promising method
of transient detection, requiring no prior knowledge of the characteristics of the
transient.

4.2 Fractal Dimension for Synthetic Waveforms

The dimension plays a vital role in the study of fractals and their applications.
There is a need to study the dimensional properties of fractal sets and to extend
this concepts to real world applications. Scientists compare complex patterns by
summarizing them in standardized forms. One important comparative technique
assigns patterns unique positions along a one-dimensional number line; a line is used
because points only have a natural order in one-dimension and higher dimensions,
there is no natural ordering for an arbitrary collection of points. To compare patterns
by summarizing them as individual values on a number line, a set of pattern features
must be transformed into a single number. There are no complete and general
rules for picking these features: in any actual case, the specific features to be used
for classifying a pattern depend on the ultimate goal of the analysis [40].

Waveforms are a common scientific pattern. A waveform is a collection of (x, y)
point pairs, where the x values increase monotonically. Waveforms are planar curves
proceeding resolutely forward, they do not go backwards and they do not cross
over themselves. Chart recordings, oscilloscope records, time series, cumulative
graphs of winnings in games of chance, and many linear (one-dimensional) waves,
such as ballistic trajectories, are all examples of waveforms. Waveforms have been
numerically categorized using a myriad of different schemes. Often, an ideal curve
is chosen as a standard and the actual waveforms are then assigned individual
numbers describing their closeness of fit to the ideal. For instance, data graphs
are frequently compared to straight lines or to exponential curves, because these
two classes of curves represent simple models of the underlying mechanisms by
which such data may have been generated. When the standard curves are ideal and
when, like straight lines or exponential curves, they can be characterized by a few
elemental parameters, the ranking schemes are called “parametric” [40].

Non-ideal curves can also be used as standards; in such cases, the ranking
schemes are usually “non-parametric”, because the waveforms are compared to
the whole standard curve and there need be no simple set of standard summary
parameters. For a non-parametric ranking, a researcher might use the sign test: here,
waveforms are compared as sets of (x, y) point pairs and the numerical ranking (the
statistic) for any particular waveform is computed from the proportion of point pairs
in which its y value is greater than the y value for the corresponding point pair in
the standard curve.

Another approach to ranking waveforms is the direct quantification of partic-
ular pattern features. Waveforms are frequently thought of as periodic functions;
thus, waveforms are commonly characterized in terms of such wave features as
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fundamental frequencies or mean amplitude. Periodic wave features are quantified
through harmonic analysis, and the most widely used of these are the Fourier
analysis, which approximate waveforms as a series of cosine and sine waves.

It would be useful also to have other general pattern features that can be
quantified and that do not depend on the assumption that the waveforms have been
generated by periodic phenomena. Here, we describe one such pattern feature—the
fractal dimension of a waveform. The fractal dimension of a pattern is a measure of
its complexity—its spatial extent, convolutedness, or space-filling propensity and it
is intimately tied to the shape and the dimensionality of the pattern [40].

The dimension of fractal graphs was first studied by Besicovitch and Ursell
in 1937. Burlaga and Klein [9] have presented a method to calculate the length
of a curve and have obtained stable values of the fractal dimension of large-
scale fluctuations of the interplanetary magnetic field. In 1986, Higuchi modified
the method of Burlaga to calculate the fractal dimension and he showed that
by using his method we can get a stable value of the fractal dimension. Also
he applied his method to the time series of the natural phenomena which show
the turbulent behavior. In 1988, Katz proposed a method to estimate the fractal
dimension of waveforms. After the long time, Petrosian developed four different
algorithms for computing fractal dimension of waveforms in 1995. Esteller et al.
[20] compared all the above waveform fractal dimension algorithms based on their
performance with synthetic waveforms and EEG signals. Qiong and Xiong [61]
derived a method to calculate fractal dimension of digital voice signal waveforms.
Kalauzi et al. [37] developed a fractal dimension method based on consecutive
finite differences for analysis of fractal signals. The present study deals about the
developments in the waveform fractal dimension methods. The synthetic waveform
data used in this section has the property of a fractal curve over all time scales. The
techniques developed in this section can easily give us stable indices and time scale
corresponding to the characteristic frequency even for a small number of data.

4.2.1 Fractal Dimension of Waveforms

Fractal graphs have been used by Mathematicians over the years. Even among
Mathematicians, these graphs had often been considered to have little interest.
A variety of interesting fractals, both of theoretical and practical importance, occur
as graphs of functions. Indeed, many phenomena display fractal features when
plotted as functions of time. Examples include wind speed, levels of reservoirs,
population data and prices on the stock market, atleast when recorded over fairly
long time spans [21]. The special form of graphs give rise to the several definitions
of dimension. Here we consider only rectifiable (have a finite length) graphs with
irregular behaviour.

We define a graph I" to the image of an interval [a, b] under a continuous
bijection v : [a, b] - R". Thus, we restrict attention to graphs that are non-self-
intersecting. If I" is a graph and 6 > 0, we define M;s(I") to be the maximum number
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of points xg, X1, . ..., X, on the graph I", in that order, such that |x; — x;—;| = 8 for
k=1,2,....,m. Thus (Ms(I") — 1) may be thought of as the ‘length’ of the graph
I' measured using a pair of dividers with points set at a distance § apart. Under
certain circumstances the graph

graph I' = {(t, ¥ (1)) ra <1 < b} 4.1

regarded as a subset of the (¢, x)-coordinate plane may be a fractal [21].

We consider functions ¥ : [a, b] — R. If ¥ has a continuous derivative, then it
is not difficult to see that graph v has dimension 1 and indeed, is a regular 1-set.

The same is true if ¥ is of bounded variation; that is, Z;";(l) [V () —v(tis)| <
constant for all dissections 0 =# < #; < ..... < t,, = 1. However, it is possible
for a continuous function to be sufficiently irregular to have a graph of dimension
strictly greater than 1. In this section we concentrate on irregular graphs. The best
known example is

Y1) =Y AsinrAke) (4.2)

k=0

where0 < H <1,A>1land FD=2—-H.

This function, essentially Weierstrass’s sine function, that is continuous and
nowhere differentiable, has box dimension s, and is believed to have Hausdorff
dimension s.

The another form of Weierstrass cosine function, given as follows:

Y() =Y yMeosuy*t), 0< H <1 (4.3)
k=0

here y > 1and FD=2 — H [20].
Given a function ¥ and an interval [t,, £,], we write Ry, for the maximum range
of ¥ over an interval,

Ryln, ] = sup |y() =¥ @)]. (4.4)

W =<t,ust

Theorem 1. Let ¥ : [0, 1] — R be continuous. Suppose that 0 < § < 1 and m is
the least integer greater than or equal to 1/8. Then, if Ns is the number of squares
of the §-mesh that intersect graph V,

m—1
57 Ry lis. (i + 18] < Ns < +2m + 87" Ry [i5. (i + D8] (4.5)
i=0



4 Fractal Dimension in Epileptic EEG Signal Analysis 109

a

1] T T T T T T T T T

0.5

0.5 .

Fig. 4.1 Weierstrass sine function for fractal dimension equal to (a) 1.5, (b) 1.7

Fix A > land 1 < s < 2. Define ¢ : [0,1] - R by

Y() =Y A Psin(Ak1) (4.6)

k=1

Then, provided A is large enough, dimpg graph ¢ = s [21]. Some waveforms are
generated with known fractal dimension values using Weierstrass cosine and sine
functions and are shown in Figs. 4.1-4.3.
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Fig. 4.2 Weierstrass cosine function for fractal dimension equal to (a) 1.5 and (b) 1.3

4.2.2 Existing Methods for the Computing Fractal Dimension

Many algorithms for estimating the FD of the waveforms have been proposed by
various authors, but their computational requirements are expensive [37]. Among
the algorithms, we consider three of the most prominent methods for computing the
FD and the analysis of waveforms.
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Fig. 4.3 Digitalized curves generated from Weierstrass cosine function for fractal dimension equal
to(a) 1.5 and (b) 1.2

4.2.2.1 Higuchi’s Method

This method was appreciated by the researchers in the field of waveform analysis.

The procedure for the method is given below. Consider x(1), x(2),....,x(N), the

time sequence to be analyzed. Construct k new time series x¥ as
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ik = x(m),x(m+k),x(m+2k),....,x(m+{N;mJ)}, 4.7

form=1,2,.....k where m indicates the initial time value, k indicates the discrete
time interval between points (delay), and |a | means integer part of a. For each of

the curves or time series x¥ constructed, the average length L,, (k) is computed as

L2572
> |x(m + ik) — x(m + (i — Dk)| (2 — 1)

Ln(k) = —=! B (4.8)

(N-1)
. N e
factor. An average length is computed for all time series having the same delay (or
scale) k as the mean of the k lengths L,, (k) form =1,2,...., k. This procedure is
repeated for each k ranging from 1 to k,,,,, yielding a sum of average length L (k)
for each k as indicated in (4.9)

is a normalization

where N is the total length of the data sequence x and

k
L(k) =" Lu(k). (4.9)
m=1

The total average length for scale k, L(k), is proportional to k=", where D is
the FD by Highuchi’s method. In the curve of in(L(k)) versus In(1/k), the slope
of the least squares linear best fit is the estimate of the fractal dimension [20]. The
implementation of Higuchi’s algorithm needs to determine the parameters k,,;, and
Knax value.

4.2.2.2 Katz’s Method

The method was based on a conjecture by Mandelbrot [46] who suggested that a
fractal dimension of a river may be derived from the river’s length and the distance
between the river’s spring and its end. Katz procedure implies that the fractal
dimension of a waveform may be measured empirically by sampling N points
evenly spaced on the abscissa [40].

The FD of a curve can be defined as

_ log,y(L)

— 4.10
l0g,0(d) (“-10)

where L is the total length of the curve or sum of distances between successive
points, and d is the diameter estimated as the distance between the first point



4 Fractal Dimension in Epileptic EEG Signal Analysis 113

of the sequence and the point of the sequence that provides the farthest distance.
Mathematically, d can be expressed as

d = max(distance(1,7i)). 4.11)

Considering the distance between each point of the sequence and the first, point
is the one that maximizes the distance with respect to the first point. The FD
compares the actual number of units that compose a curve with the minimum
number of units required to reproduce a pattern of the same spatial extent. FDs
computed in this fashion depend upon the measurement units used. If the units are
different, then so are the FDs. Katz’s approach solves this problem by creating a
general unit or yardstick: the average step or average distance between successive
points, a. Normalizing distances in (4.10) by this average results in

1 L
- M, (4.12)
log,(d/a)
Defining n as the number of steps in the curve, then n = %, and (4.12) can be
written as B
_ log,,(n)
= y )
IOglo(Z) + logo(n)

Expression (4.13) summarizes Katz’s approach to calculate the FD of a wave-
form [40]. The Katz’s algorithm works with minimum window length and the signal
contains minimum variance. The signal noise and the window length affect the
dynamic range of Katz’s algorithm.

(4.13)

4.2.2.3 Petrosian Method

Petrosian uses a quick estimate of the FD. However, this estimate is really the FD
of a binary sequence as originally defined by Katz. Since waveforms are analog
signals, a binary signal is derived from four different methods. Here we consider the
fourth method. The differences between consecutive waveform values are given, the
value of one or zero depending on whether their difference exceeds or not a standard
deviation magnitude [60]. The FD of the binary sequence generated by this method

is computed as
logon

loglon + lOglO (m)

where n is the length of the sequence (number of points), and N, is the number
of sign changes (number of dissimilar pairs) in the binary sequence generated.
Petrosian’s method performance depends on the type of binary sequence used. If
a binary sequence based on slope-sign changes is utilized then this method becomes
less suitable for analog signal analysis, its high sensitivity to noise and its poor
reproducibility of dynamic range of synthetic FD.

D =

(4.14)
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4.2.3 Novel Fractal Dimension Methods

In this section we present our developed methods for computing FD and analysis
of waveforms [56-58,73,74]. We have considered all the drawbacks of the existing
algorithms.

4.2.3.1 Modified Divider Method

The application of divider method to determine the Fractal Dimension (FD) of the
curves introduced by Shelberg [68], uses a chord length (step) and measures the
number of chord lengths (length) needed to cover a fractal curve [21]. The technique
is based on the principle of taking smaller and smaller rulers of step size to cover
the curve and counting the number of rulers length required in each case [7]. It is
a recursive process in which the step is decreased (typically halved) and the new
length is calculated. Here, the input curves are taken to be of size N where N is a
power of 2 because of the recursive nature of the method. A method of least squares
fit to the bilogarithmic plot of length against step gives the slope s and the fractal
dimension D = — .

This part of the calculation provides and estimate the average gradient are
illustrated in Fig. 4.3.If C isacurve and r > 0, we define N, (C) to be the maximum
number of points xg, X1, .. .., X;,, on the curve C, in that order, such that

|Xr — Xp—1| = 1. (4.15)

Thus the length of the curve C measured using a pair of dividers with points set
at a distance r apart is
N (C)—1D xr. (4.16)

The dimension of C is determined by the power law obeyed by N,(C) as
r—0.1If
N.(C)~cxrP 4.17)

for constants ¢ and D, we might say that C has ‘divider fractal dimension’ D, with
¢ regarded as the D-dimensional length’ of C. Taking logarithms we get

logN,(C) >~ ¢ — D x log(r). (4.18)

The fractal dimension of the curve is defined as

_ logN, (C)

s (4.19)

The above formula is for computational or experimental purposes, F'D can be
estimated as minus the gradient of log-log graph plotted over a suitable range of r.
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The problem arises when selecting the suitable range of the size r. Shelberg [68]
describes an appropriate starting value as half of the average distance between the
points.

That is

1 m
= — e 4.20
r=_ 2 | Xk — Xk—1 (4.20)

r 4.21)
Vmin = < .
2

Most of the researchers had used divider method to measure the complexity of
non fractal shapes, but did not describe the criteria to select the final step [10].
Solving this problem makes this algorithm less time consuming. For each r, we
measure a set in a way that ignores irregularities of size less than r, and in the limit
r — 0 (where r is the step length), the length is N, (C), the validity necessarily hold
in a finite size range (7in, F'max) Where 0 < 7y < Fiae. We describe the method for
selecting the final step as half the original length of the curve, that is

C(N(C) =D X7

max — 2

4.22)

4.2.3.2 Algorithm

The following algorithm will estimate the dimension of the digital curve.

¢ Consider the curve C.

m
1 —
m Z | Xk — Xk—1
k=1

2

» Calculate r,,;, using 7, =

* Calculate gy USIng gy = L=

¢ Calculate Length (N, (C) — 1) X r for ry; to Fpgy-

e Plot (N,(C) — 1) x r versus r, the slope of the plot is the required fractal
dimension.

Deterministic fractals such as Von Koch Curve show repeated structure of all
scales. Each subsequent magnification reveals ever more fine structure. The FD of
Von Koch Curve (FD = 1.262) easily obtained by using similarity dimension [46].

For irregular curves (no self-similarity) similarity dimension cannot be applied
[51]. The modified divider method proposed here is the effective tool to retrieve the
fractal dimension of the irregular digitalized curves, the value of fractal dimension
does not exceed the required 1 < D < 2 interval.
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Fig. 4.4 log — log plot N, (C) versus r

4.2.3.3 Example and Results

The need to check the validity of the proposed method, we have used two simple
synthetic curves Fig.4.3a and b generated from Weierstrass cosine function of
m = 125 points with known fractal dimensions 1.5 and 1.2. The algorithm described
above was implemented in MATLAB and tested on synthetic curves with known
fractal dimension. Note that the perfect reproduction of the known fractal dimension
should yield a straight line of slope equal to one [70]. Figure 4.4 shows the known
fractal dimension value of Fig. 4.3a is equal to the FD value estimated by modified
divider method. The Weierstrass synthetic curve contains minimum irregularity. If
digitalized curves contained chaotic behaviour then the preprocess normalization is
needed to analyze the curves [51].

The values of r,,;;, and r,,,. of the divider can be calculated from (4.20)-(4.22)
is 0.0489 and 6.0175. The length calculated for the ranges of r,,,, =0.0490 and
I'max = 0.0175. Plot the values of log(N,(C)) versus log(r). The divider dimension
is estimated from the slope value of the log-log plot. The slope value indicates the
complexity presented in the curve. From Fig. 4.4 the slope value is one that the
algorithm estimates FD of the curve (Fig. 4.3a) equal to the known fractal dimension
1.5. The MATLAB code for the corresponding procedure simply takes the following
form. The curve is stored in the variable C,

o Fmin = mean(sum(diff (C)));

Tmax = (sum(diff (C)))/2;
* F =polyfit(log(N,(C)), log(r), 1);
e« FD=F();
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In this way one may obtain the exact fractal dimension of the irregular digitalized
curves.

4.2.3.4 Modified Higuchi’s Method

Applications of FD in this setting include two types of approaches, those in the time
domain and the ones in the phase space domain. The former approaches estimate the
FD directly in the time domain or original waveform domain, where the waveform
or original signal is considered a geometric figure [10]. Phase space approaches
estimate the FD of an attractor in state-space domain [51, 70]. Calculating the FD
of waveforms is useful for transient detection with the additional advantage of fast
computation. Most of the algorithms do not contain the proper criteria to estimate
the minimum and maximum values of the interval k. Higuchi describes an algorithm
to compute FD of waveforms but he did not implement the criteria to choose the ki,
and ki, values [29]. The above algorithms got computational difficulty to estimate
the chaotic behaviour of the waveforms. Here the new algorithm which resolves all
the problems of existing algorithms is presented.

Consider x(1), x(2),....x(N) be a finite set of time series of observations taken

at a regular interval. Construct k new time series x¥ as

x,]j, = Jx(m),x(m + k), x(m +2k),....,x(m + {N ;mJ)} , (4.23)

form=1,2,....., kK where m indicates the initial time value, k indicates the discrete
time interval between points (delay), and |a| means integer part of a. Here a
description is given about the criterion for choosing k which consists of k,,;, and
Kmax TESPECtively.

Shelberg [68] describes an appropriate starting value as half of the average
distance between the points. That is

1 m
k = . ZI: |xi = xi—1] (4.24)

Kmin = E (4.25)

N

If C isacurve and r > 0, we define N, (C) to be the maximum number of points
X0, X1, - ..., Xm, on the curve C, in that order, such that |x; — xx—;| =r. Thus the
length of the curve C measured using a pair of dividers with points set at a distance
r apart is (N,(C) — 1) x r. We describe the method for selecting the final step as
half the original length of the curve (Nx(C) — 1) X k, that is
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L O ) xk
=Ty

, where C is the waveform signal. (4.26)

For each k, we measure a set in a way that ignores irregularities of size less than
k, and in the limit k — O, the length is L,,(k), the validity necessarily hold in a
finite size range (Kpuin, Kmax) Where 0 < kyin < Kpax. For each of the curves or time

series xX constructed, the average length L,, (k) is computed as

|27 ]
Y Ix(m+ik) —x(m+ (i — DK)| (2 — 1)
Ly (k) = = — (4.27)
| ] &

where N is the total length of the data sequence x and
(N—1)
L5 Jr
is a normalization factor. An average length is computed for all time series having
the same delay (or scale) k as the mean of the k lengths L, (k) form =1,2,.... k.
This procedure is repeated for each k ranging from 1 to k,,,, yielding a sum of
average lengths L(k) for each k as indicated in (4.28)

k
L(k) =" Lu(k). (4.28)
m=1

The total average length for scale k, L(k), is proportional to k~°, where D is the
Fractal dimension. In the curve of In(L(k)) versus In(1/k), the slope of the least
squares linear best fit is the estimate of the fractal dimension.

4.2.3.5 Procedure for Computing Fractal Dimension

Here, a new algorithm for computing the fractal dimension of the waveforms based
on the recursive length of the waveform is presented. The waveform generated from
Weierstrass cosine function of different window lengths up to 2,000 points with
known fractal dimension. The following algorithm will estimate the dimension of
the waveform. The algorithm is written in MATLAB, corresponding procedure for
calculating FD, simply takes the form:

1. Consider the time sequence x(1), x(2),....... ,X(N)
2. Choose the range of k that is k,,;, and k,,,, using

m
k=Y Ik —xie]
i=1

k
kmin =3
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3. Calculate the average length L,, (k) using (4.27).

4. Compute the sum of average lengths L (k) using (4.28).

5. Plot the values of in(k) versus In(1/ k), the slope is the FD of the waveform.

The above procedure is repeated for different window lengths from 250 to 2,000
points. Figure 4.5 shows the reliability of the algorithm with different window
lengths. A set of 100 sequences, each with different FD, was generated using
Weierstrass function. We tested our algorithm with respect to reliability, efficiency
(computational time), noise sensitivity, and record length. The FD computed by
the proposed method is compared with other fractal dimension algorithms. Also
the criteria for choosing k,,;, and k. is given below. The computed FD with
different window length is compared with theoretical FD. The comparison results
are presented in following section.

4.2.3.6 Example and Results

Fractal dimension of synthetic signals ranges from 1.01 to 1.99. Figure 4.5 shows
the FD values obtained by our proposed method with different window lengths. We
can easily observe the reliability of the algorithm from Fig. 4.5.

The noise and ranges of window lengths do not affect the effectiveness of the
algorithm. No window length effect is observed in the range of 250 to 2,000 points.
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Fig. 4.6 The performance of three methods with synthetic waveform, N = 1,000 points
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Fig. 4.7 Plot of theoretical FD versus FD computed by modified Higuchi’s method

It works with synthetic signal data for 8,000 points and gives useful results. The
comparison with other famous fractal dimension algorithms such as Katz’s and
Higuchi’s are represented in Fig.4.6. The F'D computed by our method is similar
with theoretical FD. That is the curve closest to the ideal straight line of slope one
is shown in Fig. 4.7. In Higuchi’s algorithm there is no criterion to choose the value
of ki, and k... But the criterion described in our method gives effective result



4 Fractal Dimension in Epileptic EEG Signal Analysis 121

Table 4.1 Comparison of run time of FD methods with modified Higuchi’s method

Run-time (seconds)
Window length  Kin, kmax  Modified Higuchi’s method — Katz’s method  Higuchi’s method

250 1,6 0.0120 0.1720 0.0420
500 1,24 0.0260 0.3440 0.0680
1,000 1,49 0.0480 0.9530 0.950

2,000 1,98 0.1510 3.0160 0.1950
4,000 1,196 0.4230 12.9310 0.4250
8,000 1,393 1.4670 52.9210 1.4850

with window lengths from 250 to 2,000 points. Table 4.1 shows the computational
burden between the algorithms and the values of k,;, and k,,,, for different window
length. Compared to other fractal dimension algorithms our method works with less
time complexity. If the record length is increased to 8,000 points, then our algorithm
performance improves and becomes very faster than Higuchi’s and Katz’s.

4.2.3.7 Size Measure Relationship Method (SMR)

Hausdorff dimension is computationally difficult process while we measure the
fractal dimension of irregular graphs [7]. Also there is a problem in the box counting
dimension that is choosing of initial and final size of the magnification factor, the
algorithm takes more time complexity [10]. This causes the need of new algorithm
which solves the above problems and it requires minimum time complexity. As with
many other techniques of fractals, the computation of the fractal dimension can be
undertaken in real place (processing the data directly) [46]. Here a new algorithm
is formulated for computing the fractal dimension of the rectifiable irregular graphs
based on the Size Measure Relationship (SMR) method. This method is based on
recursive length of the irregular curves using different measuring scales. The FD of
airregular graph F can be defined in SMR method as

_ log,o(L)

= =20 7 4.29
log,o(R) ( )

where L is the total length of the curve or sum of distances between successive
points, it can be represented as

N—n
L=7Y |F (4.30)

i=1

where N denotes the total number of points to be taken. Since we are dealing with
sampled graphs, the software implementation of these steps should be based on
consecutive calculation of finite differences. For the graph F;, with N samples and
with normalized amplitudes, first order consecutive difference is calculated as
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F'=F'7'-F''i=12. (4.31)

1

The R is the range estimated as the distance between maximum value point and
the minimum value point. Mathematically R can be expressed as

R = distance(max(F/""") — min(F")). (4.32)

Sample differences depend on graphs amplitude, a preprocessing step com-
prising graphs amplitude normalization [20], is necessary for graph sample F;,
i=1,2,....,N and N is the total number of points in the graph sample. The graph
amplitudes normalized by using

F
Fror— i (4.33)

! N
!
¥ D IF]

j=

—_

where

2I~

N
Z 2...,N.

After normalization of amphtudes we get F/*", it is used to calculate the Fractal
Dimension of the graph.

4.2.3.8 Algorithm

The following algorithm will estimate the dimension of the irregular graphs. The
program for the SMR algorithm is written in MATLAB and the graph F;,
i=1,2,...,N, is stored in vector F, corresponding procedure for calculating
FD, simply takes the form:

* Normalizing the irregular graph using
s = abs(mean(diff (F)));
F/=F —s;
Fl'"=F!/s;
* Computing the total length of the graph using
L = sum(abs(diff (F*"))).
* Computing the range in F/"" using

R = distance(max(F/"") — min(F"")).
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Fig. 4.8 The plot of theoretical fractal dimension versus fractal dimension by SMR method
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In this way one may obtain the exact fractal dimension of the rectifiable irregular
graphs. The purpose of the above algorithm is to estimate the complexity present in
the irregular graphs.

* Applying formula D =

4.2.3.9 Example and Results

The SMR algorithm is tested with the rectifiable irregular synthetic graphs generated
from Weierstrass sine function of known fractal dimensions 1.5 and 1.7 as shown in
Fig.4.1a and b.

The FD values for these curves can be calculated using the procedure for SMR
algorithm implemented in MATLAB. Here we take the rectifiable graphs with the
length of 100 points. The graphs with normal amplitudes that is dissections are equal
contains less irregular [51,70]. But our algorithm works both regular and irregular
rectifiable graphs. In Fig. 4.2a and b, the length of the curve L and the size R can be
calculated from (4.30) and (4.32) as follows L = 10,572, R =167.66, D = 1.5 and
t =0.0305s for Fig.4.2a and L =30,357, R=267.24, D =1.7 and t =0.0310s
for Fig.4.2b. Figure 4.8 shows that the perfect reproduction of calculated fractal
dimension values should yield a straight line of slope equal to one with the known
fractal dimension values. This is the evidence for the suitability of the algorithm
with the calculation of fractal dimension of irregular graphs. Comparing with other
computational methods such as Box counting, Prism Counting and Perimeter-area
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relationship method our algorithm requires minimum time complexity, minimum
number of steps and estimate the exact fractal dimension of irregular graphs by
evidence.

4.2.4 Comparison of Fractal Dimension Methods

Among the developed methods, the SMR method is suitable for synthetic waveform
analysis. So we restrict our attention to SMR method and comparison with other
existing methods. The SMR approach of estimating the fractal dimension of a signal
yields good results with various window lengths.

The reliability of the algorithm was tested with synthetic signal ranging from
1.001 to 1.009 using Weierstrass functions with known FD. Figures 4.9—4.12 show
the FD values obtained by the Higuchi’s, Katz’s, Petrosian’s and SMR methods
against the known FD of the synthetic data. Note that perfect reproduction of the
known FD should yield a straight line of the slope equal to one. Higuchi’s algorithm
and the SMR method provides the most accurate estimate of the FD.

Katz’s method is less linear. Its calculated FD are exponentially related to the
known FD. The FD estimates with Higuchi’s method improve as window length
increases. The curve that is closest to the ideal straight line of slope was obtained
for a window size of 250 points.
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In Katz’s method the window length affects the dynamic range of the estimated
FD yielding a dynamic range between 1 and 1.2 for window length greater than 750
window lengths lower than 250 points. Petrosian’s algorithm works with synthetic
signals, and gives less accurate results. Its results are not useful in estimating the
chaotic nature of the signal. Petrosian’s method gives good results with EEG data,
but it does not discriminate the complex patterns in the EEG signals.

In the SMR method the window length does not affect the dynamic range of
the estimated FD yielding a dynamic range between 1 and 2. It works with synthetic
signal data for 8,000 points and gives useful results. The advantages of SMR method
are greater speed and eliminating the need to choose the k,,;, and k., values.
It is much easier than the other methods to calculate the FD. The run time for
SMR method is less than the other methods. The window length does not affect
the SMR method and it works with various window lengths. The SMR method
gives the distinguishability in results between different time points. A comparison
of computational burden between the methods for different window lengths is
presented in Table 4.2.

4.2.5 Concluding Remarks

The purpose of this text is to introduce effective methods for measuring the fractal
dimension and calculating a more precise and stable characteristic time scale than
those presented before.
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Table 4.2 Comparison of run time of the four FD methods with synthetic waveforms

Run-time (seconds)
Window length  SMR method  Higuchi’s method  Katz’s method  Petrosian’s Method

250 0.0320 0.1720 0.0420 0.0470
500 0.0470 0.3440 0.0680 0.0470
1,000 0.0780 0.9530 0.950 0.0780
2,000 0.1410 3.0160 0.1950 0.1720
4,000 0.3280 12.9310 0.4250 0.3750
8,000 0.8570 52.9210 1.0120 1.000

By applying modified divider method, we can determine the divider fractal
dimension of irregular digitalized curves. Due to the modification in 7,,;, and 7,
this method becomes effective and less time consuming.

The modified Higuchi’s algorithm is required for specific applications. The
results show that the algorithm is the most consistent method for computing FD
and discrimination of patterns in the waveforms. The reliability of the method of
choosing k,,;, and k,,, is proved from the results. Due to k,,;, and k., this method
becomes effective and less time consuming.

Size Measure Relationship method is suitable for computation of Fractal dimen-
sion and estimation of complexity presented in the waveforms with minimum time
complexity. Therefore, we strongly suggest the application of the above methods to
compute FD is best for waveform signals.

Fractal dimensions are an addition to the roster of techniques for quantifying
waveforms. The fractal dimension FD, of a waveform is a measure of its convolut-
edness: perfectly straight waveforms have a minimal dimensionality (FD = 1.0),
whereas highly spiked waveforms have a maximal dimensionality (approaching
FD = 1.5).

As with any single pattern-recognition criterion, a fractal characterization cannot
completely duplicate the performance of human pattern recognition. To mimic
humans, fractal characterizations should be used in conjunction with different
techniques, such as harmonic analysis. On the other hand, even when used individ-
ually, objective automatable pattern-recognition schemes can be especially useful
in two arenas: first, for rigorously surveying large numbers of patterns, and second,
for reproducibly comparing complex patterns. The fractal dimension emphasizes
complexity of shape, and it is in the realm of very complex patterns that fractal
analyses should prove most helpful.

One automatable technique for numerically classifying and comparing wave-
forms assesses their fractal dimensionality. Such a fractal characterization may be
especially useful for analyzing and comparing very complex biological waveforms
such as electroencephalograms (EEGs).
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4.3 Fractal Dimension in Epileptic EEG Signals

The novel methods for computing fractal dimension of synthetic waveforms and the
importance of fractal dimension in the analysis of waveforms are presented. The
method of discriminating the patterns in the waveforms through fractal dimension
is explored. We got the idea from the workability of the algorithms, they are
suitable for analysis of human brain signals. Working towards real signal analysis
is the hot topic in the signal processing field. During the last two decades, we
have become fascinated with the realization that some nonlinear dynamical systems
have very complex behaviours. Electrical signals of Electroencephalogram (EEG)
from the brains’ of seizure patients also exhibits complexity in the behaviour.
EEG monitoring systems have become important clinical tools for evaluation
and treatment of seizure. Improving seizure prediction through approximating the
critical cortical site is the hot topic in epilepsy research.

