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Preface

This is the fourth volume of the collection of essays entitled Applications of Chaos
and Nonlinear Dynamics in Science and Engineering, which has been addressed to
Master and Ph.D. Students, as well as to specialists of disciplines other than the hard
sciences, in order to help them familiarize with the theory and the applications of
nonlinearity, and its use in describing complex phenomena.

As illustrated in the previous volumes, terms such as nonlinear dynamics,
chaos and complexity have pervaded the vocabulary of almost all fields of sci-
ence and technology. As a matter of fact, current mathematical descriptions of
evolving phenomena consist of nonlinear ordinary or partial differential equations,
of various kinds of stochastic processes and of nonlinear space and time discrete
iterative schemes. In the deterministic cases, a typical situation is that in which
the propagation of uncertainties is exponential in time, a phenomenon known as
sensitive dependence on initial conditions, and concisely and suggestively called
deterministic chaos.

To understand the reasons why certain terms have become common in many
different fields, it suffices to observe that nonlinearities appear in feedback phenom-
ena, which are ubiquitous in nature, and generically in the evolution equations of
systems consisting of interacting parts or interacting with an external environment.
Furthermore, any measurement one may perform, like any estimate of the initial
state of any material object, is bound to be affected by uncertainties, which
propagate in time leading to the conclusion that a degree of unpredictability is
intrinsic, in practice as well as in principle, to all time dependent phenomena. For
this reason, the study of nonlinear evolutions is commonly associated with statistical
concepts, and relies on measures such as the Lyapunov exponents and various kinds
of dynamical entropies.

In the previous volumes, we have presented a vast collection of examples,
treated explicitly and in moderately technical terms. Indeed, these concepts have
in the past decades turned useful in countless practical applications—beyond the
mathematical and physical literature in which they have been mostly developed—
ranging from engineering to biology, medicine, computer and telecommunication
sciences, etc. We have thus followed an approach which we deem suitable to a vast

v



vi Preface

readership, proposing essays written in the form of tutorials. In this last volume, we
complete our survey and introduction to nonlinear, chaotic and complex phenomena,
considering some issues of higher theoretical content than in the previous volumes,
but preserving the mildly technical style of the previous volumes.

Part I concerns nonlinearities in transport of energy and matter, with one
contribution by L. Stricker and L. Rondoni on models of heat transport and their
mechanical properties, one contribution on the general theory of diffusion, by G.
Boffetta, G. Lacorata and A. Vulpiani, and one contribution by M. Colangeli on the
relation between the Boltzmann equation and hydrodynamics.

In Part II, we have three contributions on chaos and synchronization in complex
networks: one by J. Stroud, M. Barahona and T. Pereira on modular networks, one
by P. Carl on the evolution of climate, and one by A. Tai and S. Jalan on the use of
random matrices. The chapters are well illustrated with recent developments on the
subject area and possible practical applications.

Part III has two contributions on phase space reconstruction and on biological
patterns, respectively, by S. K. Palit, S. Mukherjee, S. Banerjee, M.R.K. Ariffin
and D. K. Bhattacharya, and by M. Banerjee. The theories are well illustrated and
supported with analytical and numerical results.

Part IV concerns the use of chaos in field programmable gate arrays. This chapter
is very useful as an introduction to the subject area.

We hope that this collection of examples, combined with those reported in the
previous three volumes have covered a sufficiently wide spectrum of subjects, in
terms suitable to a wide audience, interested in importing dynamical concepts in
their disciplines, without recourse to sophisticated mathematical tools. The concepts
of nonlinear dynamics are indeed proving more and more useful in all fields of
research.

Serdang, Malaysia S. Banerjee
Torino, Italy L. Rondoni
26 January 2015
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Chapter 1
Microscopic Models for Vibrations
in Mechanical Systems Under Equilibrium
and Non-equilibrium Conditions

Laura Stricker and Lamberto Rondoni

Abstract Equilibrium Thermodynamics studies states of macroscopic objects that
do not change in time when isolated from their environment. This requires chemical,
mechanical and thermal equilibrium which together amount to thermodynamic
equilibrium. A non-equilibrium state can be established putting the system in
contact with more than one reservoir of heat, mass, or other physical quantities. The
dynamical evolution of a system of particles representing a macroscopic bar in both
equilibrium and non-equilibrium conditions is illustrated by means of a simple one-
dimensional molecular dynamics model, illustrating how macroscopic phenomena
may be qualitatively understood with microscopic toy models. In particular, a
system of hard point-particles undergoing only binary collisions is considered. A
conservative force is applied on one of the end particles to reproduce the cohesion
of the bar. Non-equilibrium conditions are obtained by adding two deterministic
thermostats acting on the first and on the last particle of the bar. In the equilibrium
case, we determine the values of macroscopic and microscopic proprieties of the
system, such as length, linear density, specific kinetic energy, average energy per
particle, and position of the centre of mass of control groups located in different
parts of the bar. In the non-equilibrium case, we focus on length oscillations, and we
demonstrate their dependence on the characteristic parameters of the thermostats.
Although highly idealized, this model reproduces an important qualitative aspect of
metal bars: hardening.

L. Stricker
Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
e-mail: laura.stricker@ds.mpg.de
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4 L. Stricker and L. Rondoni

1.1 Introduction: Thermal Baths

Chains of oscillators constitute a very popular kind of models, used to understand
the behaviour of macroscopic objects from the point of view of their microscopic
constituents. The first of these models is the Fermi–Pasta–Ulam model [9], which
consists of a linear chain of interacting particles providing a minimal framework
for studies of ergodicity, dynamical relaxation and diffusion laws, with given
interparticle interaction potentials, initial and boundary conditions [3, 10, 13]. In this
tutorial, we demonstrate that the conceptually simple framework of one-dimensional
N-particle systems can be consistently used to model the qualitative thermo-
mechanical behaviour of solids. In particular, we consider a chain of particles, with
one fixed and one free end, to study the variations of length, in response to external
forces or to temperature changes. We provide both theoretical considerations and
numerical results from molecular dynamics simulations, which allow direct access
to any quantity of interest. These kinds of chains have been considered mostly to
study heat conduction, cf. [3, 10, 13] for recent reviews on the subject, and [4–6]
for some of the few works on thermo-mechanical properties.

In the theoretical study of statistical mechanics, a proper modelling of the
interaction with thermal reservoirs has a crucial role. At equilibrium, this is
usually done by means of well-established methods, such as the micro-canonical
molecular dynamics and Monte Carlo simulations. Out of equilibrium, the lack of a
general theoretical framework enforces the definition of the interaction with thermal
baths. From a conceptual point of view, the procedure requires considering non-
equilibrium states in the infinite system limit. For example, one could imagine to
have an infinite chain of particles, with initial conditions such that all the atoms on
the right and those on the left of a certain finite subset are in equilibrium at different
temperatures. The subset defines the system that we want to study. However, the
only case in which the above mentioned approach can be fully worked out is the case
of harmonic chains [14–17]. In such a system, it is possible to derive the degrees
of freedom corresponding to the reservoirs’ dynamics. Therefore the existence of
stationary non-equilibrium states of the system can be proved at the cost of dealing,
however, with arbitrarily large energy fluctuations. In general, when non-linear
effects appear, the evolution of the heat baths cannot be described anymore by means
of standard techniques. However, non-linear chains can still be studied, by assuming
that the non-linearity is restrained to the system of interest, while the semi-infinite
particle chains (i.e. the two reservoirs) can undergo only linear interactions [1].

Following this approach, the existence of an invariant measure (not explicitly
know) has been proved for non-equilibrium systems, in chains of highly non linear
coupled oscillators undergoing large temperature gradients [8]. This is analogous to
energy conservation in equilibrium systems.
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1.1.1 Stochastic Baths

A traditional way to implement the interaction with reservoirs is the introduction
of simultaneous random forces and dissipation, in agreement with the fluctuation-
dissipation theorem. Hence, the reservoirs are not influenced by the dynamics of
the system. For instance, in the case of a chain of particles with equal mass m, the
following system of Langevin equations is derived:

m Rqi D F
�
qi � qi�q

� � F.qiC1 � qi /C .�C � �C Pqi/ ıi1 C .�� � �� Pqi/ ıiN
(1.1)

where .�C � �C Pqi / ıi1; .�� � �� Pqi / ıiN are the forces acting respectively on the
first and the Nth particle.
�� and �C are the dissipation coefficients producing the slowing down forces

��C Pqi ıi1, ��� Pqi ıiN . �� and �C are the independent Wiener processes (stochastic
forces) with vanishing average, and variance 2�˙kBT˙, with T the absolute
temperature and kB the Boltzmann constant. For non-linear forces, this model can
be treated only numerically.

Once the non-equilibrium steady state condition is reached, the average heat flux
can be derived from the temperature profile. The average energy exchanged between
the first particle and the adjacent reservoir is the heat flux j

j .�;N / D �C
m1

.TC � T1/

Similarly at the other extreme of the system of interest. Then, at the microscopic
level one commonly considers each reservoir as an ideal one-dimensional gas of
particles with massM˙, interacting with the chain through elastic collisions [18]. A
simple strategy consists in selecting a random sequence of instants ti, in which every
thermostated atom collides with a particle of the corresponding reservoir. A natural
choice for the distribution W(�) of the intervals � among consecutive collisions is
the Poissonian distribution

W .�/ D 1

�
e� �

�

with � the average collision time. If we consider the reservoir positioned on the left
of the system of interest, the velocity of the first particle changes due to collisions
from Pq1B (before collision) to Pq1A (after collision)

Pq1A D Pq1B C 2MC
mCMC

.v � Pq1B/
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where the gas particles velocity v is a random variable with a Maxwellian probability
distribution P(v)

PC.v/ D
s

MC
2�kBTC

� e� MCv2

2kB TC

When M˙ D m, the procedure simplifies and it amounts to equating the particle
velocity after collision to the random variable v, so that the colliding particles
merely exchange their velocities. In the limit case M˙ << m, the interaction
with the heat baths become of Langevin kind, as in (1.1), with �˙ D 2M˙=� .
This method is computationally easier, because it does not imply dealing with
stochastic differential equations and integration can be performed with conventional
algorithms. Moreover, it is physically consistent, because damping is not imposed
a priori in the model, but is intrinsically generated by the dynamics. A similar
approach, consists in determining the collision times for the interaction with
“thermal walls” located at the two extremes of the particle chain. This method has
the advantage of allowing the inclusion of pressure effects. In this case, the velocity
of the thermostated particles is randomized at every collision with the wall. The
sign of the component of the velocity normal to the wall has be inverted, while its
absolute value must be distributed following a Maxwellian distribution centered on
the wall temperature [19].

1.1.2 Deterministic Baths

Different kinds of deterministic heat baths are commonly used [7, 11] in order to
give a self-consistent description of non-equilibrium processes and to overcome the
difficulties related to stochastic processes. Two possible modelling strategies are the
application of the thermostating forces only to the extremes of the particles chain or
to the whole chain.

1.1.2.1 Application of Forces to the Extremes of the Particle Chain

Non-equilibrium conditions are reached by applying two forces at the extremes of
the particles chain. The most popular scheme in the molecular dynamics community
is the Nosè–Hoover thermostat [7]. With this thermostat, the evolution of the
particles in contact with the thermal bath ˛ is governed by the equation:

m Rqi D F.qi � qi�1/� F.qiC1 � qi/ �
8
<

:

�C Pqi if i 2 SC

�� Pqi if i 2 S�
(1.2)
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where S˙ are two groups of N˙ particles in contact with the reservoir, respectively
at the beginning and at the end of the chain; F.qi � qi�1/ and F.qiC1 � qi / are the
internal forces within the particle of the chain; �˙ Pqi express the interaction of the
particles at the two extremes of the chain with the baths. �˙ are the thermal bath
variables, i.e. the two auxiliary variables modelling the microscopic action of the
thermostat. The dynamics of �˙ is governed by the equations

P�˙ D 1

‚2˙

0

@ 1

kBT˙N˙

X

i2S˙

m Pq2i � 1
1

A (1.3)

where kBT˙N˙ are the reference kinetic energies and ‚˙ are the response times
of the thermostats. If the kinetic temperature of the particles belonging to S˙ is
higher than T˙, then �˙ increases, thus producing a dissipation in (1.2). Vice versa,
energy is fed into the system if the kinetic temperature becomes lower than T˙.
Therefore, �˙ introduces a stabilizing feedback around the prescribed temperature
T˙. It has been demonstrated that in equilibrium this approach reproduces the
canonical distribution.

In the ‚ ! 0 limit, the Nosè–Hoover thermostat reduces to the isokinetic
(or Gaussian) thermostat. Here the energy is conserved in an exact-fashion and
the action of the thermal bath can be described without introducing any further
dynamical variable, because �˙ becomes an explicit function of Pq:

�˙ D

X

i2S˙

Pqi ŒF .qi � qi�1/� F.qiC1 � qi /�
X

i2S˙

Pq2i
(1.4)

This model can be derived from variational methods, by imposing kinetic energy
conservation by means of non-holonomous constraints [12]

The dynamic equations of the Nosé–Hoover class of deterministic thermostats
have an Hamiltonian structure in a properly enlarged phase space, and a simple
analysis shows that they are invariant respect to time reversal, since Pqi ! � Pqi for
i D 1; : : : ; N and �˙ ! ��˙. This property is one of the main reasons of the
large success of this class of thermostats, since dissipation is not included a priori
but emerges from the dynamical evolution. In particular, at equilibrium, h�˙i D 0,
hence the bath does not destroy the microscopic reversibility. Conversely, out of
equilibrium conditions h�Ci C h��i > 0 and this value can be related to the entropy
production [7, 11]

1.1.2.2 Application of an External Field to the Whole Particles System

In order to keep the system in a stationary nonequilibrium state, a fictitious external
field can be applied, acting on all the system [7], the main advantage of this approach
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being the possibility to work with homogeneous systems with, e.g. a uniform
temperature along the whole sample, although one intends to represent e.g. a thermal
gradient. With this approach, periodic boundaries conditions at the two extremes can
be applied, in order to reduce the effects of the finite dimensionality of the system.
Such procedure is usually referred to as the “Evans’ algorithm of heat flux” and has
been applied to the problem of heat conduction in a one-dimensional lattice [7, 20].

In order to implement this kind of thermostat, a fictitious force is applied to every
particle i. In order to stabilize the dynamics at a prescribed temperature, a thermostat
rule is also enforced. The equation of motion of the i-th particle then becomes:

m Rqi D F.qi � qi�1/ � F.qiC1 � qi /C FeDi � � Pqi (1.5)

where FeDi represents the fictitious heat flux and Di can be defined as [7]:

Di D 1

2
ŒF.qiC1 � qi /C F.qi � qi�1/�� 1

N

NX

jDŠ
F
�
qjC1 � qj

�
(1.6)

If we consider a Gaussian thermostat,

� D 1

2K0

NX

jD1
Pqj
�
F.qi � qi�1/� F.qiC1 � qi /C FeDj

�

K0 PDm

2

NX

jD1
Pq2j

1.1.3 Control Parameter of a Thermostat

In all the models employed to describe a thermal bath, there is at least one parameter
controlling the force acting on the particle that interacts with the bath. This
parameter can be, e.g. the time between consecutive collisions or the dissipation
velocity œ in the Langevin equation, or the inverse of the time constant ‚ in the
Nosè–Hoover model. Fixing the control parameter is a practical matter generally
approached empirically, taking care that different choices do not substantially
modify the simulation results. As a general approach, the control parameter should
be chosen of the order of some characteristic frequencies of the system [7]. The heat
flux through the system is generally depending on this choice.

For Nosè–Hoover thermostats, the heat flux vanishes when the response time
‚ tends to zero. This is the limit case of a strictly isokinetic bath. Therefore, this
kind of bath is not suitable to describe heat transport. In the opposite limit case,
for ‚ ! 1, the heat flux does not vanish although the action of the thermal baths
becomes irrelevant. One explanation of this behavior is given by the fact that the
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variable �, though slowly, reaches the same asymptotic values, for time constants
‚ arbitrary big. By plotting the values of �, i.e. its probability distribution function
(PDF) for different values of ‚, it can be seen that all the curves have a Gaussian
profile centred around the same mean value, but with different standard deviations.
In particular, the standard deviations differ among them by the same factor as
the time constants. Hence, in the limit case of ‚ ! 0, the PDF of � becomes
a Dirac delta function centred at a fixed dissipation value depending only on the
chain length, the energy and the temperature gradient. This may seem to contrast
with the fluctuation-dissipation theorem, suggesting that, for ‚ ! 0, fluctuations
disappear, the dissipation remaining finite. However, in order to obtain a correct
measure of the fluctuations, for finite ‚ the integration must be performed on a
time sufficiently long that the correlations decay and the validity of the fluctuation-
dissipation theorem is recovered. We conclude that, when one uses the natural units
for the description of the system, ‚ should be taken of order 1, for numerical
simulations. Small values of ‚ imply a small heat flux, while large values of ‚
require a long simulation time, in order to guarantee the decay of correlations.
Clearly, the ‚ D 0 case is singular, and should not be considered in this context.

1.2 Model

Our model consists of N identical particles in one line, interacting with each other’s
nearest-neighbours via hard core collisions and obeying Newtonian dynamics
(Fig. 1.1).

In other words, collisions take place instantaneously and particles do not deform,
thus leading to momentum conservation. Also, we limit the nature of collisions
to binary events, i.e. events involving only two particles at a time. The collection
of these particles, which may be thought of as an ensemble of point particles on
a straight line, localized by their x coordinate and endowed with velocity v, is
considered in order to represent a solid bar.

Fig. 1.1 Schematic
representation of particles
collisions, which are only of
the head-on kind
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For the simulations, we consider event-driven evolutions: proceeding in time by
steps of different duration, targeted by the instants when collisions occur. A collision
is identified by the condition:

jxi .t/ � xi˙1.t/j D ri C ri˙1 (1.7)

where xi .t/; xi˙1.t/ indicate the coordinates of particle i and its adjacent particle
at time t and ri ; ri˙1 are the respective radii of the two particles. The point-particle
hypothesis .ri D ri˙1 D 0/ simplifies (1.7) into:

�
xi .t/ D xi˙1.t/ ; i D 2;N

x1.t/ D 0

By solving these equations with respect to t, we find t , the instant when collision
occurs. In particular, for t > 0, collision will occur in the future, for t D 0

collision is taking place in the present instant and for t < 0 collision has already
occurred. Momentum and energy conservation, determine the dynamic conditions
of the particles immediately after collision:

vG D vG0 (1.8)

v1;rel D �v0
1;rel

v2;rel D �v0
2;rel

(1.9)

where vG, vG ’ are the velocities of the centre of mass, before and after the collision,
v1,rel, v

0

1,rel are the relative velocity of particle 1 in the reference frame of the centre

of mass, before and after collision and similarly v2,rel, v
0

2,rel for particle 2. In order to
model both the air pressure and, especially, the cohesion of the bar, we introduce a
constant force F, acting on the last particle (Fig. 1.2).

In the equilibrium case, the dynamics of the system consists of uniformly
accelerated motion for the last particles and uniform motion for the other particles:

8
<

:

xi .t/ D xi .t0/C Pxi .t0/t ; i D 1; .N � 1/

xN .t/ D xN .t0/C PxN .t0/t � 1

2

F

mN

t2

Fig. 1.2 A schematic
representation of the
microscopic structure of the
bar
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Fig. 1.3 Model of the system
of particles in
non-equilibrium conditions

which can be discretized as:
8
<

:

x
.j /
i D x

.j�1/
i C Px.j�1/

i �tcoll ; i D 1; .N � 1/
x
.j /
N D x

.j�1/
N C Px.j�1/

N �tcoll � 1

2

F

mN

�t2
coll

where index i refers to the particle, j to the time instant and �tcoll D t .j / � t .j�1/
is the time to collision. The conservative nature of F and the absence of dissipation
in both the motion and the collision of particles ensure the total conservation of
energy. Then, the system’s invariant state is said to represent a “thermodynamic
equilibrium” state.

In the non-equilibrium case, we study the effects of a temperature gradient by
applying two simple deterministic thermostats, of the kind known as Berendsen
thermostat [11], at the two ends of the bar (Fig. 1.3).

Deterministic thermostats are mathematical objects used to enforce mechanical
constraints on particles systems, when these constraints are meant to enforce certain
thermodynamic conditions. This can be achieved in many different ways [11]. For
instance, the Gaussian isokinetic thermostat enforces the instantaneous conservation
of the kinetic energy K D p2, where p is the magnitude of the momentum of the
particle it is applied to.

The general form of the corresponding dynamics is expressed by the equation of
motion for momentum:

PEpi D EFi � ˛ Epi (1.10)

where Epi D Epi.t/ D mEvi is the momentum of particle i, EFi is the external force
applied to particle i, and

��˛ Epi
�

is the force applied by the thermostat to particle
i with ˛ a kind of dynamical viscosity, which however gives energy to the system
if this is slowing down, in order to keep K fixed. In the one-dimensional case the
constraint that K be constant in time means:

2pi Ppi D 0 (1.11)

which leads to:

˛ D piFi

K
(1.12)
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In the one-dimensional case, the general formulation reduces to a trivial expression:
the only way to ensure the conservation of the momentum magnitude of a particle,
is to preserve the momentum itself. In order to do so, the resulting force applied to
the particle must be null. Therefore the thermostat should apply a force

��˛ Epi
�

equal and opposite to the external force F. As mentioned above, below we
demonstrate that the Gaussian isokinetic thermostat is a limit case of the Nosé–
Hoover thermostat.

1.2.1 Nosè–Hoover Thermostat

This kind of thermostats enforces conservation of the average of the kinetic energy,
rather than its instantaneous value. Let this quantity be denoted by hKi D ˝

p2
˛
,

where p is the momentum modulus of the particle the thermostat is applied to, and
the symbol hi represents a time average. The general formulation of the equations
of motion for the momentum is given by:

Ppi D Fi � �

mi

pi (1.13)

where �

mi
pi is the bath term and � is the thermal bath variable, following the

equation:

P� D 1

	2

 
1

kBTN

X

i;S

p2i
mi

� 1
!

(1.14)

where kBTN is the reference kinetic energy Kref , 	 is the response time of the
thermostat and N is the number of groups of S particles in contact with the thermal
bath. If the thermostat is applied only to one particle, (1.14) becomes :

P� D 1

	2

�
p2i
mi

� 1
�

(1.15)

1.2.2 Berendsen Thermostat

A simplified version of the Nosè–Hoover thermostat can be derived imposing the
i-th particle itself as thermal bath, therefore � D pi . When this thermostat is applied
to a particle having momentum Ep, it enforces convergence of p2 to the value Kref
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over a time scale 	 , while the sign of p is left unperturbed. Its general formulation
is given by:

Ppi D Fi � 1

	

�
pi
2

Kref
� 1

�
pi (1.16)

where Kref is the reference kinetic energy p2
ref and 	 is the characteristic relaxation

time, i.e. the time scale to reach Kref and Fi is the external force applied to the

particle. The term � 1
	

	
pi
2

Kref
� 1



pi represents the force that the thermostat applies

to the particle. For a better understanding of the physical meaning of (1.16), let’s
neglect Fi. Through dimensional analysis, we deduce that 	 represents a time scale,

while �
	
pi
2

Kref
� 1



pi � �pi is the momentum change enforced by the thermostat,

during this time interval. Different cases can be evidenced:

– If p2i D Kref i:e: jpi j D p
Kref

�pi D 0 ) Ppi D 0 ! pi D const

The quantity
p
Kref is a limit value for jpij. When this threshold is reached, the

first derivative Ppi goes to zero and pi becomes a constant.
– If p2i > Kref i:e: jpi j >

p
Kref

• pi > 0 ! �pi < 0 ) Ppi < 0 ! pi #
• pi < 0 ! �pi > 0 ) Ppi > 0 ! pi "
• pi D 0 ! �pi D 0 ) Ppi D 0 ! pi D const

– If p2i < Kref i:e: jpi j <
p
Kref

• jpi j <
p
Kref

• pi < 0 ! �pi < 0 ) Ppi < 0 ! pi #
• pi D 0 ! �pi D 0 ) Ppi D 0 ! pi D const

The monotonic trend of 
pi ensures that the sign of pi is not modified by the
thermostat (Figs. 1.4 and 1.5).

The time scale 	 represents the characteristic time needed for p2 to converge to
Kref :

	 " ) j Ppj # ) p2 ! Kref slower

	 # ) j Ppj " ) p2 ! Kref faster
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00 >p

00 <p

refK

refK–

p

t

4.5

4

3.5

–3.5

–4.5

3

–3

–4

0 1 2 3 4 52.5 3.5 4.50.5 1.5

0 1 2 3 4 52.5 3.5 4.50.5 1.5

Fig. 1.4 Time evolution of p when jpi j > pKref (A D 0.5)

In the 	 to zero limit, the Nosè–Hoover thermostat can be regarded as a Gauss
thermostat

	 ! 0 ) j Ppj ! 1 ) p2 ! Kref instantaneous

A major problem connected with the use of thermostats in our one-dimensional
framework, is that they can do an infinite amount of work, balancing the force F,
and eventually leading the system length to diverge. Consider indeed the Berendsen
thermostat, applied on the Nth particle, (1.16) becomes

PpN D FN � 1

	

�
pN

2

Kref
� 1

�
pN

Now, impose the condition PpN D 0 i.e.

FN � 1

	

�
pN

2

Kref
� 1

�
pN D 0 (1.17)
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0
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p  < 0

p  > 0

refK

refK–

p

t
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1

–1

2

2

–2

3

3
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4 52.5

2.5
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–3.5

4.50.5
0.5

–0.5

1.5

1.5

–1.5
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Fig. 1.5 Time evolution of p when jpi j < pKref (A D �10)

Equation (1.17) admits three possible solutions p1; p2; p3. Once one of these values
is reached, pN will not change anymore, as PpN D 0. If this value of pN is positive,
the length of the bar will increase indefinitely, because the force that the thermostat
applies to the particle will never be balanced by external force F.

If:

(
p
�
t
� D p1 _ p

�
t
� D p2 _ p

�
t
� D p3 ) Pp D 0

p
�
t
�
> 0

then: xN ! 1
Therefore, the potential energy associated with the N-th particle will grow

without bounds.

�
Epot

�
N

D xN � F ! 1
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1.2.2.1 Remedies

In order to avoid the divergence of the system, two approaches at least are possible:

– Introduction of a containing wall, limiting the free movement of the last particle
(Fig. 1.6)

– Different masses (e.g. m; M D m=3) in such a way that, next to the last
thermostatted particle, there is an other one with higher mass, simulating the
effect of a containing wall (Fig. 1.7)

In our simulations, we adopted the second approach, in order to be able
to compare the non-equilibrium and the equilibrium cases. As a precautionary
measure, we also decided to apply the second thermostat to a particle situated
Nparticles before the end of the bar

�
Nparticles D 10

�
. The equations of motion of the

thermostated particles now take the form:

Pp D F � 1

	

�
p2

Kref
� 1

�
p (1.18)

where F D 0: This leads to:

log
p2.t/

�
p2.t0/ �Kref

�

p2.t0/
�
p2.t/ �Kref

� D 2

	
.t � t0/

and setting

p2.t0/�Kref

p2.t0/
PDA.t0/ (1.19)

we find:

A.t0/p
2.t/

p2.t/ �Kref
D e

2
	
.t�t0/ (1.20)

Fig. 1.6 Model with
thermostats and containing
wall

Fig. 1.7 Model with
thermostats and alternated
masses
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The sign of
�
p2.t/ �Kref

�
doesn’t change when the value of t increases, because

A(t0) is constant, p2.t/ > 0, e2.t�t0/=	 > 0 for 8t . Thus, Kref represents a limit value
for p2(t) since:

t ! 1 ) p2.t/ �Kref D 0

An explicit expression for p can be derived from (1.20):

p.t/ D ˙
p
Kref � e.t�t0/=	

p
e2.t�t0/=	 � A.t0/

(1.21)

As the thermostat cannot modify the sign of p(t), the sign C in (1.21) holds for
p.t0/ > 0, while the sign � holds for p.t0/ < 0. From (1.24), using the definition
of momentum p.t/ D m Px.t/, we get:

Px.t/ D ˙
p
Kref

m

e.t�t0/=	
p
e2.t�t0/=	 �A.t0/

(1.22)

where the sign C holds for Px.t0/ > 0, while the sign � holds for Px.t0/ < 0.
Equation (1.22) is valid for

e
2
	
.t�t0/ �A.t0/ > 0 ) A.t0/ < e

2
	
.t�t0/

As t � t0, we have e2.t�t0/=	 � 1. Hence:

A.t0/ D p2.t0/�Kref

p2.t0/
< 1 (1.23)

If (1.23) did not hold, we would get p2.t0/ � Kref � p2.t0/, which is impossible
since Kref > 0. Therefore Px.t/ is always defined and, integrating by separation of
variables, we find:

x.t/ D x.t0/˙ 	
p
Kref

m
�
�

log

�
e
t�t0
	 C

q
e
2.t�t0/

	 �A.t0/
�

� log
	
1C
p
1�A.t0/


 � (1.24)

where the C sign holds for Px.t0/ > 0 and the � sign holds for Px.t0/ < 0.
The equations of collision for the thermostated particles are derived, in analogy

with the equations of collision of the other particles, by equating the position of the
two colliding particles

xi_thermo.t/ D xi_thermo˙1.t/ if ithermo D 2;N

xi_thermo.t/ D 0 if ithermo D 1
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In particular, one can take ithermo1 D 1, ithermo2 D N � 10, which yields:

xi_thermo1.t0/˙ 	1
p
Kref ;1

mi_thermo1
log

 
e.t�t0/=	1 Cp

e2.t�t0/=	1 � A1.t0/

1Cp
1 � A1.t0/

!