Detection of critical cortical site (recurrent seizure portion) is used to give
treatment for the patient. The major physiological brain states that have distinct EEG
and behavior correlates are concerned with the degree of vigilance. Some totally
different states could present apparently similar EEG patterns. The sites affected
in the brain area which are related to other areas may also be affected [66]. The
variation of activity in the brain differs from area to area. There is no similarity in
the random collection of cortical areas. The EEG signal is the gateway to measure
the complexity of the nonlinear behavior of the brain.

Human brain is considered as a dynamical system. Estimating the complexity
in the signal gives the state of the dynamical system [70]. We found out the
dimension for various signals obtained from different positions of the electrodes,
which are needed to specify the state of a dynamical system [21]. One extreme in
the spectrum of deterministic behaviours for nonlinear systems is chaos, in which
the system shows no evidence of settling down to any stable state and shows extreme
(exponential) sensitivity to small perturbations [23].

The classification of EEG signals gives useful results about the behaviour of the
human brain. For this we need a tool from nonlinear dynamics. Hazarika [27] used
wavelet transform to classify the EEG signals. Maiwald [45] compared three seizure
prediction methods by means of the seizure prediction characteristic. The techniques
from nonlinear dynamics such as Lyapunov exponents and Correlation dimension
can describe the complexity of an EEG data. But both work with small samples and
they also need large amount of computations. A hallmark of chaotic systems is that
the dimension seems fractional or fractal, that is 1.26 rather than 1 or 2. A global
value that is relatively simple to compute is the fractal dimension (FD); it refers
to a noninteger or fractional dimension of a geometrical object [70]. The FD can
give an indication of the dimensionality and complexity of the system. Since actual
living biological systems are not stable and the system complexity varies with time,
one can distinguish between different states of the system by the FD; it can also
determine whether a particular system is more complex than other systems [21,70].
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The algorithms developed by Higuchi [29], Katz [40] and Petrosian [60], for
estimating the FD of the waveform signals, but their computational requirements are
expensive. These algorithms contain more number of steps with lot of comparisons,
so the time complexity is very high [25,26,29,40]. The Higuchi and Katz algorithms
work only when the waveform signal contains less variance, so the algorithms do
not give better results for EEG signals. The main contribution of this section is
presenting an efficient algorithm for calculating FD of EEG signal with less time
and space complexity. Along with other nonlinear methods, the fractal dimension
has been used in the analysis of biomedical signals exhibiting non-stationary and
transient characteristics such as the EEG. The short-term analysis of EEG signals
and their dimension analysis will provide the measure of the rate of complexity.
We compared the results of our algorithm with the results of Higuchi, Katz and
Petrosian algorithms. From our results the complexity decrease prior to the seizure
is confirmed with fractal dimension values. It discriminates the ictal (seizure
period) and pre-ictal (before seizure) portions in the brain effectively. The clustering
technique (K-means algorithm) is used to locate the critical cortical site in the brain.

4.3.1 Background

In the last decade, several quantitative system approaches incorporating statistical
techniques nonlinear methods based on chaos theory have been successfully used
to study epilepsy because the aperiodic and unstable behaviour of the epileptic
brain is suitable to nonlinear techniques that allow precise tracking of the temporal
evolution. Some previous studies shown that seizures are deterministic rather
than random. Consequently, studies of the spatiotemporal dynamics in long-term
intracranial EEG’s, from patients with temporal lobe epilepsy, demonstrated the
predictability of epileptic seizures; that is seizures develop minutes to hours before
clinical onset. The period of seizure’s development is called a preictal transition
period, which is characterized by gradual dynamical changes in EEG signals of
critical electrode sites approximately 1/2 to 1h duration before the ictal onset
[30-34, 64, 65]. During a preictal transition period, gradual dynamical changes
can be exposed by a progressive convergence (entrainment) of fractal dynamical
measures at specific anatomical areas and cortical sites, in the neocortex and
hippocampus [23].

The existence of the pre-ictal transition period has recently been confirmed and
further defined by other investigators [3,14,19,43,44,62], the characterization of this
spatiotemporal transition is still far from complete. For instance, even in the same
patient, different set of cortical sites may exhibit preictal transition from one seizure
to the next. In addition, this convergence of the normal sites with the epileptogenic
focus (critical cortical sites) is reset after each seizure [35]. Therefore, complete or
partial postictal resetting of preictal transition of the epileptic brain, affects the route
to the subsequent seizure, contributing to the apparently non-stationary nature of
the entrainment process. In those studies, however, the critical site selections are
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not trivial but extremely important since most groups of brain sites are irrelevant
to the occurrences of the seizures and only certain groups of sites have dynamical
convergence in preictal transition [59].

Since the brain is a nonstationary system, algorithms used to estimate measures
of the brain dynamics should be capable of automatically identifying and appropri-
ately weighing existing transients in the data. Complex dynamics is an important
aspect of the chaotic system and it is reflected in the value of fractal dimension.

4.3.2 Methods

4.3.2.1 Electroencephalogram Signal

The Electroencephalogram (EEG) is a unique and valuable measure of the brain’s
electrical function. It is a graphic display of a difference in voltages from two sites
of brain function recorded over time. Electroencephalography involves the study of
recording these electrical signals that are generated by the brain. Extracranial EEG
provides a broad survey of the electrocerebral activity throughout both hemispheres
of the brain. Intracranial EEG provides focused EEG recording directly from the
brain through surgically implanted electrodes that are targeted at specific regions of
the brain. Information about a diffuse or focal cerebral dysfunction, the presence of
interictal epileptiform discharges (IEDs), or patterns of special significance may be
revealed.

For the successful interpretation of an abnormal EEG, one must first understand
the criteria necessary to define normal patterns. While a normal EEG does not
exclude a clinical diagnosis (i.e., epilepsy), an abnormal finding on EEG may be
supportive of a diagnosis (i.e., in epilepsy), be indicative of cerebral dysfunction
(i.e., focal or generalized slowing), or have nothing to do with the reason that the
study was performed (i.e., in headache). It is the clinical application of the EEG
findings that imparts the utility of EEG [6].

Scalp EEG recordings display the difference in electrical potentials between two
different sites on the head overlying cerebral cortex that is closest to the recording
electrode. From the patient scalp, electrodes conduct electrical potentials to an
electrode box. Electrode placement has been standardized by an international 10-20
system that uses anatomical landmarks on the skull. These sites are then subdivided
by intervals of 10-20 % and to designate the site where an electrode will be placed.
A minimum of 21 electrodes are recommended for clinical study, although digital
EEG now has the capability for a greater number. During infant EEG recordings,
fewer electrodes are used depending upon age and head size. A newer modified
combinatorial electrode system uses electrode placement with more closely spaced
electrodes in a 10-10 system [22].
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4.3.2.2 Spontaneous Ongoing Signal

In general, one or more tape-recorded channels of suitably filtered and amplified
EEG signal, extending over the period of interest, are digitized at a sampling
frequency m to form the database. The T second long and L(=T x m) sample
long digitized signal,

F(n),n=1,2.,(M —1)x D + N, (4.34)

is split into A¢ second long overlapping segments or epochs which are arranged as
the columns or pattern vectors of an N X M matrix F,

F(1) FD+1)--- F(M—-1)xD +1)

F F(D -+ F(M—-1)xD
?2) ( .—}- 2) ' («( 1.) +2) 4.35)

F(N) F(N +2) - F (M —1)x D + N)

where N (= Atxm) is the dimension of each pattern vector, M = (|(L + D — N)/
D) is the number of patterns, and D is the delay between patterns.

In our calculation, we choose N =2,500 points, the length of the signal is
estimated by consecutive differences of samples. Out of the EEG data observed
from the seizure patient with 32 electrode channels, we have considered the most
seizure exhibited channels of 14 only [35].

4.3.2.3 Recording Procedure and EEG Data

The fractal dimension methods were applied using intracranial EEG data from
four patients suffering from epilepsy of temporal and extratemporal origin. EEG
recordings from bilaterally, surgically implanted microelectrodes in the hippocam-
pus, temporal and frontal lobe cortices of epileptic patients with temporal lobe
epileptic seizures (focal, complex, with or without secondary generalization) were
analyzed (see Fig.4.13 for our typical electrode montage). The EEG signals
were recorded using amplifiers with an input range of +0.6 mV, and a frequency
range of 0.5 -~ 70Hz. Prior to storage, signals were sampled at 250 Hz using
an analog-to-digital converter with 10-bit quantization. The multielectrode EEG
signals (26-30 common reference channels) were obtained from long-term (3.6—7
days), continuous recordings from four patients and 25 seizures were examined for
every patient [35].

4.3.2.4 Computing the Fractal Dimension of EEG Signals

We utilized an estimate of the Fractal dimension (FD) as the dynamical measure
of the electroencephalogram [8]. Estimation of FD of synthetic signals described
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Fig. 4.13 Diagram of the depth and subdural electrode placement

Table 4.3 Comparison of run time of FD methods with EEG signals

Run-time (seconds)
Window length  SMR method Higuchi’s method Katz’s method Petrosian’s method

250 0.0660 0.1830 0.0460 0.5420
500 0.1370 0.5460 0.1780 0.5530
1,000 0.3750 0.9620 0.1250 0.6010
2,000 0.1010 3.1160 0.2950 0.6210
4,000 1.3250 13.9610 1.6260 0.6330
8,000 1.3390 52.9990 1.8920 1.5210

in the previous section. Now the same procedure (SMR) is applied to EEG
signals. Estimation of FD was calculated by dividing the EEG into non-overlapping
segments of 10.24 s each. The fractal dimension is calculated by our developed
method. Also we have compared our results with other fractal dimension algorithms
such as Higuchi’s algorithm and Katz algorithm. The procedure for the algorithms
are discussed in the previous section. The time consumption of fractal dimension
algorithms works with EEG signals are presented in Table 4.3. The EEG signals
collected from 14 electrodes and its fractal dimension values are presented in
Table 4.6.

4.3.2.5 Properties of EEG Signals with Fractal Dimension

The fractal dimension profiles show two patterns pertaining to all the types of
epileptic seizures. They are as follows:
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Fig. 4.14 EEG signal from the channel ¢3 and its fractal dimension signatures

1. A drop in the fractal dimension mean value with respect to the pre-ictal
state, corroborating the hypothesis that the brain dynamics more ordered. It is
interesting that this feature (a drop in value) is very different from the observed
amplitude of the EEG, which normally increases during seizures. This drop can
be used to detect critical brain sites by a range of fractal dimension values.

2. Entrainment between the fractal dimension of different channels before seizure.
In signal processing terms, this means that the distance between the fractal
dimension values will decrease when an ictal event is pending.

Figure 4.14 shows a typical seizure from the channel c3 where these two
characteristics are clearly visible. However, it should be noted that the fractal
dimension does not always show such obvious characteristics for all seizures and
all electrodes, either because of inter-seizure dynamical differences, or because of
seizure specific parameters to estimate fractal dimension. The set of parameters
to estimate fractal dimension was held fixed throughout our experiments and
works very well for complex partial seizures evolving into secondarily generalized
seizures.

Figures 4.14-4.17 show examples of fractal dimension profiles for different
seizure types from different channels. Figure 4.18b shows the performance of
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Fig. 4.15 EEG signal from the channel c4 and its fractal dimension signatures

three fractal dimension methods with EEG seizure signal displayed in Fig.4.18a.
Figures 4.19-4.22 present the EEG signal of one epileptic patient analyzed by
Higuchi, Katz, Petrosian and SMR algorithms. Figures 4.23—4.25 illustrate the box
plot for the fractal dimension values of 14 electrodes computed by SMR algorithm
displayed in Table 4.6.

4.3.2.6 Selection of Critical Cortical Sites

One of the most important tasks to detect the chaotic dynamics is to identify the
most possible group of cortical sites which will participate in the pre-ictal transition
of an impending seizure. Cortical sites participating in the preictal transition vary
somewhat from seizure to seizure. Here we identify the most critical group of
cortical sites based on the chaotic dynamics estimated by fractal dimension values
in the 10-min time window within the seizure period. More specifically, the fractal
dimension and K-means algorithms are assisting to select the group of cortical sites
which are most entrained prior to the seizure.
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Fig. 4.16 EEG signal from the channel p3 and its fractal dimension signatures

4.3.2.7 Clustering of Electrode Sites

Cluster analysis has been applied in many fields. Here cluster analysis has been
employed to find groups of electrode sites with similar and minimal distance (or
nearest neighbour) of its fractal dimensions. There are large numbers of clustering
algorithms used by the researchers [20]. Among them, we have used the effective
clustering algorithm known as ‘ K-means algorithm’ for grouping the electrode sites
[36]. Besides the data, input to the algorithm consists of K, the number of clusters
to be constructed. The K-means algorithm consists of the following steps.

1. Begin with K clusters, each consisting of one of the first k samples.

2. For each sample, find the centroid nearest to it. Put the sample in the cluster
identified with this nearest centroid.

. If no samples changing clusters, stop.

4. Recompute the centroids of altered clusters and go to step 2.

(O8]

Once it is obtained the clusters can be used to classify patterns into distinct
classes. Here the signals from each electrode are sampled at 250 Hz. The signals
observed form electrode strips are placed over the left orbitofrontal (LOF), right
orbitofrontal (ROF), left subtemporal (LST) and right subtemporal cortex(RST).
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Fig. 4.17 EEG signal from the channel p4 and its fractal dimension signatures

Depth electrodes are placed in the left temporal depth (LTD) and right temporal
depth (RTD) to record hippocampus EEG activity [69]. We have selected positions
of 14 electrodes among the above locations.

The EEG data in the format of 14 columns (electrode positions) and 10 rows (FD
values of segments signals from electrode positions) are used for clustering. The
K-means algorithm makes the clusters depending on the dimension values. Similar
behavior electrodes are in the same group. The grouped electrodes are displayed in
Table 4.4 with their respective fractal dimension algorithms. Also the calculation of
variation among the electrode groups are presented in Table 4.5.

4.3.3 Results and Discussion

In this section, results obtained from the application of developed fractal dimension
method and the comparison with other three fractal dimension methods to estimate
the complexity in the epileptic seizure EEG signal are presented. Also the applica-
tion of fractal dimension methods to detect the critical cortical site in the human
brain and their comparisons are displayed. Critical cortical sites are electrode sites
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Fig. 4.18 (a) Seizure EEG signal (b) Performance of three fractal dimension methods with seizure
EEG signal

that are most entrained during the current seizure and disentrained after the seizure
onset should be more likely to be entrained prior to the next seizure than the other
entrained sites. As a result, it is possible to predict a seizure if one can identify
critical cortical sites in advance. As the critical cortical site detection characteristic
depends on the three different fractal dimension methods, it is necessary to fix atleast
one of them to display the result.

The assessment and comparison of the three fractal dimension methods is
presented by the critical cortical site detection characteristics depending on, first
the fractal dimension values of the seizure period, second the clustering based
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Fig. 4.19 FD of EEG signals for Higuchi’s method

FD of EEG Signal by Katz's Method
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Fig. 4.20 FD of EEG signals for Katz’s method

on fractal dimension values, and third the variations among the fractal dimension
values. For estimating the critical cortical site, we use fractal dimension methods
except the Petrosian method. Among the algorithms, the Petrosian method not
discriminate the complex patterns in the EEG seizure signal. From the Fig.4.14
we observed that, the EEG seizure signal from the channel c3 (Fig.4.14a) is
effectively analyzed by the SMR method. The seizure periods are clearly displayed
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FD of EEG signal by Petrosian's Method
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Fig. 4.21 FD of EEG signals for Petrosian’s method
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Fig. 4.22 FD of EEG signals for SMR method

with fractal dimension signatures in bits per seconds (Fig.4.14b). Also we have
analyzed another three EEG seizure signals with their fractal dimension signatures
are displayed in Figs. 4.15-4.17. The performance of each method with EEG seizure
signal give good results and it is observed from Figs.4.19-4.22. But the SMR
method gives effective results than the other methods. The performance of the
three methods with their fractal dimension values is illustrated in Fig. 4.18b. From
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Table 4.4 Selection of electrode sites

Fractal dimension algorithms

Electrode groups

SMR method
Higuchi’s method
Katz’s method

LST1, LST2, LTD1, LTD2, LTD3, LST4
RSTI1, RST4, LTD3, LST4, LTD2, RST2
LTD2, LTD3, RST4, RTD2, RTD6, RST1

Table 4.5 Calculation of

o Fractal dimension algorithms Coefficient of variation
variation
SMR method 2.1430
Higuchi’s method 2.4820

Katz’s method

2.3510

Fig.4.18a we have observed that the seizure onset and seizure ending can only
be determined with 10s precision, and the dynamic transition itself takes several
samples and it varies from seizure to seizure. The same observation can be made for
the transition to postictal state. These features imply that the fractal based detectors
will provide exact warnings in real time applications.

From Fig. 4.18b the exact fractal dimension signatures for the EEG seizure signal
is observed in middle wave. That is the middle wave is the fractal dimension
signatures computed from SMR method. The FD results obtained with experimental
EEG data reveals that our method is the most accurate of the three. Katz’s method
yielded the most consistent results regarding discrimination between states of the
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Fig. 4.24 Box plot of the fractal dimension values of the electrode channels RST2, LST1, LST2,
LOF3 and ROF2

Table 4.6 FD values of EEG data segments

EEG data segments (N = 2,500 points, sampled at 250 Hz)

Electrodes 1 2 3 4 5 6 7 8 9 10

RST4 1.4252 1.4565 1.3764 1.4946 1.4000 1.3837 1.4555 1.3180 1.4538 1.2680
RTD2 1.4692 1.3787 1.4339 1.3290 1.3678 1.3331 1.4200 1.3762 1.3603 1.3200
RTD6 1.4639 1.4413 1.3698 1.4094 1.4042 1.3344 1.4574 1.3726 1.4281 1.4167
LST4 1.4614 1.4583 1.4222 1.4495 1.2975 1.3670 1.3763 1.4482 1.4630 1.3723
LOF2 1.4460 1.4732 1.4267 1.3994 1.3172 1.3658 1.4552 1.4567 1.4628 1.4667
RST2 1.4303 1.3899 1.3955 1.4025 1.3449 1.4498 1.4837 1.4731 1.5458 1.4835
LST1 1.4565 1.5113 1.5143 1.5983 1.4280 1.4080 1.3548 1.4985 1.4099 1.5041
LST2 1.4097 1.4899 1.4754 1.4544 1.5463 1.3141 1.3768 1.4117 1.3014 1.3570
LOF3 1.3208 1.3990 1.4025 1.4331 1.4049 1.2633 1.3481 1.3157 1.3145 1.4048
ROF2 1.4199 1.4850 1.3100 1.4501 1.4568 1.2791 1.3398 1.3036 1.3101 1.3723
LTD1 1.4311 1.4171 1.3405 1.3647 1.4822 1.3425 1.4288 1.4573 1.2875 1.3786
LTD2 1.4346 1.5420 1.4716 1.4143 1.5460 1.3970 1.5021 1.4626 1.3754 1.3779
LTD3 1.3746 1.5881 1.4503 1.4146 1.5432 1.3738 1.4306 1.3628 1.4348 1.4985
RST1 1.2459 1.5080 1.4754 1.4775 1.5075 1.1592 1.4497 1.5557 1.1638 1.5368

brain, but the dynamic ranges of the results are affected by window length and
noise. The FD estimated with 14 channels for each method when the synthetic
signal is contaminated with white noise, yielding a signal to noise ratio (SNR) of
10db [20]. The run time and steps for the proposed method are less than that of
other methods; window length does not affect and it works with various window
lengths. The new method gives the distinguishability in results between different
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time points. The SMR algorithm needs less time complexity compared to Higuchi
and Katz algorithms. The new algorithm separates the ictal (seizure period) and pre-
ictal (before seizure period) portions of the EEG signal with respect to FD values,
which are presented in Table 4.6. This can be observed from the box plots for the
fractal dimension values with respective channels (Figs. 4.23—4.25).

The ictal portions show greater dimension values and pre-ictal portions show
lesser dimension values. The portion which has fractal dimension between 1 and
1.5 is the pre-ictal portions and which has the fractal dimension between 1.5 and 2
is known as ictal portion. The fractal dimension values discriminate the seizure
and non-seizure portions. The EEG data observed from 14 electrode positions are
clustered into four groups. The four groups obtained from our method and the fourth
cluster contains the minimum variance electrode positions, which is presented in
Table 4.4. Figures 4.19-4.22 show the behavior of electrodes group performed by
Higuchi, Katz, Petrosian and SMR algorithms. The electrodes sites in the fourth
cluster are LST1, LST2, LTD1,LTD2 and LTD3.

Computing the coefficient of variation (a relative measure of the differences of
the values of various groups of electrodes from a measure of central tendency of
electrode groups, while comparing the coefficient of variation of two or more series
of data, the series having lesser coefficient of variation is less variable, more stable,
more uniform and more consistent) among the electrode groups of three methods,
the minimum variation appears in the proposed method which is presented in
Table 4.5. The six electrodes express the related brain activity (recurrent seizure
portion) and the surface of the above electrode portions are the critical brain sites
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estimated by our algorithm. For records from 150 to 2,500 points length, run time
for our method is very small when compared with Higuchi’s and Katz’s method.
If the record length is increased to 8,000 points, then our algorithm becomes more
faster than Higuchi’s and Katz’s. All the three methods can be run in real time.
If the window length increases up to 8,000 points then our algorithm performance
improves and becomes faster than Higuchi’s and Katz’s method.

The results show that the detected critical cortical sites exhibit the pre-ictal
transition using SMR algorithm. When we compare this results with preictal
transition from any entrained sites, we obtain our results, which shows better
performance. The located critical cortical sites detecting preictal transition better
than the randomly selected entrained cortical sites.

4.3.4 Concluding Remarks

The results of this study in epilepsy confirm our aim that the critical cortical sites
during the current seizure and reset after seizure onset is more likely to be entrained
again during the next seizure than other randomly selected cortical sites. These
results indicate that it may be possible to develop automated seizure warning devices
for diagnostic and therapeutic purposes.

Investigations of brain dynamics by analysis of EEG signals and computing the
fractal dimension of the brain activity are used to locate the critical brain sites
of recurrent seizure portions. The developed method is easier than the methods
from nonlinear dynamics. The treatment of epilepsy starts from the localization
of brain sites. We have shown the assessment and comparison of three fractal
dimension methods. From the discussions, we conclude that the algorithm of size
measure relationship method effectively compute the fractal dimension and estimate
of complexity presented in the EEG signal with minimum time complexity.

Therefore, we strongly suggest the application of SMR method to compute FD
is best for EEG seizure signals. Further research will lead to the prediction of the
seizure before their onset using the theory of nonlinear dynamical system and fractal
analysis.

4.4 Improved Generalized Fractal Dimensions in Epileptic
EEG Signals

In the recent years, various signal processing techniques are used to process the EEG
signals. Fourier Transforms and Wavelet Transforms are widely used in the analysis
of EEG data. These traditional linear analysis, both in time and frequency domains,
has been used for Epileptic Seizure detection but it has its limits [55]. But our
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Human Brain is a highly complex and a non-linear system. So the non-linear data
analysis methods have been effectively applied to the studies of brain functions and
pathological changes in Epileptic EEG Signals [2,38,39,52,54,55]. The non-linear
measures used, including Correlation Dimension, Largest Lyapunov Exponent and
Approximate Entropy quantify the degree of complexity and irregularity in a Fractal
Time Series [39,52].

In the literature when Fractal theory has been applied to the EEG data analysis,
the dimensional complexity has mainly been used to analyze the change in the
chaotic nature in different physiopathological conditions [1]. Among all the non-
linear techniques as mentioned the correlation dimension measurement is more
accessible in dealing with experimental data such as the EEG records [50].

The absolute value of the estimated correlation dimension does not represent
complexity of the signal since it is only one scalar value from the system of fractal
dimension spectrum. This scalar value can represent dimension only in simple
monofractal systems where all the fractal dimensions are same. This Dimensional
quantity is insufficient to characterize the nonuniformity or inhomogeneity of the
Signal. Generally, Chaotic Attractors are inhomogeneous. Such an inhomogeneous
set is called a Multifractal and is characterized by Generalized Fractal Dimensions
(GFD) or Rényi Fractal Dimensions. EEG time series is essentially multi scale
fractal i.e., Multifractal. Multifractal signals are intrinsically more complex and
inhomogeneous than monofractals. Therefore, quantifying the complexity of the
EEG signal requires estimation of the fractal dimension spectrum where the com-
plexity means higher variability in general fractal dimension spectrum [24,42,47].

The non-linear measure, correlation dimension belongs to an infinite family of
Generalized Fractal Dimensions (GFD) [28]. The usage of the whole family of
fractal dimensions should be very useful in comparison with using only some
of the dimensions. Unlike the Fourier Spectra, the Fractal Spectra consists of a
family of Fractal Dimensions that characterize the Fractal Time Series from both
the amplitude and the frequency point of view [15-18,41]. So Generalized Fractal
Spectra is very efficient technique to quantify the chaotic nature of the EEG Signals
and employs in the classification of Healthy and Epileptic EEG Signals [15, 16, 18].

Thus the Generalized Fractal measure is very efficient technique to quantify the
chaotic nature of the EEG Signals. The Multifractal techniques in Signal Processing
and Non-linear Data Analysis are devoted in the development of Epileptic research
by using EEG Signals. So we could improve the method of Generalized Fractal
Dimensions for the Discrimination between the Healthy and Epileptic EEGs.
Besides that, we compare our proposed GFD Method with the GFD to distinguish
the Healthy and Epileptic EEGs through graphically using the Fractal Spectra
and the graph plotted with the absolute values of the Entropy against the log values
of the corresponding scaling factor, and statistically using the one-way ANOVA Test
with Box Plot. Hence we are assuring that the roll of the Improved GFD will be very
efficient than the GFD.
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4.4.1 Mathematical Analysis

4.4.1.1 Rényi Entropy

Rényi Entropy [63, 67] played a significant role in the Information theory. Rényi
Entropy, a generalization of Shannon entropy, is one of the family of functionals
for quantifying the diversity, uncertainty or randomness of a given system. It was
introduced by Alfréd Rényi [63]. Rényi Entropy is also known as generalized
entropy of a given probability distribution.

The Rényi Entropy of order q(5 1), where ¢ is a real number, of the given
probability distribution is defined as

1 N
— qlogz (Z p;f) (4.36)

i=1

Sy =

where p; € [0, 1] are the probabilities of the random variable which takes the values
X1,X2,...,XN.

If the probabilities are all the same then all the Rényi Entropies of the distribution
are equal, with S, =log, N. Otherwise the entropies are decreasing as a function
of g.

4.4.1.2 Multifractal Analysis

The Rényi Entropies are important in Non-linear Analysis and Statistics as indices
of uncertainty or randomness. They also lead to a spectrum of indices of Fractal
Dimension (Rényi Fractal Dimensions or Generalized Fractal Dimensions). Grass-
berger [24] and Hentschel et al. [28] systematically developed the multifractal
theory, which is based upon Generalized Fractal Dimensions (GFD). In this section,
we describe the GFD [24, 28, 63, 67] and the Improved form of the usual GFD
Method [18].

4.4.1.3 Generalized Fractal Dimensions

Now we define a probability distribution of a given Fractal Time Series by the
following construction.

The total range of the Signal Time Series is divided into N intervals (bins) such
that

Vmax - Vmin

r

N =
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where V,,, and V,;, are the maximum and the minimum values of the signal
received in the experiments, respectively; and r is the uncertainty factor, that may
be depend on the measuring device used to record the EEG signal.

Now the probability that the signal passes through the i th interval of length r is
given by

m N = 1.2.....N
pi= lim — i=12...,

where N; is the number of times the signal passes through the ith interval of
length r.

Then, the Rényi Fractal Dimensions or Generalized Fractal Dimensions (GFD)
of order g € (—o0, 0o) for the known probability distribution, denoted by D, can
be defined as

1 1 N e
Dq = lim 08, Zl—l pz .

(4.37)
r—0q — 1 log,r

Here D, is defined in terms of generalized Reényi Entropy. Note that D, = D,
for all g for a Self-similar signal with probabilities p; = 1/ N, for all i. Also observe
that D, = Do =0, for all g for a constant signal because all probabilities except one
equal to zero, whereas the exceptional probability value is one. For all g, we have
D, > 0. It can be shown that if ¢; < g2, Dy, > Dy, such that D, is a monotone
decreasing function of ¢.

Some Special Cases

e Ifg =0, then
Dy = _log;N
log,r
which is nothing but the Fractal Dimension.
* Asgq — 1, D, converges to Dy, which is given by

N
i—1 Dil ;
D] — 1lm Zl—l p ngp .
r—0 log,r

This is called as Information Dimension.
* If g = 2, then D, is called the Correlation Dimension.

* There are two limit cases when ¢ = —oo and ¢ = oo, which is given as
l min
D_o, = lim 08 (Pmin)
r—0  log,r
l max
Dy = lim 1082 (Pnar)

r=>0  log,r
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where

DPmin = min{p1, pa,..., pn}
Pmax = max{pl, P2y pN}

Range of Generalized Fractal Dimensions

The two limit cases, D_o and D, define the Range of Generalized Fractal
Dimensions of a given Fractal Time Series as

Rerp = D—oo — Do (4.38)

4.4.1.4 Improved Generalized Fractal Dimensions

In order to improve our GFD Method, we define a probability distribution of a given
Fractal Time Series as follows.

The total range of the Signal Time Series is divided into Ny x N, bins (boxes)
such that

Ny — Vmax - Vmin and N, = Umax — Umin
y = o — fnax min
r ' r

where V,, and V,;, are the maximum and the minimum values of the signal
received in the experiments and f,,,, and #,,;,, are the maximum and minimum time
of the experiments, respectively; and r is the uncertainty factor, that may be depend
on the measuring device used to record the EEG signal.

Now the probability that the signal passes through the ijth bin (box) of size r is
given by

Nj

Pl = R N XN, (559

i=12,...,Ny and j =1,2,..., N;

where N;; is the number of times the signal passes through the ijth bin of size r.

Then, the Improved Reényi Fractal Dimensions or Improved Generalized Fractal
Dimensions (GFD) of order ¢ € (—o0, 0o) for the known probability distribution,
denoted by ID,, can be defined as

N N,
1 logy Y i, Zj:l P?,-j
r—0qg —1 log,r '

(4.40)
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Here ID, is also defined in terms of generalized Reényi Entropy with the
probability given in (4.39). Equation (4.40) is called the Improved form of the
Generalized Fractal Dimensions as in (4.37).

Limiting Cases
The two limit cases in the Improved GFD Method, when ¢ = — oo and g = 0o, are

l .
r=>0  log,r

I}
IDoo = lim 08> (plnmx)

=0 log,r

where

= min ;
DlLin I<i<No B lsjsN,{pI”}

1 = max I
Plnax ISiSNV&lijNt{pu}

Range of Improved Generalized Fractal Dimensions

The two limit cases, ID_o, and ID,, define the Range of Improved Generalized
Fractal Dimensions of a given Fractal Time Series as

RiGrp = ID—oo — Do 4.41)

4.4.1.5 Method to Analyze the EEG Time Signals

For a given probability distribution of a given Fractal Time Series (EEG Signal), the
GFD function (the Improved GFD function), D, (ID,), is called as Fractal Spectrum
(Improved Fractal Spectrum). This Fractal Spectrum describes information about
both the amplitudes and frequencies of the given Signal. So we consider that it is a
significant tool to characterize the EEG Signals.

We can calculate the GFD (D) and IGFD (/D,) for the given EEG Time Signals
by using (4.37) and (4.40), respectively, through the graph plotted the absolute
values of the Rényi Entropy against the log values of the corresponding scaling fac-
tor. From these measures we compare the Healthy and Epileptic EEG Time signals.
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In order to discriminate the Healthy and Epileptic EEGs, set

N
1
REN = -log, > p! from the Equation (4.37) (4.42)
9= i=1
and
| Ny N,
IREN = - 1logz Z Z pij from the Equation (4.40) (4.43)

i=1j=1

Then plot the graph of REN and IREN versus corresponding log(r) for the given
EEG signals and compare these graphs to analyze and discriminate the Healthy and
Epileptic EEGs.

One-way ANOVA (Analysis of Variance) Test is one of the statistical tools to
analyze the mean and variance of the given data set. ANOVA uses variances to
decide whether the means are different. If the observed differences are high, then
it is considered to be statistically significant. The p-value can be obtained using
analysis of variance between groups (ANOVA) test. In this test, if the p-value is near
zero, this casts doubt on the null hypothesis and suggests that at least one sample
mean is significantly different than the other sample means.

Box Plot technique shows the differences between the data sets significantly.
The Box Plot produces a box and whisker plot for each set of data. The box has
lines at the lower quartile, median, and upper quartile values. The whiskers are lines
extending from each end of the box to show the extent of the rest of the data. Outliers
are data with values beyond the ends of the whiskers. If there is no data outside the
whisker, a dot is placed at the bottom whisker. We can compare the Box Plots of
GFD methods among the Healthy and Epileptic EEG data.

4.4.2 Experimental EEG Data

The EEG clinical data consists of two different sets each containing 100 single-
channel EEG segments with 4,096 samples of 23.6-s duration, which were obtained
from the EEG Database available with the Clinic of the Department of Epileptology
in University of Bonn Medical Centre, Bonn, Germany [4, 11]. The EEG data was
recorded with International 10-20 system and digitized at a sampling rate (sampling
frequency) of 173.61 Hz. Note that the time series have the spectral bandwidth of
the acquisition system, which is 0.5-85Hz. We considered only 20 representative
single-channel EEG segments out of 100 segments from each of the two data sets,
which were more appropriate to this study.
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Fig. 4.26 Sample EEG epochs from both healthy subject (eyes open) and epileptic patient (ictal
period)

The first Data sets consists of segments taken from surface EEG recordings that
were carried out on five Healthy (Normal) persons with eyes open (Healthy EEG).
The data in the second set was recorded during seizure activity (Ictal periods) using
depth electrodes placed within the Epileptogenic zone of the Epileptic Patients’
Brain (Ictal EEG). A sample of EEG epochs from each of the two data sets are

plotted in Fig. 4.26.

4.4.3 Results and Discussions

The computations in this section are performed through the MATLAB Software.

The probability distribution of 20 representative Clinical EEG segments from
each of the two data sets taken from the Healthy subjects and the Epileptic
patients during Ictal period, were obtained and the corresponding Generalized
Fractal Dimensions and Improved Generalized Fractal Dimensions for g varies from
2 to 100 were computed. For instance, Generalized Fractal Spectra and Improved
Generalized Fractal Spectra of a sample EEG Segments from each of the two data
sets are depicted in Fig.4.27.
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Fig. 4.27 Generalized fractal spectra and improved generalized fractal spectra for healthy and
epileptic EEGs

For ¢ = 0.5, all the values of REN, as in (4.42), and IREN, as in (4.43) with the
corresponding scaling factors r for all the representative EEG signals from both the
Healthy subjects and the Epileptic patients during Ictal period were calculated. Then
Plotted the values of REN and IREN against the corresponding values of log(r)
for both Normal and Ictal EEGs. The plotted graphs for the GFD method (REN)
and Improved GFD method (IREN) for a sample EEG segment are depicted in the
Fig.4.28a and b, respectively.

In order to test the mean differences among Normal and Ictal EEG Segments
statistically, a repeated measures one-way analysis of variance (ANOVA) is per-
formed on the Fractal Spectra for GFD and IGFD Methods, using a standard tool
of Statistical analysis (MATLAB Statistical Tool Box), as shown in Table 4.7. The
Box Plots of Fractal Spectra for GFD and IGFD Methods among Normal and Ictal
EEG Signals are achieved as shown in Fig. 4.29.

Figure 4.27 shows that, as ¢ increases, there is a specific difference among the
values of curves plotted for Normal and Ictal EEGs in the Improved GFD Method
than the GFD Method for a sample EEG segment. For all the representative EEG
segments we observed that, as g increases, the values of D, for Normal and Ictal
EEGs would coincide in the GFD Method. But in our designed Improved GFD
Method, there is a significant differences among the values of /D, for Normal and
Ictal EEGs even for high values of g.
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Fig. 4.28 REN (a) and IREN (b) versus log(r) for both healthy and epileptic EEGs for ¢ = 0.5

Table 4.7 One-way ANOVA Tables for Fractal Spectra of Healthy and Epileptic EEGs

ANOVA Table
Source SS df MS F Prob > F
(a) GFD Method
Columns 0.08207 1 0.08207 3.68 0.0564
Error 4.36795 196 0.02229
Total 4.45002 197
(b) Improved GFD Method
Columns 471.949 1 471.949 14691.55 0
Error 6.296 196 0.032
Total 478.246 197

In the Fig. 4.28a, b, REN and IREN against the corresponding values of log(r) for
both Normal and Ictal EEGs were plotted. We observed that, by using GFD Method,
the values of REN for Normal EEG would be mingled with the vales of REN for Ictal
EEG against the values of log(r) in the Fig. 4.28a and the linearity of values in the
GFD Method is very low. Also we noticed that, in the Method of Improved GFD,
the values of IREN versus log(r) for Normal EEG is specifically different from the
values of IREN versus log(r) for Ictal EEG as in Fig. 4.28b and the proposed method
have high degree of linearity than GFD Method. Since the linearity of such graphs
in Fig. 4.28 decides the dimensionality of the EEG Signals, so our designed method
gives the accurate Dimensional values than the GFD Method in the discrimination
of Healthy and Epileptic EEGs.

ANOVA Test also supports our designed method statistically, than the GFD
Method. The p-value in the Table 4.7a is greater than the p-values in the Table 4.7b,
which is zero. Hence the values corresponding to Normal and Ictal EEGs are
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Fig. 4.29 Notched box plots for fractal spectra of healthy and epileptic EEGs

differed significantly in the designed method than the GFD Method. It is also
observed from the Box-Whiskers Plots of Fig.4.29 that there is a significant
variability in the Fractal spectra of Improved GFD Method among the Normal and
Ictal EEGs when compared with the GFD Method.

Hence, the Figs. 4.27—-4.29 and the Table 4.7 are the evidence that the Improved
Method of GFD plays an efficient role than the GFD Method in the analysis of EEG
and in the discrimination of Normal and Epileptic EEGs.

4.4.4 Concluding Remarks

In this study, we have proposed an improved form of GFD, developed from the
concept of GFD for discrimination between the Seizure free (Normal) and Epileptic
(Ictal) EEGs. We have calculated the Fractal Spectra (D, and ID;) and REN
and IREN for the Normal and Ictal EEGs using both the GFD Method and
the Improved GFD Method. Finally, we compared the Fractal Spectra and the
values of REN and IREN against log(r) for Normal and Ictal EEGs using the
both Methods to distinguish the Normal and Ictal EEGs through the graphical
techniques. The statistical tool namely ANOVA Test also illustrated that there is
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significant differences in the values corresponding to the Normal and Ictal EEGs
in our proposed method than the GFD Method. This scheme demonstrated that
the Improved form of GFD is well proficient mathematical tool in the analysis of
Epileptic EEG than the GFD Method. Hence we concluded that the Multifractal
Analysis using Improved form of GFD plays a crucial role in the area of Epileptic
research using EEG signals to analyze, detect or predict the state of illness of the
Epileptic patients. We hope that not only in the EEG Signals but also, the Improved
from of GFD Method; will be useful to analyze all the critical time signals in the
area of Non-linear Analysis.
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Part IV
Chaos Synchronization: Communications
and Symbolic Analysis



Chapter 5
Inferring Global Synchrony from Local
Symbolic Dynamics

Sarika Jalan, Fatihcan M. Atay, and Jiirgen Jost

Abstract Symbolic dynamics based on specific partitions prevents the occurrence
of certain symbolic sequences that are characteristics of the dynamical function.
Such partitions lead to a maximal difference in the permutation entropy of a chaotic
and the corresponding random system. The symbolic dynamics defined by such
partition has several practical applications, one of which is the detection of global
synchrony in coupled systems. The synchronized state is detected by observing the
complete absence or at least low frequency of particular symbol sequences. The
method uses short time series and is hence computationally fast. Also, because it
compares the symbol sequence of one single unit in the network with some model
behavior, it does not depend on the size of the network and is robust against external
noise.

5.1 Introduction

Synchronization is a prototype of emerging system level behavior of interacting
dynamical units. This behavior, in large ensembles of coupled systems, is studied in
many different fields [1-3], describing synchronous behavior in various natural and
artificial settings such as the Belousov-Zhabotinsky reaction [4], neuronal activities
in different cortical regions of the cat brain [5], brain signals during epileptic
seizures [6,7], technical systems such as power grids to achieve secure communica-
tion [8], climate behavior such as solar forcing of Indian monsoon, etc. Depending
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on the field, synchronization can be a desired or undesirable behavior. Detection
of synchronization in extended systems from local measurements has important
applications. For example, during anesthesia, it is found that the dynamical activity
passes reversibly through a sequence of different synchronized cardio-respiratory
states as the anesthesia level changes, and thus the synchronization state may be
used to characterize the depth of anesthesia [9]. Certain pathologies in the neural
system, such as epileptic seizures, manifest themselves by synchronized brain
signals [6], and there is some evidence that they can be predicted by changing levels
of synchronization [7]. It is thus of interest to be able to determine synchronization
in a brain area from local measurements, such as EEG recordings. Most existing
methods used to detect synchronization are based on cross-correlation function
analysis. For multivariate time series, this relies on the proper embedding of the
phase space. Mutual false nearest neighbor or mixed state embedding methods
are also used to detect synchronization. All these methods have their practical
limitations and are difficult to implement when the data are noisy and of limited
length [10, 11]. Here, we describe a new method to detect synchronization based
on symbolic dynamics. Symbolic dynamics is a fundamental tool for describing
a complicated time evolution of chaotic dynamical systems [12, 13]. Instead of
representing a trajectory by an infinite sequences of numbers, one watches the
alternation of symbols. In doing so one ‘loses’ a great amount of information but
some invariant, robust properties of the dynamics may be kept. A good symbolic
dynamics representation crucially depends on the partition of phase space [14, 15].
Recently, a method to control spatio-temporal chaos in coupled map lattices using
symbolic dynamics is proposed [16].

Symbolic dynamics based on specific partitions prevents the occurrence of cer-
tain symbolic sequences characteristic of the dynamical function. Such a partition
leads to the maximal difference in the permutation entropy [17] of a chaotic and
the corresponding random system [18]. The symbolic dynamics defined by such
partition has several practical applications [18-20]. One such application is the
detection of global synchronization in coupled chaotic systems. The synchronized
state is detected by simply observing the complete absence or at least low frequency
of particular symbol sequences. The method uses short time series and is hence
computationally fast. Also, because it compares the symbol sequence of one single
unit in the network with some model behavior, it does not depend on the size of the
network and is robust against external noise.

5.2 Definition of Symbolic Dynamics

Consider a dynamical system described by

x(1) = F(x(1)) (5.1)
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where x=(x, x® .. x®) e RF, F(x) = (FV(x), FP(x),..., FO(x)) is a
k-dimensional vector function of x, and x denotes the time derivative dx/dt. Let
S C R* be an invariant set for (5.1), and {S; i =1,...,m}beapartitionof S,i.e.,
a collection of mutually disjoint and nonempty subsets satisfying UL, S; = §. If
the state of the system is considered at discrete instances of time that are uniformly
separated by At, then the sequence of symbols {...,s;,—as, S, Si+As, - - - §» Where
s, =1 if x(¢) € §;, defines a symbolic dynamics corresponding to (5.1). Of
course, symbols from any m-letter alphabet can be equally well used instead of
the integers i.

5.3 Choice of the Partition

For applications, a judicious choice of partition is crucial. Suppose the scalar
component x™ 1 < n < k, is available for measurement. For a given threshold
value x* € R, define the sets

Si={xe8:x" <x*}
S, ={xe8:x">x*}

The value of x™ can be chosen to make the sets S}, S nonempty, in which case they
form a non-trivial partition of S. For this special partition, two-symbol dynamics
generated by the following equations are used:

aif xM (1) < x*
YT B () = X, 62

The symbolic dynamics depends only on the measurements x, yielding a
sequence of symbols determined by whether a measured value exceeds the threshold
x* or not. Essentially any choice of the threshold x* will yield a non-generating
partition. We say that the set S; avoids S; if

x()eSi=>x(t+A1)€S; (5.3)

It is useful to search for partitions containing avoiding sets. The significance
is that if §; avoids S, then the symbolic dynamics cannot contain the symbol
sequence ij, and the transition i — j is forbidden. The essence of this symbolic
dynamics is based on choosing a partition where (5.3) holds for some sets in
the partition. The probability P(i, j) of the occurrence of the subsequence ij
in the symbolic dynamics can be estimated from time series data by the ratio
n(s; =1i,8+a:=j)/n(s; = i), where n is the count of the number of occurrences.

For practical calculations using short time series, the choice of x* becomes
important. The choice should make certain transition probabilities very small.
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Clearly, increasing the threshold decreases the probability of occurrence of the
repeated sequence Bf. However, it also decreases the probability of observing the
single symbol B, making it difficult to work with short time series. Hence, the choice
of the threshold is a compromise between these two effects. The natural density
defined by the data provides a choice for the threshold. In the following section
we will present the method by taking examples of two different maps. The method
can simply be extended for the continuous systems, where At has to be chosen such
that for the appropriate x*, we get certain transition probabilities zero. Note that this
can always be done if At is chosen sufficiently small; however, this is not the most
useful procedure as too many transition probabilities become zero simultaneously.
Moreover, measurement conditions may already impose a lower bound on Az.

5.4 Coupled Dynamics on Networks and Global Synchrony

Consider the following coupled oscillator model,

N
X; (1) = F(x; (2)) + 62 Cijlg(xi (1)) — g(x;(1))] (5.4)
j=1
where x;(¢) is the state of the ith node at time ¢, i=1,..., N, C; are the

elements of the adjacency matrix C with value 1 or 0 depending upon whether
i and j are connected or not, ¢ € [0, 1] is the coupling strength. The system
can exhibit a wide range of behavior depending upon the local dynamics (5.1)
and coupling structure C, so corresponding symbol sequences observed from a
node can vary widely. However, at the globally synchronized state x;(¢) = x; (¢)
for all 7, j and ¢, and all nodes evolve according to the rule (5.1). It follows that
when the network is synchronized, the symbolic sequence measured from a node
will be subject to the same constraints as that generated by (5.1). Thus, an easy
way of detecting synchronization of the network is simply by choosing a random
node and calculating the transition probabilities. Synchronization is indicated if
these transition probabilities match with the transition probabilities of the isolated
dynamics.
A discrete-time version of (5.4) is [21]

xi(t + 1) = f(xi (1)) + —

N
T DGy [fx ) — f(xi(1))] (5.5)
=1

i’
J

where, for simplicity and because this occurs in many other applications, the same
function f for the local and the interaction dynamics are used, and k; = > j Cij
denotes the degree of node i . For the discrete dynamical system (5.5) the criteria for
forbidden set (5.3) can be written as
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£(5)NS; = 0. (5.6)

In the following, the logistic and tent maps and the Lorenz oscillator are used as the
examples for numerical studies.

5.5 Detection of Synchronization

For detection of global synchrony the transition probabilities of any randomly
selected node with the transition probabilities of the isolated function are compared.
Often a partition that has one or more forbidden sets for the dynamics of an isolated
unit can be found, which is the case for logistic and tent maps. Therefore, in that
case, the situation is rather simple as one has to look for the presence or absence
of symbol subsequences which are forbidden in the dynamics of the map. We first
demonstrate the results for the tent map and after that turn to the Lorenz system as
the local dynamical function. For the latter case, one does not have strictly forbidden
transitions for the dynamics of the individual map, but the method nevertheless
applies rather well.

5.5.1 Synchronization Measures

The variance of the variables over the network is given by 0% = (ﬁ >oilxi()—
)?(t)]z) ,» Where X (1) = % >, x:(¢) denotes an average over the nodes of the network
and (...), denotes an average over time. This quantity acts as a measure indicating
the global synchrony: 0% drops to zero when the whole network is synchronized.
Symbolic measure for the synchronization is defined as follows. First the transition
probability P (i, j) is estimated by the ratio,

P@i.j)=n(s =i, 5001 = j)/n(se =), (5.7)

where 7 is a count of the number of times of occurrence. The deviation of P(i, j)
of any node is defined as

1 ¢ . B
5 = <m ANIE p(,,,)]z]>, (5.8)
k=1
where P(i, j) = % >k P,?(i,j) is calculated at e=0, and k=1,...... are m

different sets of random initial conditions drawn from the invariant measure of
dynamics at the node. Note that §? is calculated by using only single node dynamics,
whereas calculation of o2 involves all the dynamics of all the nodes. Furthermore
we show that symbolic measure based on the transition probabilities calculated for
a single node is sufficient to detect global synchrony.
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5.5.2 Tent Map

The tent map is given by
fx)=1-=2x—1|. (5.9)

Its stationary density on [0,1] is the uniform density, p(x) = 1. If we take the
generating partition [14], which is simply a partition of [0, 1] with dividing point
[, =1/2 [13], then the above tent map and a random sequence from a uniform
distribution give equal Kolmogorov-Sinai (KS) entropy [22]. For this partition
the iteration takes a trajectory to the left or right set of the partition with equal
probabilities. As we shift the partition from /, =1/2, the transition probabilities
remain no more the same and for /,=2/3, ie., S1 = [0,[,].8, = ([, 1],
the transition 2 — 2 does not occur (see Fig.5.1). Note that for this partition the
difference between the permutation entropy of the tent map and the corresponding
random system is maximal [18]. As the partition point is moved further to the
right in the range a/(a + 1) < [, < 1, the transition remains forbidden, but the
difference between entropies decreases, reaching zero at /, = 1. The implication
is that a longer time series would now be needed as the observed occurrence of
the symbol 2 becomes less frequent. Hence, the optimal partition would be the
one for which the self-avoiding set S, is largest. Note that the choice of /,, in the
range (1/2,a/(a + 1)) gives a non-generating partition, but has no two-symbol
forbidden sequences. Although some longer sequences may be forbidden, their
detection requires longer time series and more computational effort.

For numerical calculations a slightly modified definition of the symbolic dynam-
ics [18, 23] can be used. To two consecutive measurements X;Xx;4+; we assign the
symbol & if x, 41 > x, and the symbol B otherwise.! This is equivalent to the symbol
sequences defined by the sets Sy, S, because of the specific partition point x*; thus

'Such a comparison between successive values of the variables has been introduced in [17] for the
calculation of permutation entropy, and used in [23] for studying phase synchronization in coupled
map networks. The first study [17] has shown that permutation entropy based on the comparison
of n successive values gives a good estimate of the KS entropy, and it matches the KS entropy for
n — 0o.
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Fig. 5.2 Detection of synchronization in various networks of coupled maps. Figures are plotted
for coupled tent maps (5.9). The networks consist of (a) two coupled maps, (b) a globally coupled
network of size 50, (¢) a small-world network of size 100 and average degree 30, (d) a scale-free
network of size 100 and average degree 15, (e) a scale-free network of size 200 and average degree
10, and (f) a random network of size 200 and average degree 8. The horizontal axis is the coupling
strength, and the vertical axis gives the synchronization measure o2 () for the whole network, as
well as the transition probability P (8, 8) (o) calculated using a scalar time series from a randomly
selected node. In all cases, the synchronization region (6> = 0) coincides with the region where
P(B,B) = 0 and the other transition probabilities are nonzero, which is the situation for the
uncoupled map. Note that in subfigure (c) there is an interval of & roughly between 0.65 and 0.8
such that P(B, ) = 0, but there is no synchronization as P (e, @) (shown by [J) is also zero here,
unlike the case for the isolated tent map

the transition B — B does not occur for the single tent map. The advantage of
using this definition of «, B is that one only needs to check increases and decreases
in the measured signal, which adds more robustness in case the fixed point is
not precisely known. We evolve (5.5) starting from random initial conditions and
estimate the transition probabilities using time series of length 7 =1, 000 from a
randomly selected node. Note that the length of the time series is much shorter
than would be required by standard time-series methods which use embedding to
reconstruct the phase space for large networks [24-26]. For the method considered
here, however, the length of the time series is independent of the network size.
We estimate the transition probability P(i, j) (i, j being «, f) as given by (5.7).
Synchronization is signaled when the variance of variables over the network o2
drops to zero. Figure 5.2 summarizes the results. It is seen in all cases that the region
for synchronization exactly coincides with the range for which P(f, B) is zero
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Fig. 5.3 Figure is plotted for
globally connected networks
with N = 50 and shows
P(B, B) for Gaussian noise
with strength 2 % (e)

and 5 % (o)

o2, P(B,p)

(and other transition probabilities are nonzero; see subfigure (c)). Hence, regardless
of network topology and size, both synchronized and unsynchronized behavior of
the network can be accurately detected over the whole range of coupling strengths
using only measurements from an arbitrarily selected node. The method has some
robustness against external noise. Figure 5.3 plots P(8, ) when the measurements
are taken in a noisy environment.

For higher-dimensional systems, for example the Lorenz attractor, finding opti-
mal partitions corresponding to the maximal permutation entropy difference may be
more difficult, but the method also works for other partitions, as global synchrony
is detected by comparing all the transition probabilities measured from a time series
of an arbitrary node with those of the isolated function.

5.5.3 Lorenz Oscillator

This section shows the applicability of the method to coupled Lorenz oscillators.
The Lorenz oscillator

10(y — x)
y=28x—y—uxz (5.10)
z=—(8/3)z+ xy

X

has a chaotic attractor [27]. We use only the x variable to detect synchronization.
This, in fact, again exhibits a principal feature of the approach discussed here,
namely that we only need to evaluate partial information about the dynamics.
Symbolic dynamics is defined as earlier, with At =0.2 (Sect.5.2). We define a
partition S; = (a,x*], S, = (x*,b), where (a, b) is the x-range for the Lorenz
attractor. The threshold value x* is obtained as earlier by checking the values of
transition probabilities (x(¢) € S and x (¢ + At) € S») with varying x* (Fig.5.4).
We evolve (5.4) starting from random initial conditions with (5.10) as local
dynamics, and calculate the transition probabilities by (5.7), from the x time series
of length ¢ = 1,000. Figure 5.5 is plotted for two coupled Lorenz oscillators.
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Fig. 5.5 The transition
probability measure for
coupled Lorenz oscillators.
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Global synchrony (x; () = X;(¢); Vi, j,t) is detected by comparing the transition
probabilities measured from the x time series of any randomly selected node with
those of the x time series of the uncoupled dynamics (5.10). 0> and §? are calculated
as given in Sect.5.5.1. For ¢ > 4.5, the deviation of transition probabilities from
those of the uncoupled case (¢ = 0) is very small indicating the synchronization (o2
is also zero for this region).

5.6 Conclusion

We have discussed a simple and effective method based on symbolic dynamics for
the detection of synchronization in diffusively coupled networks. The method works
by taking measurements from as few as a single node, and can utilize rather short
sequences of measurements, and hence is computationally fast.

The special symbolic sequences discussed here are not drawn from the Marko-
vian (generating) partitions which is the usual practice for symbolic dynamics.
Rather, the symbolic sequences presented here are generated by non-generating
partitions. The partitions that lead to the maximal difference between chaotic
dynamics and the corresponding random dynamics are the best ones for our
purpose, and they prevent occurrence of certain symbol sequences related to the
characteristics of the dynamics; so synchronization can be detected by checking
for these forbidden symbolic sequences. For higher-dimensional maps, finding
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the optimal partition (leading to maximal difference between the chaotic and
corresponding random system) can be difficult, but the method works also for other
partitions and global synchrony is detected by comparing all transition probabilities
measured from a time series of an arbitrary node with those of the isolated function.
Synchrony can be detected so long as the synchronized dynamics is identical to
the isolated dynamics, and the fact that certain transition probabilities are exactly
zero makes this procedure especially robust. The method is independent of the size
and the connection architecture of the underlying network, and also robust against
external noise.
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Chapter 6
Evaluation of the Number of Keys in a Chaotic
Cryptographic Method

A.A. Dmitriev, A.S. Dmitriev, Y.V. Andreyeyv, E.V. Efremova, L.P. Antoniades,
A.N. Miliou, and A.N. Anagnostopoulos

Abstract Data stream coder based on chaotic synchronous response is considered.
An estimate of the number of keys available in this scheme is obtained by cascading
the basic building block of the system and thus repeating the encoding procedures.
Efficiency of the discussed algorithm (in the sense of computational expenses) is
evaluated and compared to known cryptographic algorithms. As it is shown, the
efficiency increases in the case of smaller number of repetitions and greater number
of encoding function parameters.

6.1 Introduction

Rapidly developing information networks require secure and confidential channels
in order to transmit various kinds of data. There are many methods for encoding
data that provide the necessary security level for networking tasks. Yet, the problem
of designing efficient and versatile processes for secure communications is still
open. Cryptographic methods based on dynamical chaos attract the attention of
researchers for more than a decade [1-4, 9, 11-16, 18, 20, 23-26]. Chaos-based
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Fig. 6.1 Stream coder system based on chaotic synchronous response

systems have a number of nontrivial features such as random behavior, ergodicity,
and sensitivity to initial conditions and system parameters demonstrating high
diffusion and confusion properties that are highly desirable for cryptosystems.

During the last 15 years numerous methods for chaotic cryptography have been
proposed in the literature. These methods can be divided into three main groups,
judging by the features of dynamical chaos employed in each case. The first one
comprises methods in which chaotic dynamical systems are used as random number
generators for well-known cryptographic schemes [1, 12, 13, 15, 18, 25, 26]. The
second group uses the property of chaotic systems to mix (shuffle) the phase space
(“stretching and folding”) for designing coders (mostly block-wise). The algorithms
are based on permutations of text blocks, bits, picture fragments, etc. [2,3,11,14,15,
24]. The third group of chaos applications to cryptography [4,9, 16,20,23] employs
the phenomenon of chaotic synchronization [19] (specifically, what is known as
chaotic synchronous response [22]). In these systems the data stream is added to the
signal and therefore pervades the chaotic dynamical system (Fig. 6.1). Information
is decoded using an identical dynamical system with its feedback loop disconnected.

In this work, we consider a chaotic cryptographic scheme based on chaotic
synchronization and explore it from the viewpoint of the number of available
cryptographic keys (or the potential key length). The aim is to study the system with
a simple encoding function, estimate the number of keys in such a system, generalize
the results, and draw some conclusions for the choice of encoding function.

The book chapter is organized as follows: in Sect. 6.2, the architecture of a
chaotic cryptographic scheme based on chaotic synchronization is introduced. We
use a simple piecewise-linear function to encode/decode a test image, and derive
an approach to evaluate the number of cryptographic keys in such system. In
Sect. 6.3, we consider an advanced cryptographic system by cascading a number of
the basic building blocks and a multi-segment piecewise-linear encoding function.
Section 6.4 presents a derivation of a general estimate of the number of keys in such
scheme while in the following Sect. 6.5 the estimation of the length of the key is
introduced. General conclusions along with the performance analysis are drawn in
Sect. 6.6.
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6.2 Encoding System Based on Nonlinear Mixing
of Information with Chaotic Signal

The scheme for transmitting information using nonlinear mixing of information and
chaotic signals [22] is considered for many years as a prototype for the systems
of secure communications (e.g., [6,7, 10]) and it is used as the basic element in
a number of encoding proposals [4, 9, 16, 20, 23]. The main advantages of this
scheme with respect to other communication schemes based on dynamic chaos are
the self-synchronization of the transmitter and the receiver, the possibility of exact
information retrieval, and the operation with analog signal.

The system considered for encoding/decoding information, is depicted in
Fig.6.1. This is a stream coder employing a discrete-time nonlinear dynamical
system. The coder is composed of a nonlinear map, i.e. a nonlinear function f(x)
with unit delay Z ~! and an adder. In the absence of information stream (.S, = 0), the
map generates a chaotic signal x,,. When the data stream S, is fed to the input, it is
added to the chaotic signal x,, and participates in the dynamic process of the chaotic
generator. Modulo summation can be used in the adder (transmitter and receiver)
since it has been shown to increase the confidentiality of the transmitted information
signal along with the robustness of the receiver performance in comparison to the
circuit with ordinary summation [8].

The output signal of the encoder is (S, + x,). The decoder is built of the same
elements as the encoder. Data is retrieved by means of subtracting the signal that
has passed through disconnected feedback loop, from the input signal.

More analytically, the encoding-decoding scheme works as follows: Starting
from any initial condition x, at time step ¢ = 0, the transmitter transmits x, (without
adding any information signal to it) to the receiver. At the receiver Xy is passed
to the chaotic map f(x) and produces xi = f(xo) at the output. In the next step
the transmitter produces x; = f(xo), then adds to x; (with modulo 1 summation)
the information signal S and transmits x; + S| to the receiver. Subsequently, at the
receiver’s subtractor, x; is subtracted from x; + S;. Since the system parameters
of chaotic map f, at receiver and transmitter are identical, then x; = x; and thus
S is recovered. The process is repeated for all time steps n, and thus the entire
information signal S, can be reproduced. Notice that the process does not depend
at all on the choice of initial condition x.

To facilitate the study of chaotic encoding schemes we use as examples encoding
images, which is a more complex task than working with texts, since images have
some special features such as bulk capacity, high redundancy and strong correlations
between their different parts. Moreover, images are also interesting, because any
flaws of the method are actually “visible”.

In order to estimate the number of possible keys in the discussed scheme, we
consider the simple 1D piecewise linear tent map and encode a test image with it.
The map is described by the following function
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where the parameter p € (0, 1) (Fig. 6.2). For all values of p the map is chaotic.