D 0 (1.25)

xi_thermo1.t0/˙ 	1
p
Kref ;1

mi_thermo1
log

�
e.t�t0/=	1C

p
e2.t�t0/=	1�A1.t0/

1Cp
1�A1.t0/

�

D xi_thermo1C1.t0/C Pxi_thermo1C1.t0/ .t � t0/
(1.26)

xi_thermo2.t0/˙ 	2
p
Kref ;2

mi_thermo2
log

�
e.t�t0/=	2C

p
e2.t�t0/=	2�A2.t0/

1Cp
1�A2.t0/

�

D xi_thermo2˙1.t0/C Pxi_thermo2˙1.t0/ .t � t0/
(1.27)

The sign C holds for Pxj .t0/ > 0, the sign � holds for Pxj .t0/ < 0 with
j D i_thermo1, i_thermo2. Equation (1.25) has an analytic solution, which can be
found by rewriting it as:

C1 � ez D
p
e2z � A1.t0/ (1.28)

8
<

:
C1 PD

h
1Cp

1 �A1.t0/
i
e

�x1.t0/ m1
	1

p
Kref ;1

z PD�t=	1
If Px1.t0/ > 0, the sign � holds in the expression of C1 while, if Px1.t0/ < 0, the sign
C holds. Equation (1.27) can be rewritten as:

8
ˆ̂̂
<

ˆ̂
:̂

hp
1 � A1.t0/C 1

i
e

�x1.t0/ m1
	1

p
Kref ;1

„ ƒ‚ …
<1

D p
e2z �A1.t0/C ez if Px1.t0/ > 0

hp
1 � A1.t0/C 1

i
e
x1.t0/

m1
	1

p
Kref ;1

„ ƒ‚ …
>1

D p
e2z � A1.t0/C ez if Px1.t0/ < 0

At the initial instant:

z D 0 !
hp
1 �A1.t0/C 1

i
D
p
e2z � A1.t0/C ez (1.29)

As we proceed in time, the right hand side of (1.27) increases, the left hand side
remaining constant, and therefore

8
<̂

:̂

hp
1 � A1.t0/C 1

i
e

�x1.t0/ m1
	1

p
Kref ;1 <

hp
1 �A1.t0/C 1

i
if Px1.t0/ > 0

hp
1 � A1.t0/C 1

i
e
x1.t0/

m1
	1

p
Kref ;1 >

hp
1� A1.t0/C 1

i
if Px1.t0/ < 0
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If we continue to increase z, we get:
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For Px1.t0/ > 0 a positive solution for (1.27) cannot be found, while for Px1.t0/ < 0 it
always exists (in the limit case it’s given by t ! 1). These theoretical results
confirm the physical constraint that the thermostat cannot change the velocity
direction of its application particle. As the wall is positioned on the left side of the
system, a particle with initially rightward-oriented velocity will never hit it, while
a particle with leftward-oriented velocity, will necessary collide with the wall at
some instant. By solving Eq. (1.28) with respect to z, and substituting z D �t=	1,
an expression is derived for the time that the first thermostated particle will take to
impact against the wall:

.�tcoll/1 D 	1 log

"
C1

2 C A1.t0/

2C1

#

(1.30)

where

ez C
p
e2z �A1.t0/ D D1e

E1z (1.31)

8
ˆ̂̂
<

ˆ̂
:̂

D1 PD
h
1Cp

1 � A1.t0/
i
e

˙m1
	1

p
Kref ;1

Œx2.t0/�x1.t0/�

E1 PD m1p
Kref ;1

Px2.t0/
z PD�t=	1

With these expressions, and considering the various cases that can be realized in
time, one may now perform the numerical simulations.

1.3 Results

1.3.1 Equilibrium

We investigate the time evolution of several macroscopic and microscopic properties
of the bar, by considering their average values and their standard deviations, both
instantaneously, at each time j, and averaging over sets of 500 time steps, to
mimic the temporal resolution of the measurement instrument. A macroscopic
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measurement, indeed, amounts to averaging over very many microscopic times,
because the instrument needs time to equilibrate with the measured object. Anal-
ogously, calculating spatial averages over longitudinal portions of the bar provides
us with a method to model the space resolution of the measurement instrument:
the readings given by the measurement tools are averages also over definite spatial
scales, which depend on the resolution of the measurement tool. In the following,
we consider the following quantities:

• Macroscopic properties

– Total length of the bar: position of the last particle xN

– Linear density: �k D

NkX

iD1
mi

�lk
D mTOT;k

�lk

– Specific kinetic energy: .ekin/k D 1
�lk

NkX

iD1

�
1

2
mi Px2i

�

Here, k is the index of the longitudinal element of space, which is occupied
by the bar; its length is 
lk; Nk is the number of particles that it includes. We
take all length elements to be equal, so that we can write: 
lk D dx for all k.

• Microscopic properties

– Average kinetic energy:
�
Ekin

�
k

D 1
Nk

NkX

iD1

�
1

2
mi Px2i

�

– Position of the centre of mass of groups of NG particles, which are located at
the ends and of the bar):

xG D

NGX

iD1
mixi

NGX

iD1
mi

where G is the index of the group of particles under consideration.

We considered different scenarios, for N D 200 and N D 300. For the initial
conditions, we adopt three different possibilities:

1. random uniform distribution over a reference length .l0/IC1 D 10 natural units
of the system with fixed total energy (Etot)IC1. We found that this initial condition
corresponds to an elongation of �xN D 2, compared to the stationary length,
i.e. the average of the position xN , which is the effective length of the bar.

2. random uniform distribution over a reference length (l0)IC2 shorter than in case 1:

.l0/IC2 D 1

3
.l0/IC1I .Etot/IC2 D .Etot/IC1
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Fig. 1.8 Convergence of the average value and standard deviation of the total length of the bar
xN, with time (j D time step). Parameters: 200 particles, total time D 1,000, F D 10, alternating
masses, initial condition 1 (elongation)

with total energy equal to case 1, and with initial condition corresponding to a
compression of �xN D �5 compared to the stationary average of xN .

3. random uniform distribution as in case 2, but with an initial condition corre-
sponding to an elongation of, �xN D 2 compared to the stationary average
value of xN .

Concerning the masses of the particles, we studied the cases of all equal
masses, m0 D 1, and the case of alternating masses, of values m0 and m0/3.
For the values of the forces applied forces on the last particle, we took: F D 10 as
the cohesion force, and F D 2.5, 5, 7.5, 12.5, 15, 17.5, 20, 22.5 in order to study
elasticity. Here, a force smaller than 10 amounts to pulling the bar, and a force
large than 10 amounts to compressing it.

To test whether the system reaches a steady state, we considered the time
evolution of the averages and of the standard deviations of various properties of
the bar, realizing that the length of the bar settles rather rapidly on an apparently
stationary value, as illustrated for one case by Fig. 1.8.

The system is microscopically (i.e. mechanically) conservative, because there
is no dissipation. By construction, there is no exchange of energy with any
environment, and collisions are elastic. Nevertheless, the system appears to be
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Fig. 1.9 Comparison between simulations with 200 and 300 particles: bar length. Parameters:
total time D 1,000, F D constant, alternated masses, initial condition D elongation

macroscopically (collectively) irreversible, because it evolves towards a condition
of statistical dynamic equilibrium. This condition depends neither on the type
(1, 2 or 3) of initial condition, nor on its quantitative realization, which involves
the magnitude of the initial difference between the initial and the final length of the
bar. The only parameters that affect it appear to be the number of particles N and
the total energy of the system Etot. Of course, this kind of system is bound to recur
in the long time limit, i.e. to return arbitrarily close to its initial condition, but that
is possible only in principle, as in practice recurrence would take many lifetimes of
the universe to be verified.

When the number of particles N increases, the model fits better the physics of a
macroscopic object, in the sense the standard deviations of the fluctuations of the
different properties decreases with respect to the mean values. For example, consid-
ering the total length of the bar, given the same reference value l0, rising the number
of particles from 200 to 300, we get the behaviour of Fig. 1.9, corresponding to:

hxN i200_pp < hxN i300_pp < l0
.�xN /200_pp D .�xN /300_pp



1 Microscopic Models for Vibrations in Mechanical Systems Under. . . 23

.�xN /200_pp
hxN i200_pp

>
.�xN /300_pp
hxN i300_pp

It is easy to see that there is a correlation between the kinetic energy per particle and
the kinetic energy per unit length, for large N. This relation can be expressed by:

(
h.ekin/ki Š Ck � ˝�Ekin

�
k

˛

�.ekin/k Š Ck � �.Ekin/k

where (ekin)k is the specific kinetic energy averaged over the length of the kth
bar segment, ( NEkin)k is the average kinetic energy averaged over the number of
particles of the kth bar segment, Nk and Ck is a constant depending on Nk. Indeed,
by definition one has:

�
Ekin

�
k

D hEki
lk

.ekin/k D

Ek

Nk

�

We now define the specific number of particle per bar interval k as nk � hNki =lk
and we notice that simulations show that nk � const. Therefore, we can write:

�
Ekin

�
k

D hEki
hNkink

If we assume, as supported by our simulations, that the distributions of the various
properties are Gaussian, we have:

.ekin/k D

Ek

Nk

�
D
*

hN.t/i .ekin/k C p
N.ekin/k.t/

hN i C p
N

+

Then, for large N,
p
N can be neglected with respect to N, so that

.ekin/k D hN.t/ h.ekin/kii
hN i D hEki

hN i D
�
Ekin

�
k

nk

And, in particular:

nk D Ck D lk

Nk

As time passes, the density gradient at the end of the bar diminishes, in agreement
with the physics of the problem, as there is no wall at the end of the bar. Figure 1.10
shows the time evolution of the density distribution along the bar, averaged over
time, from the beginning of the simulation to the current instant, for both elongation
and compression initial conditions. Three times are examined: the beginning of the
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Fig. 1.10 Density distribution along the bar, in three different moments: at the beginning (top),
during the transient (middle), in stationary conditions (bottom). The band gives the range of the
possible oscillations in time and its limits are given by h�i ˙ ��. Parameters: 200 particles,
F D constant, equal masses

simulation, one time along the transient, and when steady state is reached. At the
beginning, the density is constant along the bar, because we took a uniform particle
distribution as initial condition. Consequently, at the end of the bar, the density
gradient is initially very steep, because the borders of the physical object are sharply
defined. As expected, when initial elongation is considered, the density in the centre
of the bar, h�i D 2, is lower than the stationary one. Conversely, when we start with
compression, the initial density h�i D 6 is higher than the stationary one. In the
steady state, the two initial conditions have converged to the same density profile,
about the average value h�i D 2:75 with �� D 0:5. However, major differences
appear during the transient. With an initial elongation �xN D 2, the oscillations
in the transient states are much wider than those concerning the initial compression
�xN D �5. During the transient, the average density is not uniform along the bar. In
particular, the transient gradient at the end of the bar is lower than the initial and final
gradients. This happens because oscillations in time cause a rarefaction at the free
extreme, therefore the borders of the bar are not sharply defined during the transient.

Interestingly, our model has a stress-strain behaviour qualitatively similar to
those of real bars undergoing tensile testing, as demonstrated by our results for
a range of forces between 2.5 and 22.5. As our model needs the application of
a compressive force, while experimental tensile results are generally referred to
traction tests, in order to be able to compare the curves, we considered as the
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Table 1.1 Load test cycle in
equilibrium conditions of the
bar

F hxN i s e

2.5 12:6 0.888888889 0.726027397
5 9:6 0.777777778 0.315068493
7.5 8:6 0.666666667 0.178082192
10 8 0.555555556 0.095890411
12.5 7:8 0.444444444 0.068493151
15 7:6 0.333333333 0.04109589
17.5 7:5 0.222222222 0.02739726
20 7:4 0.111111111 0.01369863
22.5 7:3 0 0

F is the applied constant force, hxNi is the
average length of the bar at steady state, s is
the stress and e is the strain. All these values
are expressed in natural units
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 1.11 Stress-strain curve looks like the typical experimental curves for metallic materials. The
curve from simulations qualitatively reproduces the trend of the real ones, presenting a first part
where the strain increases linearly with the applied stress, followed by a part where a power law
holds

unloaded condition of the bar the case when we had the maximum applied force
(F0 D 22.5). Therefore the other forces could be considered as traction forces
(Table 1.1).

Following the classical definitions, the stress of the bar s and the corresponding
deformation e are calculated as

s D
ˇ
ˇ
ˇ
ˇ
F � F0

F0

ˇ
ˇ
ˇ
ˇ I e D l � l0

l0
D hxN i � hxN i0

hxN i0
where F0 and l0 were respectively the restraining force and the length of the bar
corresponding to the unloaded condition. The curve that we found (Fig. 1.11) is
strikingly similar to the real curves of metallic materials. In particular, we observe a
part with elastic behaviour, and a section where plastic deformation appears.
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1.3.2 Non-equilibrium

Here, we consider the total length of the bar, in non-equilibrium conditions imposed
by a temperature gradient, caused by different temperatures at the ends of the chain.
We found that the following parameters affect mean and standard deviations of this
quantity:

• Average reference kinetic energy of the thermostats, i.e. average temperature of
the bar

�
Ekin

�
REF

D .Ekin/REF_1 C .Ekin/REF_2
2

The final average bar length hxNi increases with the average reference kinetic
energy of the thermostats ( NEkin)REF. As the kinetic energy is related to the
temperature, this means that the bar length increases when the temperature rises,
which is in agreement with the physics of the system.

• Relaxation constants 	1 ; 	2

If we decrease the relaxation constants, the average value and the standard
deviation of the bar length converge to higher values.

(Ekin)REF,1 = 0.5,  (Ekin)REF,2 = 0.5 (Ekin)REF,1 = 0.25,  (Ekin)REF,2 = 0.25 

(Ekin)REF,1 = 0.75,  (Ekin)REF,2 = 0.75 (Ekin)REF,1 = 1 ,  (Ekin)REF,2 = 1
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Fig. 1.12 Dependence of the average length of the bar on its imposed temperature. We imposed a
temperature gradient �T D 0 between the thermostats and an increasing average temperature T .
The length of the bar increases with the temperature. j is the index of the time instant
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(Ekin)REF,1 = 0.25,  (Ekin)REF,2 = 0.25 (Ekin)REF,1 = 0.5,  (Ekin)REF,2 = 0.5 
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Fig. 1.13 Dependence of the standard deviation of the length of the bar on the thermostats
temperatures, with vanishing temperature gradient, �T D 0. Unlike the average length, the
standard deviation always converges, but it doesn’t have a monotonic trend when the temperature
rises. The fastest convergence is found with the lowest temperatures, while the slowest convergence
is found for the highest ones

In analogy with the equilibrium case, we run several simulations with different
applied forces F at the end of the bar. When we heated up the bar by setting a
temperature gradient between its two ends, we found stress-strain curves with
the same qualitative characteristics as the experimental curves of most common
metallic materials. When a plastic material is deformed, accumulation of dis-
locations produces hardening, which opposes further deformation. However, if
some heat is given to the material, dislocations can move again and the material
can deform. The curves that we found from our simulations, prove that these
mechanisms are shared by our particles systems as well. Even in a simple one-
dimensional model, localized agglomerates can originate and be redistributed by
means of heat flows, thus allowing further deformation. Figures 1.12 and 1.13
illustrate cases with equal temperatures at the borders of the bar, in order to show
how equilibrium is reached in the presence of thermostats. Table 1.2 and Fig. 1.14
demonstrate the hardening due to the temperature variations.
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Table 1.2 Load test in
non-equilibrium conditions
with vREF,1 D vREF,2 D 1.4,
corresponding to
.Ekin/REF;1 D
0:98; .Ekin/REF;2 D 0:32

F hxN i s e

2.5 27 0.888888889 5.75
5 15 0.777777778 2.75
7.5 11 0.666666667 1.75
10 8.5 0.555555556 1.125
12.5 7 0.444444444 0.75
15 6 0.333333333 0.5
17.5 5 0.222222222 0.25
20 4.5 0.111111111 0.125
22.5 4 0 0

F is the constant force, hxNi is steady
state bar length, s is the stress and e is
the strain

Fig. 1.14 Stress-strain
curves look like those of
metallic materials, for rising
temperatures

1.4 Conclusions

Simulations of the equilibrium conditions of a bar made of hard point particles
prove that even very simple models may qualitatively reproduce the macroscopic
physical behaviour of solid bars. This is typical in statistical physics, which
has provided understanding of an incredible variety of phenomena by means of
explicitly treatable idealized models.

In our investigation, both the bar and the thermostats are described by over-
simplified interacting particles and mechanical forces. Nevertheless, the fact that
macroscopic systems are observed on a very coarse grained scale, which makes
largely irrelevant the details of the myriad of microscopic degrees of freedom
[2], allows us to obtain sensible results. In particular, we found that the average
values and standard deviations of the main macroscopic and microscopic collective
properties of our particle systems converge in relatively short times to the relevant
stationary values. Although the equilibrium model is microscopically reversible,
it results macroscopically irreversible: different initial conditions evolve into the
same equilibrium state, which depends only on the number of particles and on their
total energy. Consistently with equilibrium statistical mechanics, the probability
distribution of the fluctuations of the various observables are Gaussian, with
decreasing relative variance for growing number of particles.
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In non-equilibrium conditions, we found that our systems reach a steady state
only for a certain range of average temperatures, beyond which the bar length
indefinitely diverges or collapses. Similar kinds of instabilities are known. Here the
problem is that the thermostats which we have adopted manifest their unphysical
peculiarities when the dissipation is too strong. This is another common feature
of statistical mechanical models and, indeed, of mathematical models of real
phenomena in general. A mathematical model is constructed with the intent to
understand the role of various elements contributing to a phenomenon of interest.
For this reason and also for the practical need to let the model be amenable to
detailed study, mathematical models are necessarily incomplete, and are desired
to be so. Therefore, their applicability is always restricted to a certain range of
parameters and phenomena. Better models apply more extensively than others, but
outside a certain range of applicability, they are all bound to fail.

Within the applicability range of our model, we found that the stationary bar
length depends on the average of the thermostats reference temperatures, and the
temperatures standard deviations. In particular, we obtained that a lower average
temperature corresponds to lower final length and smaller oscillations of the bar,
as physically expected. At equal average temperatures, the convergence velocity
is influenced by the absolute value of the temperature difference of the two
thermostats. Regardless of their sign, lower gradients result in a faster convergence
both of average values and standard deviations of the bar length, thus stabilizing the
system, in agreement with its physical behaviour.

The convergence velocity is also affected by the relaxation constants of the
thermostats, which represent the efficiency of the energy exchange between bar and
thermostats. When they are equal, their increase produces a slower convergence, as
expected from the analysis of the thermostats equations. In fact, higher values of
these constants correspond to lower efficiency of the thermostats. However, when
the relaxation constants differ, the relation between their value and the convergence
velocity still needs to be clarified.

Particularly interesting are the results obtained by changing the force at the free
ends of the bar, both in equilibrium and in non-equilibrium conditions, as they
qualitatively reproduced the typical experimental stress-strain curves of metallic
materials. Such analogy is also extended to the way these curves change when the
temperature increases.

We are aware of no simpler microscopic mechanical system capable of repro-
ducing such thermo-mechanical features as the hardening phenomenon, under a
temperature gradient.
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Chapter 2
Chaos, Transport and Diffusion

Guido Boffetta, Guglielmo Lacorata, and Angelo Vulpiani

Abstract This chapter presents basic elements of chaotic dynamical system theory.
The concept of Lyapunov exponent, predictability time and Lagrangian chaos are
introduced together with examples. The second part is devoted to the discussion of
Lagrangian chaos, in particular in two dimensions, and its relation with Eulerian
properties of the flow. The last part of the chapter contains an introduction to
diffusion and transport processes, with particular emphasis on the treatment of
non-ideal cases.

2.1 Some Basic Elements of Dynamical Systems

A dynamical system may be defined as a deterministic rule for the time evolution
of state observables. Well known examples are the ordinary differential equations
(ODE) in which time is continuous:

dx.t/
dt

D f.x.t//; x; f 2 Rd I (2.1)

and maps in which time is discrete:

x.t C 1/ D g.x.t//; x; g 2 Rd : (2.2)
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In the case of maps, the evolution law is straightforward: from x.0/ one computes
x.1/, and then x.2/ and so on. For ODE’s, under rather general assumptions on
f, from an initial condition x.0/ one has a unique trajectory x.t/ for t > 0 [50].
Typically, exception made for the linear case and other few situations (integrable
systems), it is not possible to find an explicit solution x.t/. On the other hand, via the
qualitative analysis, sometimes it is possible to obtain some features of the system,
for instance the stability of fixed points or the existence of periodic orbits. Examples
of regular behaviors are shown in Fig. 2.1.

A rather natural question is the possible existence of less regular behaviors
i.e. different from stable fixed points, periodic or quasi-periodic motion. After the
seminal works by Lorenz, Hénon and Chirikov (to mention just the most eminent
scientists of Chaos) it is now well established that deterministic systems can have
an irregular and unpredictable behavior. As a relevant system, originated in a
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Fig. 2.1 Examples of regular attractors: fixed point (above) and limit cycle (below)
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geophysical context, we mention the celebrated Lorenz model [44]:

dx

dt
D ��.x � y/

dy

dt
D �xz C rx � y (2.3)

dz

dt
D xy � bz

This system is related to the Rayleigh-Benard convection under very crude approx-
imations. The quantity x is proportional the circulatory fluid particle velocity; the
quantities y and z are related to the temperature profile; � , b and r are dimensionless
parameters. Lorenz studied the case with � D 10 and b D 8=3 at varying r (which
is proportional to the Rayleigh number). It is easy to see by linear analysis that the
fixed point .0; 0; 0/ is stable for r < 1. For r > 1 it becomes unstable and two new
fixed points appear:

CC;� D .˙
p
b.r � 1/;˙

p
b.r � 1/; r � 1/; (2.4)

these are stable for r < rc D 24:74. A nontrivial behavior, i.e. non periodic, is
present for r > rc , as is shown in Fig. 2.2.

In this “strange”, chaotic regime one has the so called sensitive dependence on
initial conditions. Consider two trajectories, x.t/ and x0.t/, initially very close and
denote with �.t/ D jjx0.t/ � x.t/jj their separation. Chaotic behavior means that if
�.0/ ! 0, then as t ! 1 one has�.t/ � �.0/ exp�1t , with �1 > 0, see Fig. 2.3.
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Fig. 2.2 Example of aperiodic signal: the x variable of the Lorenz system (2.3) as function of time
t , for r D 28
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Fig. 2.3 The growth of a generic infinitesimal perturbation �.t/ in the Lorenz model (2.3) as
function of time t , for r D 28. The dashed line represent the exponential growth �.0/ exp �1t

Let us notice that, because of its chaotic behavior and its dissipative nature, i.e.

@ Px
@x

C @ Py
@y

C @Pz
@z
< 0; (2.5)

the attractor of the Lorenz system cannot be a smooth surface. Indeed the attractor
has a self-similar structure with a fractal dimension between 2 and 3. The Lorenz
model (which had an important historical relevance in the development of chaos
theory) is now considered a paradigmatic example of a chaotic system.

The main mark of the so-called deterministic chaos is the sensitive dependence
on initial conditions: arbitrarily small initial errors are fastly amplified. The mean
growth rate of the trajectory separation is measured by the first (or maximum)
Lyapunov exponent, defined as

�1 D lim
t!1 lim

�.0/!0

1

t
ln
�.t/

�.0/
; (2.6)

As long as�.t/ remains sufficiently small (i.e. infinitesimal, strictly speaking), one
can regard the separation as a tangent vector z.t/ whose time evolution is

dzi
dt

D
dX

jD1

@fi

@xj
jx.t/ � zj ; (2.7)

and, therefore,

�1 D lim
t!1

1

t
ln

jjz.t/jj
jjz.0/jj : (2.8)
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In principle, �1 may depend on the initial condition x.0/, but this dependence
disappears for ergodic systems. In general there exist as many Lyapunov exponents,
conventionally written in decreasing order �1 � �2 � �3 � : : :, as the independent
coordinates of the phase space [7]. Without entering the details, one can define
the sum of the first k Lyapunov exponents as the growth rate of an infinitesimal
k-dimensional volume in the phase space. In particular, �1 is the growth rate of
material lines, �1 C �2 is the growth rate of 2D surfaces, and so on. A numerical
widely used efficient method is due to Benettin et al. [7].

It must be observed that, after a transient, the growth rate of any generic small
perturbation (i.e. distance between two initially close trajectories) is measured by
the first (maximum) Lyapunov exponent �1, and �1 > 0 means chaos. In such a
case, the state of the system is unpredictable on long times. Indeed, if we want to
predict the state with a certain tolerance � then our forecast cannot be pushed over
a certain time interval TP , called predictability time, given by:

TP � 1

�1
ln

�

�.0/
: (2.9)

The above relation shows that TP is basically determined by 1=�1, seen its weak
dependence on the ratio �=�.0/. To be precise one must state that, for a series of
reasons, relation (2.9) is too simple to be of actual relevance [14].

2.2 Lagrangian Chaos

A problem of great interest concerns the study of the spatial and temporal structure
of the so-called passive fields, indicating by this term passively quantities driven by
the flow, such as the temperature under certain conditions [48]. The equation for the
evolution of a passive scalar field 	.x; t/, advected by a velocity field v.x; t/, is

@t	 C r � .v 	/ D r2	 (2.10)

where v.x; t/ is a given velocity field and  is the molecular diffusion coefficient.
The problem (2.10) can be studied through two different approaches. Either one

deals at any time with the field 	 in the space domain covered by the fluid, or one
deals with the trajectory of each fluid particle. The two approaches are usually
designed as “Eulerian”and “Lagrangian”, although both of them are due to Euler
[40]. The two points of view are in principle equivalent.

The motion of a fluid particle is determined by the differential equation

dx
dt

D v.x; t/ (2.11)
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which also describes the motion of test particles, for example a powder embedded in
the fluid, provided that the particles are neutral and small enough not to perturb the
velocity field, although large enough not to perform a Brownian motion. Particles of
this type are commonly used for flow visualization in fluid mechanics experiments,
see [55]. Let us note that the true equation for the motion of a material particle in a
fluid can be rather complicated [47].

It is now well established that even in regular velocity field the motion of fluid
particles can be very irregular [2, 29]. In this case initially nearby trajectories diverge
exponentially and one speaks of Lagrangian chaos. In general, chaotic behaviors
can arise in two-dimensional flow only for time dependent velocity fields in two
dimensions, while it can be present even for stationary velocity fields in three
dimensions.

If  D 0, it is easy to realize that (2.10) is equivalent to (2.11). In fact, we can
write

	.x; t/ D 	o.T
�tx/ (2.12)

where 	o.x/ D 	.x; t D 0/ and T is the formal evolution operator of (2.11) ,

x.t/ D T tx.0/: (2.13)

Taking into account the molecular diffusion , (2.10) is the Fokker-Planck
equation of the Langevin equation [20]

dx
dt

D v.x; t/C �.t/ (2.14)

where � is a Gaussian process with zero mean and variance
˝
�i .t/ �j .t

0/
˛ D 2ıij ı.t � t 0/: (2.15)

In the following we will consider only incompressible flow

r � v D 0 (2.16)

for which the dynamical system (2.11) is conservative. In two dimensions, the
constraint (2.16) is automatically satisfied assuming

v1 D @ 

@x2
; v2 D � @ 

@x1
(2.17)

where  .x; t/ is the stream function. Inserting (2.17) into (2.11) the evolution
equations become

dx1
dt

D @ 

@x2
;

dx2
dt

D � @ 

@x1
: (2.18)
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Formally (2.18) is a Hamiltonian system with the Hamiltonian given by the stream
function  .

2.2.1 Examples of Lagrangian Chaos

As a first example we consider a 3d stationary velocity field, the so-called ABC
flow

v D .A sin z C C cosy; B sin x CA cos z; C sin y C B cos x/ (2.19)

where A; B and C are non zero real parameters. Because of the incompressibility
condition, the evolution x.0/ ! x.t/ defines a volume preserving, dynamics.

Arnold [4] argued that (2.19) is a good candidate for chaotic motion. Let us
briefly repeat his elegant argument. For a steady state solution of the 3d Euler
equation one has:

r � v D 0

v � .r � v/ D r˛ (2.20)

˛ D P

�
C v2

2

where P is the pressure and � the density. As a consequence of the Bernoulli
theorem [41], ˛.x/ is constant along a streamline—that is a Lagrangian trajectory
x.t/. One can easily verify that chaotic motion can appear only if ˛.x/ is constant
(i.e. r˛.x/ D 0) in a part of the space. Otherwise the trajectory would be
confined on a 2d surface ˛.x/ D constant, where the motion must be regular
as a consequence of general arguments [50]. In order to satisfy such a constraint,
from (2.20) one has the Beltrami condition:

r � v D �.x/ v: (2.21)

The reader can easily verify that the field v given by (2.19) satisfy (2.21) (in this case
�.x/ D constant). Indeed, numerical experiments by Hénon [29] provided evidence
that Lagrangian motion under velocity (2.19) is chaotic for typical values of the
parameters A, B , and C (see an example in Fig. 2.4).

In a two-dimensional incompressible stationary flows the motion of fluid parti-
cles is given by a time independent Hamiltonian system with one degree of freedom
and, since trajectories follow iso- lines, it is impossible to have chaos. However,
for explicit time dependent stream function  the system (2.19) can exhibit chaotic
motion [50].

In the particular case of time periodic velocity fields, v.x; t C T / D v.x; t/,
the trajectory of (2.11) can be studied in terms of discrete dynamical systems: the
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Fig. 2.4 Intersections with the Poincaré section, plane z D 0, of eight trajectories of the ABC
flow with parameters A D 2:0, B D 1:70, C D 1:50

position x.tCT / is determined in terms of x.t/. The map x.t/ ! x.tCT / will not
depend on t thus (2.11) can be written in the form

x.nC 1/ D FŒx.n/�; (2.22)

where now the time is measured in units of the period T . Because of incompress-
ibility, the map (2.22) is conservative:

ˇ
ˇdetAŒx�

ˇ
ˇ D 1; where AijŒx� D @Fi Œx�

@xj
: (2.23)

An explicit deduction of the form of F for a general 2d or 3d flow is usually very
difficult. However, in some simple model of can be deduced on the basis of physical
features [3, 19].

2.2.2 Eulerian Properties and Lagrangian Chaos

In principle, the evolution of the velocity field v is described by partial differential
equations, e.g. Navier-Stokes or Boussinesq equations. However, often in weakly
turbulent situations, a good approximation of the flow can be obtained by using
a Galerkin approach, and reducing the Eulerian problem to a (small) system of
F ordinary differential equations [15, 42]. The motion of a fluid particle is then
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described by the .d C F /-dimensional dynamical system

dQ
dt

D f.Q; t/ with Q; f 2 RF (2.24)

dx
dt

D v.x;Q/ with x; v 2 Rd (2.25)

where d is the space dimensionality and Q D .Q1; : : : QF / are the F variables,
usually normal modes, which are a representation of the velocity field v. Note that
the Eulerian equations (2.24) do not depend on the Lagrangian part (2.25) and can
be solved independently.

In order to characterize the degree of chaos, three different Lyapunov exponents
can be defined [24]:

• (a) �E for the Eulerian part (2.24);
• (b) �L for the Lagrangian part (2.25), where the evolution of the velocity field is

assumed to be known;
• (c) �T per for the total system of the d C F equations.

These Lyapunov exponents are defined as:

�E;L;T D lim
t!1

1

t
ln

jz.t/.E;L;T/j
jz.0/.E;L;T/j (2.26)

where the evolution of the three tangent vectors z are given by the linearized stability
equations for the Eulerian part, for the Lagrangian part and for the total system,
respectively:

dz.E/i
dt

D
FX

jD1

@fi

@Qj

ˇ
ˇ
ˇ̌
Q.t/

zj
.E/; z.E/ 2 RF (2.27)

dz.L/i
dt

D
dX

jD1

@vi

@xj

ˇ
ˇ
ˇ
ˇ
x.t/

zj
.L/; z.L/ 2 Rd (2.28)

dz.T/i
dt

D
dCFX

jD1

@Gi

@yj

ˇ
ˇ
ˇ
ˇ
y.t/

zj
.T/; z.T/ 2 RFCd (2.29)

and y D .Q1; : : : ;QF ; x1; : : : ; xd / and G D .f1; : : : ; fF ; v1; : : : ; vd /. The meaning
of these Lyapunov exponents is evident:

• (a) �E is the mean exponential rate of the increasing of the uncertainty in the
knowledge of the velocity field (which is, by definition, independent on the
Lagrangian motion);



40 G. Boffetta et al.

• (b) �L estimates the rate at which the distance ıx.t/ between two fluid particles
initially close increases with time, when the velocity field is given, i.e. a particle
pair in the same Eulerian realization;

• (c) �T is the rate of growth of the distance between initially close particle pairs,
when the velocity field is not known with infinite precision.

There is no general relation between�E and�L. One could expect that in presence
of a chaotic velocity field the particle motion has to be chaotic. However, the
inequality �L � �E—even though typically valid—sometimes does not hold, e.g.
in some systems like the Lorenz model [24] and in generic 2d flows when the
Lagrangian motion happens around well defined vortex structures [6] as discussed
in the following. On the contrary, one has [22]

�T D max .�E; �L/: (2.30)

2.2.3 Lagrangian Chaos in Two Dimensional Flows

Let us now consider the two-dimensional Navier-Stokes equations with periodic
boundary conditions at low Reynolds numbers, for which we can expand the stream
function  in Fourier series and takes into account only the first F terms [15, 42],

 D �i
FX

jD1
k�1
j Qj e

ikj x C c:c: ; (2.31)

where c.c. indicates the complex conjugate term and Q D .Q1; : : : ;QF / are the
Fourier coefficients. Inserting (2.31) into the Navier-Stokes equations and by an
appropriate time rescaling, we obtain the system of F ordinary differential equations

dQj

dt
D �k2j Qj C

X

l;m

AjlmQlQm C fj ; (2.32)

in which fj represents an external forcing.
Franceschini and coworkers have studied this truncated model with F D 5 and

F D 7 [15, 42]. The forcing were restricted to the 3th mode fj D Re ıj;3 [42].
For F D 5 and Re < Re1 D 22:85 : : :, there are four stable stationary solutions,
say OQ, and �E < 0. At Re D Re1, these solutions become unstable, via a Hopf
bifurcation [46], and four stable periodic orbits appear, still implying �E D 0. For
Re1 < Re < Re2 D 28:41 : : :, one thus finds the stable limit cycles:

Q.t/ D OQ C .Re � Re1/1=2ıQ.t/CO.Re � Re1/ (2.33)
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Fig. 2.5 Structure of the separatrices in the 5-mode model (2.31) with Re D Re1 � 0:05

where ıQ.t/ is periodic with period

T .Re/ D T0 CO.Re � Re1/ T0 D 0:7328 : : : (2.34)

At Re D Re2, these limit cycles lose stability and there is a period doubling cascade
toward Eulerian chaos.

Let us now discuss the Lagrangian behavior of a fluid particle. For Re < Re1,
the stream function is asymptotically stationary,  .x; t/ ! O .x/, and the corre-
sponding one-dimensional Hamiltonian is time-independent, therefore Lagrangian
trajectories are regular. For Re D Re1 C � the stream function becomes time
dependent

 .x; t/ D O .x/C p
� ı .x; t/CO.�/; (2.35)

where O .x/ is given by OQ and ı is periodic in x and in t with period T . The
region of phase space, here the real two-dimensional space, adjacent to a separatrix
is very sensitive to perturbations, even of very weak intensity. Figure 2.5 shows the
structure of the separatrices, i.e. the orbits of infinite periods at Re D Re1 � 0:05.

Indeed, generically in one-dimensional Hamiltonian systems, a periodic pertur-
bation gives origin to stochastic layers around the separatrices where the motion
is chaotic, as consequence of unfolding and crossing of the stable and unstable
manifolds in domains centered at the hyperbolic fixed points [21, 50]. One has
strong numerical evidence for the existence of the chaotic regions, see Fig. 2.6.
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Fig. 2.6 Poincaré map for
three trajectories of the
5-mode model with
Re D Re1 C 0:05. The initial
conditions are selected close
to a separatrix, case a)
(x1.0/ D 3:2,
x2.0/ D �1:6), or far from
the separatrices, cases b)
(x1.0/ D 4:3, x2.0/ D �2:0)
and c) (x1.0/ D 4:267,
x2.0/ D �3:009)

Chaotic and regular motion for small � D Re1�Re can be studied by the Poincaré
map

x.nT/ ! x.nT C T /: (2.36)

The period T .�/ is computed numerically. The size of the stochastic layers rapidly
increase with �. At � D �c � 0:7 they overlap and it is practically impossible to
distinguish between regular and chaotic zones. At � > �c there is always diffusive
motion.

We stress that this scenario for the onset of Lagrangian chaos in two-dimensional
fluids is generic and does not depend on the particular truncated model. In fact,
it is only related to the appearance of stochastic layers under the effects of small
time-dependent perturbations in one-dimensional integrable Hamiltonian systems.
As consequence of a general features of one-dimensional Hamiltonian systems we
expect that a stationary stream function becomes time periodic through a Hopf
bifurcation as occurs for all known truncated models of Navier-Stokes equations.

We have seen that there is no simple relation between Eulerian and Lagrangian
behaviors. In the following, we shall discuss two important points:

• (i) what are the effects on the Lagrangian chaos of the transition to Eulerian
chaos, i.e. from �E D 0 to �E > 0.

• (ii) whether a chaotic velocity field (�E > 0) always implies an erratic motion of
fluid particles.

The first point can be studied again within the F D 5 modes model (2.32).
Increasing Re, the limit cycles bifurcate to new double period orbits followed by a
period doubling transition to chaos and a strange attractor appears at Rec � 28:73,
where �E becomes positive. These transitions have no signature on Lagrangian
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Fig. 2.7 Lyapunov
exponents �E (C) and �L (�)
as function of Re around Rec ,
for the 5-mode model

behavior, as it is shown in Fig. 2.7, i.e. the onset of Eulerian chaos has no influence
on Lagrangian properties.

This feature should be valid in most situations, since it is natural to expect that
in generic cases there is a strong separation of the characteristic times for Eulerian
and Lagrangian behaviors.

The second point—the conjecture that a chaotic velocity field always implies
chaotic motion of particles—looks very reasonable. Indeed, it appears to hold in
many systems [22]. Nevertheless, one can find a class of systems where it is false,
e.g. Eqs. (2.24), (2.25) may exhibit Eulerian chaoticity �E > 0, even if �L D 0 [6].

Consider for example the motion of N point vortices in the plane with circula-
tions �i and positions .xi .t/; yi .t// (i D 1; ::N ) [1]:

�i
dxi
dt

D @H

@yi
(2.37)

�i
dyi
dt

D �@H
@xi

(2.38)

where

H D � 1

4�

X

i¤j
�i�j ln rij (2.39)

and r2ij D .xi � xj /
2 C .yi � yj /

2.
The motion of N point vortices is described in an Eulerian phase space with

2N dimensions. Because of the presence of global conserved quantities, a system
of three vortices is integrable and there is no exponential divergence of nearby
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trajectories in phase space. For N � 4, apart from non generic initial conditions
and/or values of the parameters �i , the system is chaotic [1].

The motion of a passively advected particle located in .x.t/; y.t// in the velocity
field defined by (2.37)–(2.38) is given

dx

dt
D �

X

i

�i

2�

y � yi
R2i

(2.40)

dy

dt
D
X

i

�i

2�

x � xi

R2i
(2.41)

where R2i D .x � xi /2 C .y � yi /2.
Let us first consider the motion of advected particles in a three-vortices

(integrable) system in which �E D 0. In this case, the stream function for the
advected particle is periodic in time and the expectation is that the advected particles
may display chaotic behavior. The typical trajectories of passive particles which
have initially been placed respectively in close proximity of a vortex center or in the
background field between the vortices display a very different behavior. The particle
seeded close to the vortex center displays a regular motion around the vortex and
thus �L D 0; by contrast, the particle in the background field undergoes an irregular
and aperiodic trajectory, and �L is positive.

We now discuss a case where the Eulerian flow is chaotic i.e. N D 4 point
vortices. Let us consider again the trajectory of a passive particle deployed in prox-
imity of a vortex center. As before, the particle rotates around the moving vortex.
The vortex motion is chaotic; consequently, the particle position is unpredictable
on large times as is the vortex position. Nevertheless, the Lagrangian Lyapunov
exponent for this trajectory is zero (i.e. two initially close particles around the vortex
remain close), even if the Eulerian Lyapunov exponent is positive, see Fig. 2.8.

-30 -20 -10 0 10 20
x

-30

-20

-10

0

10

20

30

y

-60 -40 -20 0 20 40

x

-40

-20

0

20

40

60

y

Fig. 2.8 Particle trajectories in the four-vortex system. Eulerian dynamics in this case is chaotic.
The left panel shows a regular Lagrangian trajectory while the right panel shows a chaotic
Lagrangian trajectory. The different behavior of the two particles is due to different initial
conditions
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This result indicates once more that there is no strict link between Eulerian and
Lagrangian chaoticity.

One may wonder whether a much more complex Eulerian flow, such as 2d
turbulence, may give the same scenario for particle advection: i.e. regular trajec-
tories close to the vortices and chaotic behavior between the vortices. It has been
shown that this is indeed the case [6] and that the chaotic nature of the trajectories
of advected particles is not strictly determined by the complex time evolution of the
turbulent flow.

We have seen that there is no general relation between Lagrangian and Eulerian
chaos. In the typical situation Lagrangian chaos may appear also for regular velocity
fields. However, it is also possible to have the opposite situation, with �L D 0 in
presence of Eulerian chaos, as in the example of Lagrangian motion inside vortex
structures. As an important consequence of this discussion we remark that it is not
possible to separate Lagrangian and Eulerian properties in a measured trajectory,
e.g. a buoy in the oceanic currents [49]. Indeed, using the standard methods for data
analysis [27], from Lagrangian trajectories one extracts the total Lyapunov exponent
�T and not �L or �E.

2.3 Transport and Diffusion

2.3.1 The Random Walk Model for Brownian Motion

The simplest model of diffusion is the one-dimensional random walk. The walker
moves on a line making discrete jumps vi D ˙1 at discrete times. The position of
the walker, started at the origin at t D 0, will be

R.t/ D
tX

iD1
vi (2.42)

Assuming equiprobability for left and right jumps (no mean motion), the probability
that at time t the walker is in position x will be

pt .R D x/ D prob

�
t�x
2

steps � 1
tCx
2

steps C 1

�
D 1

2t

�
t
tCx
2

�
(2.43)

For large t and x (i.e. after many microscopic steps) we can use Stirling approxima-
tion and get

pt .x/ D
s

t

2�.t2 � x2/
exp

�
� t C x

2
ln
t C x

2
� t � x

2
ln
t � x

2

�
(2.44)
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Fig. 2.9 Probability distribution function of the one-dimensional random walk after t D 100

steps. The dashed line is the Gaussian distribution

The core of the distribution recovers the well known Gaussian form, i.e. for x 	 t

from (2.44) we get

pt .x/ D
r

1

2�t
exp

�
�x

2

2t

�
(2.45)

From (2.45) one obtains that the variance of the displacement follows diffusive
behavior, i.e.

hx2.t/i D 2t (2.46)

We stress that (2.45) is valid only asymptotically (i.e. for t ! 1). This is a
consequence of central limit theorem which assures Gaussian distributions and
diffusive behavior in the limit of many independent jumps. In Fig. 2.9 we show the
pdf pt.x/ at step t D 100 compared with the Gaussian approximation. Deviations
are evident in the tails.

The Gaussian distribution (2.45) can be obtained as the solution of the diffusion
equation which governs the evolution of the probability in time. This is the Fokker-
Planck equation for the particular stochastic process. A direct way to relate the one-
dimensional random walk to the diffusion equation is obtained by introducing the
master equation, i.e. the time evolution of the probability [26]:

ptC1.x/ D 1

2
pt .x � 1/C 1

2
pt .x C 1/ : (2.47)

In order to get a continuous limit, we introduce explicitly the steps �x and �t and
write

ptC�t.x/ � pt .x/

�t
D .�x/2

2�t

pt.x C�x/C pt .x ��x/� 2pt.x/

.�x/2
: (2.48)
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Now, taking the limit �x;�t ! 0 in such a way that .�x/2=�t ! 2D (the factor
2 is purely conventional) we obtain the diffusion equation

@p.x; t/

@t
D D

@2p.x; t/

@x2
: (2.49)

The way the limit �x;�t ! 0 is taken reflects the scaling invariance property of
diffusion equation. The solution to (2.49) is readily obtained as

p.x; t/ D 1p
4�Dt

exp

�
� x2

4Dt

�
: (2.50)

Diffusion equation (2.49) is here written for the probability p.x; t/ of observing
a marked particle (a tracer) in position x at time t . The same equation can have
another interpretation, in which p.x; t/ D 	.x; t/ represents the concentration of a
scalar quantity (marked fluid, temperature, pollutant) as function of time. The only
difference is, of course, in the normalization.

2.3.2 Less Simple Transport Processes

As already stated time decorrelation is the key ingredient for diffusion. In the
random walker model it is a consequence of randomness: the steps vi are random
uncorrelated variables and this assures the applicability of central limit theorem. But
we can have a finite time correlation and thus diffusion also without randomness.
To be more specific, let us consider the following deterministic model (standard map
[21]):

�
J.t C 1/ D J.t/CK sin 	.t/
	.t C 1/ D 	.t/C J.t C 1/ mod2�

(2.51)

The map is known to display large-scale chaotic behavior forK > Kc ' 0:9716

and, as a consequence of deterministic chaos, J.t/ has diffusive behavior. For large
times, J.t/ is large and thus the angle 	.t/ rotates rapidly. In this limit, we can
assume that at each step 	.t/ decorrelates and thus write

hJ.t/2i D K2h
tX

t 0D1
sin 	.t 0/i2 ' K2hsin2 	it D 2Dt (2.52)

The diffusion coefficient D, in the random phase approximation, i.e. assuming that
sin	.t/ is not correlated with sin	.t 0/ for t ¤ t 0, is obtained by the above expression
as DRPA D K2=4. In Fig. 2.10 we plot a numerical simulation obtained with the
standard map. Diffusive behavior is clearly visible at long time.
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Fig. 2.10 Square dispersion hJ.t/2i for the standard map at K D 10:5. The dashed line is the
RPA prediction

The two examples discussed above are in completely different classes: stochastic
for the random walk (2.42) and deterministic for the standard map (2.51). Despite
this difference in the microscopic dynamics, both lead to a macroscopic diffusion
equation and Gaussian distribution. This demonstrates how diffusion equation is of
general applicability.

2.3.3 Advection–Diffusion

Let us now consider the more complex situation of dispersion in a non-steady fluid
with velocity field v.x; t/. For simplicity will we consider incompressible flow (i.e.
for which r � v D 0) which can be laminar or turbulent, solution of Navier-Stokes
equation or synthetically generated according to a given algorithm. In presence
of v.x; t/, the diffusion equation (2.49) becomes the advection-diffusion equation
for the concentration 	.x; t/ (2.10). This equation is linear in 	 but nevertheless it
can display very interesting and non trivial properties even in presence of simple
velocity fields, as a consequence of Lagrangian chaos. In the following we will
consider a very simple example of diffusion in presence of an array of vortices.
The example will illustrate in a nice way the basic mechanisms and effects of
interaction between deterministic (v) and stochastic (D) components.

Let us remark that we will not consider here the problem of transport in
turbulent velocity field. This is a very classical problem, with obvious and important
applications, which has recently attracted a renewal theoretical interest as a model
for understanding the basic properties of turbulence [52].
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Before going into the example, let us make some general consideration. We have
seen that in physical systems the molecular diffusivity is typically very small. Thus
in (2.10) the advection term dominates over diffusion. This is quantified by the
Peclet number, which is the ratio of the typical value of the advection term to the
diffusive term

Pe D v0l0

D
(2.53)

where v0 is the typical velocity at the typical scale of the flow l0. With �0 ' l0=v0
we will denote the typical correlation time of the velocity.

The central point in the following discussion is the concept of eddy diffusivity.
The idea is rather simple and dates back to the classical work of Taylor [54].
To illustrate this concept, let us consider a Lagrangian description of dispersion
in which the trajectory of a tracer x.t/ is given by (2.11). Being interested in the
limit Pe ! 1, in the following we will neglect, just for simplicity, the molecular
diffusivityD, which is generally much lesser that the effective dynamical diffusion
coefficient.

Starting from the origin, x.0/ D 0, and assuming hvi D 0 we have hx.t/i D 0

for ever. The square displacement, on the other hand, grows according to

d

dt
h1
2

x.t/2i D hx.t/ � vL.t/i D
Z t

0

hvL.s/ � vL.t/ids (2.54)

where we have introduced, for simplicity of notation, the Lagrangian velocity
vL.t/ D v.x.t/; t/. Define the Lagrangian correlation time �L from

Z 1

0

hvL.s/ � vL.0/ids D hvL.0/2i�L (2.55)

and assume that the integral converge so that �L is finite. From (2.54), for t 
 �L
we get

hx.t/2i D 2�Lhv2Lit (2.56)

i.e. diffusive behavior with diffusion coefficient (eddy diffusivity)DE D �Lhv2Li.
This simple derivation shows, once more, that diffusion has to be expected in

general in presence of a finite correlation time �L. Coming back to the advection-
diffusion equation (2.10), the above argument means that for t 
 �L we expect that
the evolution of the concentration, for scales larger than l0, can be described by an
effective diffusion equation, i.e.

@h	i
@t

D DE
ij

@2h	i
@xi@xj

(2.57)
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l0

δ

Fig. 2.11 Cellular flow model. l0 is the size of vortices, ı is the thickness of the boundary layer

The computation of the eddy diffusivity for a given Eulerian flow is not an easy
task. It can be done explicitly only in the case of simple flows, for example by
means of homogenization theory [9, 45]. In the general case it is relatively simple
[9] to give some bounds, the simplest one being DE � D, i.e. the presence of a
(incompressible) velocity field enhances large-scale transport. To be more specific,
let us now consider the example of transport in a one-dimensional array of vortices
(cellular flow) sketched in Fig. 2.11. This simple two-dimensional flow is useful for
illustrating the transport across barrier. Moreover, it naturally arises in several fluid
dynamics contexts, such as, for example, convective patterns [53].

Let us denote by v0 the typical velocity inside the cell of size l0 and let D the
molecular diffusivity. Because of the cellular structure, particles inside a vortex can
exit only as a consequence of molecular diffusion. In a characteristic vortex time
�0 � l0=v0, only the particles in the boundary layer of thickness ı can cross the
separatrix where

ı2 � D�0 � D
l0

v0
: (2.58)

These particles are ballistically advected by the velocity field across the vortex so
they see a “diffusion coefficient” l20 =�0. Taking into account that this fraction of
particles is ı=l0 we obtain an estimation for the effective diffusion coefficient as

DE � ı

l0

l20
�0

�
p
Dl0v0 � DPe1=2 (2.59)

The above result, which can be made more rigorous, was confirmed by nice
experiments made by Solomon and Gollub [53]. Because, as already stressed above,
typically Pe 
 1, one has from (2.59) that DE 
 D. On the other hand, this result
do not mean that molecular diffusion D plays no role in the dispersion process.
Indeed, if D D 0 there is not mechanism for the particles to exit from vortices.

Diffusion equation (2.57) is the typical long-time behavior in generic flow.
There exist also the possibility of the so-called anomalous diffusion, i.e. when the
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δ

Fig. 2.12 Random shear of ˙v0 velocity in strips of size ı

spreading of particle do not grow linearly in time, but with a power law

hx2.t/i � t2� (2.60)

with � ¤ 1=2. The case � > 1=2 (formally DE D 1) is called super-diffusion;
sub-diffusion, i.e. � < 1=2 (formally DE D 0), is possible only for compressible
velocity fields.

Super-diffusion arises when the Taylor argument for deriving (2.56) fails and
formallyDE ! 1. This can be due to one of the following mechanisms:

(a) the divergence of hv2Li (which is the case of Lévy flights), or
(b) the lack of decorrelation and thus TL ! 1 (Lévy walks). The second case

is more physical and it is related to the existence of strong correlations in the
dynamics, even at large times and scales.

One of the simplest examples of Lévy walks is the dispersion in a quenched
random shear flow [16, 32]. The flow, sketched in Fig. 2.12, is a super-position of
strips of size ı of constant velocity v0 with random directions.

Let us now consider a particle which moves according to the flow of Fig. 2.12.
Because the velocity field is in the x direction only, in a time t the typical
displacement in the y direction is due to molecular diffusion only

ıy � p
Dt (2.61)

and thus in this time the walker visits N D ıy=ı strips. Because of the random
distribution of the velocity in the strips, the mean velocity in the N strips is zero,
but we may expect about

p
N unbalanced strips (say in the right direction). The

fraction of time t spent in the unbalanced strips is t
p
N=N and thus we expect a

displacement

ıx � v0
tp
N
: (2.62)
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Fig. 2.13 Square dispersion hJ.t/2i for the standard map atK D 6:91 : : :. The dashed line is t 1:33

From (2.61) we have N � p
Dt=ı and finally

hıx2i � v20ıp
D
t3=2 (2.63)

i.e. a super-diffusive behavior with exponent � D 3=4.
The origin of the anomalous behavior in the above example is in the quenched

nature of the shear and in the presence of large stripes with positive (or negative)
velocity in the x direction. This leads to an infinite decorrelation time for Lagrangian
tracers and thus to a singularity in (2.56). We conclude this example by observing
that for D ! 0 (2.63) gives hıx2i ! 1. This is not a surprise because in this case
the motion is ballistic and the correct exponent becomes � D 1.

As it was in the case of standard diffusion, also in the case of anomalous diffusion
the key ingredient is not randomness. Again, the standard map model (2.51) is
known to show anomalous behavior for particular values of K [56]. An example
is plotted in Fig. 2.13 for K D 6:91 : : : in which one find hJ.t/2i � t1:33.

The qualitative mechanism for anomalous dispersion in the standard map can
be easily understood: a trajectory of (2.51) for which K sin 	� D 2�m with m
integer, corresponds to a fixed point for 	 (because the angle is defined modulo 2�)
and linear growth for J.t/ (ballistic behavior). It can be shown that the stability
region of these trajectories in phase space decreases as 1=K [31, 56] and, for
intermediate value of K , they play a important role in transport: particles close to
these trajectories feel very long correlation times and perform very long jumps. The
contribution of these trajectory, as a whole, gives the observed anomalous behavior.

Now, let us consider the cellular flow of Fig. 2.11 as an example of sub-diffusive
transport. We have seen that asymptotically (i.e. for t 
 l20 =D) the transport is
diffusive with effective diffusion coefficient which scales according to (2.59). For
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δ

l0

Fig. 2.14 The comb model geometry

intermediate times l0=v0 	 t 	 l20 =D, when the boundary layer structure has set
in, one expects anomalous sub-diffusive behavior as a consequence of fraction of
particles which are trapped inside vortices [58]. A simple model for this problem is
the comb model [28, 32]: a random walk on a lattice with comb-like geometry. The
base of the comb represents the boundary layer of size ı around vortices and the
teeth, of length l0, represent the inner area of the convective cells. For the analogy
with the flow of Fig. 2.11 the teeth are placed at the distance ı � p

Dl0=v0 (2.58)
(Fig. 2.14).

A spot of random walker (dye) is placed, at time t D 0, at the base of the comb.
In their walk on the x direction, the walkers can be trapped into the teeth (vortices)
of dimension l0. For times l0=v0 	 t 	 l20 =D, the dye invades a distance of order
.Dt/1=2 along the teeth. The fraction F.t/ of active dye on the base (i.e. on the
separatrix) decreases with time as

F.t/ � ı

.Dt/1=2
(2.64)

and thus the effective dispersion along the base coordinate b is

hb2.t/i � F.t/Dt � ı.Dt/1=2 (2.65)

In the physical space the corresponding displacement will be

hx2.t/i � hb2.t/i l0
ı

� l0.PeDt/1=2 (2.66)

i.e. we obtain a sub-diffusive behavior with � D 1=4.
The above argument is correct only for the case of free-slip boundary conditions.

In the physical case of no-slip boundaries, one obtains a different exponent � D 1=3

[58]. The latter behavior has been indeed observed in experiments [18].
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2.3.4 Beyond the Diffusion Coefficient

From the above discussion it is now evident that diffusion, being an asymptotic
behavior, needs large scale separation in order to be observed. In other words,
diffusion arises only if the Lagrangian correlation time �L (2.55) is finite and the
observation time is t 
 �L or, according to (2.57), if the dispersion is evaluated on
scales much larger than l0.

On the other hand, there are many physical and engineering applications in which
such a scale separation is not achievable. A typical example is the presence of
boundaries which limit the scale of motion on scales L � l0. In these cases, it
is necessary to introduce non-asymptotic quantities in order to correctly describe
dispersion. Before discussing the non-asymptotic statistics let us show, with an
example, how it can be dangerous to apply the standard analysis in non-asymptotic
situation. We consider the motion of tracers advected by the two-dimensional flow
generated by 4 point vortices in a disk. The evolution equation is given by (2.37)
and (2.39) but now in (2.39), instead of ln rij, one has to consider the Green function
G.rij/ on the disk [43].