The test image is shown in Fig. 6.3. Itis an m x n = 512 x 512 picture with 256
gray levels. Let us denote the intensity of a pixel (i, j) by s;;, with 5;; € [0, 255].
To obtain the data stream, the image is scanned row by row top to bottom, and is
normalized in the range [0, 1] using the following expression

i +0.5
Sy = % 6.2)

where k =n(i — 1) + j, n =512 is the number of pixels in a row and L =256
is the number of gray levels.

The encoded image is shown in Fig. 6.4 while the parameter p =0.7 and the
initial value of the map is xo = 0.1. However, the initial value of x is not necessary
in order to decode the image, because as it was mentioned earlier the proposed
scheme possesses the property of self-synchronization. Consequently, the value
of the parameter p is adequate and is used as a key. From the viewpoint of
cryptography, with the same key (i.e. equal values of the parameter p) in the
encoder and decoder, the original image could be completely retrieved at the decoder
whereas for different values of p, the retrieval is unattainable.
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Fig. 6.4 Encoded image
(p =07

Fig. 6.5 Decoded image
(p =0.7)

Simulations show that in the case of equal values of p in the nonlinear functions
of the encoder and decoder, the original image is recovered without any flaws
(Fig.6.5). For a slightly different parameter value in the decoder the recovered
image is distorted, but it is still easily recognized (Fig. 6.6). For larger discrepancies
of the parameter, visual recognition becomes impossible (Fig. 6.7). This means that
the parameter space (the open unit interval in our case) may be divided into clusters,
such that a pair of parameter values from one cluster, one used for encoding and
the other for decoding, provides recognizable image recovery, whereas when a pair
of parameter values is taken from different clusters the recovered image is distorted
compared to the original one.

Obviously, the number of different keys in the system is equal to the number of
the clusters of the parameter p. The size of the clusters can be determined by the
degree of correlation of the original and decoded image. The correlation of the two
images is calculated by the expression

> (i =X (v — )

C =
I X Gy = DX X (v — 5

6.3)
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Fig. 6.6 Decoded image
(p=0.6)

Fig. 6.7 Decoded image
(p=03)

where x;; and y;; are brightness values of the original and decoded image pixels
respectively and X, y are average brightness values of the images. Calculations of
the correlation values of the recovered images in Figs. 6.6 and 6.7, are C = 0.81
and C = 0.03, respectively.

Simulations have shown (e.g., Fig. 6.3—6.7) that the recovered image cannot be
visually recognized, if the correlation, C, is below 5 %. Therefore, depending on
the application one could determine the security needed in relation to information
value as well as operational speed and computational cost. In practice only military
applications have strict security terms. There are several examples of applications
that do not have very strict security requirements such as the electronic signature
and the image databases where only the ones paid have access to high resolution
images [17].

In the presented scheme such value is attained when the parameter difference
Ap = |p— p/| > 0.7. Therefore, the range (0, 1) of the parameter p may be divided
into two clusters at most which implies that the system has two keys.

With just one parameter p, an attacker can recover an image very close to the
original with |p — p/| < € where € can be quite large, and of course this is
inadmissible from the viewpoint of conventional cryptography. This is equivalent
to saying that the system possesses very few possible keys, and thus an enemy can
break the system by brute force after very few trials. However, as it is explained later
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in the chapter, increasing the number of parameters p and/or increasing the number
of map iterations, the sensitivity of the system to parameter mismatch increases
severely. This is equivalent to saying that the number of keys increases and thus
an enemy would have to perform a very large number of trials to break the system
by brute force. The number of trials needed as a function of number of system
parameters and map iterations rises according to (6.6).

6.3 Encoding Systems Cascading the Basic Building Block
and Increased Number of Parameters

It is known that many cryptographic schemes are designed by cascading their basic
building blocks and thus repeating the encoding procedures. For instance, DES uses
16 repetitions, IDEA 8, LOKI 16, Blowfish 16, GOST 32, Khufu and Khafre 24, etc.
[21]. Analysis of the properties of chaotic systems allows us to make the assumption
that repetitions can also be efficient in the encoding scheme with nonlinear mixing.

One such property is the sensitivity to initial conditions. A map f is sensitive
to initial conditions, if there exists § > 0, such that for all x € X and for all
neighborhoods, H, of point x, there exists a point in this neighborhood y € H,
and an integer k, such that | f¥(x) — f*(y)| > § [5].

Specifically, in chaotic systems the trajectories diverge with time, no matter how
close they were at first. The degree of divergence is described and measured by
the Lyapunov exponent A. For chaotic systems A > 0, therefore, the introduction
of repetitions in the encoding scheme based on the chaotic synchronous response
(which is equivalent to an increase of system iterations) naturally leads to a
corresponding increase in the number of potential keys.

The encoding system, cascading the basic encrypting module is depicted in
Fig. 6.8. The encoder/decoder of the system is composed of a chain of elements,
each being the above-described circuit for encoding/decoding based on chaotic
synchronous response.

Consequently, we consider the scheme with repetitions, using the 1D piecewise
linear tent map of (6.1). The parameter value p is set to be the same along all the
encoder chain. Similarly, all the decoder elements have the same parameter p.

An encoding test image with the scheme with repetitions (Fig. 6.8) showed that
the size of clusters of the parameter p decreases with each repetition approximately
by a factor of 2. This factor depends on the Lyapunov exponent A, which has
maximum value A, = In2 at p =0.5 and tends to zero when p moves towards
the edges of the unit interval. So, the clusters in the center of the unit interval of
the parameter p shrink more rapidly, than those near the edges and yet the average
factor is only slightly less than exp(A,,4). As a result, the number of keys increases,
e.g., after 30 repetitions it becomes to 23°. Therefore, the repetition of the encoding
procedure is an efficient way of increasing the number of keys.
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Another approach in order to increase the number of keys is to increase the
number of the system parameters. This can be done by means of increasing the
number of segments of the piecewise-linear encoding function f(x), as is shown
in Fig.6.9. Note that introducing new segments in the map function makes the
map strongly chaotic (i.e., increases the Lyapunov exponent) because the maximum
Lyapunov exponent is given by

A=1Inn (6.4)

where n is the number of map segments (Fig. 6.9).

A chaotic attractor of such map occupies the entire phase space, and its invariant
measure (distribution of the system variable x) is approximately even.

Using the map with parameters p and g (Fig.6.9) we encoded the same test
image as before and estimated the size of the corresponding parameter clusters; the
number of repetitions is k =1,2,...,9. For fixed parameter values p and g, the
number of keys rapidly grows with k (the size of clusters decreases), much faster
than in the case of the scheme with the one-parameter piecewise-linear map of (6.1).
After 5 and 9 repetitions the sizes of clusters for each of the parameters p and g are
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approximately 6 x 1073 and 2 x 107, respectively, i.e., the sizes of 2D clusters are
3.6 x 107 and 4 x 10~%. Consequently, the number of keys is 1/(3.6 x 107°) ~
2.8 x 10* and 1/(4 x 107%) ~ 2.5 x 107, respectively. Comparing the number of
keys in the scheme with one-parameter map of (6.1) after 5 and 9 repetitions the
number of keys is 25 and 500, respectively.

Thus, if for one-parameter piecewise-linear map the rate of increase of the
number of keys is v ~ 2 for each repetition, then for two-parameter piecewise-
linear map the rate is v &~ 8 for each repetition.

6.4 Estimation of the Number of Keys

Since the average divergence rate of trajectories is exp(A4), the upper bound of the
increase rate of the number of clusters (keys) is

v =exp(Am) =n" = (m+ 1)" (6.5)

where A is given by (6.4), n is the number of map segments, m is the number of
map parameters, m = n — 1. In the presented scheme with repetitions, the number
of keys is

N = (m+ )" (6.6)

where k is the number of repetitions.

6.5 Estimation of the Length of the Key

In traditional cryptographic schemes instead of the number of keys, the notion of
the key length (in bits) is often used. In order to compare the discussed encoding
method with known methods, let us introduce an equivalent of the key length: if the
key length is L, then the number of keys is 2°. Then, as follows from (6.7), the key
length in the scheme based on chaotic synchronization is

L =log, N = log,(m + 1) (6.7)

Consequently, from (6.7) in the case of 16 repetitions (as in DES) and 20
parameters the key length reaches 1, 400 bit.

An analysis of (6.5) allows us to estimate the efficiency of the proposed scheme
in view of computational expenses. Evidently, the system efficiency is inversely
proportional to the number of repetitions, and the time of encoding in the scheme
with n repetitions is n times larger than the time of encoding in the scheme with
one repetition. At the same time, the dependence of the system efficiency on
the number of parameters (key length) is negligible. This means that for equal
key length the algorithm efficiency increases with decreased number of iterations
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and correspondingly increased number of parameters. Moreover, larger number
of repetitions requires respectively increased cost of electronic hardware used to
implement the systems whereas the corresponding increase of the cost if one
increases the number of parameters is smaller. In this sense, encoding systems with
greater number of parameters and smaller number of repetitions (one, in the limit)
are preferable.

6.6 Concluding Remarks

A scheme of synchronous chaotic response (system with nonlinear mixing) is
considered from the viewpoint of cryptographic data encoding. Unlike tradi-
tional cryptographic schemes, it operates with continuous-value variables and with
floating-point arithmetic and thus appropriate for implementation with analog
circuits.

An upper bound of the number of keys available in this scheme is obtained.
Though (6.5) and (6.6) were obtained for model encoding functions, the authors
believe that the obtained results are universal and pertain to the majority of
piecewise-linear 1D chaotic maps.

The increase of the repetitions of the basic building block has some disadvan-
tages. The main drawback is the manufacturing cost which is increased with every
repetition. However, increasing the number of system parameters does not suffer
from this disadvantage and moreover, it has similar if not better effects on system
security.

In terms of computational performance and simplicity in the design of the system
the scheme presented in this chapter is exceptionally efficient.
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Chapter 7

Chaos Synchronization of the Modified
Autonomous Van der Pol-Duffing Circuits
via Active Control

Ahmed Sadek Hegazi and Ahmed Ezzat Matouk

Abstract In this work, we study the dynamics and synchronization of a chaotic
system describes the Modified Autonomous Van der Pol-Duffing (MAVPD) circuit.
The detailed bifurcation diagrams are given to show the rich dynamics of the
proposed system. Lyapunov exponents are calculated to verify the existence of
chaos in this system. Chaos synchronization of MAVPD system is obtained using
active control method. According to the qualitative theory of fractional differential
equations, the existence and uniqueness of solutions for a class of commensurate
fractional-order MAVPD systems are investigated. Furthermore, based on the
stability theory of fractional-order systems, the conditions of local stability of linear
fractional-order system are discussed. Moreover, the existence of chaotic behaviors
in the fractional-order MAVPD system is shown. A necessary condition for this
system to remain chaotic is obtained. It is found that chaos exists in this system
with order less than three. Phase synchronization of the fractional-order MAVPD
system is also achieved using an active control technique. Numerical simulations
show the effectiveness of the proposed synchronization schemes.

7.1 Introduction

Chaos is an important dynamical phenomenon which has been extensively studied
and developed by scientists since the work of Lorenz [1]. Lorenz chaotic sys-
tem consists of three-dimensional autonomous integer-order differential equations.
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A chaotic system has complex dynamical behaviors such as the unpredictability of
the long-term future behavior and irregularity. Chaos has great potential applications
in many disciplines such as, fluid mixing, chaotic heating of plasma for a nuclear
fusion reactor and secure communications.

Fractional calculus is a 300 years old topic [2]. Recently, it has been found
that differential equations has many applications in many fields of science like
engineering [2], physics [3], finance [4], social sciences [5], mathematical biology
[6,7] and game theory [8]. Hence, fractional differential equations have been utilized
to study dynamical systems in general and applications of chaos in particular. There
are many definitions of the fractional derivative; one of the most common definitions
is the Caputo definition of fractional derivatives [9]:

dO{
SO =D f@&)=1""f" (), a>0, (7.1)
where f (™ represents the m-order derivative of f(¢), m = [«] is the value o

rounded up to the nearest integer, and the left sided Riemann-Liouville integral of
order 6 is given by

I%ur) = % / (t — ) u(s)ds, 6 >0, (7.2)
0

where I"(6) is the gamma function. The operator D* is called “Caputo differential
operator of order o”. According to the Poincaré-Bendixon theorem, chaos in
fractional-order autonomous systems can occur for orders less than three and this
can not happen in their integer-order counterparts.

Chaos synchronization has also attracted increasing attention over the past
2 decades since the pioneering work of Pecora and Carroll [10]. Afterwards,
many effective methods have been presented for synchronizing identical chaotic
systems like one-way coupling method [11], active control [12], adaptive control
[13] and synchronization via feedback control techniques [14—17]. Indeed, chaos
synchronization has potential applications in secure communications [ 18], physical,
chemical and biological systems [19-21]. Moreover, synchronization can occur in
many real systems even though the oscillators have different order. For example, in
the synchronization between heart and lung, one can observe that both, circulatory
and respiratory systems behave in synchronous way.

Recently, nonlinear electronic circuits have become a vehicle to study non-
linear phenomena and chaos. Many chaotic circuits have been appeared like the
chaotic circuits of Chua [22], Lii [23] and Autonomous Van der Pol-Duffing [24].
Meanwhile, the applications of chaos synchronization to some nonlinear electronic
circuits have been studied by authors [25-27]. Consequently, our prime interest in
this work is to study and investigate chaos synchronization in nonlinear electronic
circuits via active control techniques.



7 Chaos Synchronization of the Modified Autonomous Van der Pol-Duffing . . . 187

Fig. 7.1 The MAVPD chaotic circuit

7.2 The Integer-Order MAVPD System

The Modified Autonomous Van der Pol-Duffing (MAVPD) system describes the
dynamics of nonlinear circuit whose nonlinear element has the following cubic form
[28]:

in=F)=avi+bv}, (a<0,b>0). (7.3)

By applying Kirchhoff’s laws to the circuit in Fig. 7.1, the governing equations for
the circuit elements (the voltages v, and v, across the capacitors ¢; and c;, the
current i through the nonlinear diode N and the current i;, through the inductor
L) are represented by the set of three first-order autonomous differential equations:
civy = —[bv? +avy + (1/R)(vi — v2)],
vy = (1/R)(vi —yv2) —iL, (7.4)
l: L =V / L,
where c;, ¢, are the capacitances of the two capacitors, L is the inductance, R is
linear resistor and y = (R + Rp)/Rp, Rp is the parallel resistor.

To study the qualitative behavior of the system (7.4), the variables are rescaled
as follow:

x = ~bRv|, y = ¥bRvy, 7= ~VbR3i;, T =1/Rcy, (7.5)
w=—+aR),v=cy/c; and B =cR*/L.

Then the system (7.4) is given as follows

X = = px —y),

y=x-yy—z (7.6)
=Py,
where . = ;_z and y, v, B are all positive real numbers. System (7.6) shows

double scroll chaotic attractor with the parameter values § =200, 4 =0.1, v =100
and y = 1.6 (see Fig.7.2a). For these values of the parameters and y =2.85, one
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Fig. 7.2 Phase portraits of
MAVPD system with the
parameter values

B =200, u = 0.1, v = 100;
(a) 3-D view of the double
scroll attractor at y = 1.6,
(b) 3-D view of the one scroll
chaotic attractor at y = 2.85

scroll chaotic attractor exists (see Fig.7.2b). Furthermore, using the parameter
values B =200, ©=0.1, v=100 and y =1.6, Lyapunov exponents have been
calculated using the efficient algorithm given in [29] and they approximately are;
2.22,0,—21.77.

The equilibrium points of system (7.6) are:

Eo=(0,0,0), Ex = (JE.0, JE) and E_ = (—/[.0, —/f).

System (7.6) has rich variety of dynamical behaviors including the chaotic and
periodic behaviors which can be easily depicted from the following bifurcation
diagrams (Fig.7.3):

7.2.1 Chaos Synchronization in the Integer-Order MAVPD
System via Active Control

In the following, we apply active control method to achieve chaos synchronization
between two identical MAVPD drive and response chaotic systems. They are given
as follow:
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7.3 (a—d): The bifurcation diagrams of MAVPD system

dx;

o= —v(x] — pxi — y1),

—dyl = X1 — —Z

i 1= VYN 1

dz

o P
dX2
= v = o = y0) + (),
dyz
_— = — - t )
7 X2 —YYy2 — 22 + Up(2)
dzp

ar = Byr + p(1),

189

(7.7)

(7.8)
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where p,(¢), p(t), pe(t) are the control functions to be determined later. Let us
define the synchronization errors between the drive and response systems as follow:

X3 =X2— X1, V3=Y2—DV1,23=22— 2. (7.9)

Subtracting (7.7) from (7.8) and using the notation (7.9) yields

dx

— = (5 = x}) = s = 3) + Hao),

dys

ar =Xx3—yys — 23 + up(?), (7.10)
dzs

— = ().

= Bya + ne(r)

Now, we define the active control functions . (¢), up(t), (e(t) as

a(®) =05 — X7) + Vi), up(t) = Vi), pe(t) = Ve(t). (7.11)
Thus, we get
d
an nvxs + vys + Vi (1),
dt
dys
W :)C3_)/y3_z3+Vb(t), (712)
dzz
== = V.(1).
o Bys + Ve(t)

Equation (7.12) describe the error dynamics and can be considered in terms of a
control problem where the system to be controlled is a linear system with a control
input V,(¢), V5 (t) and V,(¢) as functions of x3, y3 and zz which are to be determined
for the purpose of synchronizing the two identical MAVPD systems. As long as
these feedbacks stabilize the system (7.12), x3, y3 and z3 converge to zero as time
t goes to infinity. This implies that the two MAVPD systems are synchronized with
feedback control. Thus we choose

Va(t) X3
V) | =AY »; |, (7.13)
Ve(®) 23

where A is a 3 x 3 constant matrix. For proper choice of the elements of the matrix
A, the feedback system must have all of the eigenvalues with negative real parts. In
this case, the closed loop system will be stable. If we choose the matrix A in the
form
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—(uv+1) —v 0
A= -1 y—-11 |,
0 B -1

then the closed loop system has eigenvalues that are found to be —1, —1
and —1. Therefore, the zero equilibrium point of system 7.12) is locally
asymptotically stable. Numerical integrations of the drive and response systems
with the above-mentioned parameter values and using the initial conditions;
(x1(0), y1(0), z1(0)) = (0.1, 0.01, —0.1), (x2(0), y2(0), z2(0)) = (0.2, 0.02, 0.1)
show that the synchronization of two MAVPD systems is obtained using the
previous active controller (see Fig. 7.4a—c).

7.3 The Fractional-Order MAVPD Circuit

Recently, generating chaos by fractional-order circuits has become a focal topic for
research, many fractional-order chaotic circuits have been developed such as; the
fractional-order Chua’s circuit [30], the fractional-order Chaotic Liu circuit [31], the
fractional-order unified chaotic system’s circuit [32], and the fractional-order hyper-
chaotic circuit [33]. Furthermore, it has been shown that chaos synchronization
in some fractional-order systems has better results than the corresponding integer-
order counterparts [14,34,35]. Thus, we will study chaos and phase synchronization
in the fractional-order MAVPD circuit.

7.3.1 Modeling the Fractional-Order MAVPD Circuit

In the following, we are going to show the basic laws that can be applied to obtain
the fractional-order MAVPD circuit.

7.3.1.1 Fractional Capacitor Theory

In 1994, S. Westerlund and L. Ekstam, proposed a new linear capacitor model. It is
based on Curie’s empirical law of 1889 [2]:
Uo
it)=—,0<a<l1>0), 7.14
() =5 ( ) (7.14)
where i(¢) is the current through the capacitor, &; is constant related to the
capacitance of the capacitor and type of dielectric, o is a constant related to the
losses of the capacitor, and Uy is the dc voltage applied at ¢ = 0.
For a general input voltage u(¢) the current is

d%u(t)
dre

where C is the capacitance of the capacitor. It is related to the type of dielectrics.

ity=C (7.15)
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Fig. 7.4 The synchronization a o1
errors x3, y3 and z3 of system
(7.10) converge to zero after
the active control (7.11) is
activated; (a) x3 tends to zero,
(b) y3 tends to zero, (¢) z3 0.6 1
tends to zero
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In 2002, S. Westerlund investigated the behavior of a real inductor. He showed
that if i (¢) is the current in the inductor, then the voltage is
d%i(t)

dre

u(t) = L (7.16)

where L is the inductance of the inductor and the constant « is related to the
“proximity effect” [30]. Applying Kirchhoff’s laws and the relations (7.15), (7.16)
into the circuit shown in Fig.7.1, we obtain:

de
a2 =~ v+ (/R — )]
d*v,

dre

) = (1/R)(vi —yv2) —iL, (7.17)

where ¢y, c¢; are the capacitances of the two capacitors, L is the inductance, «; is real
order of the capacitor C|, «; is real order of the capacitor C,, and o3 is real order of
the inductor L. Assuming that &} = o, = a3 = «, and using the rescaling relations
(7.5), the commensurate fractional-order MAVPD system is given as follows [35]:

d%x

= v —px =),
da
Y —x—yy-z (7.18)
dre
d%z
dre by,

where « is the fractional-order satisfying o € (0, 1]. When « = 1, system (7.18) is
the original integer-order MAVPD system.

The equilibrium points of fractional-order system (7.18) are the same as its
integer-order form and are given as:

Eo = (0,0,0), Ey = (Ji.0. /i) and E_ = (—J/i.0,—/m). (7.19)

7.3.2 Fractional Calculus

Consider the initial value problem:

DUX(t) = f(t, X(1)). 0<t < T, XD 0) =X, k=0, 1..... 1 — 1. (7.20)
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Theorem 3.1. (Existence [36]). Assume that E := [0, x*] X [Xéo) —e, Xéo) + ¢]
with some x* > 0 and some ¢ > 0 and let the function f : E — R be continuous.
In addition, let y := min{x*, (el (o + 1)/ f lloo)/*} Then, there exists a function
X : [0, x] = R solving the initial value problem (7.20).

Theorem 3.2. (Uniqueness /36]). IfE := [0, x*] x [X\” —&, X\ + ¢] with some
x* > 0 and some ¢ > 0. Moreover, let the function f : E — R be bounded on E
and satisfy a Lipschitz condition with respect to the second variable, i.e. | f(t, X) —
[, Y)| < p|X = Y| with some constant p > 0 independent of t, X and Y. Then,
denoting y as in theorem 3.1, there exists at most one function X : [0, y] - R
solving the initial value problem (7.20).

In [36] Diethelm et al. proved that if the function f is continuous, then the initial
value problem (7.20) is equivalent to Volterra integral equation of the second kind,
given as

1

-1 i !
X0 = 3 X+ e [ €- 0 ex@a aan
k=0 0

Theorem 3.3. The initial value problem of the commensurate fractional-order
MAVPD system (7.18) can be given as follows:

DX(t) = A1 X(t) + x (1) A2 X(¢), X(0) = X, (7.22)

where 0 < t < y, X(@t) = (x(t), y(), z(t))T € R>, Xo = (x0. yo. 20)7.
pv v 0 —vx 00

A=l 1 —y—-1], A= 0 00 |,forsome constant y > 0, then it has
0 8 0 0 00

a unique solution.

Proof. Consider the function f(X(¢)) = A X(¢)+x(¢t)A,X(¢) which is continuous
and bounded on the interval [Xy — &, Xo + €] for any ¢ > 0. Moreover, we have

| f(X@®) = fFX'@0)] = [Ai[X(0) = X (O)] + x(1) A2X(1) — X' (1) A2 X' (1)

Now, since
|x(1) —x'(0)] < |X(1) =X (1)|. we get

|A2[x (1) — X" (OIX(1) + A2[x" () {X(0) = X' (O] = | 421 - [IX(0)]
+ [ O(XO) =X 0]

Thus,

|fX(@) = fFX @] = 141 - [XO) = X' (@O)] + 142 - [XO)] + |x"O)[1(|X (1) = X' (¢)

).
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Fig. 7.5 Stability region of a linearized fractional-order system

which implies that
| X)) =X @] < A1l - [X(@) = X' ()] + | A2l - [2 [Xol + 2e](|X () = X' (1)])

< (141] + 1 42| - [2 [Xol + 2¢]) [X(1) = X (1)]
< p|X@)—X'(t)

, (7.23)

where one sets p = || A1 ||+ 4z2]|-[2 |Xo|+2¢] > 0,X'(t) € R, |.| and |.| represent
matrix norm and vector norm respectively. Now, owing to the attractiveness of
the attractor, there exists 7 > 0 such that |x(¢)] < n < oo which implies that
||A2|| is bounded. Thus, Lipschitz condition is satisfied. Therefore, the results of
Theorems 3.1 and 3.2 imply that the initial value problem of the commensurate
fractional order MAVPD system has a unique solution. O

On the other hand, the local stability of the equilibrium points of a linear
fractional-order system is governed by the following Matignon’s results [37]:

larg(A;)| > am/2.(i =1, 2, 3), (7.24)

where Ay, A;, A3 are the eigenvalues of the equilibrium points, and the stability
region of these equilibrium points is obtained from Fig. 7.5 (in which j = +/—1).
Now, consider the autonomous system (7.18) in the following form:

d*X(t)
dre

= f(X(2))., X(0) = Xo, (7.25)

where X(1) = (x, y, 2)7 = (x1, x2, x3)T € R?, f : R> — R?isanonlinear vector

function in terms of X. Let J(X*) = (M)
ij

e be the Jacobian matrix at the
]

X=X*

equilibrium point X*.
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7.3.3 Chaos in the Fractional-Order MAVPD System

7.3.3.1 A Necessary Condition in Fractional-Order Systems to Remain
Chaotic

Consider the commensurate fractional-order system ‘f;;ff = f(X), wherea € (0,1)
and X € R". According to (7.24), the equilibrium points of the previous system are
locally asymptotically stable if all their eigenvalues satisfy |arg(A(J))| > an/2,
where J = df/0X, and A is an eigenvalue of J. When n = 3, a saddle point is an
equilibrium point on which the corresponding linearized system has at least one
eigenvalue in the region of stability and one eigenvalue in the region of unstability.
Moreover, if one of the eigenvalues is unstable and the other eigenvalues are stable,
the equilibrium point is said to be “saddle point of an index 1”. However, if two
of the eigenvalues are unstable and one eigenvalue is stable, then the equilibrium
point is said to be “saddle point of an index 2” [38]. From [38], we conclude that
scrolls are generated only around the saddle points of an index 2, however saddle
points of an index 1 are responsible only for connecting scrolls. Now, consider three
dimensional chaotic system X = £(X) has only three equilibrium points. So, if this
system has double scroll attractor, then one of its equilibrium points is saddle point
of an index one and others are saddle points of an index 2. Assume that A is an
unstable eigenvalue of one of the saddle points of an index 2. Thus, a necessary con-
dition for the commensurate fractional-order system ‘f;;ff = f(X), to remain chaotic
is keeping the eigenvalue A in the unstable region (see Fig. 7.5). This implies that

[Im(4)] 2 [Im@A)]
Rey 47 7 GRem

tan(a/2) > ). (7.26)

At the parameter values § = 200, u = 0.1, v = 100 and y = 1.6, the equilibrium
points and their eigenvalues are given as:

Ey = (0,0,0): A; =13.3409, A3 = —2.4704 £ 11.9922j,
E4 = (0.3162,0,0.3162) : A; = —23.3020, A,3 = 0.8510 &£ 13.0742/,

E_ = (—0.3162,0,—0.3162) : A; =—23.3020, A,3;=0.8510=% 13.0742j, j=+/—1.

The equilibrium point £y = (0, 0, 0) is a saddle point of an index 1. However, the
equilibrium points £ and E_ are saddle points of an index 2. Thus, using (7.26),
the necessary condition for the commensurate fractional-order MAVPD system
(7.18) to remain chaotic is @ > (2/m) tan~!(]Im(1,3)| /Re(X23)). Consequently,
the lowest fractional-order « for which the fractional-order MAVPD system (7.18)
demonstrates chaos using the above-mentioned parameters is given by the inequality
a > 0.96. Since the order of the fractional-order chaotic system is the sum of
the orders of all involved derivatives, then the lowest order for the fractional-order
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Fig. 7.6 The double scroll
attractor of system (7.18)
using the parameter values
B =200, u=0.1v=
100, y = 1.6: (a) at

a = 0.98,

(b) at = 0.99

MAVPD system (7.18) to yield chaos is 2.91. Applying the numerical technique
given in [39, 40] to a discretization form of the initial value problem for (7.18),
simulation results show that the double scroll attractor is observed when 0.99 and
0.98 (see Fig.7.6).

7.3.4 Phase Synchronization of the Fractional-Order MAVPD
System

In the following, we study phase synchronization between two identical fractional-
order MAVPD systems using an active control technique. Based on the stability
analysis of dynamical systems, if all eigenvalues are negative, then the system will
tend to zero, yielding complete synchronization. However, phase synchronization
occurs if there is any zero eigenvalue. In the case of phase synchronization, the
difference between various states of synchronized systems may not necessarily
approach zero, but will stay less than or equal to a constant.
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The two identical drive and response systems are given as follow:

dOl
IR —v(x] — px1 — 1),
d()é
WJH =X1 =YYt —z, (7.27)
d[am = By1,
and

d® 3

dte Xy = —v(x5 — pxy — y2) + u(t),

da

Jal2 =X YN + us(t), (7.28)

o

dte

2 = By + us(?),

where u) (), up(t), uz(¢t) are the control functions. Define the synchronization
errors as follow:

el =X2—X1,€ =Y2—Y1, €3 =222 (7.29)

By subtracting (7.27) from (7.28), we get

dre
da

Jae=ea-rea—es + ux(t), (7.30)

o

dre

ey = —v((x; — x]) — ey — e2) + uy (1),

es = Ber + us(?).

Now, we define the control functions u;(¢), u2(¢) and usz(t) as

ul () =v(; —x}) + Vi), wa(t) = Vat). us(t) = Vs(t). (7.31)
This leads to
da
J7a €1 = Hven +ver + V1(2),
d(){
ﬁez =e; —ye, —e3 + Va(?), (7.32)

o

d
WES = Besr + Va(1).
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Fig. 7.7 (a—c): Phase
synchronization between the

drive and response systems
(7.27), (7.28)
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Thus, the linear active control functions V;(¢), V»(¢) and V3(¢) can be chosen as

Vi el
a|=A4] e |, (7.33)
V3 e3

where the matrix A is given by

The eigenvalues of the linear system (7.32) are —1, —1 and —1. Using the
Matignon’s conditions (7.24), it follows that all the eigenvalues A; of the matrix
A satisfy |arg(A;)| > am/2. Consequently, the zero equilibrium point of the linear
system (7.32) is locally asymptotically stable and the synchronization between the
drive and response systems (7.27), (7.28) is achieved.

Denoting A, A, and A3 as the eigenvalues of system (7.32), then (7.33) is
rewritten as follows:

Vl(l) = —,uvel—vez—}—/\lel, Vz(l) = —€1+]/€2+€3+12€2, V3(Z) = —,362—}-/\363.