A set of 10,000 tracers are initially placed in a very small cloud in the center
of the disk. Because of the chaotic advection induced by the vortices, at large time
we observe the tracers dispersed in all the disk. In the following we will consider
relative dispersion, i.e. the mean size of a cluster of particles

R2.t/ D hjx.t/ � hx.t/ij2i (2.67)

Of course, for separation larger than the typical scale of the flow, l0, the particles
move independently and thus we expect again the asymptotic behavior

R2.t/ ' 2Dt if R2.t/1=2 
 l0 (2.68)

For very small separation we expect, assuming that the Lagrangian motion is
chaotic,

R2.t/ ' R2.0/e2�t if R2.t/1=2 	 l0 (2.69)

where � is the Lagrangian Lyapunov exponent [22].
The computation of the standard dispersion for the tracers in the point vortex

model is plotted in Fig. 2.15. At very long time R2.t/ reaches the saturation value
due to the boundary.

For intermediate times a power-law behavior with an anomalous exponent � D
1:8 is clearly observable. Of course the anomalous behavior is spurious: after the
discussion of the previous section, we do not see any reason for observing super-
diffusion in the point vortex system. The apparent anomaly is simply due to the lack
of scale separation and thus to the crossover from the exponential regime (2.69) to
the saturation value.
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Fig. 2.15 R2.t/ computed for the four point vortex system. The dashed line is the power law
hR2.t/i � t 1:8

To partially avoid this kind of problem, it has been introduced a new indicator
based on fixed scale analysis [5, 12]. The idea is very simple and it is based on
exit time statistics. Given a set of thresholds ın D ı0r

n, one measures the exit time
Ti.ın/ it takes for the separation Ri.t/ to grow from ın to ınC1. The factor r may
be any value > 1, but it should be not too large in order to have a good separation
between the scales of motion.

Performing the exit time experiment over N particle pairs, from the average
doubling time hT .ı/i D 1=N

P
i Ti .ı/, one defines the Finite Size Lyapunov

Exponent (FSLE) as

�.ı/ D ln r

hT .ı/i (2.70)

which recovers the standard Lagrangian Lyapunov exponent in the limit of very
small separations � D limı!0 �.ı/.

The finite size diffusion coefficientD.ı/ is defined, within this framework, as

D.ı/ D ı2�.ı/ (2.71)

For standard diffusion D.ı/ approaches the diffusion coefficient D (see (2.68)) in
the limit of very large separations (ı 
 l0). This result stems from the scaling of
the doubling times hT .ı/i � ı2 for normal diffusion.

Thus, according to (2.68)–(2.69), the asymptotic behaviors of the FSLE are

�.ı/ �
�
� if ı 	 l0
D=ı2 if ı 
 l0

(2.72)
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Fig. 2.16 FSLE �.ı/ for the tracers advected by the point vortex system. The horizontal line
represent the Lagrangian Lyapunov exponent (� ' 0:14). The dashed curve is the saturation
regime with ımax D 0:76

In presence of boundary at scales L � l0, the second regime is not observable.
For separation very close to the saturation value ımax ' L one expects the following
behavior to hold for a broad class of systems [5]:

�.ı/ / ımax � ı

ı
(2.73)

Let us now come back to the point vortex system. The FSLE for this problem is
plotted in Fig. 2.16.

With the finite scale analysis one clearly see that only two regime survive:
exponential at small scales (chaotic advection) and saturation at large scale. The
apparent anomalous regime of Fig. 2.15 is a spurious effect induced by taking the
average at fixed time.

The finite scale method can be easily applied to the analysis of experimental data
[11]. An example is the study of Lagrangian dispersion in a experimental convective
cell. The cell is a rectangular tank filled with water and heated by a linear heat
source placed on the bottom. The heater generates a vertical plume which induces
a general two-dimensional circulation of two counter-rotating vortices. For high
values of the Rayleigh number (i.e. heater temperature) the flow is not stationary
and the plume oscillates periodically. In these conditions, Lagrangian tracers can
jump from one side to the other of the plume as a consequence of chaotic advection
(Fig. 2.17).
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Fig. 2.17 An example of trajectories obtained by PTV technique in the convective cell at Ra D
2:39 � 108. The vertical thermal plume is clearly observable. The dark circle on the bottom
represents the heat source
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Fig. 2.18 FSLE �.ı/ computed for the convective cell at different initial separations (different
symbols). The straight line is the Lyapunov exponent and the dashed curve represents the saturation
regime

The study of Lagrangian dispersion has been done by means of the FSLE [11].
In Fig. 2.18 we plot the result for Ra D 2:39� 108. Again, because there is no scale
separation between the Eulerian characteristic scale l0 (vortex size) and the basin
scale L we cannot expect diffusion behavior. Indeed, the FSLE analysis reveals the
chaotic regime �.ı/ D � at small scales and the saturation regime (2.73) at larger
scale.
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2.4 Barriers to Transport and Local Mixing Maps

The finite-scale Lyapunov exponent technique has been successfully applied to
many other numerical and experimental situations, from the pair dispersion in fully
developed turbulence [10], to the analysis of tracer motion in ocean and atmosphere
[8, 35, 36, 38, 39], to laboratory experiments [37]. It has by now become a standard
tool in the analysis of Lagrangian dispersion. Here we want briefly recall some
applications of this methodology to cases in which a local, rather than global,
description of the Lagrangian dispersion properties can have relevance to issues
like the non homogeneous mixing of tracers inside a fluid, existence of persistent
coherent structures in the velocity field, inhibition of mixing due to barrier effects
between dynamically different regions of the flow. In this regard, the FSLE turns
out to be the optimal indicator of the local mixing rate, and, more in general, a
diagnostic tool of the ergodic properties of the flow.

Let us consider a 2D meandering jet model, Fig. 2.19, as prototype of energetic
non linear currents like the Gulf Stream of the Polar Vortex. The flow is defined by
a stream-function‰ of the form [17, 51]:

‰ D A

k
tanh

kŒy � B0 cos.k0x/�q
1C B2

0k
2
0 sin2.k0x/

� cy ; (2.74)

where x and y are the spatial coordinates of a fluid particle; A and k are velocity
scale of the jet and cross-stream wavenumber, respectively; k0 D 2�=l0 and l0
are wavenumber and spatial wavelength of the meanders, respectively; B0 gives the
amplitude of the meanders; the denominator defines the width of the jet and, last,
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Fig. 2.19 Meandering jet model: (J) region of open streamlines (jet), in which fluid particles
move from left to right; (G1) and (G2) regions of closed streamlines (gyres) with, respectively,
anti-clockwise and clockwise rotation. In this plot the ratio between down-stream and cross-
stream wavenumbers is k0=k ' 0:8, and the ratio between meander amplitude and down-stream
wavelength is B0=l0 D 0:16
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c is a counter-stream velocity of the retrograde flow in the far field away from the
central jet. Lagrangian trajectories are integrated according to (2.17) and (2.18),
with ‰ given by (2.74).

In absence of an explicit time dependence in the stream-function, the flow is
steady and particle trajectories coincide with the ‰-isolines. In steady conditions,
the initial positions of a set of particles completely determine the transport prop-
erties: tracers initially located inside the jet (open streamlines) travel downstream
without bound, while tracers initially located inside a lateral vortex (closed stream-
lines) remain confined there all the time. Chaotic trajectories can be generated, for
example, by replacing B0 with B.t/ defined as:

B.t/ D B0 C " � cos.!t/ : (2.75)

This term induces a periodic oscillation of the meanders, with period Tp D 2�=!

and amplitude ", around the mean value B0. The values of the perturbation
parameters, ! and ", control the width of the chaotic layer inside which Lagrangian
trajectories display strong sensitivity to small perturbations [50]. In particular,
keeping! fixed, the amplitude " can be varied to pass from a weakly chaotic regime,
in which chaos is confined in a thin layer around the separatrices of the flow, to a
strong chaotic regime, in which any subset of the spatial domain contains chaotic
motions, i.e. in conditions of overlap of the resonances [21]. Let us observe that in
actual geophysical systems there can be natural transitions between these two limit
cases, e.g. in presence of a periodic forcing that modulates the amplitude of the time-
dependent term in the stream-function. In order to evaluate the spatial distribution
of the local mixing rate on finite scales, the local FSLE can be defined as:

�ı;r .x; y/ D 1

T .x; y/
ln
�

ı
(2.76)

where T .x; y/ is the time taken by a perturbation (i.e. trajectory separation) having
size ı in .x; y/ to grow up to size� D r �ı, with r > 1. In practical applications, the
growth factor r can be even several orders of magnitude larger thanO.1/, depending
on the resolution of the trajectories, in order to distinguish regions with different
dynamical properties, e.g. chaotic/non chaotic, from each other. The logic behind
the use of this diagnostic tool is to set the final distance �, i.e. setting r at fixed
ı, at a value comparable with the size of the hypothetical coherent structures in
the velocity field. If the coherent structures last for a sufficiently long time, then
their effects to tracer transport across the domain can be detected qualitatively and
quantitatively by the local FSLE mapping.

In Fig. 2.20 we show the local mixing rates for the meandering jet model in the
two cases: weak perturbed conditions, with a chaotic layer confined around the
separatrices (upper panel) and strong perturbed conditions, with the chaotic layer
extended to all the available space (lower panel). In the first case, black spots in
the FSLE field correspond to no dispersion beyond a certain separation scale, in the
middle of the gyres and in the center of the jet, i.e. far from the separatrices; in the
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Fig. 2.20 FSLE maps for the
meandering jet model: weak
chaos, central barrier (upper
panel); strong chaos, no
barrier (lower panel). Spatial
coordinates are measured in
unit of the stream wavelength
l0; the local FSLE �ı;r .x; y/
is measured in unit of the
inverse characteristic time
��1
a of the jet. Parameters set

up: ı=l0 ' 10�3; r ' 102;
B0=l0 D 0:16; "=B0 ' 0:15

(upper panel) and
"=B0 ' 0:3 (lower panel)
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second case, every point of the domain is “turned on”, meaning that every region
of the flow results to be accessible to any trajectory starting from arbitrary initial
conditions (ergodic property).

This technique was applied for the first time to geophysical data in the work by
Boffetta et al. [13], where the barrier effect of the Antarctic Polar Vortex against
tracer mixing between high and low latitudes was analyzed and discussed. Other
authors have later adopted this type of strategy in various atmospheric and oceanic
systems [23, 25, 30, 33, 34, 57], where the role of coherent Lagrangian structures
is assumed to characterize mixing and transport properties in non asymptotic
conditions.
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2.5 Conclusions

In this chapter we have reviewed some basic concepts of chaotic dynamical systems,
related in particular to the predictability properties of trajectories in the phase
space. We have considered the physically relevant example of Lagrangian chaos
in which the phase space coincides with the physical space. By considering some
specific examples, we have discussed the relation between Lagrangian chaos and
the Eulerian properties of the advecting flow, showing that Lagrangian chaos can
be present even in period of stationary flow. In the last part of the chapter we have
shown how concepts and techniques of stochastic processes can be used to describe
transport properties in chaotic systems. We discussed the generic appearance of
diffusive behavior and the conditions under which anomalous diffusion can be
expected. Realistic limitations, such as the presence of boundaries, and their effects
on the asymptotic properties of transport have been discussed. At last, recent
analysis techniques based on the measure of the Finite-Scale Lyapunov Exponent,
i.e. the generalization of the maximum Lyapunov exponent to non infinitesimal
perturbations, have been described and discussed as established indicators of both
global and local properties of relative dispersion.
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Chapter 3
Small Scale Hydrodynamics

Matteo Colangeli

Abstract The purpose of this work is to offer a brief survey of some of the
mathematical methods useful to bridge different levels of description, i.e. from the
set-up of classical kinetic theory of gases to hydrodynamics. Most of the standard
mathematical techniques, in this field, stem from the seminal Chapman–Enskog
expansion, which constitutes an important success in kinetic theory, as it made
possible to formally derive the Navier-Stokes hydrodynamics from the Boltzmann
equation. Yet, almost a century of effort to extend the hydrodynamic description
beyond the Navier-Stokes-Fourier approximation failed even in the case of small
deviations around the equilibrium, due to the onset of instabilities which also cause
the violation of the H-Theorem. A different route, in kinetic theory, is represented
by the recent Invariant Manifold method. The latter technique allows one to restore
stability in the hydrodynamic equations, which remain thus applicable even at short
length scales, under the hypothesis of validity of the Local Equilibrium condition.

3.1 Introduction

A certain number of techniques have been designed, in kinetic theory of gases, to
derive macroscopic time evolution equations from the Boltzmann equation. Most of
these methods require the single-particle distribution function to be parameterized
by a set of distinguished fields, such as the standard hydrodynamic ones: the
number (or mass) density, momentum vector, and temperature. This stands as a
plausible assumption as long as the microscopic dynamics enjoys a vast separation
of time and length scales, and provided that the condition of Local Equilibrium is
granted. Furthermore, the derivation of hydrodynamics from kinetic theory is often
understood in terms of the so-called hydrodynamic limit of the Boltzmann equation.
Loosely speaking, one is interested, typically, in the scaling of the Boltzmann
equation with respect to some reference macroscopic length and time scales, which
are expected to largely dominate the intrinsic kinetic scales. Nonetheless, it makes
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sense to consider the extension of the hydrodynamic description even beyond
the purely hydrodynamic limit, so as to take into account reference scales which
may happen to be comparable with the kinetic ones. This is the subject dealt
with by the theory of generalized hydrodynamics [1–4]. There are several delicate
aspects hindering this line of investigation. A first, natural, objection points to the
fact that, below a certain length scale, the notion itself of “Local Equilibrium”,
which is brought about by a sufficiently large number of particle collisions, is
questionable. Moreover, from the technical side, one typically deals, in this context,
with perturbative methods, such as Hilbert’s procedure or the Chapman–Enskog
(CE) technique, which, at a certain order of truncation, may give rise to artificial
instabilities [5, 6]. In particular, the CE method introduces an expansion of the
distribution function in terms of a parameter, the Knudsen number, defined as the
ratio of the mean free path to a representative macroscopic length. For small values
of the Knudsen number, the CE method recovers the standard Navier-Stokes-Fourier
(NSF) equations of hydrodynamics. In more refined approximations, referred to as
the Burnett and super-Burnett hydrodynamics, the hydrodynamic modes become
polynomials of higher order in the wavevector. In such an extension, the resulting
hydrodynamic equations may become unstable and violate the H-Theorem, as first
shown by Bobylev [5] for a particular case of Maxwell molecules. This indicates that
the CE theory can not be immediately trusted, away from the hydrodynamic limit.
Thus, while the mathematical framework concerning the hydrodynamic limit of the
Boltzmann equation is well-established [7, 8], there is no consolidated counterpart
addressing the short scales domain. Thus, developing a theory of Microfluidics, is
a novel challenge for theorists, and has also been fostered by recent technological
trends [9, 10], which call for an extension of the hydrodynamic description to the
regime of finite Knudsen numbers. In this work we describe the application of the
Invariant Manifold theory, which makes it possible to derive the equations of exact
linear hydrodynamics from the Boltzmann equation. The adjective “exact” refers
to the fact that the method allows one to perform an exact summation of all the
contributions of the CE expansion. We will show, through the analysis of some
solvable model, that the divergences of the hydrodynamic modes can be actually
removed by taking into account also the very remote terms of the expansion. This is
made possible by solving a closed integral equation, called invariance equation,
which connects the microscopic evolution of the distribution function with its
“projected” (in a sense to be specified below) dynamics, triggered by the set of
hydrodynamic fields.

This work is structured as follows. In Sect. 3.2 we will outline some stan-
dard model reduction techniques, which allow to derive hydrodynamics from the
Boltzmann equation. In Sect. 3.3 we will derive the equations of linear hydrody-
namics from certain kinetic models of the Boltzmann equation, thus providing the
desired bridge between the kinetic and the hydrodynamic descriptions, valid even at
short length scales. Conclusions will be drawn in Sect. 3.4.
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3.2 Bridging Time and Length Scales: From Kinetic Theory
to Hydrodynamics

In this section we will offer a bird’s eye view on some of the analytical methods
which yield approximate solutions of the Boltzmann equation. In particular, we will
outline the structure of the Hilbert and Chapman–Enskog perturbation techniques
and will also comment on the essential features of the Invariant Manifold method
[1, 2], which is based on the assumption of time scale separation and applies also
beyond the strict hydrodynamic limit.

Before introducing the wealth of different techniques, we shortly review the
notion of hydrodynamic limit of the Boltzmann equation, and shed also light on
the role of the (often invoked) time scale separation, which is one of the main
ingredients underpinning the onset of a collective behavior in a many-particle
system.

3.2.1 Hydrodynamic Limit of the Boltzmann Equation

Let f .r; v; t/ denote the single-particle distribution function, depending on the
position r, on the velocity v and on time t , which describes the statistics of a
dilute gas made of N particles of mass m, inside a box ƒ" with volume V . In
absence of external forces, we assume that the distribution f obeys the Boltzmann
equation [8]

@tf .r; v; t/C v � @f
@r
f D Q.f; f / ; (3.1)

where Q.f; f / denotes a nonlinear integral collision operator whose detailed
analytical structure is not relevant here. We just need to recall that Q.f; f /
vanishes when the distribution function attains the so-called local Maxwellian
structure:

f LM D n.r; t/
�

m

2�kBT .r; t/

� 3
2

e
�m.v�u.r;t //2

2kB T .r;t / ; (3.2)

which is parameterized by the fields n (number density, i.e. number of particles
per unit volume), u (bulk velocity of the fluid), and T (temperature). A point of
remarkable interest, in kinetic theory, concerns the study of the scaling properties of
the Boltzmann equation (3.1). In particular, one may investigate the structure of the
solutions of the Boltzmann equation in the so-called hydrodynamic limit, which is
obtained by taking the limitsN ! 1, V ! 1, withN=V finite. Following [7], we
introduce a small parameter ", and let the side of the boxƒ" be proportional to "�1.
We assume, then, that the total number of particles contained in the box, obtained
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by integrating f over ƒ" and over the whole velocity space, is proportional to the
volume of the box itself:

Z

ƒ"�R3

f .r; v; t/drdv D "�3 ; (3.3)

and introduce the following scaling:

Or D "r; � D "t ; (3.4)

with Or 2 ƒ D Œ0; 1�, and

Of .Or; v; �/ D f .r; v; t/ : (3.5)

It is readily seen that the rescaled distribution Of .Or; v; �/ describes the statistics of
particle system on the scale of the box, and is normalized to unity:

Z

ƒ�R3

Of .Or; v/d Ordv D 1 : (3.6)

While the description afforded in terms of the distribution f is called mesoscopic
(or kinetic), the description provided by the rescaled distribution Of can be thought
of as a macroscopic one, because it describes the particle system in the limit of large
length and time scales. Using (3.4) and (3.5), the Boltzmann equation, in the absence
of external forces, can be shown to attain the following rescaled structure [8]

@� Of .Or; v; �/C v � rOr Of D 1

"
Q. Of ; Of / ; (3.7)

which will be the starting point of the methods of reduced description to be
described below.

3.2.2 The Bogoliubov Hypothesis and Macroscopic Equations

Let us denote by Mf D ŒM1;M2;M3� the lower-order moments of the distribution
function f , defined as:

Mf .r; t/ D
Z
 .v/f .r; v; t/dv ; (3.8)

where  .v/ are known as the collisional invariants:

 .v/ D Œ 1; 2;  3� ; (3.9)
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with

 1 D m;  2 D mv;  3 D m

2
v2 ; (3.10)

and v � jvj. Thus, by integrating, one finds:

M1 D �.r; t/ D
Z
mf.r; v; t/dv ;

M2 D �.r; t/u.r; t/ D
Z
mvf .r; v; t/dv ;

M3 D 1

2
�.r; t/u2 C �.r; t/e.r; t/ D

Z
m

2
v2f .r; v; t/dv ; (3.11)

where �.r; t/ D mn.r; t/ is the mass density, and

e.r; t/ D 3

2

kB

m
T .r; t/ ;

denotes the internal energy per unit mass, which is related, via the equipartition
theorem, to the temperature T . The hydrodynamic fields Œ�;u; T � are thus related to
the moments Mf via:

� D M1; u D M�1
1 M2; T D 2m

3kBM1

�
M3 � 1

2
M�1
1 M2 � M2

�
: (3.12)

We consider, from here onwards, a special class of distribution functions called
normal solutions of the Boltzmann equation [8]. These are distribution functions
whose dependence on the variables .r; t/ is parameterized by a set of fields x.r; t/,
which may correspond to the hydrodynamic fields themselves, but in certain models
may also include higher-order moments of the distribution function [11–13]. Thus,
we start writing the single-particle distribution function in the form:

f .r; v; t/ D f .x.r; t/; v/ : (3.13)

A physical rationale behind Eq. (3.13) can be traced back to the Bogoliubov
hypothesis [14–16]. In his seminal work, Bogoliubov introduced three different time
scales, labeled �int; �mf and �macro: the time interval �int is the time during which
two molecules are in each other’s interaction domain, �mf denotes the mean time
between collisions, and �macro corresponds to the average time needed for a molecule
to traverse the container in which the gas is confined. The Bogoliubov hypothesis
thus states that the existence of a vast time scale separation

�int 	 �mf 	 �macro (3.14)
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Table 3.1 Bogoliubov length and time intervals for a gas with mean molecular speed of 300m/s
at standard conditions (container edge length �macro D 3 cm), cf. [15]

�int �mf �macro

cm 3� 10�8 3� 10�5 3

�int �mf �macro

s 10�12 10�9 10�4

Table 3.2 Epochs in the
Bogoliubov hypothesis

t < �int Initial stage

�int < t < �mf Kinetic stage

t � �macro Hydrodynamic stage

When describing the particle system
on time intervals t < �int, the full
phase space description is required. If
the description is confined between �int

and �mf , one can employ the framework
of kinetic theory and the Boltzmann
equation provides an efficient statistical
description of the dynamics of a suffi-
ciently dilute particle system. Finally,
for t ' �macro, the dynamics of the
distribution function is driven by the
evolution of the hydrodynamic fields

is a prerequisite underpinning the relaxation of a gas towards equilibrium and the
onset of a hydrodynamic behavior. In a similar fashion, it is possible to introduce
three corresponding displacements, denoted as �int; �mf ; �macro. The displacement
�int corresponds the range of particle interaction, �mf is the mean free path and
�macro denotes a macroscopic reference length, such as the edge length of the
confining container. Typical values of these parameters are listed in Table 3.1.

The Bogoliubov hypothesis addresses the structural form of the phase space
density F.z1; : : : ; zN ; t/ (we used the shorthand notation z D .r; v/) pertaining
to three different stages during the relaxation of the gas to equilibrium, cf. also
Table 3.2.

In the initial interval there is no collisional exchange between the particles, and
the gas experiences no equilibrating force. Therefore, Bogoliubov conjectured that,
in such initial stage, the full N-particle density is required to properly describe
the state of the gas. In the kinetic stage, the molecules experience a sequence of
collisions, which give rise to the onset of Local Equilibrium in the gas. According to
Bogoliubov’s hypothesis, during this stage all s-particle marginals may be expressed
as functionals of the single-particle density, i.e.

Fs D Fs.z1; : : : ; zs; F .z1; t// ; (3.15)
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where the time dependence of Fs is entirely contained in F1.z1; t/. For instance, if
the particles are statistically independent from each other, Fs factorizes as follows:

Fs D
sY

iD1
F1.zi ; t/ : (3.16)

Finally, in the hydrodynamic stage, the relevant time scale is �macro, which charac-
terizes the time evolution of the macroscopic variables x.r; t/. It is worth noticing
that, in the course of the relaxation, a crucial loss of information occurs [15]: while,
in the initial stage, the microscopic state of the particle system is described by the
full phase space density, close to equilibrium the statistical description is suitably
afforded only in terms of the single-particle distribution function, parameterized by
the variables x.

We also remark that the condition �int 	 �mf is essential in order to write the
Boltzmann equation in the form (3.1). The distribution function f .r; v; t/ must be
regarded as an average of the single-particle distribution in a time interval dt, with

�int < dt < �mf : (3.17)

This condition, in fact, allows one to disregard the variation experienced by the
distribution function of the hitting particle, f .r; v1; t/, during the time �int of
interaction with the target particle. If the condition (3.17) does not hold, one
should use, in Eq. (3.1), the distribution function f .r; v1; t � �int/ evaluated at an
earlier time and the rate of change of f at time t would depend not only on
the instantaneous value of f , but also on its previous history [17]. This would
make the Boltzmann equation a non-markovian process. We see, hence, that the
separation between �int and �mf makes it possible to identify an intermediate
scale dt, which guarantees the markovian character of the Boltzmann equation.
We can also conceive one further time scale, which we denote by �t , which
corresponds to the characteristic “mesoscopic” time scale characterizing the onset
of Local Equilibrium. A macroscopic description of a particle system, based on the
hydrodynamic fields x.r; t/, can be obtained by confining the description to time
scales not shorter than �t , which is typically intermediate between �mf and �macro.
The role of the time scale �t can be better evinced by introducing a partition of the
volume of the gas into mesoscopic cells of linear size `meso, as portrayed in Fig. 3.1.
Local equilibrium is reached, within each cell, after the time interval�t . Therefore,
although the hydrodynamic variables may vary over macroscopic length and time
scales, within each cell they obey, after the time interval �t , the usual relations of
equilibrium thermodynamics [18].

The dimensionless parameter " is the Knudsen number [8, 19] and is defined as
the ratio of �mf to �macro. The aim of a generalized hydrodynamic theory is, hence,
to extend the macroscopic description to finite Knudsen numbers, well beyond the
standard hydrodynamic limit (corresponding to " 	 1). This, in turn, requires a
proper estimate, for the model under consideration, of the magnitude of the length
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�meso

τmf

Δt

Fig. 3.1 The onset of Local Equilibrium in mesoscopic cells of size `meso, taking place after a
time interval �t . Local Equilibrium results from a large number of collisions, occurring on time
scales of the order of �mf . The hydrodynamic fields attain a local value within each of the cells, and
evolve on a time scale �macro (not shown in the picture) much larger than�t , according to the time
scale separation hypothesis

scale `meso, below which Local Equilibrium no longer holds. Thus, if we consider
macroscopic length and time scales compatible, respectively, with `meso and �t , it
makes sense to discuss the derivation of macroscopic equations from the Boltzmann
equation and to investigate their properties. To this aim, we integrate Eq. (3.1),
multiplied by the collision invariants (3.9), over the velocity space, and obtain:

@t� D �rr.�u/ ;

@t .�u/ D rr � .�uu C P/ ;

@t

�
�

�
1

2
u2 C e

��
D �rr �

�
�u
�
1

2
u2 C e

�
C P � u C q

�
; (3.18)

where the non-hydrodynamic fields P and q, called pressure tensor and heat flux,
are defined as:

P D
Z
m.v � u/.v � u/f .r; v; t/dv ; (3.19)

q D
Z
m.v � u/.v2 � 2v � u C u2/f .r; v; t/dv : (3.20)

The pressure tensor can be written as P D pI C � , where I is the identity matrix,
the scalar p, defined as:

p D 1

3
tr ŒP� D nkBT D 2

3
�e ; (3.21)

corresponds to the hydrostatic pressure and � is a symmetric tensor (it is also,
typically, a traceless one, depending on the magnitude of the bulk viscosity, defined
below). A visible feature of Eq. (3.18) is that the equations are not closed, because of
the presence of the non-hydrodynamic fields � and q. As discussed by C. Cercignani
in [8], [Eq. (3.18)] “constitute an empty scheme, since there are 5 equation for 13
quantities. In order to have useful equations, one must have some expressions for
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� and q in terms of �, u and e. Otherwise, one has to go back to the Boltzmann
equation (3.1) and solve it; and once it has been done, everything is done, and
Eq. (3.18) are useless!”. This corresponds to the well known problem of seeking a
suitable closure to the macroscopic equations. This problem can be tackled either
from the kinetic theory standpoint, i.e. by employing some model reduction or
coarse-graining techniques [11], or from a purely macroscopic perspective, i.e. by
employing macroscopic balance or phenomenological relations which disregard
the underlying particle-like picture. In particular, the following set of constitutive
equations, written in component notation,

� i;j D 0 ; (3.22)

qi D 0 ; (3.23)

with i; j D 1; 2; 3, yields the so-called Euler equations of inviscid hydrodynamics,
which can be also derived from the Boltzmann equation by retaining only the
Maxwellian contribution to the distribution function. The Navier-Stokes-Fourier
(NSF) equations, instead, are obtained from the following constitutive equations:

� i;j D ��
�
@ui
@rj

C @uj
@ri

�
C
�
2

3
�� �

�
@uk
@rk

ıij ; (3.24)

qi D ��@T
@ri

; (3.25)

where we used the repeated index summation convention and �; �; � correspond to
the transport coefficients called, respectively, shear viscosity, bulk viscosity (usually
negligible) and thermal conductivity. The NSF equations deserve a special mention
in fluid dynamics, because Eqs. (3.24) and (3.25) may be derived not only from the
macroscopic principles of conservation of mass, momentum, and energy, but also,
rigorously, from kinetic theory [8, 19, 20]. The latter derivation can be performed by
using some perturbative schemes, such as those discussed in the next section, which
refer to the hydrodynamic limit of the Boltzmann equation.

3.2.3 The Hilbert and the Chapman–Enskog Methods

We provide, here, an overview about the Hilbert and the Chapman–Enskog (CE)
methods of solution of the Boltzmann equation in the hydrodynamic limit. The
reader is referred to [2, 8] for an exhaustive treatment of the subject. To simplify
the notation, we omit, hereafter in this section, the hat over the single-particle
distribution referring to a rescaled Boltzmann equation of the form (3.7), introduced
in Sect. 3.2.1.
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In the Hilbert method, the normal solutions are expanded in powers of the
Knudsen number ", i.e.:

f D
1X

iD0
�if .i/ ; (3.26)

which, substituted in Eq. (3.7), yields a sequence of integral equations

Q
�
f .0/; f .0/

� D 0 ; (3.27)

L f .1/ D .@t C v � rr/ f
.0/ ; (3.28)

L f .2/ D .@t C v � rr/ f
.1/ � 2Q �

f .0/; f .1/
�

; (3.29)

to be solved order by order. Here L denotes the linearization of collision integralQ
in (3.1). From Eq. (3.27) it follows that f .0/ corresponds to the local Maxwellian
distribution [19]. The Fredholm alternative, applied to (3.28), results in [2]:

• Solvability condition,

Z
.@t C v � rr/ f

.0/ .v/dv D 0 ; (3.30)

which corresponds to the Euler equations described by Eqs. (3.22) and (3.23);
• General solution f .1/ D f .1/;1 C f .1/;2, where f .1/;1 denotes the special

solution to the linear integral equation (3.28) and f .1/;2 a yet undetermined linear
combination of the summational invariants;

• Solvability condition, when applied to Eq. (3.29), yields f .1/;2 which is obtained
from solving the linear hyperbolic differential equations

Z
.@t C v � rr/

�
f .1/;1 C f .1/;2

�
 .v/dv D 0 : (3.31)

Hilbert showed that this procedure can be applied up to an arbitrary order n, so
that the function f .n/ is determined from the solvability condition applied at the
.n C 1/-th order [2]. Loosely speaking, the description provided by the Hilbert
method is essentially in terms of the Euler equations, but it is supplemented by
corrections which can by computed by solving linearized equations [8]. It is also
worth remarking that the Hilbert method can not provide uniformly valid solutions,
as it can be evinced by noticing the singular manner in which the Knudsen number
enters the rescaled Boltzmann equation (3.7). Nevertheless, a truncated Hilbert
expansion can reproduce, with arbitrary accuracy, the solution of the Boltzmann
equation in a properly chosen region of time-space, provided that " is sufficiently
small.
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The CE approach, developed by D. Enskog and S. Chapman, is based, instead,
on an expansion of the time derivatives of the hydrodynamic variables, rather than
seeking the time-space dependence of these functions, as in the Hilbert method. Also
the CE method starts with the singularly perturbed Boltzmann equation (3.7), and
with the expansion (3.26). Nevertheless, the procedure of evaluation of the functions
f .i/ is different, and reads as follows:

Q
�
f .0/; f .0/

� D 0; (3.32)

L f .1/ D �Q �
f .0/; f .0/

�C
	
@
.0/
t C v � rr



f .0/ : (3.33)

Equation (3.32) implies, as in the Hilbert method, that the function f .0/ is the local
Maxwellian. The operator @.0/t is defined from the expansion of the right hand side
of the hydrodynamic equations,

@
.0/
t Mf D �

Z
 .v/v � rrf

.0/dv : (3.34)

Equation (3.34) correspond to the inviscid Euler equations, and @.0/t acts on various
functions g.�; �u; e/ according to the chain rule

@
.0/
t g D @g

@�
@
.0/
t � C @g

@.�u/
@
.0/
t �u C @g

@e
@
.0/
t e ; (3.35)

whereas the time derivatives @.0/t of the hydrodynamic fields are expressed using
the right hand side of (3.34). Finally, the method requires that the hydrodynamic
variables, obtained by integrating over the velocity space the function f .0/ C "f .1/,
coincide with the parameters of the local Maxwellian f .0/:

Z
 .v/f .1/dv D 0 : (3.36)

Thus, one finds that the first correction, f .1/, adds the terms

@
.1/
t Mf D �

Z
 .v/v � rrf

.1/dv (3.37)

to the time derivatives of the hydrodynamic fields. These novel terms yield the
dissipative NSF hydrodynamics. However, higher-order corrections of the CE
method, which result in hydrodynamic equations with higher derivatives (the so-
called Burnett and super-Burnett hydrodynamics) are affected by severe difficulties,
mainly related to the onset of instabilities of the solutions [5, 21, 22].
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3.2.4 The Grad’s Moment Method

An alternative technique to solve the Boltzmann equation was proposed by H. Grad,
and is known as the Grad’s moment method [12]. The essence of the method relies
on the time scale separation hypothesis, introduced in Sect. 3.2.2:

• During the fast evolution, which occurs on a time scale of the order of the
mesoscopic time scale �t , a set of distinguished moments x, cf. Sect. 3.2.2, does
not change significantly in comparison to the rest of higher-order “fast” moments
of f , denoted as y.

• Towards the end of the fast evolution, the values of the moments y become
determined by the values of the distinguished moments x.

• During a time interval of the order of �macro, the dynamics of the distribution
function is governed by the dynamics of the distinguished moments, while the
rest of moments remain to be determined by the distinguished moments [2].

In the Grad’s moment method, the distribution function is expanded as:

f .x; v/ D f LM.�;u; e; v/

"

1C
NX

kD1
ak.x/Hk.v � u/

#

; (3.38)

where Hk.v � u/ are Hermite tensor polynomials, orthogonal with respect to a
weight given by the Maxwellian distribution f LM , whereas the coefficients ak are
known functions of the distinguished moments x. The fast moments y are assumed
to be functions of x, i.e. y D y.x/. By inserting Eq. (3.38) into the Boltzmann equa-
tion (3.1) and by using the orthogonality of the Hermite polynomials with respect
to the Maxwellian distribution f LM , one can determine the time evolution of the set
of distinguished moments x. According to Grad’s argument, this approximation can
be refined by extending the set of distinguished moments x, as done, for instance in
the Grad’s 13 moment approximation [12], which set the stage to the development
of the theory of Extended Irreversible Thermodynamics [2, 11, 13].

3.2.5 The Invariant Manifold Theory

The Invariant Manifold method can be considered as a generalization of the theory
of normal solutions, which is inherent in the Hilbert and CE expansions [2]. The
method is based on a projector operator formalism [23–25], which confines the
dynamics onto a manifold of slow motion and disregards the fluctuations of the fast
variables. The same approach is also at the basis of Haken’s slaving principle and
of the procedure of adiabatic elimination of fast variables in stochastic processes
[26, 27]. The description of the time evolution of the system resembles the picture
given in Sect. 3.2.4: from the initial condition, the system quickly approaches a
small neighbourhood of the invariant manifold, and, from then onwards, it proceeds
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Ω

dx/dt

F
F

U

x

w

Δ = (1 − P )J(w)

w + kerP

J(w)

Tw

PJ(w)

X

Fig. 3.2 The geometrical structures of the Invariant Manifold method: U is the space of
distribution functions, J.w/ is the vector field of the system under consideration, � is an ansatz
manifold, X is the space of macroscopic variables (coordinates on the manifold), the map F maps
points x 2 X into the corresponding points w D F.x/, Tw is the tangent space to the manifold �
at the point w, PJ.w/ is the projection of the vector J.w/ onto tangent space Tw, dx=dt describes
the induced dynamics on X ,� is the defect of invariance, and the affine subspace w C kerP is the
plain of fast motions [2]

slowly along such manifold with a characteristic time scale of the order of �macro.
The main geometrical structures which characterize the Invariant Manifold theory
are illustrated in Fig. 3.2.

We summarize, below, the essential mathematical framework of the method. Let
U be the phase space, and � � U an ansatz manifold, which corresponds to the
current approximation to the invariant manifold to be sought. We denote by J.w/
the vector field

dw

dt
D J.w/; w 2 U; (3.39)

which generates the dynamics in U . Let X be the linear space of the macroscopic
variables x, which act as coordinates on the manifold �, described as the image of
the map F W X ! U . We remark that the choice of the space X of macroscopic
variables is a crucial step of the method: the corrections of the current ansatz
manifold correspond to the images of various maps F for a given X . Let us also
denote by

DxF D @w

@x
jwDF.x/ (3.40)

the derivative of the map F with respect to the set of distinguished variables. We
indicate by … W U ! X a regular map which fulfills the condition

… ı F D 1 ; (3.41)
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with 1 the identity operator, and by Dw… the functional derivative of the map
x D ….w/ computed at the point w. Thus, the time evolution of the distinguished
variables x reads:

dx
dt

D Dw…J.F.x// ; (3.42)

where dx=dt is an element of the tangent space to X . Therefore, joining Eqs. (3.40)
and (3.42), one obtains:

dw

dt
jwDF.x/ D DxF � dx

dt
D ŒDxF ıDw…�J.F.x// D PJ .F.x// ; (3.43)

where the operator

P D DxF ıDw…

projects J.f / onto Tw, which denotes the tangent space to the manifold � at the
point w. In particular, the projector P determines a decomposition of the motion
near�: w C kerŒP � is the plane of fast motion and Tw the plane of slow motion. We
call slow invariant manifolds those maps F which fulfill the condition (3.41) and
solve the invariance equation:

�.F / D .1 � P/J.F / D 0 ; (3.44)

which is a differential equation for the unknown map F . The solutions of Eq. (3.44)
are “invariant” in the sense that the vector field J.F / is tangent to the manifold
� D F.X/ for each point w 2 �. A crucial aspect of the method concerns the
definition of the projector P . Gorban et al. introduced, in [2], the Thermodynamic
Projector, which characterizes, in a thermodynamic sense, the plane of fast motion
w C kerP: the physical entropy grows during the fast motion and the point w is the
point of entropy maximum along the plane w C kerP.

The geometrical setting described above can be readily adapted to the Boltzmann
equation theory. To this aim, one identifies w with the single-particle distribution
function f , x D ….f / denotes a set of distinguished fields which parameterize
f and F becomes a “closure”, i.e. a distribution function parameterized by the
variables x. Moreover, the vector field J.f / attains the form:

J.f / D �v � rrf CQ.f; f / ;

whereasDf… reads:

Df…Œ�� D
Z
 .v/Œ��dv ;
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with  .v/ defined in (3.10). Therefore, the Thermodynamic Projector P , which
depends on f , attains, in this case, the structure:

P Œ�� D @f

@x
�
Z
 .v/Œ��dv : (3.45)

The invariance equation (3.44) constrains the kinetic evolution of the distribution
function to coincide with its “macroscopic” evolution, ruled by the projector
P (3.45) and driven by the dynamics of the distinguished variables x. It should
be noticed that the method does not require the smallness of the parameter ", hence
it is not restricted to the strict hydrodynamic limit. A straightforward application of
the formalism described above is obtained by considering an ansatz manifold,�LM ,
given by the locally five-dimensional manifold of local Maxwellians (3.2). We take,
hence, the set Mf of moments (3.11) as the coordinates x on this manifold. The
manifold �LM is commonly referred to as the quasi-equilibrium manifold for the
set of moments x, because f LM corresponds to the unique solution of the variational
problem:

H.f / ! min ;

with H.f / D R
f logfdv denoting the celebrated H-function. We thus define the

projector Pf LM onto the tangent space Tf LM as:

Pf LMJ
�
f LM

� D @f LM

@Mf

�
Z
 .v/J.f LM/dv : (3.46)

Returning to the hydrodynamic variables Œ�;u; T � via the transformations (3.12),
one obtains [2]:

�
�
f LM .�;u; T /

� D f LM .�;u; T /
��
m.v � u/2

2kBT
� 5

2

�
.v � u/rr.ln T /C

C m

kBT

�
.v � u/ .v � u/ � 1

3
.v � u/2 I

�
rru

�
(3.47)

Equation (3.47) reveals that the quasi-equilibrium manifold is not an invariant
manifold of the Boltzmann equation, because temperature and bulk velocity It is
worth remarking that, strictly speaking, the statistics of the many-particle system is
actually not driven towards the local Maxwellian distribution, or, if it accidentally

starts in that state, it moves away from it, due to the flow term
	

v � @f
@r f



in

the Boltzmann equation. The effect of the latter term is, in fact, to smooth out
the spatial inhomogeneities [17]. Nevertheless, for small Knudsen numbers, such
term acts over time scales much larger than the collisions. Consequently, at all
times, the instantaneous single-particle distribution function is very close to the
local Maxwellian one, described by Eq. (3.2). The latter may, hence, be regarded
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as the standard reference distribution when relying on perturbation theories which
are concerned with the hydrodynamic limit of the Boltzmann equation.

3.3 Linear Hydrodynamics from the Boltzmann Equation

Several solution techniques have been introduced in the literature to obtain approxi-
mate solutions of the Boltzmann equation. In particular, the CE method extends the
hydrodynamics beyond the NSF approximation in such a way that the decay rate
of the next order approximations (Burnett and super-Burnett) are polynomials of
higher order in k [2, 21, 22]. In such an extension, relaxation rates may become com-
pletely unphysical (amplification instead of attenuation), as first shown by Bobylev
[5] for a particular case of Maxwell molecules. Therefore, several regularization
techniques have been proposed to restore the thermodynamic admissibility of the
generalized hydrodynamic equations [28–30]. A promising route, in particular, is
based on the notion of Invariant Manifold [2], introduced in Sect. 3.2.5. The method
requires a neat separation between hydrodynamic and kinetic (time and length)
scales, and postulates the existence of a stable Invariant Manifold in the space
of distribution functions, parameterized by the values of the hydrodynamic fields.
Following the approach traced in [31], we will employ, here, the Invariant Manifold
technique to determine the hydrodynamic modes and the transport coefficients
beyond the standard hydrodynamic regime. In particular, we expect to recover the
asymptotic form of the dynamic structure factor in the free-particle regime and
to shed light on the properties of the hydrodynamic equations in the intermediate
regime of finite Knudsen numbers.

This section is structured as follows.
We will review, in Sect. 3.3.1, the eigenvalue problem associated with the

linearized Boltzmann equation. In Sect. 3.3.2, we will derive the invariance equation
for the Boltzmann equation equipped with an arbitrary linearized collision operator.
In Sect. 3.3.3 we will introduce a suitable coordinate system which allows one to
highlight the symmetries of the solutions of the invariance equation. In Sect. 3.3.4
we will, then, solve the invariance equation for the linearized BGK model [32].
In Sect. 3.3.5 we will investigate the properties of the solution of the invariance
equation for a gas of Maxwell molecules. We will, hence, comment on the structure
of the obtained hydrodynamic modes and cast the generalized transport coefficients
in the Green-Kubo formalism [33]. We will, finally, determine the spectrum of
the density fluctuations and discuss some relevant features of the resulting short
wavelength hydrodynamics.

3.3.1 Eigenfrequencies of the Boltzmann Equation

In this section we consider the eigenvalue problem for the linearized Boltzmann
equation. Namely, for a inhomogeneous gas, the eigenvalues correspond to k-
dependent frequencies (i.e. inverse of characteristic collision rates). The connection
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between the fluctuations of the macroscopic variables and the underlying charac-
teristic kinetic rates is a central problem in statistical mechanics [34, 35] which
still demands a conclusive understanding. In order to appreciate the problem, we
recall that in the NSF approximations, the hydrodynamic modes are quadratic
in the wave vector [36] and are unbounded. On the other hand, Boltzmann’s
collision term features equilibration with finite characteristic rates. Hence, such
“finite collision frequency” is at variance with the arbitrary decay rates in the NSF
approximation: intuitively, the hydrodynamic modes at large k cannot relax faster
than the collision frequencies. In his seminal work [37] on the eigenfrequencies
of the Boltzmann equation, Resibois provided an explicit connection between the
generalized frequencies of the linearized Boltzmann equation and the decay rate of
the hydrodynamic fluctuations. He tackled the problem by solving, perturbatively,
the eigenvalue problem associated to the Boltzmann equation and to the NSF
equations of hydrodynamics.

Let us rewrite the Boltzmann equation (3.1):

@tf D �v � rf CQ.f; f / : (3.48)

We introduce the dimensionless peculiar velocity c D .v � u0/=vT and the equi-
librium values of hydrodynamic fields: equilibrium particle number n0, equilibrium
mean velocity u0 D 0, and equilibrium temperature T0. The global Maxwellian
reads: f GM D .n0=v

3
T /f0.c/where f0.c/ D ��3=2e�c2 is a Gaussian in the velocity

space (c D jcj). We linearize (3.48) by considering only small disturbances from
the global equilibrium. Moreover, we write the nonequilibrium distribution function
(cf. also Table 3.3) as:

f .r; c; t/ D f LM C ıf; (3.49)

where f LM denotes the local Maxwellian to be made precise in Sect. 3.3.2, and
ıf the deviation from local equilibrium. An alternative notation is introduced via
ıf D f GMı'. We also consider a reference frame moving with the flow velocity

Table 3.3 Notation used in this manuscript

f = f LM + ıf
‚ …„ ƒ

= f GM + f GM'0 + f GMı'

= f GM C f GMX.0/ � x + f GMıX � x
„ ƒ‚ …

= f GM C f GM4X � x
= f GM C 4f

Terms have been grouped and abbreviated as depicted in this table. f GM and f LM denote global
and local Maxwellian, respectively, and 4f and ıf their “distance” from f . The third row informs
about the closure discussed in this manuscript, while x is a set of distinguished (lower-order)
moments of f
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and linearize the collision operator around global equilibrium. When passing over
to Fourier space, we seek solutions of the form:

f .r; c; t/ D e!t eik�rf .k; c; !/ ;

where ! is a complex-valued frequency and k is a real-valued wavevector. Thus, the
Boltzmann equation (3.48) reduces to:

1

vT
@tf .k; c; !/ D �ik � cf C OLıf .k; c; !/ ; OL D 1

vT
L ; (3.50)

where we made use of the fact that Lf LM D 0. In the sequel of this section, we will
investigate the spectrum of the operatorƒ � OL� ik � c, which determines the time
evolution of the single-particle distribution function [38]. This is readily seen by
inspection of the inverse Laplace transform:

f .k; c; t/ D
�
1

2�i

I
ezt

.z �ƒ/dz

�
f .k; c; 0/ ; (3.51)

where the closed path encircles the poles of the function inside the integral.
According to the Spectral Theorem, these poles correspond to the spectrum of ƒ.
The flow term �ik � cf is treated, here, as a small perturbation [17] (this amounts to
considering small gradients in the real space). Equation (3.50) can be, hence, written
in the form:

ƒf D !f : (3.52)

The investigation of the spectrum of the operator ƒ, in Eq. (3.52), is a formidable
mathematical problem, which can be tackled by considering, first, the hydrodynamic
limit k ! 0. In this limit, Eq. (3.52) reads:

OL‰i.c/ D �i‰i .c/ : (3.53)

The linear operator OL can be shown to be self-adjoint with respect to a suitably
defined scalar product [1], hence the corresponding eigenfunctions are (or can be
made) orthogonal and constitute a complete set. In particular, a subset of them is
related to the fivefold degenerate zero eigenvalue. These functions correspond to
the collision invariants f GMX.0/, with X.0/ denoting a set of lower-order Sonine (or
associated Laguerre) polynomials:

X.0/ D
�
1; 2c;

�
c2 � 3

2

��
: (3.54)

One, also, typically assumes that the eigenvalues of OL other than 0 have no accu-
mulation point at the origin. This assumption is always implicit in any calculation
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of transport coefficients based on kinetic theory. Physically, it corresponds to
invoking a separation between the kinetic time scale ��1

i , and the hydrodynamic
time scale .vtk/�1, as discussed in Sect. 3.2.2. For finite values of k, there will
be a set of eigenvalues of ƒ, denoted by !˛ , with ˛ D 1; : : : ; 5, which, in the
k ! 0 limit, reduce to the aforementioned degenerate zero eigenvalue. Hence, we
shortly review, here, the results of a perturbative method, outlined in [37], which
allows one to determine the dependence of the set !˛ from k. Denoting by ‰˛.k/
the eigenfunctions corresponding to !˛.k/, the yet unknown eigenfunctions and
eigenvalues can be expanded in powers of the wavevector k:

‰˛ D ‰.0/
˛ C k‰.1/

˛ C k2‰.2/
˛ C : : : ;

!˛ D !.0/˛ C k!.1/˛ C k2!.2/˛ C : : : ; (3.55)

where‰.0/
˛ are linear combinations of the collision invariants (3.54), whose detailed

expression is not relevant here (cf. [39] for details). The use of a Rayleigh-
Schödinger perturbation theory leads to the following polynomial expression for
the set f!˛g:

!1 D ic0k � k2

‰
.0/
1

ˇ
ˇ̌
ˇ

�
.cx � c0/ 1OL.cx � c0/

�
‰
.0/
1

�
;

!2 D �ic0k � k2

‰
.0/
2

ˇ
ˇ
ˇ
ˇ

�
.cx C c0/

1

OL.cx C c0/

�
‰
.0/
2

�
;

!3 D �k2

‰
.0/
3

ˇ̌
ˇ
ˇ

�
cx
1

OLcx
�
‰
.0/
3

�
;

!4 D �k2

‰
.0/
4

ˇ
ˇ
ˇ̌
�
cx
1

OLcx
�
‰
.0/
4

�
;

!5 D �k2

‰
.0/
5

ˇ
ˇ
ˇ
ˇ

�
cx
1

OLcx
�
‰
.0/
5

�
; (3.56)

where c0 denotes the speed of sound.
On the other hand, in Fourier space, the linearized NSF equations read:

!nk D �in0 .k � uk/ ;

!uk D ��k2uk �
�
1

3
�C �

�
.k � uk/ k � ic20�

�1��1
0 knk � ic20�

�1˛kTk ;

!Tk D � �

�0cv
k2Tk � i

� � 1
˛

.k � uk/ ; (3.57)

The condition of a non-trivial solvability of the linear system (3.57) with respect
to the variables Œnk.!/;uk.!/; Tk.!/�, yields the dispersion relation !.k/, i.e. the
normal mode frequencies of the system. It can be shown, in particular, that the real
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part of these modes is quadratic in the wavevector [2, 37, 39]:

Re.!/ / �k2 ;

which can be regarded, in fact, as the hallmark of the NSF approximation.
By requiring the equivalence of the hydrodynamic frequencies with the set of
kinetic frequencies !˛ , given in Eq. (3.56), leads to approximate expressions for
the transport coefficients, which can be shown to be equivalent to the reduced
expressions determined by many-body autocorrelation functions [37]. As also
pointed out in [17], the results obtained by Resibois, based on the correspondence
between hydrodynamic modes and kinetic frequencies, reveals that, in the limit of
long wavelengths, the possible modes of motion of the gas correspond to rather
ordered motions, such as a sound wave propagation. These modes are referred to,
in the literature, as collective modes, because they involve the coordinate action of
a huge number of particles. The onset of such an ordered motion as a result of the
underlying chaoticity of the individual motion of the particles is a striking feature
of statistical mechanics. The reason of this can be traced back to the effect of the
collisions, which drive very quickly the system towards the local equilibrium state,
that is a highly organized one. From then onwards, the flow term produces slow
variations in space and time of this basic state, which reduce the local gradients of
the hydrodynamic fields. In the sequel of this section, we will employ the Invariant
Manifold theory to obtain a generalization of the pioneering approach developed by
Resibois.

3.3.2 The Invariant Manifold Technique

Following the notation of Sect. 3.2, we denote by U and x.r; t/, respectively, the
space of single-particle distribution functions and a set of distinguished moments of
the latter. We then introduce the locally finite-dimensional manifold � � U as the
set of functions f .x.r; t/; c/ whose dependence on the space-time variables .r; t/
is parameterized through x.r; t/. In this section, we will identify the distinguished
moments x.r; t/ with the hydrodynamic fields. Moreover,P is the Thermodynamic
Projection operator which, as discussed in Sect. 3.2.5, allows to decompose the
dynamics into a fast motion on the affine subspace f C kerŒP � and a slow motion,
which occurs along the tangent space Tf . The use of the Thermodynamic Projector
guarantees the persistence of dissipation: it can be shown [2] that the entropy
production rate is unaltered when the dynamic is projected along the manifold of
slow motion.
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In order to derive exact hydrodynamic equations from the general eigenvalue
problem (3.50), we proceed as follows:

1. We determine the invariant manifold, i.e. the distribution function solving the
invariance equation

.1 � P/ƒ�f D 0 ; (3.58)

where 4f � f � f GM (cf. also Table 3.3).
2. We derive the equations of linear hydrodynamics by integrating the kinetic

equation (3.50), with f given by the solution of Eq. (3.58). By construction, the
hydrodynamic modes coincide, then, with the set !˛ of eigenfrequencies of the
Boltzmann equation, which vanish in the limit k ! 0.

We also denote by xk the Fourier components of the dimensionless hydrodynamic
fluctuations Œ Qn; Qu; QT �: Qn � .n � n0/=n0 D (particle number perturbation), Qu �
u=vT D (velocity perturbation) and QT � .T � T0/=T0 (temperature perturbation).
Further, we split the mean velocity Qu uniquely as Qu D ukek C u?e?, where the
unit vector ek is parallel to k, and e? orthonormal to ek, i.e., e? lies in the plane
perpendicular to k. Due to isotropy, u? alone fully represents the twice degenerated
(shear) dynamics. By linearizing around the global equilibrium, we write the local
Maxwellian contribution to f in (3.49) as f LM D f GM.1 C '0/ where '0 takes a
simple form, '0 D X.0/ � x (linear quasi equilibrium manifold), where X.0/.c/ was
defined in Eq. (3.54). It is conveniently considered as four-dimensional vector using
the four-dimensional version xk D Œ Qnk; uk; QTk; u?�, and is then given by (3.68).
It proves convenient to introduce a vector of velocity polynomials, �.c/, which is
similar to X0 and defined below in Eq. (3.69), such that:

h��jX.0/
� i D ı�� :

Hence, the fields xk are obtained as h�.c/if LM D xk, where averages are defined,
here, as:

h�.c/if D 1

n0

Z
�.c/f .c/dv : (3.59)

We introduce yet unknown fields ıX.c;k/ which characterize the part ıf of the
distribution function. As long as deviations from the local Maxwellian are small,
we seek a nonequilibrium manifold which is also linear in the hydrodynamic fields
x themselves. Therefore, we set:

ı' D ıX � xk : (3.60)

The “eigen”-closure (3.60), which formally and very generally addresses the
fact that we wish to not include other than hydrodynamic variables, implies
a closure between moments of the distribution function, to be worked out in
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detail below. By using the above form (3.60) for ıf D f GMı', with OLıf D
f GMLŒıX� �xk , and the canonical abbreviations 4X � X0.c/CıX.c;k/, Eq. (3.52)
reads:

!f GM4X � xk D ƒ�f D �ik � cf GM4X � xk C f GM OLıX � xk : (3.61)

The microscopic projected dynamics is obtained through the projector P , which,
when acting upon the vector field J.f / D ƒ�f , gives:

Pƒ�f D Dxk�f �
Z
�.c/ƒ�fdv ; (3.62)

where Dxk�f � @�f=@xk and the quantity inside the integral in (3.62) represents
the time evolution equations for the moments xk . These are readily obtained by
integration of the weighted (3.52) as

!h�.c/if D �ik � h�.c/cif C h�.c/i OLıf : (3.63)

Due to the eigen-closure (3.60), cf. also Table 3.3, one finds Dxk�f D f GM4X ,
whereas (3.63) is linear in xk and can be written as:

!xk D M � xk : (3.64)

Equation (3.64) defines the matrix M of hydrodynamic coefficients, whose explicit
structure will be made clear in Eq. (3.74). Using (3.64), Eq. (3.62) can be cast in the
form:

Pƒ�f D f GM4X � M � xk : (3.65)

In the derivation of (3.65), one needs to take into account the constraints
h�.c/iıf D 0 (because the fields xk are defined through the local Maxwellian part
of the distribution function only) and h�.c/i OLıf D 0 (conservation laws). The
dependence of the matrix elements of M upon moments of ıf is explicitly given
in Table 3.4. Combining (3.61) and (3.65), and requiring that the result holds for
any xk (invariance condition), we obtain a closed, singular integral equation (the
invariance equation) for complex-valued ıX,

�X � M D �ik � c 4X C OLıX : (3.66)

Notice that ıX D �X � X.0/ vanishes for k D 0, which implies that, in the limit
k ! 0, the invariant manifold is given by the set of local Maxwellians f LM. The
implicit equation (3.66) for ıX (or�X, as X.0/ is known) is identical with the eigen-
closure (3.60), and is our main and practically useful result.