(7.34)
Now, the systems (7.27) and (7.28) are numerically integrated using the above-
mentioned parameter values and commensurate fractional-order « = 0.98. The

initial conditions are chosen as follow; (x;(0), y;(0), z;(0)) = (0.4, 0.02, 0.3), and
(x2(0), ¥2(0), z2(0)) = (0.3, 0.01, 0.5). Now, by choosing A; = —1, A, =0, and
A3 =0, the control functions (7.34) can be determined and phase synchronization
between the drive and response systems can also be achieved. The corresponding
numerical results are shown in Fig. 7.7a—c.

7.4 Conclusion

We have studied chaotic dynamics of a Modified Autonomous Van der Pol-Duffing
(MAVPD) circuit and its fractional-order counterpart. Moreover, we have studied
chaos synchronization in these systems via active control techniques.

On the other hand, studying the periodic solutions and numerical verifications of
Hopf bifurcations in the fractional-order systems are still open problems and need
further investigations in a future work.

Acknowledgements The authors wish to thank Prof. E. Ahmed and Prof. H.N. Agiza for
discussion and help. The corresponding author ‘Matouk’ wishes to thank the editor, Dr. S.
Banerjee, and Dr. Eid AL-Haisouni, the Dean of Prep-Year college for their kind help and support.



7 Chaos Synchronization of the Modified Autonomous Van der Pol-Duffing . . . 201

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.
23.

24.

25.

26.

217.

. Lorenz, E.N.: Deterministic non-periodic flows. J. Atmos. Sci. 20, 130-141 (1963)
. Podlubny, I.: Fractional Differential Equations. Academic, New York (1999)
. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, New Jersey

(2000)

. Laskin, N.: Fractional market dynamics. Phys. A 287, 482-492 (2000)
. Ahmad, W.M., El-Khazali, R.: Fractional-order dynamical models of love. Chaos Solitons and

Fractals 33, 1367-1375 (2007)

. Ahmed, E., Elgazzar, A.S.: On fractional order differential equations model for nonlocal

epidemics. Phys. A 379, 607-614 (2007)

. El-Sayed, AM.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: On the fractional-order logistic

equation. Appl. Math. Lett. 20 817-823 (2007)

. El-Sayed, A.M.A., Ahmed, E., Herzallah, M.A.E.: On the fractional-order games with non-

uniform interaction rate and asymmetric games. J. Fractional Calculus Appl. 1(1), 1-9 (2011)

. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II.

Geophys. J. R. Astron. Soc. 13, 529-539 (1967)

Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821-824
(1990)

Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization.
World Scientific, Singapore (1996)

Bai, E.W., Lonngren, K.E.: Synchronization of two Lorenz systems using active control. Chaos
Solitons and Fractals 8, 51-58 (1997)

Hegazi, A.S., Agiza, H.N., El-Dessoky, M.M.: Synchronization and adaptive synchronization
of nuclear spin generator system. Chaos Solitons and Fractals 12, 1091-1099 (2001)

Hegazi, A.S., Matouk, A.E.: Dynamical behaviors and synchronization in the fractional order
hyperchaotic Chen system. Appl. Math. Lett. 24, 1938-1944 (2011)

Matouk, A.E.: Dynamical analysis feedback control and synchronization of Liu dynamical
system. Nonlinear Anal.: TMA 69, 3213-3224 (2008)

Matouk, A.E.: Chaos synchronization between two different fractional systems of Lorenz
family. Math. Probl. Eng. 2009, 11 (2009). doi:10.1155/2009/572724.

Matouk, A.E.: Dynamical behaviors, linear feedback control and synchronization of the
fractional order Liu system. J. Nonlinear Syst. Appl. 1(3), 135-140 (2010)

Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circ. Syst. I 38, 453—
456 (1991)

Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially
extended ecological systems. Nature 399, 354-359 (1999)

Li, Y, Chen, L., Cai, Z., Zhao, X.: Study on chaos synchronization in the Belousov-
Zhabotinsky chemical system. Chaos Solitons and Fractals 17, 699-707 (2003)

. Uchida, A., Kinugawa, S., Yoshimori, S.: Synchronization of chaos in two microchip lasers by

using incoherent feedback method. Chaos Solitons and Fractals 17, 363-368 (2003)

Chua, L.O.: The genesis of Chua’s circuit. AEU. Int. J. Elecron. Comm. 46, 187-257 (1992)
Han, F,, Wang, Y., Yu, X., Feng, Y.: Experimental confirmation of a new chaotic attractor.
Chaos Solitons and Fractals 21, 69-74 (2004)

King, G.P., Gaito, S.T.: Bistable chaos. I. Unfolding the cusp. Phys. Rev. A 46, 3092-3099
(1992)

Agiza, H.N., Matouk, A.E.: Adaptive synchronization of Chua’s circuits with fully unknown
parameters. Chaos Solitons and Fractals 28, 219-227 (2006)

Chua, L.O., Kocarev, L.J., Eckert, K., Itoh, M.: Experimental chaos synchronization in Chua’s
circuit. Int. J. Bifurcat. Chaos 2, 705-708 (1992)

Cuomo, K.M., Oppenheim, V.: Circuit implementation of synchronized chaos with application
to communication. Phys. Rev. Lett. 71, 65-68 (1993)



202 A.S. Hegazi and A.E. Matouk

28. Matouk, A.E., Agiza, H.N.: Bifurcations, chaos and synchronization in ADVP circuit with
parallel resistor. J. Math. Anal. Appl. 341, 259-269 (2008)

29. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a
time series. Phys. D 16, 285-317 (1985)

30. Petras, I.: A note on the fractional-order Chua’s system. Chaos Solitons and Fractals 38, 140—
147 (2008)

31. Chen, X.R., Liu, C.X., Wang, F.Q., et al.: Study on the fractional-order Liu Chaotic system
with circuit experiment and its control. Acta Phys. Sin. 57, 1416-1422 (2008)

32. Chen, X.R., Liu, C.X., Wang, F.Q.: Circuit realization of the fractional-order unified chaotic
system. Chin. Phys. B 17, 1664—-1669 (2008)

33. Liu, C.X., Ling, L.: Circuit implementation of a new hyperchaos in fractional-order system.
Chin. Phys. B 17, 2829-2836 (2008)

34. Hegazi, A.S., Ahmed, E., Matouk, A.E.: The effect of fractional order on synchronization of
two fractional order chaotic and hyperchaotic systems. J. Fractional Calculus Appl. 1(3), 1-15
(2011)

35. Matouk, A.E.: Chaos, feedback control and synchronization of a fractional-order modified
Autonomous Van der Pol-Duffing circuit. Comm Nonlinear Sci Numer Simulat 16, 975-986
(2011)

36. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl.
265, 229-248 (2002)

37. Matignon, D.: Stability results for fractional differential equations with applications to control
processing. In: IEEE-SMC Proceedings of the Computational Engineering in Systems and
Application Multiconference, IMACS, Lille, France, vol. 2, pp. 963-968 (1996)

38. Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in
fractional-order systems. Phys. Lett. A 367, 102-113 (2007)

39. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional
order. Electron. Trans. Numer. Anal. §, 1-6 (1997)

40. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical
solution of fractional differential equations. Nonlinear Dynam. 29, 3-22 (2002)



Chapter 8

Outer and Inner Synchronization in Networks
on Rossler Oscillators: An Experimental
Verification

Rajarshi Middya, Shankar Kumar Basak, Anirban Ray,
and Asesh Roychowdhury

Abstract This chapter deals with the synchronization within the network and
among different networks. Synchronization within a network is called ‘inner
synchronization’ and synchronization among different networks is named as ‘outer
synchronization’. First, the ‘inner synchronization’ for different network topologies
are studied numerically and experimentally. Next outer ‘synchronization’ amongst
two different networks are studied when they are connected through similar
nodes(homogenous situation). Again the study of ‘outer synchronization’ among
two different network are repeated when they are connected through different
nodes(heterogenous case). Though second situation occurs often in nature, it has
been studied very little.

8.1 Introduction

The process of synchronization holds an important place in the present day study
of nonlinear system and complex network. Knowledge about complex network and
its synchronization is growing through rapid growth [1-9]. According to definition,
a complex network is a large set of inter connected nodes, in which a node is a
fundamental unit with specific contents [10].

Random graph, small world effect and scale free characteristics are mostly
noticeable among different complex networks. After its construction in early 1960
by Erdos and Renyi [11], random graph dominated mathematical research of

R. Middya

Department of Electronics and Telecommunication Engineering, Jadavpur University,
Kolkata 700032, West Bengal, India

e-mail: rajarshi.middya@gmail.com

S.K. Basak - A. Ray - A. Roychowdhury (b))
Department of Physics, Jadavpur University, Kolkata 700032, West Bengal, India
e-mail: basak.sankar8 @ gmail.com; anirban.chaos @gmail.com; asesh_r@yahoo.com

S. Banerjee and L. Rondoni (eds.), Applications of Chaos and Nonlinear Dynamics 203
in Science and Engineering 3, Understanding Complex Systems,
DOI 10.1007/978-3-642-34017-8_8, © Springer-Verlag Berlin Heidelberg 2013



204 R. Middya et al.

complex network for half a century. This was partly for the absence of supercom-
putaional power and partly for the absence of detailed topological information about
different large scale real world networks. Small world effect was introduced by
Strogatz and Watts [1] to investigate the transition from regular networks to random
ones. Such networks behave with a high degree of clustering as in regular networks
and small average distance among them. After that Barabasi and Albert [2] brought
forward a power law distribution and more nodes having few connections, but only
few nodes have many connections and hub.

Networks mostly focus on modeling, dynamical analysis and control. Network
synchronization can be considered in two ways (a)Synchronization arising inside a
network composed of coupled dynamical systems i.e. ‘inner synchronization” and
(b) synchronization occurring between two coupled complex networks in mutual
coupling configuration i.e. ‘outer synchronization’. Early works on ‘inner synchro-
nization’ has attracted much attention till now [10]. In ‘inner synchronization’, a
network of the following ideal structure is usually considered.

N
%) = fOiO)+¢ Y ayMx;(0).i =12....... . N, (8.1)
j=1

where x; = (x;1, Xi2,---Xin)T € R" are the state variables of the node i and N is
the number of network nodes. f : R”" is a continually differentiable function which
determines the dynamical behavior of the nodes. ¢’ > 0 is a coupling strength and
I’ € R™" is the constant matrix linking coupling variables. A = a;;,_, represents
coupling among different nodes of an entire network. Entries of A are defined as

follows, a;; = 1 if connection exist between different nodes i and j; otherwise
a;j = 0. Diagonal elements of A are defined as a;; = — Zf’: , and clearly, if
degree of node i is k;, then a¢;; = —k;, i = 1,2,---, N. In the paper [10], in

all nodes belonging to the network studied, the synchronous state is determined by
X() = f(x(¢)). Since they considered the synchronization within the network,
we referred it as ‘inner synchronization’. Later, this approach was expanded and
improved by introducing weighted connection, time dependent coupling matrix,
non-linear coupling function and time delays [12—19]. A different approach where
synchronous state is different from x(¢) = f(x(¢)) is also studied in [20].

This gives rise to a natural question, whether two similar network synchronizes
with each other. There are real life examples where outer synchronization exists
between different networks. We will describe them later. This kind of synchro-
nization aptly named as ‘outer synchronization’, is answered in [21]. In all of
the above cases, nodes of a network are assumed to show same dynamics. But
there are cases where different nodes exhibit different dynamics. This kind of
network do exist in real life. Does a synchronization between two such networks
exist? We cite two such examples here. From the angle of sociology our world
can be divided into two networks: developed network constructed by developed
countries and under developed network constructed of under developed countries.
Now from a finer point, all developed countries are not developed to same extant.
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Same goes for under developed network. With the gradual increase of international
exchange, the two networks will be synchronized. In animal world, synchronization
phenomena universally exists if no external intervention appears. In predator and
prey community, the number of predator and prey remains invariant under no
outside intervention. But not all predators hunt same prey. So the study of the
‘outer synchronization’ between coupled networks with different nodes becomes
imperative.

In the present chapter we study this interesting topic. For more details, synchro-
nization of a network under different network topologies are given in Sect. 8.2.
First numerical results are shown. Then experimental results are presented. In
the next section, we find the situation when two such networks synchronizes
with each other. Two different conditions are considered (a) when networks are
connected through similar nodes(homogeneous coupling) and (b) when networks
are connected through different nodes(heterogeneous coupling).

8.2 Inner Synchronization

Each node of the network consists of a Rossler oscillator. In this situation, we have
considered the variety of possible topological arrangements and also considered
the different ways to connect them. However, it sould be noted that instead of the
standard Rossler system, we have considered a slightly modified Rossler form [22],

X=—-ax—fy—z
y=x+yy (8.2)
z=g(x)—z

Here g(x) stands for a step function which is written as

gx)=0 x<3 03
=ux—-3) x>3 ®-3

where «, B, y and u are parameters. The system given in (8.9) has two families of
fixed points

P, = (0,0,0) (8.4)
P, — (3H)’,_3_H, 3u(B —ay)) (8.5)
o o o

with o = (¢ + p)y — B This system was used as it is easier to implement in the elec-
tronic circuit. In the experimental setup, the parameter values used were o« = 0.05,
B = 0.5,y =0.15and u = 15, whence the stability of fixed points become evident
from the eigenvalues of the Jacobian. The origin has eigenvalues (—1,0.05 & 0.77)
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Fig. 8.1 Electronic Circuit for Rossler system

and the other has the set (0.1847,3.2788, —4.363514). The corresponding circuit is
given in Fig. 8.1 and the attractor obtained from this equation is given in Fig. 8.2.

Now, we connected such Rossler systems in a network with different topologies.
In the next section we discuss the different network topologies that we have used to
make a single network.

8.2.1 Different Network Topologies

We have used four Rossler oscillators to make a single network and used four
network topologies.

* Uni-directional Line Topology
* Bi-directional Line Topology
» Star Topology

* Global Topology

The schematics for the above mentioned networks are shown in Figs. 8.3, 8.4, 8.5
and 8.6 respectively.
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Fig. 8.2 Phase space for
Rossler attractor

Fig. 8.3 Uni-directional line network

Fig. 8.4 Bi-directional line network

Fig. 8.5 Star network
3
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Fig. 8.6 Global network

Fig. 8.7 Two global networks coupled with one another homogeneously

8.2.2 Quter Synchronnization

From the different network topologies that are shown in previous section, we take
the Global Topology and make connections among two such networks. Now, two
networks can be connected in two ways—they can be connected through similar
nodes (this type of connection is called ‘homogeneous connection’) as shown in
Fig. 8.7 or, through different nodes (the connection type is heterogeneous) as shown
in Fig. 8.8. In both cases, two networks are connected bi-directionally.

Now, the work has been done in two steps (a) numerically and (b) experimentally.
First we will describe the numerical approach and then discuss the experimental one.
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Fig. 8.8 Two global networks coupled with one another heterogeneously

8.3 Numerical Analysis

8.3.1 Global Network

The numerical analysis for each network is done independently. Dynamical equation
of each nodes is given by

N
i(6) = fOa() +¢" Y ay Tx; (1) (8.6)

J=1

Here x; is the vector representing node variables, a;; is the element of adjacency
matrix A and I" is the coupling matrix of each variable. Coupling strength is given
by ¢’. At first, we had done the analysis of the Global Network. The adjacency
matrix of a five node global network is given as

41 1 1 1
1 41 11
A= 1 1 -41 1 8.7)
1 1141
1 11 1 -4
The linking matrix I is given as
000
010 (8.8)

000
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-20 0 20 -20 0 20 -20 0 20

Fig. 8.9 (a) Attractor of Rossler 3, (b) Attractor of Rossler 5, (¢) Phase space of Y for Rossler
3and 5

i.e. we have chosen ‘y’ variable for connection. The system of equations for the ‘i’th
node of global network is given by

X; = —ax; —Byi —z

Vi=xiyyi+ QO y;—4*n) (8.9)
j#i

5 =g(xi)—z

Here g(x;) is a step function described (8.3). All parameter values are as described
in previous section.

On solving Eg. (8.9) the phase space looks like Fig. 8.9.

To quantify the chaos, we also measured the maximum Lyapunov Exponents and
plotted them against the different values of the coupling constant given by ¢ in the
above shown equations. This is shown in Fig. 8.10

8.3.2 OQuter Synchronization Between Global Network

8.3.2.1 Heterogenous Coupling

This type of network is shown in Fig. 8.8. Such a network can be described by the
following set of equations,

N
%i(0) = fa@) +¢' Y ayTxj(t) + C8il (yi —xn)  (8.10)
j=1

N
Vi) = fi@) +¢" Y ai Ty (0) + C8l (xw =y B.1D)
j=1
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Dynamics of Lyapunov exponents
1 T T T T T T T T

TLE

5|
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Fig. 8.10 Maximum Lyapunov exponents as a function of the coupling constant

where ¢’ and ¢” are coupling of the two networks respectively and i = 1,---,5.
C is the coupling coefficient in between the two global networks. Here I" has the
expression shown earlier, and d;; is the Kronecker delta function. In the present case
m = 3 and/ = 1 i.e. third node of the first network is connected to first node of the
second network. Explicitly, we write the expression for the connecting nodes as

X1p =

X22
X32
X42
X52
V12
V2
V32
Va2
Vs2

axyy + X2 + ¢ (022 + X3 + X420 + x5 — 4x12)
axay + X + ¢'(x12 + X3 + X424+ x5 — 4x27)
axsi + x3 + ¢'(x12 + X2 + X2 + X5 — 4x32) + C(y12 — x32)
axs + Xg + ¢ (012 + X2 + X3 4 x5 — 4x42)
axsy + x5y + ¢’ (x12 + X2 + X3 + x40 — 4x5)
ayii + yi + ¢ (yn + yn + yao + ys2 — 4y12) + C(xs2 — y12)
aya + yo + ¢ (yi2 + ya2 + yar + ys2 — 4yn)
ayst + ya2 + ¢ (yi2 + yo2 + yar + ys2 — 4yn)
ayar + Yo + ¢ (yi2 + y2 + y32 + ys2 — 4ya)
aysi + ys2 + " (yi2 + yu + yn + yao — 4ys)
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Fig. 8.11 Phase space output for 2-global network with five nodes each under heterogenous
coupling (a) Attractor of Rossler 3, (b) Attractor of Rossler 4, (¢) Phase space of Y for Rossler 2
and 5, (d) Attractor of Rossler 2, (e) Attractor of Rossler 5, (f) Phase space of Y for Rossler 3 and 4

Here For such a network the phase space is given by Figs.8.11 and 8.12 shows
the variation of the maximum Lyapunov Exponents with respect to the Coupling
constant C in between the networks.

8.3.2.2 Homogenous Coupling

This type of network is shown in Fig. 8.7. Such a network can be described by the
following set of equations.

N
Xi(t) = f(xi (1) + clzaijrxj(t) + CI'(yi — xi) (8.12)
j=1
N
Fit) = fOi0) + "y ai Ty () + CT(xi — y;) (8.13)
j=1

Here meaning of all variables remain same as above section. Explicitly, equations
representing the dynamics for the connecting nodes are given as
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axiy + X2 + ¢’ (x2 + x32 4+ X4 + x50 — 4x12) + C(y12 — X12)
axy + xo + ¢'(x12 + x32 4+ X42 + x50 — 4x22) + C(y2 — X22)
axs; + x3 + ¢'(x12 + x20 4+ X4 + x5 — 4x32) + C(y32 — X32)
axq + Xgo + ' (x12 + x20 4+ X3 + x5 — 4x42) + C(ya2 — X42)
axs; + x5y + ¢'(x12 + x22 4 X3 + x40 — 4x57) + C(ys2 — X52)
ayii + yi 4"y + yn + yo + ysn—4y1) + C(xi2 — yi)
aya + yn + " (yi2 + yn + yar + ys2 — 4yn) + C(xn — y2n)

vy =ays + yn +c"(yi2 + yn + yo + yo—4yn) + Clxsn — yin)

Var = ayas + Yo + " (yi2 + yn + yn + yoo —4yn) + C(xe — ya)

Vs2 = aysi + yso + " (yi2 + yu + yn + yo —4ys) + C(xs: — ys2)

where ¢’ and ¢” are the coupling coefficients of the networks and C is the coupling
coefficient in between the two global networks. For such a network the phase space
is given by Figs.8.13 and 8.14 shows the variation of the maximum Lyapunov
Exponents with respect to the Coupling constant C in between the networks.

8.3.3 Further Numerical Study

Now we discuss our numerical results obtained from changing I matrix to take
other variables. As for example, we take the x component instead of the y (as we had
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Fig. 8.13 Phase space output for 2-global network with five nodes each under homogenous
coupling (a) Attractor of Rossler 3, (b) Attractor of Rossler 4, (¢) Phase space of Y for Rossler 2
and 5, (d) Attractor of Rossler 2, (e) Attractor of Rossler 5, (f) Phase space of Y for Rossler 3 and 4

done in our work), and couple it with the y component of the second node of
Fig. 8.6, and z component of the third node of Fig. 8.6, and going on, such type of
coupling can be termed as a heterogeneous one. This heterogeneous coupling has
been studied numerically for all the networks for which numerical and experimental
analysis had been done in the previous sections.

8.3.3.1 Global Topology

The Global Topology is shown in Fig. 8.6. The coupling is done using the x, y, z,
x, y—component of node 1, 2, 3, 4, 5 respectively. For such a coupling the chaotic
state is present only when the value for the coupling constant is small enough. This
is seen in Fig. 8.15.

As can be observed from the Fig.8.15, as we increase the coupling between
the different nodes (which is different from one another), the chaotic state no
longer exists.

8.3.3.2 Outer Synchronization of Global Networks Under Heterogenous
coupling

This is the coupling between two global networks as shown in Fig. 8.8. Here the
coupling is done using the x, y, z, x, y and z—component of node /, 2, 3, 4, 5 and 6
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Fig. 8.15 (a) Heterogeneous coupling with very low value of C and (b) Heterogeneous coupling

with a high value of C

respectively. For such a coupling the chaotic state is present only when the value for
the coupling constant is small enough. This is seen in Fig. 8.16.

As can be observed from the Fig. 8.16, as we increase the coupling between the
two networks (which is different from one another), irrespective of the changes
made to the coupling inside each, the chaotic state no longer exists. In order
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Fig. 8.17 Maximum Lyapunov exponents as a function of the coupling constant

to measure or rather quantify the chaos in the system, the maximum Lyapunov
exponents as a function of the coupling constant has been computed for this system
as shown in Fig. 8.17.

8.3.3.3 Outer Synchronization of Global Networks Under Homogeneous
coupling

This is the coupling between two global networks as shown in Fig. 8.7. Here the
coupling is done using the x, y, z, x, y and z—component of node /, 2, 3, 4, 5 and 6
respectively. For such a coupling the chaotic state is present only when the value for
the coupling constant is small enough. This is seen in Fig. 8.18.

As can be observed from the Fig.8.18, as we increase the coupling between
the two networks (which is different from one another), irrespective of the changes
made to the coupling inside each, the chaotic state no longer exists. Fig. 8.19 shows
the variation of the maximum Lyapunov exponents with the coupling constant. As
can be observed, the majority of them are negative apart from one which is greater
than zero.

In the above subsections, the difference between the three types of network
topologies does influence their coupling. In the first one with only five nodes, the
coupling between each node was the constraint, whereas, for the next two networks,
it was the coupling between the networks that played a major role in deciding
whether the oscillators in each node are in chaotic state or not.
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As can be seen from Figs. 8.10, 8.12 and 8.14, for each case, one of the Lyapunov
Exponents is positive, one is near zero and the others are negative.

8.4 Experimental Verification

The experiments were conducted in three stages. At first we looked into the different
network topologies as shown in Figs. 8.3-8.6 and analyzed them to find out the
value of the coupling constant for which they synchronize. Then we constructed
the network shown in Fig. 8.8 and used the same method to determine the coupling
constant for synchronization. And the last stage was to implement another network
as shown in Fig. 8.7 and determine the coupling constant for that.

8.4.1 Inner Synchronization

8.4.1.1 Uni-directional Line Topology

As mentioned earlier four different topologies of networks—Iine, bidirectional line,
star and global—are used here. The uni directional line network has five Rossler
oscillators connected in series such that data flows in only one direction i.e the
communication between them is one way as shown in Fig. 8.3. The coupling circuit
required for such a network has been developed and is shown in Fig. 8.20. The pins
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Fig. 8.20 Uni-directional network coupling

on the L.H.S of the figure denotes the output of each Rossler oscillator which is fed
into this coupling circuit, which consists of four differential amplifiers. The output
of these are fed into the input of the respective Rdossler circuits via a resistance
known as coupling resistance. This coupling resistance is decided upon by the value
of the coupling constant and it is this resistance whose variation takes us to the state

of synchronization in the network.

8.4.1.2 Bi-directional Line Topology

The bidirectional line network as shown in Fig. 8.4 has the coupling circuit Fig. 8.21.
In this network, the nodes are connected serially i.e connection is between node 1
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and 2 then 2 and 3 then 3 and 4 and 4 and 5. The data exchange between the nodes
is bidirectional, i.e both of them receive and transmit. For this type of network, the
output of the coupling circuit given by the pins (I06 — I010) are fed into the input
of each node (Rossler oscillator) via a coupling resistance whose variation changes

the synchronization of the network.

8.4.1.3 Star Topology

Next in line is the Star network as shown in Fig. 8.5. In this network, all the nodes
apart from node 1 are connected to nodel. So data exchange takes place between
1 >2,1—-21—3,1— 4and 1 — 5. The coupling circuit for this type of
network is shown in Fig. 8.22. As can be seen, the circuits consists of five differential
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Fig. 8.22 Star network coupling

amplifiers and their output, denoted by pins 106 — 1010 is fed into the y—input
of the corresponding node (Rdéssler oscillator) via a coupling resistance whose
variation changes the state of synchronization of the circuit as shown in Fig. 8.23.

8.4.1.4 Global Topology

Finally it is the Global Network where every node is connected to four others in the
network as shown in Fig. 8.6. The coupling circuit is a bit complicated and is shown
in Fig. 8.24. As is the case for the other previously mentioned networks, the outputs
denoted by pins 106 — 1010 is fed into the y—input of the corresponding node
(Réssler oscillator) via a coupling resistance whose variation changes the state of
synchronization of the circuit as shown in Fig. 8.25.
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Fig. 8.23 (a) Time series of signals from node 4 and 1 and (b) Phase space of signals from node
4 and 1
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Fig. 8.27 (a) Time series of signals from node 1 and 4 and (b) Phase space of signals from node
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Fig. 8.29 (a) Time series and (b) Phase space of signals from node 3 of network 1 and node 2 of
network 2

8.4.2 Quter Synchronization

8.4.2.1 Heterogenous coupling

Here we took two global networks consisting of three nodes each and then we see
the effect of their coupling on their synchronization. The schematic for this network
is shown in Fig. 8.8. The two global networks can be coupled using the circuit in
Fig. 8.26. The coupling is changed by varying the potentiometers and finally when
the value of the coupling resistances (potentiometers) becomes around 33 K, the
entire network achieves synchronization as shown in Fig. 8.27.

8.4.2.2 Homogenous Coupling

Finally, we arrive at one to one coupling between two networks, where each node
from one network is connected to its counterpart in the second network i.e node 1 of
network 1 is connected to node 1 of network 2, node 2 of network 1 is connected to
node 2 of network 2 etc. as shown in Fig. 8.7. For this type of coupling, the coupling
circuit is given by Fig. 8.28. The variation of the coupling resistance gives us the
synchronized state at the value of 10 K. For this, the corresponding output is shown
in Fig. 8.29.

8.5 Conclusion

We have studied the synchronization of chaotic networks in three ways (a) a
typical global network with 5-nodes, (b) the case of two global networks coupled
with two nodes, one form each, and (c) the case of two global networks coupled
in a prism like way, as shown in the above figures. Now, these three ways
showed us that each coupling attains the state of synchronization while being
chaotic. This result is confirmed both numerically and experimentally. During the
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numerical analysis, we found that among all the Lyapunov exponents for each
network, one is positive, one lies near zero and the rest are negative. This result
reconfirmed the phenomena—the systems synchronize while each being chaotic.
Future investigations will be concerned with the analysis of the systems in presence
of noise and effect of heterogenous coupling in derails.
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Chapter 9

The Route from Synchronization

to Desynchronization of Chaotic Operating
Circuits and Systems

Stavros G. Stavrinides and Antonios N. Anagnostopoulos

Abstract In a world of an ever increasing information-trafficking, ultra wideband
information transmission, as well as security are main issues. Chaotic oscillators
inherently possess these two properties. Consequently, chaotic transmitter-receiver
synchronization emerges as a key-topic in networked communication. The issues of
synchronization robustness and synchronization stability are of great importance, if
one means to turn in advantage properties of chaotic operating circuits and systems.
As a result, not only synchronization accomplishment but also the ways a system
desynchronizes is of great importance, if not crucial; however, these are not, usually,
thoroughly studied. In this contribution a short overview of experimental work
dedicated to the ways chaotic-synchronized communication systems desynchronize,
is provided.

9.1 Introduction

Both words of chaos and synchronization are of Greek origin. Chaos “ydoc¢”
originally meant the state of the universe before the creation of cosmos, later
it came to mean a state of confusion and any lack of order. On the other
hand synchronization “cvy ypoviopuéc” means having a common timing. Both
meanings have remained unchanged till nowadays and were destined to characterize
a whole section in sciences and engineering; that of nonlinear system behavior and
the resulting complexity [1].

S.G. Stavrinides (<)

Department of Electrical and Computer Engineering, University of Cyprus, P.O. Box 20537,
1687 Nicosia, Cyprus

e-mail: stavros @physics.auth.gr

A.N. Anagnostopoulos
Physics Department, Aristotle University of Thessaloniki, 54124 Salonica, Greece
e-mail: anagnost@physics.auth.gr

S. Banerjee and L. Rondoni (eds.), Applications of Chaos and Nonlinear Dynamics 229
in Science and Engineering 3, Understanding Complex Systems,
DOI 10.1007/978-3-642-34017-8_9, © Springer-Verlag Berlin Heidelberg 2013



230 S.G. Stavrinides and A.N. Anagnostopoulos

The significance of broadband and/or secure communication is obvious in a
world increasingly dependent on information transmission [2—4]. The introduction
of chaos theory in telecommunication applications provided this whole branch with
a new vision and has already offered several new applications and performance
enhancements to existing communication systems [5—7]. Inherent properties of
chaotic oscillating circuits are very beneficial to broadband data transmission, wired
or wireless, lending at the same time security advantages [8].

A chaotic electronic oscillator is capable of producing non-repeating sequences
that possess frequencies with a wide spectral distribution; therefore broadband
transmission is an inherent property of such systems [9]. Since, it is very hard to
predict chaotic behavior and signal sequences even when the chaotic function is
known to the interceptors, secure data transmission is another inherent property of
such systems. This is because slightly different estimation of the initial condition
and control parameter sensitivity, would lead to a very different chaotic sequence.
Two key features of chaos are a fairly “noise-like” time-series and a crucial
dependence on initial conditions and control parameters, which allow for low
probability of detection and interception, in the case that transmission utilizes
chaotic information-bearing signals, respectively [10—14].

On the other hand, chaotic communication systems are simpler, concerning
circuit realization, compared to traditional spread spectrum systems [6, 15, 16]. The
key fact in chaos-based communication systems is that the procedure used by the
transmitter to generate the chaotic waveform is deterministic; the knowledge of this
procedure by an authorized receiver allows him to replicate, or synchronize, the
chaotic waveform, and then to recover the message by subtracting the chaotic carrier
[17,18]. The confidentiality of the encryption technique is based on the difficulty
to reproduce the chaotic carrier signal if an intruder does not know the particular
dynamical system used [19].

Such a telecommunication system, consisting of two nonlinear electronic circuits
in synchrony, must be endowed with two additional attributes:

The first is that the synchronization property has to be stable. This means that it
has to be immune against small deviations of the matching between transmitter and
receiver and additionally, it has to be robust against the influence of certain noise
levels, unavoidable in any communication system. It should be noted that circuit or
system matching, although desired, must be kept within some limits to avoid easy
synchronization of even non-identical circuits, damaging thus the security property
of the system.

The latter is robustness and it is of great importance not only because noise
is unavoidable, but also because the system has to parry intentional attacks by
malevolent signals trying not to listen in but to destroy the transmission. As a result,
the transitions (routes) from complete synchronization to complete loss of it, termed
complete desynchronization, in chaotic communication circuits and systems have to
be studied.

In this contribution, a presentation of real chaotic synchronized circuits demon-
strating, next to their synchronized state, an interesting behavior of synchronization
to desynchronization routes, appears. The chapter structure is as follows: At the first
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part, a rather abstractive presentation of nonlinear circuits and synchronization is
provided. The rest of the chapter is devoted to the description of circuits exhibiting
synchronization to desynchronization routes. Finally, the last part deals with the
presentation of experimental results, the study and the evaluation of phenomena
regarding these routes, such as “On-Off” and “In-Out” intermittency.

9.2 Nonlinear Circuits

Most electrical and electronic circuits could establish, under certain conditions,
either a periodic—semi periodic or a chaotic behavior. This is due to the fact, that
almost all passive and active circuit components demonstrate some kind of nonlinear
feature, giving rise to what is called strange behavior (complex behavior) [7,20-22].

Such strange behaviors have been faced from the very beginning of electronic
engineering and have been tackled as undesirable ones; in fact, this meant that circuit
design had to avoid such unexplainable operational behaviors. The first ever reported
abnormal circuit behavior was in 1927 in the Van der Pol—Van der Mark oscillator.
This externally driven neon vacuum tube based oscillator exhibited an irregular
noise, according to the circuit’s designers [23].

The study of complex phenomena and chaos in real electronic circuits (not
modeling of nonlinear differential equations by analog computers [24]) started
during the 1980s. In the beginning, the study regarded simple non-autonomous
circuits, such as R-L-Diode circuits and the first phenomenon reported was the
period doubling route to chaos [25-27]. Autonomous circuits appeared later on, like
the famous Chua circuit; a well-known circuit that provides the scientific community
with a swarm of chaotic behaviors [28,29].

An important issue in nonlinear circuits is the reason why an electronic circuit (a
dynamical system in general) exhibits a complex behavior. The answer is that this
is due to nonlinear behavior of active (diodes, transistors, saturation operating op
amps etc.) and/or passive components (capacitors, inductors) [30].

Electronic chaotic oscillator design and their synchronization is a very motivating
part of chaotic electronics, which nowadays, attracts the interest of the engineering
community. Chaotic oscillators are either 3rd order autonomous oscillators or 2nd
order non-autonomous ones. In most cases, of course, greater order oscillators
could also exhibit chaos and sometimes hyper-chaos [31]. The first are operating
by themselves, while the latter need an external stimulus. In any case a simple
harmonic oscillator could come to exhibit a chaotic behavior by introducing a “local
annoyance” in terms of importing in the circuit design a nonlinear element or a kind
of memory or some form of hysteresis [32].

Nowadays, nonlinear circuits and systems and the study of all related (chaotic)
phenomena, unveils a very rigorous potential, with a perspective of many real-world
applications in the area of electronics, especially telecommunications, targeting etc.
[18,33]. As a result there is great interest in designing electronic circuits capable of
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producing chaotic signals, in an easily controlled way, suitable for data modulation
and demodulation over a deterministic chaotic carrier [34].

Electronic nonlinear circuits exhibiting chaotic behavior are not only studied for
their real and potential application in wideband and secure data transmission, but
they also represent very good experimental implementations of nonlinear equations
or dynamical systems with chaotic behavior. They are cheap, easy to construct
and if damaged easy to repair. Moreover, just a power supply and an oscilloscope
are sufficient for monitoring their performance, in most of the cases. Among their
other advantages are the convenience to fine-tune their control parameters and the
reproducibility of the circuits. All these merits are not to be underestimated, since
even the simplest mechanical oscillators cannot be realized so easily, not to mention
that they cannot be precisely controlled as the electronic circuits [31].

Experimental synchronization for communication purposes and its reverberation
on chaotic electronic circuit design and design optimization accordingly, are a very
attractive issue in the scientific and engineering world [35].

9.3 Synchronization

Systems exhibiting periodic oscillations were the first that the phenomenon of
synchronization was observed. Motion synchronization between weakly coupled
clocks (hanged from the same wooden rod) was first reported by Huygens in 1665
and it was considered as “a phenomenon of sympathy between two clocks” [36].
Later on, it was revealed that synchronization also existed in the case of systems
with irregular (i.e. chaotic) oscillations [37].

In general, tuning up the oscillations of two or more interacting dynamical
systems is called synchronization. More specifically, chaotic synchronization is a
process in which two or more chaotic dynamical systems adjust their oscillations or
a given property of their oscillations, to a common behavior, due to a coupling
or to a forcing. The synchronized systems could be either identical or equivalent
or different [35, 37]. It should be mentioned that synchronization differs from
resonance, since in synchronized systems (periodically or irregularly-chaotically
oscillating) each system retains its own dynamics [37].

Nonlinear oscillator synchronization is a process that is frequently encountered
in nature. The ability that nonlinear dynamical systems possess, to synchronize,
is a significant property. As a consequence, chaotic system synchronization is
encountered in a variety of scientific fields from sciences and engineering (astron-
omy, meteorology, electronic engineering etc.) to biological, social and economic
sciences (econophysics, epidemiology etc.) [38—40].

Chaotic synchronization between nonlinear dynamical systems is somehow
unanticipated, taking into account their main characteristic, that of sensitive depen-
dence on the initial conditions. This feature implies exponential growth of initial
state deviations, even in the case of identical dynamical systems, getting them
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uncorrelated in the course of time [41]. However, it has been experimentally shown
that synchronization is possible for chaotic dynamical systems [42,43].

From the most general aspect, there are two coupling configurations, namely
unidirectional and bidirectional one. Each one could lead both the coupled systems
to synchronized states, by using quite different mechanisms. These mechanisms are
different so far that, till now, no method has ever been proposed to link the two cases
or to reduce one process to another [37,44].

The first case, i.e. unidirectional coupling, is a typical master-slave configuration,
where two subsystems form a system. One subsystem acts as the drive while the
other one acts as the response; meaning that the driving system evolves freely,
nevertheless driving the evolution of the response system.

In the second case, that of bidirectional coupling, both subsystems are coupled
with each other in such a way that they interact and mutually influence their
behavior. The main idea behind this kind of coupling is that the coupling factor
induces an adjustment of the orbits onto a common manifold, where the synchro-
nization manifestoes itself; thus, inducing a mutual synchronization behavior in both
subsystems. Occasional escapes of the trajectories from this manifold correspond to
synchronization loss, representing the cases of incomplete synchronization.

Both coupling schemes are used in electronic chaotic circuits with typical appli-
cations in ultra-wideband communications with chaos or cryptography. However,
the bidirectional coupling is encountered very often in nonlinear optics e.g. coupled
laser system with feedback and biology [45], e.g. between interacting neurons with
feedback [46].

Synchronization ranges from complete agreement of trajectories, where coor-
dinates of different subsystems coincide, to locking of phases. During the last
20 years, many different synchronization states have been reported and studied such
as Complete and Generalized Synchronization or Phase and Lag Synchronization
[37,41].

Complete Synchronization was the first discovered and is the simplest form
of synchronization in chaotic systems. This type of behavior can usually be
expected when identical subsystems are involved. In this case, although, each
subsystem operates in a chaotic way, there is complete agreement of trajectories
and corresponding coordinates, of different subsystems coincide. This is achieved
by means of a coupling signal, in such a way that they remain in step with each
other in the course of the time. This mechanism was first shown to occur when two
identical chaotic systems are coupled unidirectionally, provided that the conditional
Lyapunov exponents of the subsystem to be synchronized are all negative [8].

If the produced oscillation trajectories are totally different, up to even in the
slightest detail, then the so called complete desynchronization state arises and the
oscillators are considered as completely desynchronized. However, between these
two extreme states a lot of other cases exist. Some of the most common and
extensively studied are cited below.

Generalized Synchronization, as a notion, goes further in using different physical
systems. The idea of Generalized Synchronization has been introduced in 1995,
aiming in treating synchronization between non-identical subsystems. In this case
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the output of one system is associated to a given function of the output of the other
system and this functional relation holds for all time [47].

Phase Synchronization appears when coupled non-identical oscillatory systems
can reach an intermediate mode of operation, where a locking of the phases is
established, while correlation in the amplitudes remains weak. Transition to Phase
Synchronization was first reported in two coupled Rossler dynamical subsystems
[37].

Lag Synchronization is an intermediate stage between Phase and Complete Syn-
chronization. The two outputs of each subsystem lock their phases and amplitudes,
but with the presence of a time lag. Practically, output signals are identical in their
form, but shifted in respect to each other by a constant time interval [41,48].

Inverse Synchronization appears when signals are identical in shape but with their
amplitudes inverted [48].

Projective synchronization arises when signals from each sub-system are identi-
cal in shape but their amplitudes differ by a constant factor. In this case there is a
similitude under scale [49].

In the case that two nonlinear oscillating systems are forced to an interruptible
coupling i.e. in the case of electronic circuits via a switch opening and closing
according to some given law, then impulsive synchronization is established [50,51].

Another aspect in the synchronization of chaotic systems is the way this is
established or lost. This happens by varying a system control parameter, which
could either be the synchronized-system coupling factor or a parameter mismatch
between the coupled sub-systems. When the control parameter falls short of a
critical value, the synchronized state becomes unstable and characteristic dynamics
are observed. The difference between two corresponding variables (signals) from
each subsystem blows occasionally from its almost zero value, exhibiting desyn-
chronization. This state is a state of incomplete synchronization, an intermediate
state declaring the system’s synchronization stability.

The mechanism behind the incomplete synchronization of chaotic systems is
the competition between the inherent instability of trajectories, due to nonlinear
elements and the synchronization tendency, due to coupling. As a result, coupling
strength plays a crucial role in the evolution of the phenomenon [51, 52].

Depending on the way that this incomplete synchronization behaves, two similar,
but not identical kinds of transition—intermittent synchronization—namely the
“On-Off’ and the “In-Out” intermittent synchronization, have been reported [52].

For the experimentalist, in the case of “On-Off’ intermittent synchronization
the synchronization phase portrait appears to escape from the diagonal in a rather
random-like way, without favoring any particular direction. When full desynchro-
nization is achieved then most of the synchronization phase space is covered by
trajectories in a deterministic chaotic way.

On the other hand, for the theorist this kind of synchronization presents a laminar
length distribution (for each value of the control parameter) that scales with the
following law [53, 54]:



9 The Route from Synchronization to Desynchronization of Chaotic . . . 235

P(t) xa-tP. e 9.1)
and holding for exponent f the value of 8 = —1.5. As aresult, (9.1) forms a straight
line with a slope B = —1.5, in a double logarithmic plot. It should be noted that,

in the case of incomplete synchronization, laminar lengths are defined as the time
intervals that the system is synchronized. At the same time, scaling of the mean
laminar lengths < 7 > with the difference of the synchronization control parameter
(g) from its critical value (gi¢) holds the following power law [53, 54]:

() o< (q — gerir)” 9.2)

The exponent y possesses the value of y = 1. The control parameter critical value
it 18 defined as the one that onset of the incomplete synchronization phenomenon,
in this case the “On-Off’ intermittency, takes place [52-54].

The case of “In-Out” intermittency is a more general version of “On-Off”. In this
case trajectories also escape occasionally from the relatively steady synchronized
state to irregular “burst” states and then quickly return back to synchronization.
But this time the system attractor blows out from a lower dimensional subspace
in a random-like way, due to transverse instability. As a result, the experimental
synchronization phase portrait escapes from the diagonal, but this time not directing
to almost all possible directions, but to a certain and discrete structure.

Theoretically, in this kind of incomplete synchronization, the power law that
holds for the laminar length distribution (for each value of the control parameter)
has the following form [52,55]:

In—Out

P(t) ocic - P - o) ) 8D (9.3)
N—
In—0Off

As depicted on (9.3) in “In-Out” intermittency, laminar length distribution in double
logarithmic plot, demonstrates the well-known linear part with a slope 8 = —1.5
(like in the “On-Off” case)—due to first term of (9.3); while the second term of
(9.3) causes an identifiable shoulder developed at large values of laminar lengths.
Regarding the mean laminar length < 7 > scaling according to the difference of
synchronization control parameter (g) from its critical value (gc;), it follows the
power law in (9.2) [52,55,56].

In electronic circuits, simple resistive coupling is the most common way of
synchronizing them, thus this kind of coupling being bidirectional. Unidirectional
coupling is established by using buffers or amplifiers in the coupling branch. Direct
coupling is another case that is used in unidirectional coupling and is applied in
synchronization of chaotic electronic circuits, through cable or RF. As a result
numerous circuits suitable for applications in communications with the use of
synchronized coupled chaotic circuits have appeared over the last 20 years.
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9.4 Nonlinear Circuits Demonstrating Desynchronization
Routes

As already mentioned, synchronization between nonlinear systems and conse-
quently between nonlinear circuits is a topic of great interest and with a potential
of real world applications. However incomplete circuit synchronization also attracts
the attention of designers, since it is an issue that critically characterizes synchro-
nization robustness, and thus the efficiency of communication systems.

In the lines that follow, a presentation of three real coupled chaotic circuit
systems, experimentally demonstrating phenomena of incomplete synchronization,
appears; namely, a third-order double-scroll circuit-based system [57-59], in two
coupling schemes (uni- and bi-directional), a fourth order chaotic circuit-based
system [60], also exhibiting a double-scroll attractor and a simple coupled PLL
system [61].

These nonlinear circuits have been studied in the ways that they desynchronize
i.e. the routes that they follow when they abandon synchronized operation to full
desynchronization.

9.4.1 Double-Scroll Coupled Circuits

The system of two identical nonlinear, autonomous, double-scroll circuits, generally
coupled either unidirectionally (master-slave configuration) or bidirectionally, is
a noteworthy case, demonstrating both the previously mentioned synchronization
to desynchronization phenomena: the “On-Off’ and the “In-Out” intermittency
[57-59].

The synchronized, coupled system, in general, appears in Fig.9.1. It consists
of identical third-order, double-scroll, chaotic circuits. The coupling parameter &,
between the two circuits, can vary depending on the circuitry utilized in each case.

The normalized system equations are presented in (9.4):

dx 1
dr
dﬂ
dt
dzy
dr
dx;
dr

= J’I
=z2+&02—y1)
= —ax; —ay; — bz +c- f(x1)

:y2
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Fig. 9.1 The system of the coupled double-scroll circuits

dy, _

s + &(y1 —y2)

dz

o= —ax; —ay, — bz +c- f(x2) (9.4)

where «, b and c, are the system parameters and are defined as follows:

1 1 1

:—,b: N = .
4= Re rRC T R.C

9.5)

It should be mentioned that signals x; », ¥ 2, and z; », represent the voltages at the
outputs of the operational amplifiers numbered 1, 2 and 3 respectively, as it is shown
in Fig.9.1. The first three equations of (9.4) describe the first of the two coupled
identical, double-scroll circuits, while the last three describe the second one.



238 S.G. Stavrinides and A.N. Anagnostopoulos

Fig. 9.2 The saturation
circuit characteristic curve AN
f(x) vs. x 14
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Fig. 9.3 Bifurcation diagram of x vs. b, for @ = 0.5 and ¢ = 1, for each of the double-scroll
circuits

The saturation functions f(x;) and f(x;) used—(9.4)—are defined by the follow-
ing expression:

1, x>k
fx) = %x, -k <x<k (9.6)
-1, x <k

In Fig. 9.2 the characteristic curve of f(x) vs. x is presented. This implementation
differs from other similar ones, such as those proposed by Elwakil et al. [62, 63],
and Lu et al. [64]. In the present implementation the characteristic demonstrates two
saturation plateaus at =1 and an intermediate linear part with a slope that equals to
1/k. This implementation offers the advantage of a rather smooth transition between
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Fig. 9.4 Maximal Lyaunov exponent vs. b, for « = 0.5 and ¢ = 1, for each double-scroll circuit

the two plateaus avoiding premature and overdue jumps between them, as it is often
the case in the precipitous transition between them. The circuitry implementing the
saturation functions is inside the dashed frame in each sub-circuit (op amps 4 and 5).
It should be mentioned that the value of parameter k (and therefore the slope value)
is decided by the following equation:

k=—.
R;

9.7

Finally, the coupling coefficients in each circuit are & and &,. They are present at
the equations of both circuits (the second and the fifth equation) of equation system
(9.4) depending on the kind of coupling i.e. unidirectional or bidirectional one. The
value or the functional form of ¢ is decided by the circuitry parts used i.e. resistor,
memristor, etc.

As it is obvious, all parameter values are determined by the values of the passive
components used, so each of the single double scroll circuits operates in a chaotic
mode, demonstrating a double scroll attractor. These parameter values could be
estimated by utilizing classic numerical analysis i.e. the circuit’s bifurcation diagram
or the maximal Lyapunov exponent spectrum. In Fig. 9.3 the bifurcation diagram
of variable (signal) x vs. system parameter b is presented, while in Fig.9.4 the
corresponding maximal Lyapunov exponent spectrum, depending upon the same
parameter b, appears. It is apparent from both figures that for 5> = 0.50r b = 0.7
each double scroll circuit seems to exhibit a rich chaotic dynamic behavior [57-59].

9.4.1.1 Bidirectional Coupling

In the case of resistive bidirectional coupling between the two identical double-
scroll circuits, the coupling circuitry (§) is just a linear resistor R¢. In this case,
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Table 9.1 Parameter and component values in “On-Off’ synchronization and bidirectional
coupling

a=05 b=0.5 c=1 k=0.5
R, = 14.3kQ R; = 20k Rx = 10kQ C=1nF

Table 9.2 Parameter and component values in “In-Out” synchronization and bidirectional
coupling

a=05 b=0.5 c=0.8 k=07
R1 = 25kQ R3 =R4 =R5 =R6 = 1kQ R8 = 14.4kQ R = 20k
R2 = 14.3kQ R7 = 20.4kQ2 RX = 12.5kQ C=1nF

Fig. 9.5 A snapshot of the
time-series of each circuit
(upper and lower), in the case
of bidirectional coupling. In
the middle difference signal
appears. Apparently, the
system is synchronized

the coupling coefficient is present at the equations of both circuits §&; = & = £ and

it is defined as follows: R

§=m‘

By using resistance R¢ in the denominator of coupling parameter & as a control
parameter, the system appears to undergo a transition from full synchronization
to full desynchronization, by traversing a region of incomplete synchronization
[57,59]. This region is a very interesting one, since various phenomena appear,
for different combinations of parameter values.

For two different parameter value sets, the system of the two resistively coupled,
double-scroll circuits exhibit either the “On-Off” or the “In-Out” intermittent
synchronization, until finally it fully desynchronizes. In specific, for the values of all
passive components and therefore parameters that appear in Table 9.1, the “On-Off’
transition arises [57]. On the other hand, in Table 9.2 the corresponding component
and parameter values, in the case of “In-Out” intermittent synchronization, are
quoted [59]. It should be noted that in the realized circuits the op amps that were
utilized were LF411, while a symmetrical power supply of £15V was used; thus
the saturation voltages were measured to be £14.3 V.

(9.8)
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Fig. 9.6 The phase portrait of each double-scroll circuit (/eft and right), in the case of bidirectional
coupling, for Rc = 5k (§ = 2)—state of system synchronization

Fig. 9.7 The synchronization
phase portrait for Rc = 5k
(& = 2), with the attractor
resting on the diagonal

In both cases and as long as R¢ < 8.7 k€2 (this means that the coupling parameter
& possesses a value £ > 1.14) the two double scroll circuits remained synchronized
as it is illustrated, by their time-series (y; and y,) and the corresponding difference
signal (which is almost zero), in Fig.9.5. In this case R¢c = 5k€2, thus coupling
parameter £ = 2. In Fig. 9.6 the corresponding phase portraits appear, while in
Fig. 9.7 the synchronization phase portrait of y; vs. y; is presented. Synchronization
attractor rests on the diagonal, as expected.
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Fig. 9.8 The coupling R

circuitry of Fig. 9.1, in the -

case of unidirectional ’\/V\l )
coupling P

Table 9.3 Parameter and component values in “On-Off” synchronization and unidirectional
coupling

oa=05 b=0.5 c=1 k=0.5
R1 = 25kQ R3 = R4 =R5 =R6 = 1kQ R8 = 20k R = 20k
R2 = 14.3kQ R7 = 20k RX = 10kQ C = 1nF

Fig. 9.9 A snapshot of each
synchronized double-scroll
circuit time-series (upper and
lower), in the case of
unidirectional coupling, for
Rc = 5kQ(§ = 2). Inthe
middle, difference signal
appears

9.4.1.2 Unidirectional Coupling

In the case of resistive unidirectional coupling between the two identical double-
scroll circuits, the coupling circuitry () is not just a linear resistor R¢ but there is a
kind of insularity between the two double-scroll sub-circuits, by utilizing an op amp
based buffer, as indicated in Fig.9.8 [58]. Apparently the realized circuit system
implements a master-slave configuration. In this case, the coupling coefficient is
present in the equations of the second (slave) circuit. Thus, in the normalized state
equations set—(9.1)—coupling factors &, and &, have the values §, = Oand & = &
and £ is defined by an expression exactly the same to that of (9.8), in the case of
bidirectional coupling.

The values of the elements of the two identical circuits, that ensure chaotic
operation for both circuits, are listed in Table 9.3, together with the values of all
normalized parameters (o, b, ¢ and k). In the experimental circuit the op amps
utilized were LF411, as well. Power supply voltages (positive and negative) were
setto £15V.

In this kind of coupling, the system remains synchronized for larger values of
coupling parameter £, compared to bidirectional coupling. Consequently, as long as
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Fig. 9.10 The phase portrait of each double-scroll circuit (left and right), in the case of
unidirectional coupling, for Rc = 3kQ (§ = 2)—state of system synchronization

Fig. 9.11 Synchronization
phase portrait for Rc = 3k
(& = 2); the attractor rests on
the diagonal

the coupling parameter & gets values £ > 1.74—this happens for coupling resistance
R¢ < 5.75kQ2—the system exhibits a synchronized behavior.

In Fig. 9.9, time-series y; and y, (upper and lower) and the corresponding differ-
ence signal are illustrated. Synchronization between the two double scroll circuits
is evident by the almost zero difference signal. In Fig.9.10 the corresponding
(identical) phase portraits appear and in Fig.9.11 synchronization phase portrait
of y1 vs. y, with its attractor resting again on the diagonal, depicting the system’s
synchronization state [58].
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Fig. 9.12 The 4th order
circuit based synchronized
system
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Fig. 9.13 The circuit implementation of negative conductance G and its real i — v (right)

9.4.2 4th Order Autonomous Nonlinear Coupled Circuits

The “In-Out” intermittent synchronization has also been reported in the case of
two initially identical, fourth-order, autonomous, nonlinear circuits, which are
unidirectionally coupled, via a linear resistor, as shown in Fig.9.12 [60]. This
circuit also exhibits a double scroll attractor. The coupling is implemented by
interconnecting the coupling circuitry between the C, nodes (uc; -coupling) of each
sub-circuit. It should be noted that the interconnected circuits are based on a third
order autonomous piecewise linear circuit, introduced by Chua and Lin [65, 66],
that is capable of realizing every member of the Chua circuit family.

Each sub-circuit includes two active elements: a linear negative conductance G,
which circuit implementation is presented in Fig. 9.13, together with the correspond-
ing characteristic curve (on the right) and a nonlinear resistor of N-type Ry, with
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Fig. 9.14 The circuit implementation of nonlinear resistor Ry and its piecewise i — v (lower)
Table 9.4 Comppnent values Component values Parameter values
of each synchronized 4th
order circuit and the values of RI11 =RI2 =Rl =2.0KQ BPl =145V
all the parameters regarding R21 = R22 = R2 = 109.0KQ BP2 = 10.00V
the active-circuit-elements L11=L12=1L1=102mH Ga = —0.83mS
L21 =122 =12 =21.5mH Gb = —0.5mS
Cl1 = 6.6nF LR =65V
C21 =C22=C2=52nF Gp = Gn = —0.5mS

the corresponding circuit implementation appearing in Fig.9.14, demonstrating a
symmetrical piecewise linear v — i characteristic curve (lower figure).

All circuit elements (regarding the synchronized system illustrated in Fig. 9.12)
were considered to have the same values in both sub-circuits, except capacitors Cj;
and C);,, since capacitor C); is destined to be used as a control parameter. The exact
passive-element values appear in Table 9.4, together with the parameter values of
both the active circuit elements (G and Ry). It should be noted that they were kept
fixed and were obtained and experimentally verified for the resistance values that
appear in Figs. 9.13 and 9.14. Moreover, it should be mentioned that all operational
amplifiers used, were LF411 [60].

The coupled circuit system dynamics (Fig.9.12) are described by set of state
equations (9.9). The first four equations describe the driving circuit dynamics, while
the other (last) four describe the dynamics of the slave circuit:
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db;ct“ = CL“ izt — f(uci)l
dlx;cl“zl _ C%l [—G - ucay —ip1 —igoi]
d’/ZlLtll _ Lil [—uci1 —ucar — Ry - ipi1]
d“stZl _ Liz [ucar — Ry -ir21]
db;ctzl = CLIZ liriz — f(uci2)]
duc, _ 1 [w =G ucn —in — iL22:|
dt Cn Rc
dL;Ltlz _ Lil [—uci» —uca — Ry -irn)
dbizzz _ LLZ [uca — R - 1] 9.9)

where f'(ucyj) is provided by (9.10) and represents the current flowing through the
nonlinear resistor Ry. (j refers to sub-circuit 1,2):

fluciy) = Geucyj +0.5(Gy — Gp) - (|ucij + Ei| — |ucij — E1|) +
0.5(Gp — G,) - (’MCIj + Ez’ — ’MClj — Ez’) (9.10)

Finally, the unidirectional coupling appears in the 6th equation of (9.9). The
coupling resistor possessed a value of Rc = 5k€2. In this case the synchronized
system behavior was studied by bringing about a parameter mismatch between the
two sub-circuits, while the coupling parameter remained unchanged. As long as
capacitor Cj, (slave circuit) had the same value to that of C;; = 6.60 nF (master
circuit), the two identical sub-circuits remain fully synchronized.

In Fig.9.15 the time-series uci; (upper) and uci, (lower) of the driving and the
driven sub-circuits, together with their difference (in the middle) are presented.

Note the zero difference between the corresponding uci; signals, indicating a
state of synchronization. In Fig. 9.16 the corresponding identical phase portraits ucy;
vS. ucy; (left), of the master circuit, and uci2 vs. ucy (right), of the slave circuit,
are shown, respectively. As expected in the case of complete synchronization the
time-series and the attractors of both the sub-circuits are identical and the difference
signal is continuously almost zero. This is further confirmed in Fig. 9.17, where the
synchronization phase portrait (uc; VS. uc;) is illustrated [60].
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Fig. 9.15 A snapshot of each
4th order circuit time-series
ucyj (upper and lower), in the
case of exact parameter
matching. In the middle a
zero difference signal
appears, indicating a
synchronized state of
operation
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Fig. 9.16 Phase portraits of both the master (left) and the slave (right) circuits, in the case of exact

parameter matching

Fig. 9.17 The corresponding
to Figs.9.15 and 9.16
synchronization phase
portrait; the attractor rests on
the diagonal depicting
synchronization
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Fig. 9.18 Master-slave PLL circuit diagram

9.4.3 PLL Simple-Coupling Circuits

The system of two PLL’s interconnected with the simplest possible way [67] i.e. the
master-slave configuration (unidirectional coupling), is presented hereby [61]. Even
in this simplest coupling, it is revealed that synchronization intermittency appears
on the way from full synchronization between the PLLs to full desynchronization.
The experimental setup was realized by two commercial PLL IC’s i.e. CD4046;
and it appears in Fig.9.18. It is apparent that there is a single (and simple)
coupling between the two PLLs. The first one is working in a normal, single PLL
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configuration, while the second one is driven by the output frequency of the first.
This is the most simple and commonly used connection of two PLLs (the output
frequency of a PLL is used as the reference frequency to the second, without the
existence of any feedback path).

In order to show that the chaotic behavior is inherent in this configuration and it
is not related to a particular kind of circuit, we used the simplest configuration for
building the two PLLs. The EX-OR phase detectors (PD) and the voltage controlled
oscillators (VCO) used, were those built-in the PLL ICs. It should be noted that
most commercial PLLs, including CD4046 that we used in our experiments, have
two types of built-in phase detectors (an EX-OR simple phase detector and a phase-
frequency detector). Both low-pass filters (LPF), plugged at the phase detector
outputs, have a cut-off frequency of 3.9 kHz and are of a simple (widely used) circuit
configuration. The role of these analog filters is to suppress the undesired higher
frequency harmonics and enhance the low frequency voltage signal which represents
the mean phase error value. Simple voltage dividers (potentiometers noted as (P) in
the circuit diagram) are used as loop-gain attenuators.

Finally, the center frequencies of the first and the second VCO were set (by
choosing properly the values of Ri, Ry, C; and R}, R}, C}) to 55.67kHz and
52.49kHz, respectively, so that all circuits (and especially the op-amps) are well
within their normal operating range [61].

9.5 Experimental Incomplete Synchronization

Although incomplete synchronization phenomena, such as those described in the
Synchronization section of this contribution, have been theoretically studied and
thoroughly described, there is not much experimental verification of them. The
three circuits outlined above provided experimental demonstration of intermittent
synchronization. In the lines that follow the Crisis-induced, the “On-Off’ and the
“In-Out”, experimental intermittent synchronization are presented and verified.