3 Small Scale Hydrodynamics 87

Table 3.4 Symmetry
adapted components of
(nonequilibrium) stress tensor
� k and heat flux qk ,
introduced in (3.72)
and (3.73)

�
k

1 �
k

2 �
k

3 �4

h�kıX1i h�kıX2i h�kıX3i hckc?ıY4i
�k2B ikA �k2C ikD

Real, ˚ Imag., ˚ Real, ˚ Imag., �
q

k

1 q
k

2 q
k

3 q4

h�kıX1i h�kıX2i h�kıX3i h.c2 � 5
2
/c?ıY4i

ikX �k2Z ikY �k2U
Imag., � Real, � Imag., � Real, ˚

Row 2: Microscopic expression of these components
(averaging with the global Maxwellian). Short-hand
notation used: �k D c2

k
� c2

3
and �k D .c2 � 5

2
/ck.

Row 3: Expression of the components in terms of
(as we show, real-valued) functions A–Z (see text).
Row 4: Parity with respect to z—symmetric (˚) or
antisymmetric (�)—of the part of the corresponding
ıX entering the averaging in row 2, and whether this
part is imaginary or real-valued (see Fig. 3.7). Row 3
is an immediate consequence of row 4

3.3.3 Coordinate Representation and Symmetries

In order to calculate the averages occurring in Sect. 3.3.2, we switch to spherical
coordinates. For each (at present arbitrary) wave vector k D kek, we choose the
coordinate system in such a way that its (vertical) z-direction aligns with ek and that
its x–direction aligns with e?. The velocity vector we had been decomposed earlier
as Qu D ukek Cu?e?. We can then express c, over which we are going to perform all
integrals, in terms of its norm c, a vertical variable z and plane vector e� (azimuthal
angle e� � e? D cos�; the plane contains e?) for the present purpose as:

c=c D
p
1 � z2 e� C zek ; (3.67)

as shown in Fig. 3.3.
The local Maxwellian, linearized around global equilibrium, takes the form:

f LM=f GM D 1 C '0 D 1 C X.0/ � xk , where the four-dimensional X.0/, and the
related vector �, employing four-dimensional xk D Œ Qnk; uk; QTk; u?�, are given by
the expressions

X.0/.c/ D
�
1; 2ck; .c2 � 3

2
/; 2c?

�
; (3.68)

�.c/ D
�
1; ck;

2

3
.c2 � 3

2
/; c?

�
: (3.69)
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Fig. 3.3 Schematic drawing introducing a orthonormal frame ek, e?, and e? �ek which is defined
by the wavevector k k ek and the heat flux q (not shown), which lies in the ek–e?–plane. Shown
is the velocity vector c (3.67) relative to this frame (characterized by length c, coordinate z, and
angle �) and its various components. The integration over dc D c2dcdzd� is done in spherical
coordinates with respect to the local orthonormal basis

Here, we introduced, for later use, the abbreviations

ck � c � ek; c? � c � e?; c� � c � e� D c?
e? � e�

; (3.70)

such that ik � c D ikck. We can then rewrite (3.67) as c D c�e� C ckek with ck D
cz and c� D c

p
1 � z2. The latter two components, contrasted by c? (and e�),

do not depend on the azimuthal angle. We further introduced yet unknown fields
ıX.c;k/ which characterize the nonequilibrium part of the distribution function,
ı' D ıf=f GM.

By analogy with the structure of the local Maxwellian, we postulate that, close
to equilibrium, ı' depends linearly on the hydrodynamic fields xk themselves.
Equation (3.60) can, hence, be cast in the form:

ı' D ıX � xk D ıX1 Qnk C ıX2u
k C ıX3 QTk C ıX4u

? : (3.71)

The functions ıX1;2;3, which are associated to the longitudinal fields, inherit the full
rotational symmetry of the corresponding Maxwellian components, i.e. ıX1;2;3 D
ıX1;2;3.c; z/, whereas ıX4 factorizes as ıX4.c; z; �/ D 2ıY4.c; z/

P1
mD1 ym cosm�.

In this context it is an important technical aspect of our derivation to work with a
suitable orthogonal set of basis functions to represent ıf uniquely. The matrix M
in (3.65) contains the non-hydrodynamic fields: the heat flux qk � hc.c2� 5

2
/if and

the stress tensor � k � h cc if , where s denotes the symmetric traceless part of a
tensor s [40], s D 1

2
.s C sT /� 1

3
tr.s/I, where I is the identity matrix. Using (3.60)

and the above mentioned angular dependence of the ıX functions (the only term in
ıX4 playing a role in our calculations is the first order term cos�, with y1 D 1),
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constraints, such as the required decoupling between longitudinal and transversal
dynamics of the hydrodynamic fields, are automatically dealt with correctly when
performing integrals over �.

More explicitly, the stress tensor and heat flux uniquely decompose as follows:

� k D �k 3
2

ekek C �? 2 eke? ; (3.72)

qk D qk ek C q? e?; (3.73)

with the moments �k D .�
k
1 ; �

k
2 ; �

k
3 / � . Qnk; uk; QTk/ and �? D �4u?, and similarly

for qk (see Row 2 of Table 3.4).
The prefactors arise from the identities ekek W ekek D 2

3
and eke? W

eke? D 1
2
. We note in passing that, while the stress tensor has, in general, three

different eigenvalues, in the present symmetry adapted coordinate system it exhibits
a vanishing first normal stress difference. Since the integral kernels of all moments
in (3.72) do not depend on the azimuthal angle, these are actually two-dimensional
integrals over c 2 Œ0;1� and z 2 Œ�1; 1�, each weighted by a component of
2�c2f GMıX.

Stress tensor and heat flux can yet be written in an alternative form, defined by
Row 3 of Table 3.4, in terms of the functionsA–Z, which correspond to moments of
the nonequilibrium distribution function and are related to the generalized transport
coefficients, see [4, 31, 36] and below.

Due to fundamental symmetry considerations, the hereby introduced generalized
transport coefficients A–Z are real-valued. To show this, we use the functionsA–Z
to split M into parts as M D Re.M/ � i Im.M/,

M D k2

0

BB
@

0 0 0 0

0 A 0 0
2
3
X 0 2

3
Y 0

0 0 0 D

1

CC
A � ik

0

BB
@

0 1 0 0
QB 0 QC 0

0 QZ 0 0

0 0 0 0

1

CC
A ; (3.74)

with abbreviations QB � 1
2

� k2B , QC � 1
2

� k2C , and QZ � 2
3
.1 � k2Z/. The

checkerboard structure of the matrix M (3.74) is particularly useful for studying
properties of the hydrodynamic equations (3.65), such as hyperbolicity and stability
[21, 22], once the functionsA–Z are explicitly evaluated. Moreover, we remind the
reader that we use orthogonal basis functions (irreducible moments, cf. Table 3.4)
to solve (3.66). In order to show how the above functions enter the definition of the
M matrix, we first notice that its elements are—a priori—complex valued. We wish,
then, to make use of the fact that all integrals over z vanish for odd integrands. To
this end we introduce abbreviations ˚ (�) for a real-valued quantity which is even
(odd) with respect to the transformation z ! �z. One notices X.0/ D .˚;�;˚;˚/,
and we recall that A–Z are integrals over either even or odd functions in z, times
a component of ıX (see Table 3.4). Let us prove the consistency of the specified
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symmetry of M and the invariance condition: start by assuming A–Z to be real-
valued functions. ThenM�� D ˚ if �C � is even, and M�� D i˚ otherwise. This
implies ıX1 D ˚ C i�, ıX2 D � C i˚, ıX3 D ˚ C i�, and ıX4 D ˚ C i�, i.e.,
different symmetry properties for real and imaginary parts. With these “symmetry”
expressions for X.0/, ıX, and M at hand, and by noticing that symmetry properties
for ıX take over to OL.ıX/ because the  r;l are (i) symmetric (antisymmetric) in
z for even (odd) l and (ii) eigenfunctions of OL, we can insert into the right hand
side of the equation, OL.ıX/ D .X.0/ C ıX/ � .M C i � I/, which is identical with
the invariance equation (3.66). There are only two cases to consider, because M
has a checkerboard structure, i.e., only two types of columns: Columns � D 1 and
� D 3: ıX� D ˚ C i� becauseM1�3;4 D 0; Columns � 2 f2; 4g: ıX� D ˚ C i�
if M�;1�3 D 0 (which is the case for column 4) and � C i˚ if M�;4 D 0 (which is
the case for column 2). These observations complete the proof.

3.3.4 The BGK Kinetic Model

The solution of the invariance equation (3.66) can be obtained in some simple cases
amenable to an analytic or numerical treatment. In this section we focus on the
linearized version of the BGK kinetic model, which remains popular in applications
[8] and is characterized by a single collision frequency. The invariance equation
for this model is readily obtained from Eq. (3.66) by using OL.ıX/ D �ıX, which,
hence, yields:

ıX D X.0/ � �M C Œikck C 1�I
��1 � X.0/: (3.75)

Notice that ıX vanishes for k D 0, and that (3.75) is supplemented with the
basic constraint h�iıf D 0, which, however, is automatically dealt with if we only
evaluate anisotropic (irreducible) moments with ıf , such as those listed in Table 3.4.

The non-perturbative derivation is made possible with an optimal combination
of analytical and numerical approaches to solve the invariance equation. The result
for the hydrodynamic modes is demonstrated in Fig. 3.4. It is clear from Fig. 3.4
that the relaxation of none of the hydrodynamic modes is faster than ! D �1
which is the collision frequency in the units adopted in this section. Thus, the result
for the exact hydrodynamics indeed corresponds to the following intuitive picture:
the hydrodynamic modes, at large k, cannot relax faster than the (single) collision
frequency itself.

We iteratively calculated (i) ıX directly from (3.75) for each k in terms of M,
(ii) subsequently calculate moments from ıX by either symbolical or numerical
integration (both approaches produce same results within machine precision, we
found simple numerical integration on a regular 500�100 grid in c; z-space with grid
spacing 0:01 on both axes sufficient to reproduce analytical results). Importantly, the
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fix point of the iteration (i)–(ii)–(i)-.. is unique for each k, i.e., does not depend on
the initial values for moments A–Z.

In addition, two other computational strategies were implemented: First, we used
continuation of functions A–Z from their values at k D 0 to solve (3.75) with an
incremental increase of k, where the solution at k was used as the initial guess for
k C dk. Second, we used also a continuation “backwards” in which the solution at
some k (obtained by convergent iterations with a random initial condition) was used
as the initial guess for a solution at k � dk. Both these strategies returned the same
values of functionsA–Z as computed by iterations from arbitrary initial condition.

The solution ıX allows one to calculate the whole distribution function f

via (3.60) as illustrated by Fig. 3.5. For the resulting moments A–Z, for a wide
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Fig. 3.6 Moments A–Z vs. wave number k obtained with the solution of (3.75)

range of k-values, see Fig. 3.6. With the result for the functions A–Z at hand, the
extended hydrodynamic equations are closed.

Let us briefly discuss the pertinent properties of this system. First, the generalized
transport coefficients are given by the nontrivial eigenvalues of �k�2Re.M/: �2 D
�A (elongation viscosity), �3 D � 2

3
Y (thermal diffusivity), and �4 D �D

(shear viscosity). All these generalized transport coefficients are non-negative (see
Fig. 3.6). Second, computing the eigenvalues of matrix M, we obtain the dispersion
relation !.k/ of the corresponding hydrodynamic modes already presented in
Fig. 3.4. Third, a suitable transform of the hydrodynamic fields, zk D T � xk,
where T is a real-valued matrix, can be established such that the transformed
hydrodynamic equations read @tzk D M0 � zk, where M0 D T � M � T�1 is manifestly
hyperbolic and stable; Im.M0/ is symmetric, Re.M0/ is symmetric and non-positive
semidefinite. The corresponding transformation matrix T can be easily read off
the results obtained in [21] for Grad’s systems since the structure of the matrix
M (3.74) is identical to the one studied in [21, 22]. It can be explicitly verified that
matrix T with the functions A–Z derived herein is real-valued and thus render the
transformed hydrodynamic equations manifestly hyperbolic and stable.

We note that this result—hyperbolicity of exact hydrodynamic equations—
strongly supports a recent suggestion by Bobylev to consider a hyperbolic regu-
larization of the Burnett approximation [30]. Similarly, using the hyperbolicity, an
H -theorem is elementary proven as in [22, 30]. Finally, using the accurate data
for functions A–Z, we can write analytic approximations for the corresponding
hydrodynamic equations in such a way that hyperbolicity and stability is not
destroyed in such an approximation [21].

In conclusion, we derived exact hydrodynamic equations from the linearized
Boltzmann-BGK equation [36]. The main novelty is the numerical non-perturbative
procedure to solve the invariance equation. In turn, the highly efficient approach
is made possible by choosing a convenient coordinate system and establishing
symmetries of the invariance equation. The invariant manifold in the space of
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distribution functions is thereby completely characterized, that is, not only equations
of hydrodynamics are obtained but also the corresponding distribution function is
made available.

The predicted smoothness and extendibility of the spectrum to all k is expected
to have some implications for micro-resonators where the quality of the resonator
becomes better at very high frequency: that is compatible with our prediction. The
damping of all the modes saturates while the imaginary part of the acoustic modes
frequency grows. The pertinent data can be used, in particular, as a much needed
benchmark for computation-oriented kinetic theories such as lattice Boltzmann
models, as well as for constructing novel models [41].

It is worth remarking that the above derivation of hydrodynamics is done under
the standard assumption of local equilibrium, however the assumption itself is open
to further study [42].

3.3.5 The Maxwell Molecules Gas

In this section we investigate another kinetic model for which an exact solution of
the invariance equation (3.66) can be obtained: the Maxwell molecules gas, i.e. a
gas constituted by particles repelling each other with a force proportional to the
inverse fifth power of the distance. Wang Chang and Uhlenbeck [43] provided an
analytical solution to the eigenvalue problem for the linearized collision operator L
pertaining to this case. For the Maxwell molecules gas, the collision probability per
unit time, g�.g; 	/, is independent of the magnitude of the relative velocity g. Since
the collision operator is spherically symmetric in the velocity space, the dependence
of the eigenfunctions upon the direction of c is expected to be spherically harmonic.
Indeed, the eigenvalue problem admits the following solutions:

OLŒ r;l .c; z/� D �r;l r;l .c; z/ ;

 r;l .c; z/ D
s
rŠ.l C 1

2
/
p
�

.l C r C 1
2
/Š
clPl.z/S

.r/

lC 1
2

.c2/ ; (3.76)

where S.r/lC1=2.x/ are Sonine polynomials, and Pl.z/ are Legendre polynomials
which act on the azimuthal component of the peculiar velocity c. The Legendre
and Sonine polynomials are each orthogonal sets, i.e.:

Z 1

�1
Pl .z/Pn.z/ dz D 2

2l C 1
ıln ;

2�

Z 1

0

c2e�c2c2lS.r/
lC 1

2

.c2/S
.p/

lC 1
2

.c2/ dc D �.l C 1
2

C r/Š

rŠ
ırp :
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Accordingly, the  r;l are normalized to unity with the weight factor f0.c/:

ırr0ıll0 D 2��1=2
Z 1

�1

Z 1

0

c2e�c2 r;l .c; z/ r 0 ;l 0.c; z/ dcdz

� ��3=2
Z
e�c2 r;l .c/ r 0;l 0.c/ dc : (3.77)

The corresponding eigenvalues for Maxwell molecules are given by:

�r;l D 2�

Z �

0

sin.	/F.	/Trl.	/ d	 ;

Trl.	/ � cos2rCl
�
	

2

�
Pl

�
cos

	

2

�
C sin2rCl

�
	

2

�
Pl

�
sin

	

2

�
� .1C ır0ıl0/ :

The collision operator OL is negative semidefinite, i.e. all eigenvalues are negative
except �0;0, �0;1, and �1;0 which are zero and correspond to the elementary collision
invariants. As shown by Wang Chang and Uhlenbeck [43], the spectrum of OL for
Maxwell molecules is discrete and, for r ! 1, the eigenvalues �r;l tend to �1.
Chang and Uhlenbeck’s investigation on the dispersion of sound in a Maxwell
molecules gas was based upon writing the deviation from the global equilibrium as:

.'0 C ı'/ D
1X

fr;lgD0
a.r;l/ r;l .c/ ; (3.78)

so that (3.52) reduces to an algebraic equation for the coefficients a.r;l/:

!a.r;l/ D �ik �
1X

fr 0;l 0gD0
Cr;l;r 0;l 0a

.r 0;l 0/ C �r;la
.r;l/ ; (3.79)

with:

Cr;l;r 0;l 0 D h r;l jc  r 0;l 0i :

The hydrodynamic modes for the Maxwell-molecules gas are determined, as seen in
Sect. 3.3.1, from the condition of non-trivial solvability of the linear system (3.79).
This approach allows to solve the eigenvalue problem (3.50) for an arbitrary number
of modes, which is made possible just by tuning the number of eigenfunctions taken
into account in (3.78).
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Another approach [31] is based, instead, on the expansion of the functions
ŒX.0/; ıX� in terms of the orthonormal basis  r;l D  r;l .c; z/:

X.0/
� .c; z/ D

NX

r;l

a.0/.r;l/�  r;l .c; z/ ; (3.80)

ıX�.k; c; z/ D
NX

r;l

a.r;l/� .k/ r;l .c; z/ : (3.81)

The equilibrium coefficients a.0/� are known, and can be determined, by taking
advantage of the orthogonality of the eigenfunctions, as follows:

a.0/.r;l/� D �� 3
2

Z
e�c2 r;l .c; z/X.0/

� .c; z/ dc : (3.82)

Inserting (3.80) and (3.81) into the invariance equation (3.66), we obtain the
following nonlinear set of algebraic equations for the unknown coefficients
a
.r;l/
� .k/:

b.r;l/� M�� D �ik �
NX

r 0;l 0

b.r
0;l 0/

� C.r;l;r 0;l 0/ C
NX

r 0;l 0

a.r
0;l 0/

� L.r;l;r 0;l 0/ ; (3.83)

with, 8�;r;l , b
.r;l/
� D

	
a
.0/.r;l/
� C a

.r;l/
�



, and

L.r;l;r 0;l 0/ D h r;l j OL  r 0;l 0i :

For any order of expansion, the solutions of (3.83) characterize an invariant manifold
in the phase space. The matrix elements L.r;l;r 0;l 0/ can be easily evaluated in few
kinetic models, such as the linearized BGK model [36] and Maxwell molecules
[31]. In particular, the Maxwell molecules case is recovered by setting:

L.r;l;r 0;l 0/ D �r;l ır;r 0ıl;l 0 :

whereas the linearized BGK model is recovered by setting all nonvanishing
eigenvalues equal to � D �1. The calculation of the coefficients a.r;l/, via
the reformulated invariance equation (3.83), is easily achieved. Through these
coefficients, the invariant manifold is fully characterized: the distribution function
is determined and the corresponding matrix M of linear hydrodynamics as well as
moments A–Z, are made accessible.

Solving the invariance equation (3.66) and thus obtaining the distribution
function via the coefficients a.r;l/, cf. Fig. 3.7, required minor computational effort
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[31]. The components A–Z of M are related to the coefficients a.r;l/ by the
expressions:

A D � ia
.0;2/
2p
3k

; B D � a
.0;2/
1p
3k2

; C D � a
.0;2/
3p
3k2

;

X D � i
p
5a

.1;1/
1

2k
; Y D � i

p
5a

.1;1/
3

2k
; Z D �

p
5a

.1;1/
2

2k2
;

D D � i
k

NX

r;l

a
.r;l/
4 hckc� j r;l i ; U D � 1

k2

NX

r;l

a
.r;l/
4

�
c2 � 5

2

�
c?j r;l

�
:

(3.84)

In the regime of large Knudsen numbers the coefficients a.r;l/ may be used to, e.g.,
directly calculate phoretic accelerations onto moving and rotating convex particles
[44], while in the opposite limit of small k we recover the classical hydrodynamic
equations.

3.3.6 Hydrodynamic Modes and Transport Coefficients

With M at hand, the hydrodynamic modes are obtained from the condition of non-
trivial solvability of the linear system (3.64). Figure 3.8 illustrates the damping rates
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of the fluctuations given by the real part of the hydrodynamic modes, obtained by
truncating the series (3.80) and (3.81) at the fourth order. The picture does not
qualitatively change upon further increase of the order N . For any given order of
expansion, the modes extend smoothly over all the wavevector domain and, for
large k, they attain an asymptotic value, which is clearly in agreement with the
asymptotic behavior of the hydrodynamic modes obtained for the linearized BGK
model discussed in Sect. 3.3.4.

The generalized transport coefficients are obtained by the nontrivial eigenvalues
of �k2Re.M/: �2 D �A (elongation viscosity), �3 D � 2

3
Y (thermal diffusivity)

and �4 D �D (shear viscosity). In the limit k ! 0, one recovers the hydrodynamic
limit. This limit had been worked out in detail in [21, 22]. In that limit, the
generalized transport coefficients A–Z become the classical transport coefficients.
As can be seen from Fig. 3.9, and by also inspecting the invariance equation (3.66),
in the limit of small k, all moments A–Z approach constant values in the limit of
small k. These constants are compatible with those obtained in [21, 22] for the case
of Navier-Stokes equations and the Burnett correction [45].

The stress tensor and heat flux are given in terms of these moments in Table 3.4.
For example, the parallel component of the stress tensor related to density fluctua-
tions, �k

1 , cf. Eq. (3.72), is given by �k2B , so that it approaches �k2 for small k, as
it results from the Burnett approximation [2].

Moreover, under suitable assumptions, one may also cast the matrix of hydrody-
namic coefficients M in the structure of a Green-Kubo formula [33]. We summarize
below the main steps of the proof given in [46], to which we refer the reader for
an exhaustive derivation. From Eqs. (3.64) and (3.66), the time evolution of the
hydrodynamic fields can be formally written as:

xk.�/ D eM�xk.0/ D

�

ˇ
ˇ
ˇ
ˇe
ƒ�ıX

�
xk.0/ ; (3.85)
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where we skipped, for brevity, the spatial dependence of the fields. In Eq. (3.85) the
time � is of the order of �macro, which denotes a characteristic time scale related to
the evolution of the hydrodynamic fields. As discussed in Sect. 3.2.2, the presence of
a definite time scale separation, in a particle system, entails that �macro 
 �mf , where
�mf denotes a kinetic time scale (i.e. the mean time between collisions). Hence, by
invoking the Bogoliubov hypothesis of time scale separation, the time � becomes
large with respect to the characteristic time scale of the dynamics of the distribution
function (r.h.s. of the second equality in (3.85)). Thus, from Eq. (3.85), we can write
the matrix of hydrodynamic coefficients in the form:

M D lim
�!1

1

�
log


�

ˇ
ˇ
ˇ
ˇe
ƒ�ıX

�
(3.86)

Next, we use the operator identity:

eƒ� D 1Cƒ� Cƒ�

�
1

�

Z �

0

.� � t/eƒtdt

�
ƒ ; (3.87)

and make the following assumptions:

(i) The underlying kinetic evolution is such that the term between square brackets,
in Eq. (3.87), can be approximated, for large � , by

R1
0
eƒtdt.

(ii) The expansion of the logarithm to first order in � is a valid approximation before
the limit � ! 1 is taken.

Thus, using the symmetry of the operator ƒ, and neglecting, for simplicity,
kinematic contributions [46] of the form h�.0/jƒıX.0/i, Eq. (3.86) can be finally
written in the form:

M D
Z 1

0

D P�.0/ PıX.t/
E

f GM
dt : (3.88)
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Equation (3.88) allows one to extend the Green-Kubo formalism, which relates the
response function to a suitable time correlation function, to the short wavelength
domain. Moreover, it can be evinced from an inspection of Fig. 3.9 that in the free-
particle regime, k ! 1, the transport coefficients vanish and dissipative effects
fade off. This observation finds a sound confirmation in [18]: “Operationally, of
course, transport coefficients cannot even be defined for a gas of non-interacting
particles. A measurement of the thermal conductivity, for example, is only possible
if we can apply, quasi-statically, a temperature gradient and maintain it while
we measure the heat current. However, only for a system with a finite mean free
path can a temperature gradient be maintained quasi-statically. A free gas would
“run away”, and the standard measurements of transport coefficients cannot be
performed. Still, it may be satisfying for some that, in this case, the Kubo expressions
give the most sensible result: zero.”

3.3.7 Short Wavelengths Hydrodynamics

The existence of collective modes at short wavelengths, in real fluids, is a long-
standing issue in fluid dynamics [48, 49]. In their seminal work [50], Ford et al.
illustrated, on the basis of a model kinetic equation approximating the linearized
Boltzmann equation, that the sound modes extended to length scales comparable
with the mean free path in the gas. Similarly, our analysis showed that hydrodynamic
modes and the generalized transport coefficients extend smoothly over the whole k
domain. Therefore, the Invariant Manifold technique allows to refine the hydro-
dynamic description beyond the strictly hydrodynamic regime. Our results also
strengthen those previously reported in [3, 51, 52] on dense fluids, which revealed
that the hydrodynamic laws provide a sensible description of fluids even at length
scales comparable with �mf .

It would be interesting, hence, to investigate the features of the equations of
generalized hydrodynamics we obtained in the regime of finite frequencies and
wavevectors. In Fig. 3.10a comparison is shown about inverse phase velocity and
damping for acoustic waves between our results, former approaches [12, 29] and
experimental data performed by Meyer and Sessler [47]. As it is seen, our results are
very close to the predictions of the regularized 13 (Reg13) moments method [29]
and closer to experimental data than (Reg13) concerning the phase spectrum. Our
theory also predicts a phase speed which remains finite also at high frequencies, a
property which is not enjoyed by any hydrodynamics derived from the CE expansion
[28].

A further clue about the features of our model at finite frequencies and wavevec-
tors can be achieved by investigating the spectrum of density fluctuations, SQn;Qn [4]
From the knowledge of the functionsA–Z, it is possible to compute the coefficients
DT and � , related to the damping, respectively, of thermal and pressure fluctuations
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in fluids. In the limit of small k, and following standard textbooks [39], they
read:

DT D 2

5
.X � Y / ;

� D �
�
1

2
AC 1

5
X C 2

15
Y

�
:

It is worth pointing out that, unlike standard treatments of hydrodynamic fluctua-
tions, the generalized transport coefficientX enters the expression of the coefficients
DT and � , even though its contribution, as it is evident from Fig. 3.9 is fairly small.
The calculation of SQn;Qn is a standard textbook exercise [39, 53]. We give, hence, the
final result:

SQn;Qn.k; !/ D 1

2�
SQn;Qn.k/

�
2

5

2DT k
2

!2 C .DT k2/2
C 3

10

2�k2

.! ˙ c0k/2 C .�k2/2

�
:

(3.89)

Representative plots of S.k; !/ are shown in Fig. 3.11a, b. For small k (hydrody-
namic limit), the obtained spectrum recovers the usual results of neutron (or light)
scattering experiments and consists of the three Lorentzian peaks. The one centered
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Fig. 3.11 (a) Dynamic structure factor SQn;Qn.k; !/ vs. ! for a small k D 0:4 and (b) large k D 100.
!s D c0k denotes the hydrodynamic predicted sound mode of the spectrum, and the widths are
related to the moments A–Z (see Fig. 3.9). For small k, these are given by DT D 2

5
.X � Y /

and � D �. 1
2
A C 1

5
X C 2

15
Y /, where A is the generalized longitudinal kinetic viscosity, Y the

generalized thermal diffusion coefficient and X is a cross-coupling transport coefficient, relating
heat flux to density gradients. (c) Width D2

Tk of the Rayleigh peak vs. k (double-logarithmic). At
small k,D2

Tk / k2 as all moments A–Z, except X , reach a finite value in this limit. The inflection
point at k D k�.N / 	 1 (shown to be increasing with the order of expansion N ) denotes the
onset of departure from the ideal Maxwellian behavior, where the width of the peak starts to behave
sublinearly in k, and is used to quantify the range of validity for results obtained at finite order

in ! D 0 is the Rayleigh peak, which corresponds to the diffusive thermal mode.
The two side peaks centered in ! ˙ c0k are the Brillouin peaks, and represent the
two propagating sound waves.

By increasing the wave-vector, one enters an “intermediate” regime, in which
the structure of (3.89) is unchanged, except that the generalized coefficients DT

and � must then be replaced by more complicate expressions [31]. The net effect
observed is that sound waves get damped and disappear, whereas the central
Rayleigh peak decreases and broadens. Density fluctuations are, therefore, driven
only by a diffusive thermal mode for large enough k. A deeper look about the
behavior of the width at half maximum of the central Rayleigh peak with increasing
wavevectors allows us to bridge, hence, the gap between the hydrodynamic and the
free-particle regimes. For k 	 1 the width of the central peak increases with the
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square wavevector, / k2, whereas, in the opposite regime, k 
 1 the width of the
central peak is expected to grow up linearly in k.

Our results, see Fig. 3.11, predict a width which is truly quadratic for small
enough k, reaches the regime of linear behavior for large k and terminates, for
some large k, with a sub-linear dependence on k. The onset of the terminal regime
at k D k�.N / marks the range of validity which can be accessed at a given finite
order of expansion N . Increasing N does not alter the overall picture obtained at a
moderate order of expansion, and, more generally, results obtained with N C 1 will
not change those obtained with N below k�.N /, cf. Fig. 3.11c.