9.5.1 Experimental Crisis Induced Intermittent
Synchronization

Crisis-induced intermittency is a phenomenon usually encountered in the behavior
of chaotic circuits and it is featured by an abrupt qualitative structure alteration of
a chaotic attractor to an unstable trajectory in the corresponding phase space. This
alteration is due to attractor collision between the two distinct chaotic states (in
the beginning and the end of the phenomenon) [68]. It is reported that this kind of
transitional situation characterizes a system’s synchronization to desynchronization
route, as well [61].
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In this section the intermittent behavior of the phase error signal, in the
experimental PLL master-slave configuration appearing in Fig.9.18 is presented.
This simple, one way connection (no feedback path or loop) between the two PLLs
is widely considered as stable. However, as reported in [61] the presence of chaotic
behavior at certain conditions arises. This behavior is induced by a crisis between
two chaotic modes of operation. The phenomenon is observed at the limit of phase
locked frequency range, obliging the PLL system to undergo a route from full output
frequency synchronization to full desynchronization. The phase error signal ceases
to be periodic and becomes chaotic exhibiting Crisis-induced intermittency.

The frequency, fi,, of signal u;, and the values of the potentiometers (P) served as
control parameters. It was experimentally established, that for most of the values of
the control parameters, in the frequency interval under consideration (30 kHz down
to 14kHz), both PLLs synchronized and the signals, u; and u,, at the outputs of
the LPFs remained periodic. However, for specific values of the control parameters
accumulated at the two limits of the frequency hold-in range of the PLLs, chaos
sets on.

In the experimental study presented hereby the results obtained, for ratio values
of the potentiometers P; and P, equal to 0.196 and 0.174, respectively, in the
frequency range 14.300kHz < fi, < 14.380kHz are reported. It should be noted
that the frequency was adjusted with a precision of +0.1 Hz.

For 14.380kHz both phase error signals, u#; and u,, were periodic and both PLLs
were synchronized.

Shifting frequency from 14.380 kHz down to lower values, a bifurcation in u, was
observed in the form of an intermittent behavior of this signal, while #; remained
periodic. Signal u, consisted of long intervals of non-periodic oscillations at an
upper level, occasionally interrupted by non-periodic oscillations at a lower level.
The master PLL remained locked, while the slave one was intermittently locked. By
further shifting down the frequency, these lower level oscillations became denser
and of longer duration. In Fig.9.19, signal u,, in the form of time-series, in three
typical cases, is presented before crisis sets on, during crisis and after the end of the
crisis phenomenon.

The attractors that characterize the slave PLL were reconstructed and properly
embedded in the original phase space, according to Takens theory [69]. It is apparent
that the attractor in Fig. 9.20b consists of two sub-attractors, the ones presented in
Fig.9.20a, b. Note that he trajectories are orbiting for longer time intervals in the
upper sub-attractor—Fig. 9.20a—occasionally escaping for shorter time intervals,
to the lower one—Fig. 9.20c.

Quantitative confirmation of the crisis phenomenon just described, was accom-
plished by employing the Ott, Grebogi and Yorke theory about crises in dynamical
systems [70]. According to this, the transition probability P(7) of time intervals t,
for which the orbit stays in (a periodic or) one of the chaotic attractors i.e. the known
laminar lengths, obeys the following law [41]:

P(r) = o) 9.11)
(r)
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Fig. 9.19 Time-series of phase error signal u2 (in the slave PLL) for three representative cases:
(@) fin = 14.390kHz before crisis sets on, (b) fi, = 14.356kHz during crisis and (¢) fi, =
14.300 kHz after the end of crisis

< 1> stands for the average time between successive transitions. It is important
to mention that this law holds for a smooth distribution of the initial conditions,
something that really applies in this case, due to the way that time-series sampling
was registered [71,72].

A typical distribution plot of probability P(t) vs. T appears in Fig. 9.21 for f;,, =
14.358 kHz. An exponential decay fitting of (9.11) provides an estimate for factor
1/ <t > and can lead to the calculation of < t > . For this particular plot, the value
obtained was <t > = 3.858 ms.

Similar results were also obtained for every input frequency f;, in the range
between 14.370kHz down to 14.340kHz, where the crisis takes place. These
results were exploited in calculating the crisis critical exponent y. The average
time <t > of the laminar lengths between two successive transitions from one
chaotic to another chaotic (or periodic) periodic mode of operation is decreasing
with increasing frequency f;,, according to [41,70]:

(r) o< (fin— ferr) ¥ =77 9.12)
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Here, f.i stands for the critical frequency at which the crisis is initiated, € is
the change of the crisis parameter (f;;, — feit) and y is the critical exponent of
the crisis, characterizing its distributions. Double logarithmic plots of <7 > vs.
e, for f.;; =14.374kHz (where he crisis phenomenon experimentally started), is
presented in Fig. 9.22. In this plot mean laminar lengths < 7 > were estimated from
the distribution plots of probability P(7), as the one presented in the previous figure
(Fig.9.21).

Again an exponential decay fitting of (9.12), finally provided the critical expo-
nent of the crisis y which holds the estimated value y = 0.687. The obtained value
of y is well above the theoretically predicted lower limit of 0.5 [73,74], but it is not
that high so that we could observe transitions of quite long duration frequently [68].

9.5.2 Experimental “On-Off” Intermittent Synchronization

As already mentioned “On-Off’ intermittency is a phenomenon encountered in
chaotic dynamical system-synchronization. It appears in both bidirectional and
unidirectional couplings. The transition under question is characterized by specific
distributions [52-54] and the desynchronization demonstrated seems to occupy
almost the whole synchronization phase space, with no preference to some direction.

In this section the experimental “On-Off’ intermittent behavior of two dou-
ble scroll circuits both unidirectionally [58] and bidirectionally [S7]coupled, is
presented. The circuits (Fig. 9.1) demonstrating this particular route from a synchro-
nized state of operation to a fully desynchronized one, have been already described
in the previous sections.

In both cases coupling resistance Rc, in the denominator of coupling coefficient
& in (9.8), served as the system’s control parameter and its value was changed
from almost zero up to 100kS2 in the case of bidirectional coupling and up to
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Fig. 9.23 Time-series y;(¢)
(upper) and y;(t) (lower)
snapshots, from each
sub-circuit for two
characteristic cases of
incomplete synchronization

70kS2 in the case of unidirectional coupling. Although, in these regions each
circuit remained chaotic exhibiting a double-scroll attractor, the coupled system
underwent a transition from full to incomplete synchronization, ending to complete
desynchronization.

9.5.2.1 “On-Off” Intermittency in Bidirectional Coupling

In the case of bidirectional resistive coupling the system parameter values, resulting
from the circuits’ component values, have already been quoted in Table 9.1 [57]. It
is noted that both synchronized circuits were identical.

This resistive coupling served as the control parameter for studying the phe-
nomenon of incomplete synchronization. Its critical value i.e. the value for which the
incomplete synchronization begins, was experimentally found to be Rc = 9.60kS2
[57].

As long as Rc was below the critical value Rc—¢it = 9.60kS2, the two
identical double-scroll circuits remained fully synchronized, as already illustrated
in Figs. 9.5, 9.6 and 9.7. As expected in the case of complete synchronization, both
the time-series and the corresponding circuit attractors are identical. The difference
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Fig. 9.24 Phase portraits of each double-scroll circuit for the two typical case of Fig. 9.23

signal is continuously almost zero and the synchronization phase portrait strictly
remains along the diagonal.

For values of Rc higher than 9.60kS2 and in the range 9.60k2 < R <80.00k<2
the two circuits were incompletely (intermittently) synchronized. In Fig. 9.23 time-
series y1(¢) (upper) and y,(¢) (lower) of each double-scroll circuit, together with
their difference signal, are presented in the case of Rc = 30.00k2 and Rc =
60.00 k€2, respectively. In Fig. 9.24 the individual phase portraits of each circuit (x;
vs. y; and x; vs. ;) are shown while, the corresponding synchronization phase
portraits (y1(¢) vs. y»2(¢)) appear in Fig.9.25, confirming each circuit’s chaotic
mode of operation. These two representative cases correspond to weak and strong
incomplete (intermittent) synchronization. The difference signal is almost zero for
long time spaces, bursting occasionally at significantly non-zero values. These
bursts become of longer duration and appear more frequently, with increasing values
of coupling parameter Rc. As expected in the case of incomplete synchronization,
both the time-series and the attractors are intermittently correlated. This is confirmed
in Fig.9.24, where the corresponding phase portraits are shown. Although the
attractors are quite similar a careful examination reveals that they are not identical.
Moreover, the synchronization phase portraits in Fig.9.25 consist of trajectories
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Fig. 9.25 The corresponding to Figs. 9.23 and 9.24, synchronization phase portraits for the cases
of “On-Off” type incomplete synchronization

Fig. 9.26 Time-series y,
(upper) and y, (lower)
snapshots, in the case of full
desynchronization

Fig. 9.27 Phase portraits of each sub-circuit for the case of full desynchronization of Fig. 9.26
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Fig. 9.28 The corresponding
to Figs. 9.26 and 9.27, full
desynchronization phase
portrait. Intermittent bursts
have no preference to
direction in the phase space

Fig. 9.29 A representative
(Rc = 20k€2) distribution
P(7) of durations t of laminar
lengths in the case of
bidirectional coupling. Full
circles denote experimental
data, while the line represents
a proper fitting with a power
law of the form of (9.1)

logP(z)

log()

spending most of the time on the diagonal, only temporarily escaping from it. These
escapes correspond to the bursts in the difference signal.

Finally, for Rc > 90.00kS2 the system circuits become fully desynchronized.
In this case their y(¢) time-series’ as well as their difference appear in Fig.9.26,
while in Fig.9.27 the corresponding chaotic attractors are presented. In Fig. 9.28
synchronization phase portrait appears. In this case of full desynchronization, the
time-series and the attractors are continuously uncorrelated, as confirmed by the
difference signal, which possesses almost always non-zero values. Consequently,
the attractors of each double-scroll circuit are completely different. Apparently, the
synchronization attractor is fully blown out of the diagonal, covering most of the
synchronization phase space.

The qualitative evaluation of the dynamics associated to this transition, suggested
that it had the characteristics of “On-Off” intermittency [52-54]. In order to verify
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Fig. 9.30 Double-log plot of -2.0 -
the laminar length mean
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this assumption, laminar length distributions and the scaling of the mean laminar
lengths with the difference (Rc — Rc—crit), Were checked, according to theoretically
predicted laws described in (9.1) and (9.2) in the Synchronization section of this
chapter.

In Fig.9.29, a representative distribution P(7) of laminar lengths durations 7
of the difference signal, for Rc = 20.00kS2 is shown. The proper linear fitting
of the experimental data (full circles) revealed a slope 8 equal to B = —1.52.
Similar distributions for other values of control parameter Rc provided slope values
for B not substantially deviating from —1.50, supporting the classification of this
intermittency as one of the “On-Off” type [52-54].

Finally, in Fig. 9.30 mean duration of laminar lengths < t > vs. the difference
(Rc — Rc—crit), in a double logarithmic plot, appears. Again a linear fitting of the
experimental data (full circles) resulted to a straight line with a slope y equalto y =
—1.005, further supporting the “On-Off’ classification of the observed intermittency
[52-54].

9.5.2.2 “On-Off” Intermittency in Unidirectional Coupling

In the case of unidirectional coupling the system parameter values, resulting from
the circuits’ component values, appear in Table 9.3 [58]. Again both synchronized
double-scroll circuits were identical but this time the system behaves as a master-
slave scheme.

Coupling resistance Rc served as the control parameter of the desynchronization
route and its critical value was experimentally found to be Rc = 5.75k2 [58];
almost half of the value that it possessed in the bidirectional coupling case [57].

As long as Rc was below the critical value, the two identical double-scroll
circuits remained fully synchronized, as already illustrated in Figs.9.9, 9.10 and
9.11. Again, as expected in the case of complete synchronization, each circuit
corresponding time-series and their attractors are identical, while the difference
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Fig. 9.31 Time-series y;
(upper) and y, (lower)
snapshots, in the case
unidirectional incomplete
synchronization, for

Rc = 30.00kS2

Fig. 9.32 Phase portraits of each sub-circuit for the case of incomplete synchronization of
Fig.9.31

signal is continuously zero and the synchronization phase portrait strictly remains
on the diagonal.

For values of R higher than its critical value and in the region that ranges
from Rc = 5.75kQ to Rc = 60.00kS2 the two circuits were again incompletely
(intermittently) synchronized. In Fig.9.31 time-series x;(¢) (upper) and x,(¢)
(lower) of each double-scroll circuit and their difference signal, are presented in a
representative case of Rc = 30.00kS2. In Fig.9.32 the individual phase portrait
of each circuit (x; vs. y; and x, vs. y,) is illustrated. The corresponding syn-
chronization phase portrait (x;(¢) vs. x,(¢)) appear in Fig. 9.33, always confirming
each circuit’s chaotic mode of operation. Apparently, both the time-series and the
attractors are intermittently correlated, something that also corroborated by the
synchronization phase portrait.

For Rc > 60.00kS2 the system exits the previously described region of inter-
mittent synchronization and it fully desynchronizes. Although, the sub-circuits are
still unidirectionally and resistively coupled, still exhibiting a double-scroll chaotic
behavior, the master circuit ceases to drive the operational behavior of the slave
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Fig. 9.33 The corresponding
to Figs. 9.31 and 9.32, full
desynchronization phase
portrait. Likewise the
bidirectional coupling
Intermittent bursts have no
preference to direction in the
phase space

Fig. 9.34 Time-series y;
(upper) and y, (lower)
snapshots, in the case
unidirectional full
desynchronization, for
Rc = 70.00kS2

circuit. Consequently, they become fully desynchronized. In Fig.9.34 the times-
series’ x(¢) (upper) and x,(¢) (lower) sub-circuit with their difference signal (in
the middle) are presented, while in Fig. 9.35 each sub-circuit phase portrait appear
and in Fig. 9.36 the corresponding synchronization phase portrait is illustrated. Note
that the control parameter was set at Rc = 70.00k€2. It is obvious by the last three
figures that the attractors are continuously uncorrelated.

In order to gain an insight of the mechanism governing the transition from
full synchronization to complete desynchronization in this master—slave double-
scroll system, experimental laminar length distributions and the scaling of the mean
laminar lengths with the deviation of the control parameter from its critical value
(Rc — Rc—crit), were again examined.

Likewise the case of bidirectional coupling [57], the qualitative evaluation
of the dynamics associated to this transition, suggested again that it had the
characteristics of “On-Off’ intermittency [52-54]. In specific, proper linear fitting
on the experimental data of laminar length distribution, according to the power law



9 The Route from Synchronization to Desynchronization of Chaotic . . . 261

Fig. 9.35 Phase portraits of each sub-circuit in the case of full desynchronization of Fig. 9.34

Fig. 9.36 The corresponding
to Figs. 9.34 and 9.35, full
desynchronization phase
portrait

in (9.1) and for different values (in the region of incomplete synchronization) of
the control parameter Rc, provided slope values for 8 not substantially deviating
from —1.50, as theoretically foreseen for the type of intermittency “On-Off’.
A typical distribution P(7) of laminar lengths durations 7 of the difference signal,
for Rc = 30.00kS2, is presented in Fig.9.37. The value of 8 obtained in this case
was f = —1.496.

Finally, this was further confirmed by determining the slope y exhibited by mean
duration of laminar lengths < 7 > vs. the difference (Rc — Rc—cit) distribution,
appearing in Fig. 9.38. A least square fitting of the experimental data (full circles)
leaded to a straight line with a slope y equal to y = —1.093, clearly confirming the
following power law of (9.2). This result is in full accordance with the classification
of the observed intermittency as an “On-Off” type [52-54].

In this case of unidirectional coupling, the desynchronization phenomenon scaled
into a narrower range (up to 60kS2) compared to the bidirectional case (up to
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Fig. 9.37 A typical 2 -
(Rc = 30k€2) distribution
P(7) of durations 7 of laminar
lengths in the case of
unidirectional coupling
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90K<€2). This is easily explained by the fact that in unidirectional coupling the
master-circuit dynamics evolve independently, while the slave-circuit dynamics evo-
lution is influenced by the master [57,58]. This results to earlier desynchronization.
On the contrary, in bidirectional coupling both the circuits influence one another,
resulting to putting back full desynchronization.

9.5.3 In-Out Intermittent Synchronization

As already mentioned “In-Ouf” intermittency is a phenomenon encountered in
chaotic dynamical system synchronization. The transition under question is char-
acterized by specific distributions [52, 55, 56] and desynchronization appears to
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demonstrate certain structures in the synchronization phase space, due to transverse
instability resulting to blowing out the system attractor from a lower dimensional
subspace [52].

In this section the experimental “/n-Out” intermittent behavior in the cases of
two circuit-synchronized systems i.e. a double-scroll bidirectionally [60] and a 4th
order unidirectionally [59] coupled, is presented. The circuits demonstrating this
particular route from a synchronized state of operation to a fully desynchronized
one have been already described in the previous sections (Figs. 9.1 and 9.12). In the
first case coupling resistance Rc served as the system’s control parameter while in
the case of the 4th order synchronized circuits, parameter mismatch was the reason
of the route to complete desynchronization.

9.5.3.1 “In-Out” Intermittency in Bidirectionally Coupled Double Scroll
Circuits

In the case of bidirectional resistive coupling between the two double-scroll circuits
appearing in Fig.9.1, next to the “On-Off” intermittent synchronization already
described (for 9.60k2 < R¢ < 80.00kS2), the system also exhibited an “In-Out”
intermittent behavior in a narrow range of the control parameter values i.e. in the
range 8.70k2 > Rc > 7.10kSQ. In this case, the incomplete synchronization
phenomenon evolution is described in details in the following lines [60].

As long as Rc possessed a value larger than, the experimentally determined,
critical value Rc—cir = 8.70kS2, the two identical double-scroll circuits remained
fully synchronized in the way that is illustrated in Figs. 9.5, 9.6 and 9.7. Of course,
this happened for values of Rc lower than 9.60 k€2, since at this value the onset of
“On-Off” intermittent synchronization arises [57].

For values lower than 8.70 k2 incomplete synchronization became stronger. In
Fig.9.39 three representative snapshots of time-series, x; (upper) and x, (lower)
together with their difference signal (x; — x7) in the middle, are presented. It is
apparent from all three snapshots that the appearing bursts in the difference signal
(in the middle) occur exclusively, when each double-scroll circuit trajectories reside
only on one of the two scrolls in the phase space. What is noteworthy is that for each
circuit, trajectories simultaneously limit themselves to one scroll of the attractor and
these scrolls are opposite or complimentary to one another, as illustrated in Fig. 9.40
[60].

Three representative synchronization phase portraits (x; vs.x;), depicting the
transition from full synchronization to full desynchronization through a region
of incompletely synchronized behavior, appear in Fig.9.41. In the first phase
portrait the synchronized case is presented for Rc = 8.8k€2, just above the
critical value, with the trajectory resting along the diagonal, as expected. In the
second, phase portrait for Rc = 7.9k a hybrid illustration appears, consisting
of both the diagonal and a wing-like structure below the diagonal. This behavior of
the system trajectories depicts a special case of incomplete synchronization, with the
diagonal corresponding to synchronized mode of operation and the escapes to the
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Fig. 9.39 Time-series
snapshots of x| (upper side)
and x, (lower side) and their
difference (in the middle), in
three typical cases of
intermittent synchronization:
(a) Rc = 8.20k<2,

(b) Rc = 8.00kS2 and

(¢) Rc = 7.80kQ
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wing corresponding to desynchronization bursts of the difference signal. What is
remarkable in these bursts is that they are spatially limited within the appearing
wing-like structure. Finally, in the third phase portrait for Rc = 7.1 k€2 the diagonal
disappears and only the wing-like structure remains. Thus, desynchronization
prevails and the trajectory is always out of the diagonal. However, this kind of
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Fig. 9.40 The attractors of each double-scroll circuit when they limit themselves in one scroll,
thus leading to desynchronization bursts. Note that each double-scroll circuit trajectory limits to
only one scroll, being one complimentary to each other

desynchronization is spatially limited and the trajectory remains strictly within the
wing-like structure, portraying an intermittent synchronization of “In-Out” type
[52].

In order confirm the “In-Out” nature of this intermittent synchronization behav-
ior, implied by the corresponding phase portraits in Fig. 9.41, experimental laminar
length distributions and the scaling of the mean laminar lengths with the deviation
of the control parameter from its critical value (R¢c — Rc—cit), were again measured
and evaluated.

The theoretical approach of this phenomenon dictates an experimental laminar
length distribution (for a constant value of the control parameter) that verifies (9.3).
In specific, an almost linear region and a shoulder followed by another almost linear
region of different slope appear, as theoretically predicted [52,53].

Proper linear fitting on the experimental data of the upper linear region of laminar
length distribution, according to the power law in (9.3) and for different values (in
the region of incomplete synchronization) of the control parameter Rc, provided
slope values for 8 not substantially deviating from —1.50, as theoretically foreseen
for intermittency of “In-Out” type [52]. A typical distribution P(t) of laminar
lengths durations t of the difference signal, for Rc = 8.20k€2, is presented in
Fig.9.42. The value of § obtained in this case was § = —1.494.

Experimental data in the rest (lower part) region, demonstrates a shoulder and
then another, rather narrow, linear part with different slope, for large values of
laminar lengths as expected by theory. Taking into account the estimated value
of B and the fact that synchronization bursts out of the diagonal correspond to
jumps between two different manifolds (the diagonal and wing-like structure,
respectively), the classification of this intermittency as one of the “In-Out” kind,
can be safely supported [52,55, 56].

Finally, as far as the mean duration <7> of laminar lengths versus the difference
(Rc — Re—crit) 1s regarded, (9.2) holds also in the case of “In-Out” intermittency. In
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Fig. 9.41 Three
synchronization phase
portrait snapshots (x; vs. x3)
in the cases of full
synchronization

(Rc = 8.8k€?), intermittent
synchronization

(Rc = 7.9k2) and
desynchronization

(Rc = 7.1kQ2)

S.G. Stavrinides and A.N. Anagnostopoulos
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Fig.9.43, a linear fitting of experimental data results for <t> vs. (Rc — Rc—crit) in
double logarithmic plots, provides with a slope y = —1.051, as predicted in theory,
further confirming the “In-Out” classification [52,55].

9.5.3.2 “In-Out ” Intermittency in Unidirectionally Coupled Double 4th
Order Circuits

Two unidirectionally, resistively coupled 4th order circuits already, previously
in this contribution, presented and illustrated in Fig.9.12, exhibit an incomplete
synchronization behavior region of the “In-Out” type, but this time by employing a
controlled parameter mismatch as the phenomenon’s control parameter [59].

In specific, capacitance C); of the driven circuit served as the system’s control
parameter and its value was changed from 6.60 nF (identical to the corresponding
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capacitor of the driving circuit) down to 5.90nF. In this region, although, both
circuits remain chaotic, they undergo a transition from full to incomplete synchro-
nization, ending to complete desynchronization [59].

In details, as long as C}, had the same value to that of C;; = 6.60nF, the two
identical sub-circuits remained fully synchronized. Time-series of the master circuit
(upper) ucii, the slave circuit (lower) ucj, and their almost zero difference signal
(uc11 — ucay), have already been presented in Fig.9.15. Likewise, in Fig.9.16 the
identical phase portraits, ucy; vs. ucz;, of the master circuit, and ucjy vs. ucap, of
the slave circuit, in the case of full synchronization have appeared, while in the
synchronization phase portrait, with trajectories residing on the diagonal, has been
presented in Fig. 9.16.

Beginning from the control parameter’s critical value Cjy¢it = 6.60 nF and in the
range 6.60 nF > Cj, > 5.90 nF the two sub-circuits are incompletely synchronized.
In Fig.9.44 a representative example (Cj, = 6.30nF) of this incomplete (inter-
mittent) synchronization appears. In the first figure, time-series for the master uc;;
(upper) and the slave ucj, (lower) circuit, as well as their difference ucy; — uca)
(in the middle), are presented. The difference signal is almost zero for long time
spaces, bursting occasionally at significantly non-zero values. It should be noted
that these bursts become of longer duration and appeared more frequently, with
decreasing values of Cj,. In the second figure the master and the slave circuits’
phase portraits (uc1; Vs. ucz; and ucyy vs. ucy) appear. As expected in the case of
incomplete synchronization, both the time-series and the attractors are intermittently
correlated. In the third figure, the corresponding synchronization phase portrait
(uci1vs. uciz) is illustrated. It consists of trajectories spending most of the time on
the diagonal, only temporarily escaping from it. These escapes correspond to the
bursts in the difference signal.

Finally, for low enough values of C,(Cj, < 5.90 nF), the two circuits are becom-
ing fully desynchronized. In Fig.9.45, their times-series and their difference, the
attractors and the corresponding synchronization phase portrait appear again. In this
case of full desynchronization, the time-series and the attractors are continuously
uncorrelated. This is confirmed by the difference signal (uci; — ucy1) in Fig. 9.45a
which possesses almost always non-zero values. Consequently, the attractor on
the right side (driven circuit) is blown out in comparison to the attractor on the
left side (driving circuit). As it is expected in the case of full desynchronization,
the synchronization phase portrait is fully blown out of the diagonal, but what is
important is the fact that it still retains a certain structure clearly hinting that this
intermittent behavior is of the “In-Ouf” type [52].

To confirm this suggestion the plots of the distribution of laminar lengths were
checked. In Fig. 9.46 a representative distribution P(7) of durations t of the laminar
lengths, for C;, = 6.40nF is presented in double logarithmic plot. The curve
of this plot consist mainly of a linear part (upper side) with a slope B equal to
B = —1.491, as theoretically expected i.e. a slope with § = —1.5. All experimental
distributions of laminar lengths, for other values of the control parameter Cj,,
resulted to slope values (B) very close to —1.5. On the other hand, experimental
data in the rest (lower side) part of the plot in Fig.9.46, demonstrates a shoulder
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Fig. 9.44 Representative time-series, phase portraits and synchronization phase portrait in the case
of “In-Out” intermittent synchronization, for Cj, <6.60 nF

and then another, almost linear part with a different slope for large values of laminar
lengths, as expected by theory. Taking into account, the estimated value of 8 and
the fact that synchronization bursts retain a certain structure corresponding to jumps
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Fig. 9.45 Time-series, phase portraits and synchronization phase portrait in the case of full
desynchronization, for Cj, <5.90 nF

between two different manifolds (the diagonal and structured desynchronization
phase portrait) the classification of this intermittency as one of the “I/n-Out” kind,
can be safely supported, according to the related literature [52,55, 56].

Checking the mean duration <7 > of laminar lengths versus the difference
(Rc — Rc—crit) it was confirmed by the linear fitting of experimental data results
(Fig.9.47) that (9.2) holds also in this case, with a slope estimated to be y =
—1.035, further confirming the “In-Out” classification.
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Fig. 9.46 Representative
distributions P(t) of
durations 7 of the laminar
lengths for Cj, = 6.40nF, in
a double logarithmic plot.
The line represents a linear
fitting fulfilling the first term
of the power law in (9.3)

Fig. 9.47 Double
logarithmic plot of the mean
duration <t > of laminar
lengths vs. the difference

(C12 — Cioerit)- Full circles
denote experimental data,
while the /ine represents a
fitting with a power law of the
form of (9.2)
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Finally, it should be mentioned that in this case of synchronization desynchro-
nization route of 4th order coupled circuits, another feature of “/n-Ouf” intermittent
behavior was encountered: that of increasing burst heights, in the difference signal,

with increasing (Cj2 — Cacrit) as theoretically predicted [52,55, 56].

9.6 Discussion

In the present chapter, experimental results and their evaluation, in different cases
of coupled, nonlinear electronic circuits, undergoing synchronization to desynchro-
nization routes, have been presented.

These incomplete synchronization cases included three routes, namely the crisis
induced intermittency, the “On-Off’ intermittency and the “In-Out” intermittency.
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All three cases were studied in the whole range the phenomena were developed,
both qualitative and quantitative. Decisive factors for classifying the intermittency
type of these transitions were: morphology of synchronization phase portraits and
laminar length distribution, as well as scaling of mean duration <t> of laminar
lengths according to the deviation of the phenomenon control parameter from its
critical value.

Although, intermittency is an anticipated route from a system’s synchronized
state to a fully desynchronized one, other routes to desynchronization could not
be explicitly closed out. However, in the reported in this chapter synchronized
systems and for the specific sets of parameters, routes like period doubling or quasi-
periodicity were not observed.

It would be interesting to examine the potential of these systems to undergo other
kinds of desynchronization routes. The authors believe that the existence of such
routes could emerge in synchronization-desynchronization, if the systems are not in
a chaotic state of operation but at the edge of chaos i.e. at the stage of passing from
periodicity to chaos.

Finally, since desynchronization routes also appear for certain parameter mis-
match, it would be interesting to consider the case of synchronization desynchro-
nization of two otherwise identical, coupled circuits each one undergoing a different
route to chaos.
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Chapter 10
Projective Synchronization of Delayed Chaotic
Systems

S. Jeeva Sathya Theesar, P. Balasubramaniam, and Santo Banerjee

Abstract This chapter is focused to study various analytical conditions for occur-
rence of projective synchronization of time varying delayed chaotic systems.
Synchronization criteria which depend on the time delay are presented via linear
matrix inequalities and these conditions have been extended to chaotic neural
networks with time-varying delay. Non-differentiable time varying delays can be
present in the system and the more relaxed condition gives the upper delay bounds
for ensuring the projective synchronization. To achieve the desired proportional
relation between the drive and response system, an active nonlinear control tech-
nique using an observer technique is applied and the control is practically realizable.
Various numerical results on Ikeda system, Lu attractor and modified delayed-Chua
system are exhibited to show the effectiveness of the proposed results.

10.1 Introduction

Projective synchronization (PS) is a dynamical phenomena where state of the drive
system x(¢) and that of the response system y(¢) synchronizes with respect to the
scaling factor « such that there is a proportional relation y(¢#) = ax(¢). This special
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type of synchronization behaviour was first observed by Gonzales-Miranda [11],
by studying the invariance properties under amplification and displacement of the
chaotic attractors. Mainieri and Rehacek [24] first named this phenomena, where
two identical chaotic systems could be synchronized up to a scaling factor, as
projective synchronization. The study on PS showed useful insight to various
real time applications from secure communication [2, 6, 22] to Cellular Neural
Networks (CNN) [12] due to its proportionality relation. In secure communication
problem, this characteristic used for M-nary digital communication for fast transfer
of data [6]. Thus researcher dwelled into the study of various types of projective
synchronization in finite dimensional systems [19,31], infinite dimensional systems
[5,9,29], multiple-delayed systems [15, 16], neural networks [21,25] and complex
networks [10], etc.

In existing results [22,29,30], the performance of the projective synchronization
was controlled by the scaling factor. In the view point of control theory, however the
scaling scaling factor, the projective synchronization must occur and the nonlinear
observer based control technique [12] came into play. An observer is a dynamic
system designed to be driven by the output of another dynamic system (plant)
and having the property that the state of the observer converges to the state of
the plant [12]. On the other hand, lag between the states of a chaotic system due
to signal transmission can not be neglected and further delay can detonate the
successful secure communication. In fact, even for finite dimensional system, the
delayed feedback control technique [14,26] was introduced for practical realization
of infinite dimensional structure and further time delay in chaotic system helped
to have better secure communication system. Very recently, the study of PS using
observer technique [9] was proposed in time delay system considering the above
facts. The theoretical analysis for projective synchronization of time delay system
lacks pertinence as the obtained condition is applicable only for lower order delay
system and differentiable time varying delay with a strong restriction. Also, the
result in [9] does not even depend on the time delay and can not abe applied to time
varying delays. Also it is worth noting that if delay time is known priori, the time-
delayed system becomes quite simple and the message encrypted by the chaotic
dynamic can easily be extracted by the common attack methods. Thus more general
case of time varying delay such as non differentiable delays and modulated delays
[18] must be considered.

Motivated by the above discussion and considering the practical applicability of
general case of time delays, this study overcomes the above mentioned drawbacks.
Firstly, PS problem is generalized to system with time varying delay. The delay can
be non-differentiable but bounded by a constant. The active nonlinear observer is
used for control and the linear error state feedback gain is obtained from sufficient
linear matrix inequality [4] conditions. The absolute stability of error dynamics
ensures the synchronization between the drive and response systems. By making use
of Krasovskii-Lyapunov approach [20], the sufficient conditions have been obtained.

Can we have a general condition so that given two time-varying delayed system
achieve PS with given scaling factor «? Answer to this question is presented
in this first part of the present study. In the next part, we intended to look for
generalized projective synchronization (GPS) and GPS of interacting network of
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Fig. 10.1 Schema of
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chaotic systems. In the present chapter, applicability of the sufficient conditions to
chaotic neural networks [1,23,27] and multiple delayed systems are presented. The
conditions are well tested on Ikeda systems [2, 17], Lu chaotic attractor [23], and
newly introduced delayed-Chua chaotic system. Numerical results clearly shows
the effectiveness of the proposed method and the sufficient conditions.

This chapter is organized as follows. In the next section, the definition of PS
between two general delayed chaotic systems is introduced and the main problem
is formulated. In Sect. 10.3, the sufficient conditions for achieving PS are derived
for two identical delayed chaotic systems and its various extensions. Section 10.4
takes the PS of multiple delayed chaotic systems and Sect. 10.5 is devoted to some
applications of the proposed scheme. In Sect. 10.6, numerical examples to verify the
scheme are presented. Conclusions are given in the final section.

10.2 Projective Synchronization Formulation

Consider the coupled chaotic systems with time varying delay

x(1) = f(x, %) (10.1)
y(@) = f(y.yer) +ulx,y) (10.2)

where x,y € RN", f : " — R”" is a nonlinear vector field, u(x, y) is the active
nonlinear control term and x, () = x (¢t —7(¢)). The main objective of this study is to
achieve projective synchronization between (10.1) and (10.2). Let the error between
two dynamicsbe e = y(t) —ax(t). If e — 0 ast — oo, projective synchronization
between the coupled system is achieved with respect to the nonlinear control u(x, y)
to be designed. PS synchronization scheme with nonlinear observer based control is
presented in Fig. 10.1.

Definition 1. A projective observer is a dynamical system in which the state of the
master is proportional by a constant scaling factor o with the state of the slave’s. Let
the output of the system (1) by z = s(x, x;(;)). The dynamical system

y@) = f(y.yun) + &z =50, y:0)) (10.3)



280 S.J.S. Theesar et al.

is then said to be nonlinear projective observer system (1) if y — ax(¢), where
g : N — N is a suitable chosen nonlinear function. Thus synchronization
manifold of the system (10.1) and (10.2) is y = ax ().

Model (10.1) and (10.2) can be written in the following form:

x(t) = Ax + 11 Bi1gy (x) + 1 Bogp (X2(r) (10.4)

§(O) = Ay + 12Bign () + paBoge (2) 4+ g = 50 ye) (105)

where x (1), y(1) € R, A € W, B; € NN, i (x) = [d1. o+ bin]
NRN" — NR" is a nonlinear function of x, satisfying the generalized sector bounding
condition

[0366) — 18] [036) 7€) <0, v, (10.6)

foralli=1,2,...,n,and j = 1,2, where ¢;;(-) belongs to the sector | [; ¥ ],

jio i
characterizing the nonlinear behavior of the system which forms large class of
chaotic and hyperchaotic systems. Here 7(¢) is the time varying delay such that
0 < 7(t) < Ty < oo and 1y is a scalar.

Given a system, let s(x, x;()) = Bi¢1(x) + Bo¢o(x;(;)) + Cx be the nonlinear
observer of synchronizing signal, and without loss of generality, choose g(z; —
s(¥, Yz(r))) such that

u(x,y) = By [¢1(y) — ¢1(ax)] + Bz [¢2(ye(r) — 2(xc()) ] — KC [y — ax]

(10.7)

where K € R"*" is the coupling strength to be determined later. The synchroniza-
tion error between two dynamics be e = y — ax. Thus the error dynamic can be
obtained as

6=y —ai

= (A —KC)e + Bigi(e) + Badr(er(r)), (10.8)

where $1(e) = ¢1(y) — p1(ax), $a(ezi) = $2(Ve(r) — P2(0txr(r)), and po = gy
From (10.6), ¢; (§) satisfies

[‘i;ji(é)_l; ][éﬁ(é‘)—lgs] <0, VE (10.9)

The initial condition corresponding to the error dynamical system (10.8) is given as
e(0)=¢(0), 0 € [—tm, 0], ¢ € M, where M is the Banach space of absolutely
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continuous functions from [—tys, 0] to R” with square-integrable derivative and
with the norm

1/2

wwww},

0

0
Iwm=[W®W+/

—Ty

wwWM+/

—Ty

where the vector norm || - || represents the Euclidean norm. Few useful results used
in obtaining the condition are stated below.

St Siz
ST, 82
S = SlTl, S = Ssz, is equivalent to any one of the following conditions:

Lemma 1. [4] (Schur complement) For a given matrix S = [ :| > 0, where

(1) 8$»>0, Si1—S1nSy'SL>0
2 Siu>0, Siu—S55"S1>0

Lemma 2. [13] For any constant matrix X € R™", X = XT > 0, there exists
positive scalar ty such that 0 < ©(t) < ty, and a vector-valued function x :
[—ta, 0] = R”, the integration —tyy ftt_w xT(s)X % (s)ds is well defined,

T
Lo . - x(2) -X X x(1)
‘”’[ﬂMx(”Xx“”s—[xo—wM>} [* —X}[xu—rMJ'

In this section we formulated the PS problem between (10.4) and (10.5) with
nonlinear observer controller (10.7). The asymptotical stability of closed-loop error
dynamics (10.8) ensures the PS and the design of the control gain K is presented in
the following section as sufficient conditions.

10.3 Analytical Conditions

In this section, we will derive the projective synchronization criteria based on the
stability theory of time varying delayed systems. For this objective, consider the
Krasovskii-Lyapunov functional as

0
vm@¢»=JUde+/ T +£) Z1 et + E)dE

—Ty

0 t
. T .
+1u /_w [+0e (§) Z, é(§)dEAD (10.10)

where e, =e(t + 5), Vs € [—ty, 0], and P, Z;, Z, are positive definite matrices
of appropriate dimensions. It is clear that V(¢,e,,é,) is a quadratic functional
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depending on derivatives. The asymptotic stability of the error system described
by (10.8) with (10.9) is assured if there exist &; > 0 (i =1, 2, 3) such that

eille®I? < V(t,e,é) < ealledir

Vit e é) < —e3)le(t)]|”.

We now state and establish the following theorem.

Theorem 1. For the scalar ty; > 0, the system described by (10.8) and (10.9) is
globally asymptotically stable with prescribed nonlinear observer control (10.7),
if there exist symmetric positive definite matrices P, Z,, Z,, diagonal matrices
U >0,V > 0, and any matrix G with compatible dimensions such that the following
inequality holds:

KR4 0 FioU +GB1 GBy 116
* 122 Z 0 Vv 0
. * *x —Zy—Z7Z 0 0 0
& = <0 10.11
*  * * -U 0 (GB)T ( )
*  x * * —V (GBy)T
| *x x * * * Nes |

where
nmi =2y —2Zy+2(GA—-LC) — U,
N = —2Z,— FV;
me =—G + P+ (GA—-LO)T;
nes = —2G + 13, Z>,
and the control gain is given by K = G™'L.

Proof. Consider the Krasovskii-Lyapunov functional given in (10.10). Taking the
time derivative of (10.10) along the trajectories of (10.8) yields

Vit e, é) =2el (1)Pe(t) + el (t)Zie(t) —eT (t — tpr) Z1e(t — Tar)

+‘C1%,1éT(t)Zzé(t)—‘CM/ éT(6) Z,é(0)db (10.12)
t—tpm

In view of Lemma 2, the integral term in the above equation (10.12) can be written as

t ~ ~
- TM/ éT(0)Z,6(0)do < T (1)RL(1), (10.13)
=ty
B e —Zz 22 0
where {(f) = | ey [, and 2 = x —27Z, Z, |.From the sector bounding
€1y * * —22

conditions, foralli = 1,2,....,n
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T +
e l Z+A NETR 6.6 AT [ e :| _
~ iéie —Htae || <0  (10.14
o) [ L e Lo 101

T +
[ﬂefm } Libsieiel —Bgiel [ﬁ”’ }so (10.15)
$2(exr) * éel $2(ex(r))

where é; denotes the unit column vector having 1 on its i th row and zeros elsewhere.
Thus for any appropriately dimensioned diagonal matrices U > 0, V > 0 it can be
obtained that

T
e —FllU F12Ui||: e i|
o<|. ) (10.16)
[d’l(éJ [ *  =U J|éi(e)
T
er(r) i| [—FmV Fszi| |: er(r) i|
0<| - ~ , (10.17)
[sz(er(r)) x =V [[alerr)
where Fj = diag {1515, 5l -+ 17,055, | and
Fjy = diag{ 1,/1;’./1 ’ ./2;”;5’ 5t L On the other hand one can have the

following equation for appropriately dimensioned matrix G,
0= [2¢"G + 26" G][—¢é + (A — KC)e + Bii(e) + Bagpar(err)] -
(10.18)

Thus, (10.12) can be written as

Vie,) <2eT(t)Pe(t) +e" (t)Z1e(t) —e” (t — ) Zie(t — tar) + taréT (1) Z2é(t)

T
—FMU U e
+{ (l)Qf(f)‘l‘[gb()] [ * U }[951(6)}

er(r) —FV Fsz] [ er(r) ] 27 Gé T
~ — +2e' G(A—KC)e
|:¢2(er(t)) ] [ * da(e(r)) ( )

+2¢"GB g1 (e) 4 2" GBypa(er (1)) — 26T Gé + 26T G(A — KC)e
+2¢TGB g1 (e) + 26" GBagr(er(r))-

Letting L = GK for j =1,2,3,and {(¢) = [f(z) é1(e) qsz(et(t)) e'(t)], we have
V(t, e, &) <tT()EL() <0, (10.19)

forall {(r) # 0 with & < 0. Thus there exists a positive constant & > 0 such that
V(t.e;. é;) < —elle(t)|?. This completes the proof.

Very recently, projective synchronization conditions for modulated time-varying
delays have been discussed in [18]. In fact, the condition cannot be applied to higher
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order time varying delayed chaotic system where as Theorem 1 is more general
case in terms of time delay. Also PS sufficient condition presented in [9] can not
be applied to synchronize (10.4) and (10.5). Moreover, in secure communication
problem, time delay plays a vital role in synchronization for encrypted transmitted
signal and receiving signal for decryption. The synchronization scheme presented
in this chapter can be applied directly as general sufficient condition in order to
have a successful communication. It must be noted that the above theorem provides
sufficient conditions for PS of time-varying delayed chaotic systems for bounded
delays such that 0 < 7(¢) < tp. Thus the condition can be used for chaotic
system with non-differentiable time varying delays and modulated delays such as
t(t) = 1o + age! @) and (t) = 1y + ag|sin(wet)| and the criteria yields the
upper-bound of time varying delay. If the derivative of time varying delay exists
such that 7(¢) < 4, then we deduce the criteria as below.

Theorem 2. For the scalars Tty > 0 and § > 0, the system described by (10.8) and
(10.9) is globally asymptotically stable with prescribed nonlinear observer control
(10.7), if there exist symmetric positive definite matrices P, Z\, Z,, Z3 diagonal
matrices U > 0, V > 0, and any matrix G with compatible dimensions such that
the following inequality holds:

[ Z> 0 FiU +GBy GBy  nis
* 122 Z 0 Vv 0
*  x —Zz - Zl 0 0 0
E = <0 10.20
*  * * -U 0 (GB)T ( )
x  * * * —V (GBy)T
| x * * * Nes |

where
nmi=21—2y+2723+2(GA-LC) - F,U;
M = —2Zy— FuV — (1 -98)Zs;
ne=—-G+ P+ (GA —LC)T;
Ne6 = -2G + ‘L']%,IZz,
and the control gain is given by K = G L.

Proof. Adding the functional ftt_f(t) e’ (£) Zs e(§)dE to right hand side of (10.10)
and following the same procedure, we get (10.20), Hence the detailed derivation is
omitted.

The above theorem is presented for PS of chaotic systems with differentiable
time-varying delays and modulated delays such as 7(¢) = to+aoe*™ @ and 7(¢) =
79 + agp sin(wyt). To the best of author’s knowledge, the above sufficient conditions
are very less conservative than the existing results [18] in the literature.

For constant delay case, we have t(¢) =& =0, and the criteria for projective
synchronization is then deduced to (10.20) with 0y, = —2Z,— F»; V —Z3. In another
way, we can get the condition for constant delay system given below without using
7(t) relation in the inequality (10.13).
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Corollary 1. For the constant delay t >0, the system described by (10.8) and
(10.9) with constant delay is globally asymptotically stable with prescribed non-
linear observer control (10.7), if there exist symmetric positive definite matrices
P, 7\, Z,, diagonal matrices U > 0, V > 0, and any matrix G with compatible
dimensions such that the following inequality holds:

N1 V) FpU 4+ GBy GBy 115

x —Zr— 7 0 FnV 0
g =] x * -U 0 (GB)T | <0 (10.21)
* * * -V (GBy)T
* * * * 7]55
where
nmi =21 —2,+2(GA-LC) - FiU;

Mms=—-G+ P+ (GA—-LC)T;
Ns5 = -2G + ‘L'2Zz,
and the control gain is givenby K = G™'L .

In [9], PS for constant time-delay has been discussed for lower order chaotic
systems. The condition does not depend on time-delay bearing nonlinear term is
not suitable and failure one in case of multi-dimensional system. On the other hand,
the above Theorem 2 ensures the PS of systems with constant time delay and can
yield the applicable delay bound to achieve the synchronization. The above criteria
improve the drawbacks of the above existing results.

Corollary 2. In case, there exist only delayed nonlinear terms in the systems for
models such as Ikeda system [17], then the system and the conditions can be
deduced as follows. For the scalar tyy > 0, the system described by (10.8) with
B, =0, and B, = B is globally asymptotically stable, if there exist symmetric
positive definite matrices P, Z,|, Z,, diagonal matrix U > 0, and any matrix G
with compatible dimensions such that the following inequality holds:

nmi Z» 0 0 N6
* 1M2n Z, KLU +GB 0
S=| % % -Z,—27, 0 0 |<o (10.22)
** * -U (GB)T
*  x * * 66

where
nmi =21 —2Z,+2(GA—-LC);
N = —2Z, — FU;
ne =—G+ P + (GA —LC)T;
Ne6 = -2G + ‘L']%,IZz,
and the linear error state feedback control gain is given by K = G™'L.
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In this section, a more generalized sufficient condition for PS of delayed chaotic
systems has been investigated. In secure communication problem, having single
delay may be vulnerable to break the corresponding communication by means of
conventional reconstruction techniques. To overcome this drawback, multi-delayed
driving signal must be used and the new synchronization scheme must be obtained.
This shows insight to more practical significance of the study of PS in chaotic
system with multiple delays. In the following section, we present the PS sufficient
conditions for multiple delayed chaotic systems.

10.4 Systems with Multiple Time-Delays

Time-delay chaotic systems arise in many applications from diverse areas such as
economy, biology, population dynamics, traffic flow and communication systems.
Synchronization of time-invariant time-delay systems itself is a notoriously complex
task. In addition, consideration of multiple delays totally hampers the existing
analysis which are limited to certain cases. There is still no comprehensive treatment
for PS of most general multiple time-delay systems without strict limitations. All the
existing techniques are case-specific and derived only for lower order time-delay
systems. The main objective of this section is to develop a synchronization analysis
scheme for the most general multiple time-delay systems, relaxing all the mentioned
limitations and better than existing results.

If the system contains multiple time delays, then we can model the projective
synchronization problem as follows:

N
X(1) = Ax + i Bipy (x) + 111 B2 Y 657 (Xry) (10.23)
k=1

N
. y Yz
() = Ay + p2Bih ( ) + 12 By Z‘ﬁék) (%) + 8@ =5 Yo Vey))

o

k=1
(10.24)
T
such that q&ék)(x) = [ gl() ¢§.k2), el ¢§.1;)] : N — N is a nonlinear function
of x, satisfying the generalized sector bounding condition
k k k k)—
[o50@ 15" e | [#5 © - 180 7¢| <0, v, (10.25)

for all k=1,2,...,N, i=1,2,...,n, and j =1,2, where qbg;)(-) belongs to
the sector [lz(f.‘)_, ng”], Here 7,(¢) is the time varying delay such that 0 <

(1) < 1 < o0 and 1) = max { T1, To, +** TN } Then the nonlinear observer of
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synchronizing signal is 5(X, X7, (), . . . . Xey (1) = B1¢1(x) + B> Z,ﬁ’:l q&;k)(xr(,)) +
Cx, and the controller can be chosen such that

N
u(.y) = Bildi(y) = pr(ex)] + By Y [#47 () — 98 (o) | - KC Ly — ax]
. (10.26)
where K € i"*" is the coupling strength. Then we have
N
¢ = (A—KCe + Bidi(e) + By > 43 (en0)- (10.27)

k=1

where gi(e) = $1() — ¢1(@x), &5 (eq)) = ¢ ) — 3 (@), and
jt2 = apuy. From (10.25), ) () satisfies

(6@ 10| [6 @ 11 ¢] <0, ve (10.28)

Then the required K-L functional can be given as

N 0
V(t.e,.é) = e (t)Pe(t) + Y {/ eT(t +8) Zige(t + §)de
k=1 YT

0 pr
o / / &7 (§) Zo e(§)dgdo), (10.29)
—1x J1+60
and the inequality (10.17) can be written as
T (k) (k)
0< |: 5 €r(1) :| _FZI Vi F22 Vi [ 5 210} :| i (10.30)
Pox(eqer) * Vi | Lo2(exr)

k . k)—y(k)+ (k)= (k)+ k)—(k)+
F9 = dzag{IJ(l) AT A [ T ’}’and

00— 0+ = 0+ 00—, E+
Ff];) = diag{ R O et S T }
J 2 ) 2 ) 2

The sufficient condition ensuring the PS of the multiple delayed chaotic systems is
presented in the following theorem.

Theorem 3. For the scalars ty. > 0, the system described by (10.27) with (10.28) is
globally asymptotically stable with prescribed nonlinear observer control (10.26),
if there exist symmetric positive definite matrices P, Z1x, Zy, diagonal matrices
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U>0Vi>0,fork =1,2,..., N and any matrix G with compatible dimensions
such that the following inequality holds:

<0 (10.31)
where
i Za 0 - 0 0 FiuU+GBy GBy - GB MaN+3 ]
1
* M Za o Zon—i Zon 0 Fz(z)Vl 0 0
* o ox M3z e 0 0 0 0 0 0
_  x —2Zsy 0 0 0o .. Py 0
o= *  x *x * —ZI\N—ZoN 0 0 0 0
*  x % * * -U 0 0 (GBl)T
* k% * * * - 0 (GBy)T
o . . Vv (GBYT
L > * x .. * * * * * —ZG+‘L'2Z2_

M= Yorey Zik — Yopey Zox +2(GA — LC) — FyU;
N = —2Zy — FxV;

M3 = —Zn — 2o

nmav+s =—G + P +(GA—LC)T;

and the control gain is given by K = G™'L.

Though the concept of PS for single delayed chaotic system has been well
established in the literature, PS in multiple time delayed system has been unexplored
area. Theorem 3 presents more generalized conditions for PS of multiple delayed
systems.

10.5 Some Applications

In the above two sections, we have presented the conditions for the delayed systems
with sector bounded nonlinearities. Moreover, special cases of PS are complete
synchronization (CS) in which the scaling factor « = 1 and Anti-synchronization
(AS) for « = —1. The above obtained conditions can be applied to study CS
and AS outmost. In order to have a successful secure communication, the present
study of obtaining more general sufficient condition on proposed PS scheme with
non-differentiable time delay plays a vital role in synchronization for encrypted
transmitted signal and receiving signal for decryption. Further, these conditions can
be applied to the neural networks with time varying delay.

As a special case of complex network, delayed neural networks (DNN) are also
exposed complex dynamical properties even chaotic attractor [23]. Since then the
study of synchronization in DNNs has been paid much attentions ([27] and [1], the
reference cited therein). On the other hand, PS problem is first extended to CNN
[7] and presented in [12] for finite dimensional chaotic systems. But for DNNs, the
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study in [25] presents the adaptive synchronization scheme. It must be noted that
still there is a room for better condition for PS of DNNs with non-differentiable
time varying delays. In this chapter, we extend the above synchronization schema
presented in Sect. 10.2 and sufficient criteria presented in Sect. 10.3 to DNNs with
more general time varying delay. Based on [27], unidirectional-coupled neural
networks model can be given as

Xi(1) = =bixi () + Y e fi(e; (0) + Y dif; (@ —wON+L i =12, .n,
j=1 =1
' ' (10.32)

where n > 2 denotes the number of neurons in the networks, x; and y; are the
state variables associated with ith neuron of master and slave systems, b;x;(¢) is
an appropriately behaved function imposing bounds on the solution of the master
neural networks and ¢;; and d;; indicate the interconnection strength among the
neurons without and with time-varying delays, respectively. The neuron activation
function f; describes the neuron response to each other, /; denotes the constant
external input. Equation (10.32) can then be transformed to the following compact
form [1]:

X(t) = =Bx(t) + Cf (x(t)) + Df (x(r — (1)), (10.33)
where x (1) = [x1(), x2(), -+, . O], f(x() = [fi(x1(), fa(xa()), ==+, fuCxn
(N7, C = (cij)uxn)> and D = (dij ) nxn)» B = diag{by, by, -+ b,}. Thus the above
model (10.33) is equivalent to (10.4)if A=— B, Byj=C, B, =D, and f(x(-) =

@1(x(2)) = ¢2(x¢(1)(¢)). The condition can be easily deduced which is left to the
reader.

10.6 Numerical Examples

In order to illustrate the effectiveness of the proposed scheme and obtained sufficient
conditions in the previous sections, Ikeda system [2, 1 7], Lu attractor [23] and a new
modified delayed-Chua system were used as examples.

10.6.1 Ikeda System

Consider unidirectional coupled Ikeda system in order to verify the above analytical
conditions numerically:

X = —ax + pymy sin(x,q)) (10.34)
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Fig. 10.2 Projective synchronization between Ikeda system (10.34) is depicted. Here ¢ = 1.5,
(1) = 0.3 + 0.05|sin(t)| and K = 0.966. Synchronization manifold y = 1.5x is plotted and
projective synchronization achieved by e — 0

Physically, x is the phase lag of the electric field across the resonator, a is the
realization co efficient for the dynamical variable, and m; is the laser intensity
injected into the system. The Ikeda model was introduced to describe the dynamics
of an optical bistable resonator and is well known for delay-induced chaotic
behavior.

System (10.28) is chaotic for the set of parameter values a =1, m; =4. The
synchronization manifold along with error trajectories are presented in Fig. 10.2.
Solving LMI presented in Theorem 1 for (10.28), we get P =4.4742 x 108,
Zy = 3.6391 x 108, Z,=5.4493 x 1077, the coupling strength K =0.966, and
the upper bound of the time varying delay as 7 = 0.3535. 7(¢) = 0.3 + 0.05|sin(¢)|
is the most suitable time varying delay. For constant delay case, t = 5, the control
gain achieved is K = 0.9169, for = 2, the control gain achieved is K = 0.9496
and K = 0.9415 is obtained for t = 1. The error between the drive and response
system is controlled and asymptotically reaches zero to ensure the synchronization
with the given scaling factor « = 1.5. It is noted that the coupling strength is very
small which is practically applicable.

10.6.2 Lu Attractor

It has been shown that DNN are also exposed complex dynamical properties even
chaotic attractor [23]. In order to test the obtained sufficient conditions on DNN,
consider the following two dimensional chaotic system known as Lu attractor [23]
with time varying delay:

X(1) = —Ax(t) + Big1(x (1)) + Bago(x(t — 7(1))). (10.35)

. | 2.0 0.1 | —1.5-0.1 et —
where A = diag{l, 1}, B = [—5.0 45 :|, B, = |:—O.2 _4.0},¢,(x,()) =

tanh(x;(-)). The chaotic attractor formed by (10.35) along with PS manifold for
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Fig. 10.3 Projective synchronization between identical Lu attractor given (10.35) along with @ =
1.5, and 7(t) = 1 + 0.1|sin¢|, synchronization manifold y = 1.5x is plotted and projective
synchronization achieved by e — 0

a = 1.5 is presented in Fig. 10.3. Solving the inequality (10.11) presented in the
3.6925 —0.2585]

; — 10%
Theorem 1 by using Matlab LMI toolbox, we get P =10 [—0.2585 37763

Z,=10* |:3.1563 0.0458:|’ Z, = 10* [ 1.3865 —0.0553
0.0458 3.2009 —0.0553 0.0022

K= [ 0.9286 0.0028
—0.0603 1.0024
Figure 10.3 shows the PS between identical Lu attractors given by (10.35) along
with e = 1.5,and t(¢) =1 40.1] sin¢|. It is observed that synchronization manifold
y =1.5x showing the occurrence of PS and assured by the closed-loop error

trajectories reaching zero asymptotically.

:|, the control gain

] and the upper bound of the time delay 73y =0.3528.

10.6.3 Delayed-Chua System

Chua circuit system [3, 8,28] is ubiquitous real-world example of a chaotic system
which is autonomous in time. In fact, there have been vast study of synchronization
of Chua system under different control techniques [ 14,26] and references cited there
in. The attractor depends on the nonlinear resistor of Chua circuit, and the delay
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0
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-2 -10

Fig. _10.4 Chua attractor formed by (10.36_) with various time delays. (a) 0.6]sin¢|, (b) 0.1 +
0.1, (¢) 0.2+ 0.1e8n!, (@) 0.2+ 0.2¢5™, (e) 0.2 + 0.5005sin¢, (f) 0.2sin¢, (g) 0.53 sin?,
(h) 0.6041¢5M7, (i) 0.3 4+ 0.2¢%™7, (j) 0.4, (k) 0.7, (1) 0.8

inside the nonlinear resistor may be taken into account. Thus we are modifying the
Chua circuit model with time varying delay present in the nonlinear term in order
to adequate the present study. Consider the following modified time delayed Chua’s
system:

X1(1) = a(x2(t) = p(x1(r — (1))
X2(1) = x1(1) — xa2(2) + x3(7) (10.36)
X3(1) = —bx,(1)

with modified nonlinear characteristic of Chua’s diode with time delay

P(x(1)) = mix (1) + %(mo —m)([x1(t = (1) +c| = |xi1(r = 7(t)) —c|).

The parameters are used from Chuamodelasa =9,b =14.28,c =1,mo=—(1/7),
m; =2/7. With these parameters, chaotic attractors formed by (10.36) are given
in Figs. 10.4-10.6, for showing phase space attractors with different time delays.
It is interesting to see that the the double scroll attractor merges to single attractor
form. The gallery of attractors presented in Figs. 10.4—10.6 are simulated by solving
(10.36) using Runge-Kutta method for delay differential equations. It is seen from
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Fig. 10.5 2-D chaotic phase space (x; vs x3) portrait of delayed Chua system given in (10.36)
with different time delays. (a) 0.1, (b) 0.6041e%", (¢) 0.2 4 0.1¢%"?, (d) 0.3 + 0.2¢%"7, (e) 0.2 +
0.2¢5M, (F) 0.2 + 0.5005¢%", (g) 0.53 sint, (h) 0.3, (i) 0.4, (j) 0.6, (k) 0.7, (1) 0.8, (m) 0.2sinz?,
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the simulations that the modified model may show light on the practical significance
on communication system. Now for the present study, the system (10.36) is

—am; a 0 —a(my —my)
represented in the form (10.5) with A = 1 —-11|{,B= 0 ,
0 —-bO 0

C=D=(100),and¢(§) = (|€+1|—|&—1]) belonging to the sector [0 1]. By

using the LMI presented in Theorem 1, the condition is solved in Matlab LMI tool-
2.3805 —0.1486 —0.0857

box and we obtain the solution as P = 10% | —0.1486 1.7790 0.5546 |, Z; =
—0.0857 0.5546 2.2136

1.8369 —0.0598 0.0043 0.0000 —0.0000 —0.0000
103 | —0.0598 2.2432 —0.0214 |, Z;=10% | —0.0000 2.8060 0.0878
0.0043 —0.0214 1.8738 —0.0000 0.0878 1.9425
1.0000 0.4370 0.0031
Also the control gain K =G~'L = | —0.0000 0.3846 —2.1089 | is obtained for

0.0000 0.5000 1.5734
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Fig. 10.6 2-D chaotic phase space (x, vs x3) portrait of delayed Chua system given in (10.36)
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the upper delay bound 73— 3666 Of the time delay. Figure 10.7 shows that PS
between identical modified Chua system with time-varying delay given (10.36)
occurs for o =1.5, and 7(¢)=0.25 + 0.1e*"’ along with its synchronization
manifold y = 1.5x. The closed-loop error is plotted with nonlinear observer control
and PS is achieved as the error reaching zero asymptotically.

10.7 Concluding Remarks

Summarizing the above, the more general analytical conditions for projective
synchronization of delayed chaotic systems is studied in this chapter. With suitable
nonlinear observer based control, the proposed scheme improves the existing results.
Our work overcomes the drawbacks as well as new complex nature of the time
varying delay has been taken into account. The conditions have further extended
and applied to neural networks and chaotic systems with multiple time delays. In
the upcoming part of the present study, we intended to provide analytical conditions
for generalized projective synchronization of time varying delays and network of
interacting chaotic systems with functional coupling. The practical importance of
the obtained conditions by simulating the numerical results on lkeda system, Lu
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Fig. 10.7 Projective synchronization between identical modified Chua system with time-varying
delay given (10.36) along with @ = 1.5, and 7(t) = 0.25 4 0.1¢*"’, synchronization manifold
y = 1.5x is plotted and projective synchronization achieved by e — 0

attractor and delayed-Chua system were effectively exhibited and will show a new
light on the significance of usage of time varying delay in secure communication
problems.
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