By varying the parameter N in the expansions (3.80) and (3.81) one is able to
tune the number of nonequilibrium contributions to be included into the distribution
function, thus refining the hydrodynamic description to an arbitrary level of
accuracy.

The onset of a critical length scale marking the limit of the hydrodynamic
description is reminiscent of the discussion made in Sect. 3.2. Namely, we know that
hydrodynamics is founded on the notion of Local Equilibrium. Thus, for a givenN ,
one may be tempted to link the length scale at which hydrodynamics breaks down,
Œk�.N /��1, with the mesoscopic scale `meso. Further investigation is called for to
shed light on this proposal: should such connection be true, this would then endow
the generalized hydrodynamic equations obtained via the Invariant Manifold theory
with a deeper thermodynamic content.

3.4 Conclusions

In this work, we described the use of the Invariant Manifold technique to derive
closed hydrodynamic equations from some kinetic models. The main novelty of
our approach stems from the use of a non-perturbative technique, which makes it
possible to sum up exactly the classical Chapman–Enskog expansion. The method
postulates a separation between slow and fast moments, and allows one to extract
the slow invariant manifold in the space of distribution functions.

The obtained equations of exact hydrodynamics, derived by solving the invari-
ance equation, are hyperbolic and admit a H-Theorem. Our solution of the invari-
ance equation was considerably simplified by considering linear deviations from
global equilibrium.

The generalized transport coefficients have been numerically determined and
settled into expressions which recover the Green-Kubo formulae. Finally, by also
comparing with available experimental data and previous approaches, we discussed
the range of validity of our approach, which turned out to be amenable of extending
the hydrodynamic scenario to length scales comparable with the mean free path.
Our approach may help shedding new light on the investigation about the transition
between the kinetic, particle-like, description of matter and the macroscopic,
“continuum”, one.
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Chapter 4
Dynamics of Cluster Synchronisation
in Modular Networks: Implications
for Structural and Functional Networks

Jake Stroud, Mauricio Barahona, and Tiago Pereira

Abstract Experimental results often do not assess network structure; rather, the
network structure is inferred by the dynamics of the nodes. From the dynamics of the
nodes one then constructs a network of functional relations, termed the functional
network. A fundamental question in the analysis of complex systems concerns the
relation between functional and structural networks. Using synchronisation as a
paradigm for network functionality, we study the dynamics of cluster formation
in functional networks. We show that the functional network can drastically differ
from the structural network. We uncover the mechanism driving these bifurcations
by obtaining necessary conditions for modular synchronisation.

4.1 Introduction

When using methods from network science to study real-world complex systems,
one is faced with the choice of constructing either a structural or functional
network that describes the relationship between the interacting components of the
system. Sometimes it is more achievable or desirable to measure the dynamics of
components and posit that if two components display similar activity, they are in
some way dynamically linked. This gives rise to data-driven functional networks [4].
Conversely, in other situations, we may have access to structural networks repre-
senting known physical links between components. The focus of much research
in complex network theory is towards gaining a greater understanding of how
functional and structural networks relate to each other [12].
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To this end, much analysis has been conducted into network architecture and
organisation. Recent results have shown that both functional and structural network
representations of real world systems typically display a modular architecture
[5, 9, 10, 16, 18, 30, 32]. A network with a modular organization could be
described as a network consisting predominantly of highly connected sub-graphs
which have comparatively fewer connections to nodes outside the module. We are
particularly interested in how functional modules relate to the structural modules of
a network.

Synchronisation is a typical paradigm of dynamical network function. Such
group collective behaviour appears with ubiquity in nature. Human hearts beat
rhythmically because thousands of cells synchronise their activity [27], and the
collective behaviour of neurons in the brain has been shown to be linked to
Parkinson’s disease [28] and epileptic seizures [17]. However, synchronisation does
not have to be global, and can occur in particular subgroups or modules.

Over recent decades, synchronisation analysis has benefited from methods in the
fields of graph theory and dynamical systems, and theories for global synchroni-
sation have been established in terms of the network structure [1, 3, 11, 13]. Of
particular interest is the stability of the synchronised state. If global synchronisation
can be maintained, this amounts to a coherent state, while if the synchronised state
becomes unstable it can serve to predict a transition in the organisation of the
complex system [2, 7, 13, 19, 20, 31].

In this chapter, we will study cluster synchronisation within modular networks of
diffusively coupled oscillators. We predict the onset of stable and unstable module
synchronisation by obtaining stability conditions within a densely connected mod-
ule. Our model is based on the following assumptions:

• The network has a modular structure such that nodes in one module have
few connections to nodes outside the module.

• Within modules, nodes have a high mean degree and share many common
neighbours.

Under these assumptions, we can perform a stability analysis independently for
each module, thereby avoiding a spectral decomposition of the network adjacency
matrix which poses a significant challenge for large networks. Typically, we would
have to analyse as many equations as the number of nodes in a module, but because
nodes within modules have a large number of common neighbours, we are able
to reduce the analysis to a single equation describing the synchronisation of each
module by bounding the dynamics of the external modules. Hence our analysis
allows us to tackle the stability of each module independently, yet taking into
account their influence on each other.
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From our study of the local stability of synchronisation, we establish conditions
for the persistence of stability under non-linear and linear perturbations. The
stability of module synchronisation is determined as a function of: (1) the module
mean degree and matching index (defined in Sect. 4.2.2), and (2) the isolated
dynamics and coupling function. This analysis allows us to predict the formation
and disintegration of functional modules depending upon the nature of the diffusive
coupling between the components of the network. Our results reveal that:

• The mean degree of the module dictates the onset of synchronisation.
• Functional modules may not reflect fully the structural modules of a

network.

As a consequence, the functional representation of a network can sometimes
drastically differ from the underlying topological structure. Through the use of
simulations we validate our analytical results and conclude with a discussion on
how the functional network representation of a modular network relates to the
underlying topological structure. The remainder of this chapter is organised as
follows. Our model assumptions are formalised in Sect. 4.2. Both our analytical and
numerical results are presented in Sect. 4.3. The derivation of our analytical results
is then presented in Sect. 4.4. Finally we provide a conclusion and discussion in
Sect. 4.5.

4.2 The Model

In this section we formalise our model setup. Initially we formalise some basic
graph definitions we make use of as well as describing the network class we intend
to study. We then present the dynamical model describing the interaction between
the components of the network. See Sect. 4.2.1 for remarks regarding notation we
adopt throughout the chapter.

4.2.1 Notation

The Jacobian matrix of a function f W R
m ! R

m at the point x is denoted by
Df .x/.

When discussing synchronisation in this chapter, we imply a ı-synchronisation;
that is, given two trajectories x.t/ and y.t/ we say that they are ı-synchronised if
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the difference in their state vectors are within a neighbourhood of radius ı 	 1 at
all large times t

kx.t/ � y.t/k  ı 8 t > T .ı/:

The small parameter ı measures the quality of synchronisation, and depends on both
the isolated dynamics and coupling function as well as the network structure. This is
particularly evident in the numerical simulations. To simplify the notation, we will
omit the symbol ı when discussing ı-synchronisation.

We use the small ‘o’ and big ‘O’ notation to describe asymptotic behaviour. We
write f .x/ D o.x/ if f .x/=x goes to zero as x tends to infinity, and we write
f .x/ D O.x/ if jf .x/=xj is bounded by a positive constant as x tends to infinity.

4.2.2 Graphs: Basic Definitions

A graphG is a set ofN nodes (or vertices) connected by a set of E edges. Here, we
will only consider simple, unweighted and undirected graphs; that is, graphs with no
loops and where there is no order associated with the two vertices of each edge. We
will also use the words ‘graph’ and ‘network’ interchangeably although a network
commonly denotes a graph structure where some form of dynamics takes place on
the nodes.

The adjacency matrix A encodes the topology of the graph, with Aij D 1 if i
and j are connected and 0 otherwise. Clearly, A D AT for undirected graphs. The
degree of node i is the number of connections it receives, that is

ki D
NX

j

Aij:

The mean degree for a set of nodes S with cardinality jS j D n is then:

hkiS D 1

n

X

j2S
kj :

We now define the matching index of a graph [32], which will play an important
part in our analysis. The neighbourhood of node i is the set of nodes it shares an edge
with: �.i/ D fj jAij D 1g. Clearly, for simple graphs j�.i/j D ki . The matching
index of nodes i and l is the overlap of their neighbourhoods:

Iil D j�.i/\ �.l/j D Ail C
NX

n;mD1
AinAml D .AC A2/il:
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Fig. 4.1 Here we display four graphs, G1, G2, G3 and G4 with decreasing matching index and
mean degree

The normalised matching index is then:

OIil D j�.i/\ �.l/j
j�.i/ [ �.l/j D j�.i/\ �.l/j

j�.i/j C j�.l/j�j�.i/\ �.l/j D D .ACA2/il
ki C kl � .ACA2/il :

(4.1)

It follows that OIil D 1 if and only if i and l are connected to exactly the same
nodes, i.e., �.i/ D �.l/; whereas OIil D 0 if nodes i and l have no common
neighbours [32]. The mean matching index for a set of nodes S with jS j D n is
then:

h OI iS D 1

n.n � 1/
X

i;j2S
i¤j

OIij:

Figure 4.1 shows graphs with different mean degrees and matching indices.

4.2.3 The Modular Network

A subgraph C of a graph G is a set of nodes and edges of G that connect any two
nodes in C . A structural module (or cluster) is rather loosely defined as a highly
connected sub-graph with comparatively fewer connections to nodes outside the
module [10]. Conversely, by taking a dynamical perspective, popularised within the
community detection literature, a module (or community) corresponds to a set of
nodes and edges were a random walker is likely to become transiently trapped for
a longer period of time than that expected at random [8, 9, 26, 33]. A prototypical
example of a module would be a complete graph (or clique), where every node
is connected to every other node, which is only weakly connected to other nodes.
Figure 4.2 provides an example of such a modular network.
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Fig. 4.2 Example of a modular network with modules denoted by dotted grey lines

To make this notion more precise, we consider the mismatch index between a
pair of nodes i and l , which corresponds to the complement of the matching index
defined in Eq. (4.1):

�il D j�.i/[ �.l/j � j�.i/\ �.l/j D j�.i/[ �.l/j � Iil (4.2)

While the matching index counts all nodes that i and l share, the mismatch index
counts all nodes that i and l do not share. Hence the normalised mismatch index is:

O�il D j�.i/[ �.l/j � j�.i/\ �.l/j
j�.i/[ �.l/j D 1 � OIil:

Clearly O�il D 0 if nodes i and l share exactly the same neighbours (as well as
potentially being linked themselves), and O�il D 1 if nodes i and l share no common
neighbours.

The theory we present in this chapter holds for all modules C of a network G
such that

�il

hkiC
D O

�
1

hkiC

�
; 8i; l 2 C (4.3)

along with the homogeneity condition

ki � hkiC ; 8i 2 C: (4.4)

(continued)
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This final relation also implies that

ˇ
ˇki � kl

ˇ
ˇ

hkiC
D O

�
1

hkiC

�
; 8i; l 2 C:

Therefore from our first relation [Eq. (4.3)], a module will have a high matching
index, that is, nodes within a module will have a large number of common
neighbours. Our second relation [Eq. (4.4)], allows us to approximate the degree
of each node in C by the module mean degree and, certainly for small networks,
excludes the possibility of any hubs (highly connected nodes) occurring in a module.
As a consequence, module C can be described by the number of nodes it contains q
and its mean degree: C D C.q; hkiC /.

We note that the matching index does not distinguish between a lack of common
neighbours within the module and additional (unshared) links to nodes outside the
module. Therefore, a high matching index not only guarantees that nodes within a
module share similar neighbours but that they also have a comparatively low number
of links to nodes outside the module. In [15], the edges of a graph were decomposed
into inter-module and intra-module edges. They showed that this classification of
edges distinguishes the formation of functional modules.

4.2.4 The Dynamical Model: Network of Diffusively-Coupled
Bounded Systems

We now introduce some dynamics on each node of the graph. The dynamics of each
node is governed by m-dimensional dynamics:

dx

dt
D f .x/; (4.5)

where f W Rm ! R
m is a smooth vector field, and we also assume that the solutions

of this isolated system are bounded, i.e., for all t there exists aK such that jjx.t/jj <
K . The boundedness of the dynamics of the nodes encompasses a wide variety of
stationary and oscillatory (periodic and chaotic) systems [29].

The influence that neighbour j exerts on the dynamics of node i is assumed to
depend on the difference of their state vectors: xj .t/� xi .t/. This type of coupling
tries to equalise all states of the nodes and it is in this sense that it is called a diffusive
coupling. The model accounts for the influence of all neighbours in a network G
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with adjacency matrixA, which is assumed to be given. The dynamics of node i in
a network of N diffusively coupled elements is then given by:

dxi

dt
D f .xi /C ˛

NX

jD1
Aij
�
H .xj /�H .xi /

�
; i D 1; : : : ; N (4.6)

where ˛ 2 R is the overall coupling strength and H W Rm ! R
m is the coupling

function. Hence the coupling between elements is given in terms of the adjacency
matrix and ˛ modulates the influence between connected nodes. Note that we
assume identical elements, i.e., in our model, the dynamics f and coupling H are
identical for all nodes.

4.3 Results

In this section, we first state briefly our main analytical results, which are derived in
detail in Sect. 4.4. We then provide extensive numerical simulations to illustrate our
findings.

4.3.1 Summary of Analytical Results

Firstly, we state our assumptions regarding the dynamics of the system.

A1: The coupled node dynamics in Eq. (4.6) are bounded: there is a constant Kx

such that

kxi .t/k < Kx; 8i:

A2: The variational equation

P� D ŒDf .s.t// � �DH .s.t//� �; (4.7)

where s.t/ is the trajectory of any node, admits a uniformly asymptotic trivial
solution for � 2 .�;ƒ/, where the both the upper and lower bounds depend
on the dynamics and coupling functions: � D �.f ;H / and ƒ D ƒ.f ;H /.1

That is, the solution of the variational equation is a contraction:

�.t/ D T .t; s/�.s/ fort � s

1We see the equation as a parametric equation in the same spirit as the master stability function
approach [3, 21, 24], hence we omit the subindex that explicitly shows the dependence on the node.
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with

kT .t; s/k  Ke��.t�s/

where � D �.�/ > 0 uniformly and K 2 R.

Assumption A1 is natural in applications. In particular, if a Lyapunov function
exists for the isolated dynamics (4.5) with an absorbing domain, it is possible to
show that the network solution satisfies A1 [23]. Assumption A2 is similar to the
master stability function approach [21]. The main difference is that in the master
stability function, the trajectory s.t/ corresponds to the a modified (perturbed)
solution of the uncoupled dynamics, whereas here it corresponds to the trajectory of
a coupled node. Depending on the structure of the coupling function this difference
is immaterial [25]. Our numerical analysis shows that the values of � and ƒ from
the master stability function provide a good approximation.

Remark 1 If the coupling function H is a positive definite matrix, then the results
of [25] demonstrate that � D �.f ;H / and ƒ ! 1. Moreover, the contraction
exponent is given by

� D ˇ� � �

where ˇ is the smallest eigenvalue ofH .

Using these two assumptions in combination with the modular structure of the
network, we derive, in Sect. 4.4, a stability condition for the synchronisation of
modules which does not require a spectral analysis of the network adjacency matrix.
This is a consequence of the high matching index within modules. Our results enable
the prediction of functional module formation and disintegration depending on the
structural properties of the module and the dynamical properties of the nodes.

Our main finding is the following:

Consider the modular network G containing a module C D C.q; hkiC /
with q 
 1 nodes and mean degree hkiC . Assume that A1 and A2 hold,
such that the system in Eq. (4.7) is a contraction for .�;�/. If the matching
index of the module h OI iC is high, then the critical coupling strengths ˛sC for
synchronisation and ˛dC for desynchronisation are given by

˛sC D �

hkiC
.1C "s/ and ˛dC D �

hkiC
.1C "d /; (4.8)

(continued)
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where "s;d D O.1=hkiC /. Hence, for ˛ 2 .˛sC ; ˛
d
C /, 9T 2 R such that 8t >

T , the nodes in C exhibit stable synchronised dynamics

kxi .t/ � xl .t/k  O

�
1

hkiC

�
;8i; l 2 C: (4.9)

This result shows that, under these assumptions, the average degree of the
module has an effect on the coupling interval that guarantees synchronisation in
the module: only if the coupling ˛ is such that ˛sC < ˛ < ˛dC the functional
and structural modules coincide. If the coupling strength is too large (˛ > ˛dC )
or too small (˛ < ˛sC ), the functional module disintegrates and no longer reflects
the structural module. We call this change the bifurcation between functional and
structural modules. Importantly, the intervals in which synchronisation is stable will
be different for different modules, depending on their mean degree.

Remark 2 If the coupling function H is a positive definite matrix, then ˛dC ! 1.
Therefore for this class of coupling function and large enough values of the coupling
˛ > maxf˛sC g, the functional modules mirror all the structural modules in the
network. On the other hand, if ˛ < minf˛sC g no functional modules will be apparent.
In between those two limits, only some of the structural modules will be reflected
as functional modules. This is the case of the couplingH D I .

Note also that the solutions xi under cluster synchronisation may not be similar
to the solutions of the invariant synchronisation manifold S of the whole network

S D fxi .t/ D s.t/wherePs D f .s/;8i D 1; : : : ; N g:

Therefore the dynamics of nodes in different modules can be very different to each
other and, in particular, to the global synchronous dynamics of the network. In our
analysis, we effectively decompose a modular network into individual modules with
low inter-module connectivity and predict the onset of stable synchronisation based
upon the mean degree within a module. For the derivation of our analytical results,
see Sect. 4.4.

4.3.2 Numerical Simulations

To illustrate our analytical results we consider numerical simulations of the paradig-
matic example of a network of diffusively coupled identical Rössler oscillators. The
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isolated dynamics of each oscillator i is described by the system of differential
equations

Pxi D . Pxi ; Pyi ; Pzi /T D f .xi / D
0

@
�.yi C zi /
xi C ayi

b C zi .xi � c/

1

A ;

with the standard parameter values a D 0:2; b D 0:2 and c D 9. For these
values, we know the system exhibits a chaotic attractor and that all trajectories
eventually enter a compact set, thereby satisfying our assumptions regardingf from
Sect. 4.2.4.

For a network of N diffusively coupled Rössler oscillators, the dynamics of a
node i are governed by the diffusive model [Eq. (4.6)], repeated here for clarity

dxi

dt
D f .xi /C ˛

NX

jD1
Aij
�
H .xj / �H .xi /

�
; i D 1; : : : ; N; (4.10)

where ˛ 2 R is the global coupling strength,H 2 R
3�3 is the inner coupling matrix,

andA 2 R
N�N encodes the graph topology.

To numerically determine the stability of synchronisation for a system of coupled
oscillators, we construct a correlation matrix �.˛/ 2 R

N�N for a particular coupling
strength ˛. This correlation matrix describes the pairwise similarity between the
dynamics of all oscillators in the system averaged over some large time T

�.˛/ D I � R.˛/

OR ;

where the elements of the matrixR.˛/ are defined as:

Rij.˛/ D 1

T

TX

tD0
kxi .t/ � xj .t/k;

for nodes i and j and

OR D max
i;j;˛

Rij.˛/:

Using this notation, we also define the mean correlation between the dynamics of a
set S of n nodes

h�iS D
X

i;j2S
i¤j

�ij

n.n � 1/ :

We integrated Eq. (4.10) using an Adams-Bashforth multi-step scheme together
with an initial fourth order Runge-Kutta algorithm using a step size of 0.001. The
initial states of the oscillators were randomised between 0 and 0:05.
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We calculated the correlation matrix � for a network with a modular structure,
varying coupling strengths ˛ and for two coupling schemes: H D I and H D E ,
where

E D
0

@
1 0 0

0 0 0

0 0 0

1

A :

The caseH D I corresponds to each variable x; y and z being coupled to the same
variable of all its neighbours, while H D E corresponds to only the x variable
being coupled to its neighbouring nodes.

4.3.2.1 Dynamics Within a Modular Network

We first present the numerical results of the simulations of the modular network G1
shown in Fig. 4.3. The network has two modules C1 and C2 generated according to
an Erdös-Rényi architecture: C1 contains 60 nodes with h OI iC1 D 0:95 and hkiC1 D
58; C2 contains 40 nodes with h OI iC2 D 0:6 and hkiC2 D 30. The inter-module
connections are low compared with the intra-module links, as implied by the high
module matching indices. In these simulations, we use the x-coupling: H D E .
The results of the functional analysis are presented in Fig. 4.4.

Figure 4.4a–e display heat map representations of the correlation matrix � for
increasing coupling strengths ˛. Darker regions correspond to higher correlation
between node dynamics. From the analysis of the master stability function of the
Rössler system with these parameters and x-coupling, it has been found that the
region of stable synchronisation are bounded by � D 0:186 and ƒ D 4:164 [13].
We can then use these numbers to approximate the regions of stable synchronisation
for modules C1 and C2: ˛sC1 � 0:186=58 D 3:2 � 10�3 and ˛dC1 � 4:164=58 D

Fig. 4.3 Adjacency matrix (spy(A)) and graph visualisation of the network G1 which contains
two weakly connected Erdös-Rényi modules C1 (blue) and C2 (red) with 60 and 40 nodes
respectively
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a b c

d e

Fig. 4.4 (a)–(e) display the functional correlation matrix � for increasing coupling strengths ˛ of
the networkG1 when only the x component of the dynamics is coupled (H D E ). Darker coloured
areas correspond to regions of synchronisation. The inset illustrates the different synchronisation
regions for modules C1 and C2 as expected from our analysis. The letter labellings correspond to
those in (a)–(e). Note that ˛sC1 
 3:2� 10�3 < ˛sC2 
 6:2� 10�3 < ˛dC1 
 7:2� 10�2 < ˛dC2 

1:39� 10�1, thus giving rise to distinct regions for the functional network

7:2� 10�2 for C1; whereas ˛sC2 � 6:2� 10�3 and ˛dC2 � 1:39� 10�1 for C2. These
regions are indicated by the illustration inset in Fig. 4.4.

Our numerics show that when ˛ D 0 there is no correlation between the
dynamics of the nodes. This is expected since there is no interaction between the
oscillators. For ˛ D 3:5 � 10�3, C1 has synchronised and some nodes in C2 are
beginning to show cohesive dynamics. This is expected since the coupling strength
has entered the predicted stable synchronisation region for C1 but not for C2. For
˛ D 2�10�2, both modules have synchronised, but the dynamics of the two modules
are uncorrelated as indicated by the pale off-diagonal regions. This is a result of
the low inter-module connectivity.2 For ˛ D 1 � 10�1 (Fig. 4.4d), module C1 has

2Under certain conditions, it is possible for two modules to synchronise and this is explored
elsewhere such as [14].
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a

b

c

Fig. 4.5 Time evolution of the x component of the dynamics for two oscillators in moduleC1 over
the time window 125–200. (a) For ˛ D 0, the dynamics of the two oscillators are uncorrelated.
(b) When the coupling strength is increased to 3:5 � 10�3, the two oscillators enter a stable
synchronised state. (c) As the coupling strength is increased further to 1 � 10�1 , the oscillators
initially synchronise for small times before their trajectories diverge and then remain uncorrelated
thereafter

already desynchronised, while C2 remains synchronised. As the coupling strength
is increased further, C2 also desynchronises.

The dynamical behaviour of the clusters is perhaps expressed more clearly when
analysing the time evolution of the oscillators. Figure 4.5 displays the evolution of
the x variable of two oscillators in module C1 for increasing coupling strengths.
In Fig. 4.5a, where ˛ D 0, we observe, as expected, that the dynamics of the two
oscillators are uncorrelated. For ˛ D 3:5 � 10�3 in Fig. 4.5b, the two oscillators
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synchronise. The inset in this figure demonstrates that the two oscillators have
differing but close initial conditions and due to the coupling strength, soon achieve
stable synchronisation. Finally, for ˛ D 1� 10�1 (Fig. 4.5c), the oscillators initially
synchronise before diverging after a short time and then remain uncorrelated
thereafter.

4.3.2.2 Relation Between the Critical Coupling Strength
and the Module Mean Degree

We now examine how the critical coupling strength required for stable synchroni-
sation within a module depends upon its mean degree. To this end we simulated a
network G2 of 100 nodes for varying matching indices between 0:7 and 1 which
will act as a paradigmatic example of a module with no inter-module links, thereby
removing any external perturbations from other modules. We then determined the
coupling strength ˛ such that h�iG2 D 0:99 for both H D I and H D E . We
repeated simulations five times for varying network adjacency matrices.

Along with the simulations, we indicate the predicted critical coupling strength
which depends inversely upon the mean degree of the module as determined by our
methodology. We demonstrate this by fitting the simulation results to an expression
of the form

˛sC ; ˛
d
C D a

hki C b
; (4.11)

where a and b are fitting parameters.

Remark 3 The precise bounds for the critical coupling strength depends on the
actual node degrees and not only the mean degree (see the derivation of the results
in Sect. 4.4 for details). However, since node degrees are close to the mean degree
we can approximate ki D hki C b, where b is treated as a free parameter. The
parameter b effectively allows for inhomogeneities within the module structure to
produce a small perturbation to the critical coupling strength required for stable
synchronisation, details on these perturbations can be found in Sect. 4.4.4.

Figure 4.6 displays the results when coupling all components of the dynamics
with H D I . As expected, all nodes in the module will synchronise given a strong
enough coupling strength and the module will remain synchronised as the coupling
strength is increased thereafter. The simulations follow an inverse dependence upon
the mean degree of the module [Eq. (4.11)], as expected from our results.

Figure 4.7 displays the results when coupling only the x component of the
dynamics, corresponding to H D E . We see that for a module with a high
matching index, all nodes will synchronise above a coupling strength and will
then desynchronise as the coupling strength is increased further. Again, from
the fitted curves, the critical coupling strengths required for synchronisation and
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Fig. 4.6 Critical coupling strength required for stable synchronisation for a module of 100 nodes
with a varying high matching index plotted against the module mean degree. Simulations were
repeated five times with the couplingH D I . We also display the fitting curve [Eq. (4.11)], which
depends inversely upon the module mean degree
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Fig. 4.7 Critical coupling strengths required for stable synchronisation of a module of 100 nodes
with varying high matching index plotted against the module mean degree. Simulations were
repeated five times with the coupling function H D E . We also display the fitting curves,
[Eq. (4.11)] which depend inversely upon the module mean degree. Note the different scales on
the y-axes, with blue corresponding to synchronisation and black to desynchronisation

desynchronisation display an inverse dependence upon the module mean degree in
line with our results.

Remark 4 When setting b D 0 in the curve fitting (corresponding to perfectly
homogeneous node degrees), we can directly compare our results with those
obtained in the literature from analysing the master stability function, which have
shown � D 0:186 and ƒ D 4:614 for this system [13]. From our fits, allowing
for a stable synchronisation region to be given by h�iG2 > 0:99, we obtain
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˛sC hki D 0:202 and ˛dC hki D 4:750 in close agreement with the master stability
function bounds, as expected from our analytical results.

4.4 Derivation of Our Analytical Results

Before detailing the derivation of our results below, we briefly outline our strategy.
Starting from Eq. (4.6), we define

z.t/ D xi .t/ � xl .t/; foranyi; l 2 C; (4.12)

where C is a module, and analyse the dynamics of z. To this end, we take the
following four steps.

1. First, for z sufficiently small, we obtain the linearised equation for z.t/:

d z
dt

D h.˛; t/z.t/C ˛g.t/; (4.13)

where g and h are to be determined and depend on both the node dynamics and
network structure. By Taylor’s Theorem, the remainder is O.jjz.t/jj2/ and it can
be dealt with in step 2.

2. We then analyse the associated homogeneous equation

dy

dt
D h.˛; t/y ;

and, by Eq. (4.7), represent y.t/ in terms of its associated evolution operator

y.t/ D T .t; s/y.s/:

Our assumption A2 guarantees that the trivial solution of the above equation is
uniformly asymptotically stable, that is, for some � > 0,

ky.t/k  Ke��.t�s/ky.s/k; fort � s:

3. We then solve Eq. (4.13) using the method of variation of parameters

z.t/ D T .t; s/z.s/C ˛

Z t

s

T .t; u/g.u/ du;

and by defining kgk D supu kg.u/k, from the triangle inequality we obtain

kz.t/k  Ke��.t�s/kz.s/k C K˛kgk
�

:
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4. Then for large times and using Eq. (4.12), we obtain

kxi � xlk 
QK˛kgk
�

;

where

QK D K

�
�e��.t�s/jjz.s/jj

˛jjgjj C 1

�
:

Under our network assumptions, Eqs. (4.3) and (4.4), we can obtain bounds for
kgk as

kgk
hkiC

D O

�
1

hkiC

�
:

We now explain these steps in more detail.

4.4.1 Obtaining the Variational Equation

To obtain the first variational equation for z.t/ D xi .t/ � xl .t/ we write

Pz D Pxi � Pxl

D f .z C xl / � f .xl /C ˛

8
<

:

X

j

.Aij � Alj/H .xj /C
X

j

ŒAljH .xl /� AijH .xi /�

9
=

;
;

by Eq. (4.6).
For some t such that kz.t/k is sufficiently small, we can expand as a Taylor series,

and after some manipulations we obtain

Pz D Df .xl /z � ˛AilDH .z/C ˛

8
<

:
klH .xl /� kiH .xi /C

X

j¤i;l

.Aij � Alj/H .xj /

9
=

;

where ki is the degree of node i as given in Sect. 4.2.2. Without loss of generality,
we assume kl � ki and set Nki D ki C Ail to obtain

Pz.t/ D h.˛; t/z C ˛g.t/; (4.14)

where

h.˛; t/ D Df .xl .t// � ˛ NkiDH (4.15)
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and

g.t/ D .kl � ki /H .xl .t//C
X

j¤i;l
.Aij �Alj/H .xj .t//: (4.16)

This is the first variational equation. Note, we truncated our Taylor expansion
in z up to first order and by Taylor’s Theorem we know the remainder satisfies
kR.z.t//k D O.kz.t/k2/.

4.4.2 The Homogeneous Equation

We now consider the homogeneous part of Eq. (4.14)

Py D h.˛; t/y : (4.17)

Notice the rescaling ˛ Nki D � brings the above equation [Eq. (4.17)] to Eq. (4.7).
Therefore, if

� < ˛ Nki < ƒ;

Eq. (4.17) has an evolution operator satisfying

kT .t; s/k  Ke��.t�s/: (4.18)

Now, since modules will have a large number connections and nodes will share
many common neighbours, Nki will be close to the mean degree hkiC (see our
network assumptions Eqs. (4.3) and (4.4)). This means that in leading order in hkiC ,
the stability condition is given by

� < ˛ .hkiC C ı/ < ƒ;

where jıj D o.hkiC / takes into account the fluctuation between ki and the mean
degree hkiC . After some rearrangements we obtain

�

hkiC

�
1 � ı

hkiC

�
< ˛ <

ƒ

hkiC

�
1 � ı

hkiC

�
: (4.19)

Then for hkiC large we see that Eq. (4.19) resembles Eq. (4.8). Furthermore,
according to Remark 1, ifH is positive definite, we obtainƒ ! 1 and

� D ˛ˇ.hkiC C ı/� �: (4.20)

Then for ˛ satisfying � > 0 in Eq. (4.20), we obtain a uniform contraction. It
remains to show that the perturbations will not destroy the synchronisation property.
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4.4.3 The Perturbed Equation

We now turn our attention to the inhomogeneous Eq. (4.14). Using the method of
variation of parameters we obtain

z.t/ D T .t; s/z.s/C ˛

Z t

s

T .t; u/g.u/ du;

and by virtue of the triangle inequality we find

kz.t/k  kT .t; s/k kz.s/k C ˛

Z t

s

kT .t; u/k kg.u/k du:

Then, using the bounds for the evolution operator from Eq. (4.18) we obtain

kz.t/k  Ke��.t�s/kz.s/k C ˛

Z t

s

Ke��.t�u/kgk du

D Ke��.t�s/kz.s/k C ˛Kkgk
�
1 � e��.t�s/

�

�
:

For t large we obtain

kz.t/k 
QK˛kgk
�

;

where

QK D K

�
�e��.t�s/jjz.s/jj

˛jjgjj C 1

�

D K C o.1/:

Now, under the stability condition Eq. (4.19) for ˛, we obtain

kz.t/k 
QKƒkgk
hkiC�

: (4.21)

IfH is positive definite then from Remark 1

kz.t/k 
QK˛kgk

˛ˇhkiC � �: (4.22)

We must now analyse the bounds for g within a module.
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4.4.4 Bounds for the Perturbation

We give the argument for Eq. (4.21). The argument for Eq. (4.22) is similar. We first
recall the mismatch index Eq. (4.2):

�il D
NX

jD1
jAij �Aljj � 2Ail:

Then since the trajectories are bounded and the coupling function is smooth, we can
bound

kH .xi /k  Kh;

for a positive constantKh, and since

g.t/ D .kl � ki /H .xl .t//C
X

j¤i;l
.Aij � Alj/H .xj .t//;

from Eq. (4.16), we obtain

kg.t/k
hkiC

 1

hkiC
Kh.kl � ki C �il/: (4.23)

Then, motivated by the matching index notation in Eq. (4.1), we can introduce

K1 D Kh

hkiC
.ki C kl � .AC A2/il/

to obtain

kg.t/k
hkiC

 jkl � ki j
hkiC

Kh C .1 � OIil/K1: (4.24)

Therefore, for the perturbation to be small, we require:

• The difference in node degrees within a module to be low.
• Nodes to share many common neighbours within a module.
• Nodes to have comparatively fewer connections to nodes outside the module.

The final two requirements emerge via the matching index in Eq. (4.24) since OIil

penalises for not only a lack of shared nodes within a module but also for additional
(unshared) connections to nodes outside the module. Then, from our network
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assumptions (Eqs. (4.3) and (4.4)) along with ˛ satisfying the stability condition
Eq. (4.19), by Eqs. (4.21) and (4.23), we obtain

kz.t/k  O

�
1

hkiC

�
:

Therefore the stability of module synchronisation depends upon the module
mean degree and the extent to which synchronisation can be achieved depends upon
the matching index within a module. These conditions will clearly vary between
modules and our conditions only guarantee individual modules to synchronise
independently as opposed to global network synchronisation.

4.5 Conclusion and Discussion

We have shown that the stability of module synchronisation in complex modular
networks can be predicted based upon the module mean degree given certain
assumptions on the component dynamics and network structure. Our key assump-
tion on the modular structure is that nodes within modules share many common
neighbours and inter-module connections are weak in comparison.

Our analysis revealed two basic scenarios for module synchronisation. If the
coupling function is linear and positive definite, we showed that the functional
modules reflect the structural modules. In this case, as the coupling strength is
increased, the module with the largest mean degree synchronizes first, then more and
more modules achieve synchronisation. In this case, the dynamics of the network
mirror the structural properties of the network.

However, for more general couplings, typically our stability criterion A2 is
satisfied, see [13]. In this case, we observe interesting dynamical behaviour as the
coupling parameter is increased where, in a first stage, modules of synchronised
nodes can form and reflect the structural organization, but for large couplings the
synchronisation becomes unstable and functional modules disintegrate. This sce-
nario corresponds to bifurcations between the functional and structural properties.

Our assumptions on the structure of the modules allowed for an analytical
treatment of these scenarios and enabled us to determine the critical coupling
strengths for synchronisation and desynchronisation. Additionally, we showed that
the module matching index dictates the quality of synchronisation. Moreover, our
present approach can be used to explain the synchronised dynamics of groups of
nodes not necessarily forming modules such as hub synchronization [6, 22], since
their matching index may be high and the degrees similar.

These results can be of importance for functional network analysis and enhance
our understanding of the relation between the functional and structural network.
Indeed, even though a module may possess the structural properties required for
synchronisation, the functional modules may not reflect the structural modules of a
network.
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Chapter 5
Synchronous Motions Across the Instrumental
Climate Record

Peter Carl

Abstract The Earth’s climate system bears a rich variety of feedback mechanisms
that may give rise to complex, evolving modal structures under internal and external
control. Various types of synchronization may be identified in the system’s motion
when looking at representative time series of the instrumental period through the
glasses of an advanced technique of sparse data approximation, the Matching
Pursuit (MP) approach. To disentangle the emerging network of oscillatory modes
to the degree that climate dynamics turns out to be separable, a large dictionary
of “Gaussian logons,” i.e. frequency modulated (FM) Gabor atoms, is applied.
Though the extracted modes make up linear decompositions, this flexible analyzing
signal matches highly nonlinear waveforms. Univariate analyses over the period
1870–1997 are presented of a set of customary time series in annual resolution,
comprising global and regional climate, central European synoptic systems, German
precipitation, and runoff of the Elbe river near Dresden. All the evidence from this
first-generation MP-FM study, obtained in subsequent multivariate syntheses, points
to dynamically excited regimes of an organized yet complex climate system under
permanent change—perhaps a (pre)chaotic one at centennial timescales, suggesting
a “chaos control” perspective on global climate dynamics and change. Findings and
conclusions include, among others, internal structure of reconstructed insolation, the
episodic nature of global warming as reflected in multidecadal temperature modes,
their swarm of “interdomain” companions across the whole system that unveils an
unknown regime character of interannual climate dynamics, and the apparent onset
early in the 1990s of the present thermal stagnation.

5.1 Introduction

The Earth’s climate is fundamentally shaped by the very fact that phase transitions
of water are within reach of normal atmospheric to subsurface conditions. Changes
in the water cycle, as a major mediator of the effects of climate and weather on
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landscapes, biota and man’s society, are often viewed as one-way processes, though
(e.g., [51]). Also, a traditional (midlatitude) perspective on climate variability and
change is based on the understanding that slow(er) subsystems exert the decisive,
solid control. To such a (quasi-equilibrium) view there fits the notion of a hydrologic
cycle that merely responds to climate change. It tends to diaphragm out the
constitutive impact of atmospheric water on tropic/subtropical climate dynamics
and the interactive nature of climatic subsystems across the spatio-temporal scales,
including those of astronomical forcing (e.g., [109]).

Latent heat uptake and release in the Tropics and subtropics substantially
contribute in driving atmospheric motions. Subtle changes in these motions may
result in worldwide hydrologic transformations that feed back on the circulation,
and thus on climate and weather; that is, water cycle interactions are integral parts
of climate variability and change—and may even take the lead (e.g., [78, 110, 111]).
Climatic feedbacks may constitute free oscillations at timescales from intraseasonal
to centennial and beyond (e.g., [65, 71, 88]). Such “anomalistic” (not astronomically
controlled) oscillatory regimes under active participation of the water cycle are
borne in the monsoons (e.g., [62]), the El Niño–Southern Oscillation (ENSO)
system (e.g., [47]), and perhaps also in the annular modes of both hemispheres (e.g.,
[106]). Typically, they show complex, irregular spatiotemporal behaviour and are
basically recurrent but difficult to predict. Not only are their quantitative rules of
recurrence unknown; qualitative dynamics of the subsystems in the back, and of the
whole climate system, are obscure and may well comprise (pre)chaotic regimes at a
wide range of scales (e.g., [12, 13, 57, 58, 69, 95, 100, 114]).

Low-dimensional aspects of climate dynamics, as addressed in diverse modelling
studies including a “small” yet physically resolved General Circulation Model
(GCM) [19], provide reasoning in favour of synchronies in representative data of
the real system. Namely, in a high-dimensional dynamic system, low-dimensional
behaviour is peremptorily bound to internal dynamic organization as reflected in
synchronous, degenerate motions along otherwise largely independent (although
not necessarily orthogonal) phase space, resp. signal space, directions. Notably
in (pre)chaotic regimes, unstable periodic orbits may become manifest in the data
due to episodic or persistent, internal or external synchronization. All this calls for
clarification of the role that nonlinear qualitative dynamics may play in the real
climate. That the system’s dynamical status is largely unknown (as is that of its
elaborated GCMs) poses challenges when grasping its past and future evolution.

Time series studies are an established approach toward structural understanding
of nonlinear dynamics, not to the least when translating these into geometry
[1]. Here the perspective and task have been adopted of unveiling structure in
a complex yet organized, dynamically excited system. That is, climate dynamics
are empirically addressed which are not primarily “hidden in noise,” but are
obscured due to their intrinsic complexity. Nonstationary, nonlinear signals are to
be coped with to this end—without giving preference by the choice of method to
any other notion over the quasi-equilibrium view and its linear implications. Non-
probabilistic, dynamic modes are targeted of time series .t/ which are viewed as
complex yet separable composites, fed by multiple, distributed sources of diverse
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signal structure, temporal location, scale etc., i.e. signal space occupation. Accord-
ingly, univariate blind decomposition T is seeked into a hierarchy of empirical
modes k.t/, .t/ � P

k k.t/ D P
k T fRk�1fgg.t/, where Rk�1fg.t/ is the

time series residue at level k � 1 (R0fg.t/ � .t/). This “greedy” univariate
analysis does not necessarily have to bear orthogonality among the extracted modes.
Multivariate synthesis to detect mutual dynamic information searches for relations
then of the kind P�a�i .t/ � P�b�j .t/, or

P�aT fRi�1f�gg.t/ � P�bT fRj�1f�gg.t/ ; (5.1)

among modes �i .t/, �j .t/, : : : of time series �.t/, �.t/, : : : in data set X .t/ D
f�.t/g. P�a and P�b represent projections on subspaces �a, �b of a signal space
with index � ; time is left as independent coordinate.

Sparse approximation is achieved this way if superposition of few leading modes
k.t/ approximates .t/ to “sufficient” accuracy. The system’s motion as displayed
by these data turns out to be separable then and may be followed (or “shadowed”)
in a tractable number of signal subspace projections. Low-dimensional behaviour,
lately, comes to the fore if Eq. (5.1) holds among the leading modes of the data
set. Note that (5.1) does not dictate the specific form of synchrony within the
modal structure ff�kgg � fT fRk�1f�ggg, and that “interdomain” synthesis across
different signal space projections (�a ¤ �b) goes beyond multivariate analysis with
its methodological stays to the anticipated structure and interaction of data.

The present study comprises global climate time series (insolation, temperatures,
precipitation, dynamic indices), central European surface air temperature and
synoptic data, aggregate German rainfall, and runoff of the Elbe mainstream, all in
annual resolution. Daily discharge data are preprocessed in a blind, inverse operation
termed Functional Streamflow Disaggregation (FSD; [21, 22]), aimed at reducing
total runoff at catchment outlet to flow components that are conceptualized to reflect
different pathways of water until it forms the river. To take into account possible
selective climatic impacts on the water body, both total runoff and its components
enter the data set of the study. The method of sparse time series approximation of
which the bearings are taken, Matching Pursuit (MP) [73], aims to identify then a
set of phase space flows, or modes, for each series that enters the study.

Section 5.2 introduces either method and the Gaussian logon used as analyzing
waveform which allows for deep frequency modulation (FM) here. Section 5.3
briefly quotes the data sources. Time series analyses of the global climate system
are detailed in Sect. 5.4, and their multivariate global-scale (“horizontal”) synthesis
is completed in Sect. 5.5. Extending beyond the presentation in [18], Sect. 5.6
demonstrates a “vertical” search for synchronies from the global system via central
Europe down to the river basin scale of the middle Elbe. A summary is given in
Sect. 5.7, and conclusions are drawn in Sect. 5.8. MP-FM details are sketched in the
Appendix, where also the performance of the tool is briefly contrasted to a set of
other time–frequency (TF) methods and to Singular-System Analysis (SSA) [102].
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5.2 Methods

5.2.1 Adaptive Data Modelling

In structural time series analysis one traditionally searches for trends, outliers
and harmonic or polynomial components of which significance is tested against a
hypothesis about background statistics (e.g., [103]). Though broadband spectra are
also typical for chaotic systems, and even a single, localized event generates a white
Fourier spectrum, the notion of stationary statistics (Gaussian “white noise”) in
conjunction with (quasi)equilibrium dynamics bears considerable inertia. A related
view appears to be held when searching for covariance in the time domain in
testing against the functional shape of time-dependent forcing. A system close to
equilibrium or (cyclo)stationarity, maybe traversing such a state during a laminar
phase of its forced evolution (e.g., [44]), might obediently follow external forcing—
in which case it may be linearized about a reference state. However, as outlined
here, such a general dynamical status may be posed into question for the present-day
climate, which may bear fluctuations that are structurally borne in a geometrically
more complex (yet certainly discernible, e.g., [19]) phase space topology.

Evolving modal structures can be (re)constructed in a variety of ways from
time series which fluctuate about a mean. Classical methods (Short-Time Fourier
Transform, STFT [3]; Wigner–Ville Distribution, WVD [27]; Maximum Entropy
Spectral Analysis, MESA [35]) gave way today to the Wavelet Transform (WT)
(e.g., [30]) and the SSA. SSA components are built from eigenvectors and projection
coefficients drawn from the data without a functional template or data model.
This desirable data-adaptive nature notwithstanding, SSA modal structures are not
easily reduced to the sort of tractable parameter sets one needs when tracing,
mapping, quantifying and post-processing (synthesizing) the system’s trajectories.
The WT, on the other hand, yields signal energy distributions in the TF plane which
unfortunately obscure details of modal interaction, and a fixed scale–frequency
relationship predetermines the TF resolution, irrespective of the demands of the
actual time series. Though the analyzing-wavelet approach of the WT would support
parameterization of the modal structure, its “tiling” of the TF plane runs counter to
this advantage due to high temporal but low frequency resolution in the short-period
range, and vice versa for long periods.

More recent data-adaptive methods and tools include the Empirical Mode
Decomposition (EMD) [54] and the Matching Pursuit. Both methods overcome the
WT shortage of range-dependent TF resolution. EMD exploits the Hilbert transform
to construct spectrograms from bandlimited “intrinsic mode functions” (IMFs),
which are thought to be analytic signals by construction (AS; cf. Appendix). Its
greedy procedure starts with the highest-frequency modes and leaves the slowest
one as residue (sparse approximation not being a natural option of EMD). As with
the SSA, EMD also misses the means to easily parameterize the modal structures
obtained. MP, in contrast, uses an explicit data model, or more than one, and may
provide thus concise, tractable “structure books” from the waveform parameters
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of each individual mode. The MP selection criterion and ranking are based on the
signal energy captured, i.e. how much of the time series (residue) a mode “explains.”
In the MP version used here throughout, the AS property is technically exploited in
addition, but not directly imposed to the waveforms—which even may exhibit deep
FM and thus are not necessarily bandlimited.

Projection [55], Basis [24], and Matching Pursuit ideas emerged in the context
of sparse data problems, i.e. “almost empty” signal spaces. The sparsity issue and
related conceptions are still under discussion (e.g., [32, 97, 98]); for a review cf.
[11]. MP seems to have been used only twice as yet in a climatic context. Wang and
Wang [108] studied the modal structure of the Southern Oscillation, and the present
author addressed the interannual organization of the global climate system [15–17].
This latter work is presented here in more detail than before [18], and is extended
“down to the river side,” beyond the global climate perspective.

Total streamflow, a temporally convoluted, spatial and functional aggregate, is a
key quantity of the terrestrial water balance. Intrinsic data problems notwithstand-
ing, the “integrative capacity” of water mass transduction A yields an areal measure
of part of the hydrologic cycle, in temporal resolution, which cannot be obtained as
yet with comparable ease from areal precipitation into basin Xj (coordinates xj ) or
from atmospheric water. Transformation of precipitable water w into discharge g at
station j (river network coordinates rj ) may be thought to proceed in three major
stages:

g.rj ; t/ WD Aff .xj ; t/g D GBCfw.Kxj ; t/g : (5.2)

Here, rectifier C imprints synoptic features on (sub)surface hydrology via (effective)
rainfall f .xj ; t/ WD Cfw.Kxj ; t/g, comprising convective, cloud and near-surface
processes within the basin’s atmospheric reach KXj (coordinates Kxj ), and moisture
advection across the boundaries. B represents the impact on flow concentra-
tion of geomorphology and anthropogenic impress of the basin, g.xj ; t/ D
g.c.xj /; f .xj ; t// WD Bff .xj ; t/g, where g.xj ; t/ is the vector of progressively
concentrated, parallel surface and subsurface flows (a conceptual entity [112]),
and c.xj / is the material carrier of infiltration, flow concentration etc. G stands
for final lateral aggregations within range of the river bank (P?) and downstream
convolution along the network (Pk) into runoff at catchment outlet, g.rj ; t/ D
Gfg.xj ; t/g D PkP?fg.xj ; t/g [21].

Classical conceptual discharge components, like base flow gb.rj ; t/, interflow
gi .rj ; t/, and overland flow gr .rj ; t/ (e.g., [76]), are thought to represent distinct
pathways and response times of surface and subsurface waters. They might thus
individually carry the signs of distributed sources and media of flow generation, be
it natural or anthropogenic. Consistent inverse (re)construction of such a component
structure of historical streamflow should not resort to meteorological data if the
results are aimed to unveil the signatures of climate and weather. The FSD strategy
performs such an empirical, blind inversion of the (reducible) operator G,

T fg.rj ; t/g � �
G�1fg.rj ; t/g

� DW g.rj ; t/ ; (5.3)
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that infers on a conceptual linear parallel flow aggregation at catchment outlet
from the signal structure alone, g.t/ D P

k gk.t/ WD P
k Tkfgg.t/ (rj suppressed

heretoforth), has only recourse to elementary constraints, and does neither exploit
meteorological information nor require calibration.

5.2.2 Functional Streamflow Disaggregation (FSD)

FSD is a hydrologically well-motivated and theoretically founded algorithmic con-
struct based on first principles. The method and tool [21] have been demonstrated
first for German and Austrian headwater catchments to reasonably compare with
results of distributed hydrologic modelling [22]. More recently, it could be shown
that it also provides a natural solution to the intermittency problem; that is, after only
a minor technical adaptation, prior (or extra) data treatments are no longer required
for ephemeral rivers or time series with data gaps (and/or negatives). In the present
application to mainstream data, the version used is that of the original publications.

SSA [102] provides a first guess of slow runoff variations to initialize construc-
tion of lower envelopes to the hydrograph via iterative cubic spline interpolation,
where the knot selection rules exploit elementary constraints alone (nonnegativity,
causality). The utmost envelope separates the fast FSD component, gf .t/, that
estimates overland flow gr .t/. The slowest one, attributed in [22] to the classical
baseflow gb.t/, is a sort of minimal convolution [74] termed “instantaneous low
flow” (g`.t/; mode label ilf)—a smoothed running fit from below, using the window
and leading eigenvector of the SSA.

A shortcut FSD version leaves the transient component as residue, gt .t/ D
g.t/�gf .t/�g`.t/. In a more involved greedy FSD, a hierarchy of lower envelopes
is constructed (bounded from below by g`.t/) which converges into another slow
component, gs.t/, that turned out to differ from g`.t/ during periods of enhanced
runoff. The shortcut transient component thus splits into two subcomponents,
gtd.t/ D g.t/ � gf .t/ � gs.t/ and gtf .t/ D gs.t/ � g`.t/, coined “driven” and
“free” transient, respectively (mode labels dtrans, ftrans; gt .t/ D gtd.t/Cgtf .t/). As
a hydrologically active medium [37], the vadose zone may bear structured interflow
gi .t/ indeed—to which gt .t/ has been attributed in [22]. As a result of operator
iteration, however, the driven-transient subcomponent gtd.t/ is a (statistically) self-
similar construct that might deserve special conceptual attention with a view on
the effects of nonlinear dynamics and chaos in hydrologic time series (e.g., [90]).
The formulae of the FSD strategy of hydrologic data transformation may be found
in [21].
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5.2.3 Matching Pursuits with Gaussian logons

MP utilizes projections on elementary functions  .t/ to pursue the best decompo-
sition of a time series .t/ in the sense of filtered signal energy, ˛ � < ; >

WD R
.t/ N .t/ dt, where N .t/ is the complex conjugate of  .t/. Use is made here

of a redundant dictionary of variable waveforms, and the resulting mode-by-mode
(greedy) decomposition is “slightly” non-orthogonal in fact, orthogonal methods
being less adequate for nonstationary data. To capture complex (quasi)cycles and
synchronies that may be drifting and/or appear episodically, high resolution is
required in both time and frequency, whatever the location in the TF plane. Besides
overcompleteness of the dictionary (which thus extends beyond a basis) and the
greedy approach, superresolution near the low-frequency margin of the TF plane and
(deep) FM make up essential features of the specific (MP-FM) version used. Here
details are given of the analyzing waveform, the Gaussian logon, and its structure
book parameters; in the Appendix, the analytic signal is briefly introduced, and both
design and performance of the MP-FM tool are outlined.

To assess (quasi)cyclic motions in time series, and their mutual “coalitions” at a
variety of scales, the Gabor atom [42]

 �.t/ WD 1p
s
g

�
t � u

s

�
exp .i Œ!ct C ��/ ; (5.4)

may be generalized to include harmonic phase (or frequency) modulations, yielding
the “Gaussian logon”  Q� .t/ WD  �.t/ exp.i Q'.t//, or as a real signal:

 r Q� .t/ WD 1p
s
g

�
t � u

s

�
cos

�
!c.t � u/C �0 C Q'.t � u/

�
: (5.5)

Signal space index � � .s; u; !c; �/ of the Gabor atom comprises scale s,
translation u, angular frequency !c WD 2�fc and phase constant � of the carrier
mode, and the Gaussian time-window is shaped as g.�/ WD 4

p
2 exp .���2/.

Harmonic phase modulation Q'.�/ WD ˇ sin . Q!� C Q�0/ extends this signal space by
three dimensions: Q� � .s; u; !c; �; ˇ; Q!; Q�/. Index ˇ WD ı!= Q! [101] measures the
modulation depth (ı! WD 2�ıf is peak deviation from carrier frequency !c), Q� and
Q! WD 2� Qf are modulation phase and frequency, respectively.

Phase constants �0 WD � C !cu and Q�0 WD Q� C Q!u refer to the location u
of maximum signal energy, not to the time origin; contributions !cu and Q!u are
kept explicit to earmark their physical estate. Phase constants also appear in the
corresponding complex element  Q� , not only for  r Q� WD <f Q�g D 0:5 . Q� C c:c:/

to hold—they are maintained as independent parameters in order to untie a signal’s
phase from its maximum-energy localization.
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5.3 Data

The data types, sources, and periods of availability for the present study are
summarized in Table 5.1. Global and hemispheric surface air temperatures (SAT)
[59] and sea surface temperatures (SST) [80], Central England SAT (CET; [80]),
indices of the North Atlantic and Southern Oscillations (NAO [56, 60]; SO [2]),
as well as the sea level pressure (SLP) series of their respective centers of action
(Iceland, Azores, Tahiti, Darwin), may be found at the website of the Climate
Research Unit (CRU) of the University of East Anglia. The Niño3 SST1 record
has been provided by [96], All-India summer monsoon rainfall is tabulated in [94]
(AIR-S) for 1844–1992, a second assessment that starts 1871 is given in [81]
(AIR-P). Reconstructed solar irradiance (SRAD) [66] has once been found at the
website of the Geophysical Data Center (NGDC) of the U.S. National Oceanic and
Atmospheric Administration (NOAA). Though this series has been retracted for
astronomical reasons [67], the criticism concerns the ranking of its slow secular
mode in effect (e.g., [38]), whereas waveforms are of primary interest here. There
is due justification to refer to this series, but separate analyses are also given of
two related time series: Wolf’s sunspot number (SSN) [75] and the cosmogenic
Beryllium 10 isotope (Be10) in Greenland ice cores [29]. High-quality Indian
summer and winter monsoon (ISM, IWM) onset and retreat dates from peninsular
India (MOSK/MONK for ISM onset over South/North Kerala, MRAP for ISM
retreat over Andhra Pradesh, NEMO/NEMR for IWM onset/retreat over Tamil
Nadu) are published in [4, 5, 82, 83] and [93] for different periods between 1870
and 1990.

Weather regimes (grosswetterlagen, GWLn) over central Europe after Hess &
Brezowsky [50] comprise 29 cases [43]. Annual frequencies of occurrence (1881–
1997) are used here of four dominating GWLn: High Middle Europe (HM), Ridge
Middle Europe (BM), Westerly Cyclonic and Westerly Anticyclonic (WZ, WA).
German precipitation and central European SAT are compiled according to Baur
[7]. For the Middle Elbe there are daily runoff data of the Dresden gauge available
for the whole period, 1870–1997.

5.4 Global Analysis

5.4.1 Structured Insolation

Irradiation at top of the atmosphere carries information from a largely undisturbed,
complex dynamic system. Figures 5.1 (left panel) and 5.2 show approximations
of the reconstructed insolation [66] and of the Be10 record by their respective

1Average over a 5ıN/5ıS equatorial latitude strip between 150ıW and 90ıW.
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Table 5.1 Data sets, their references and sources (period of interest: 1870–1997)

Parameter Area/location Period Reference Websource

References to global climate dynamics

Insolation

SRAD Global 1870–1997 [66] http://www.ngdc.noaa.gov

SSN Global 1870–1997 [75] http://www.ngdc.noaa.gov

Be10 Global 1870–1997 [29] http://www.ngdc.noaa.gov

Global climate

SAT Global, NH, SH 1870–1997 [59] http://www.cru.uea.ac.uk/cru/data

SST Global 1870–1995 [80] http://www.cru.uea.ac.uk/cru/data

Niño3 1871–1996 [96]

NAO Index North Atlantic 1870–1997 [60] http://www.cru.uea.ac.uk/cru/data

Winter NAOI North Atlantic 1870–1997 [56] http://www.cru.uea.ac.uk/cru/data

SO Index Tropical Pacific 1870–1997 [2] http://www.cru.uea.ac.uk/cru/data

SLP Tahiti, Darwin 1870–1997 [2] http://www.cru.uea.ac.uk/cru/data

Indian monsoon

ISM rainfall All India 1870–1992 [94]

1871–1997 [81] http://www.cpc.ncep.noaa.gov/
data/ india

ISM onset South Kerala 1901–1980 [4]

1891–1900 [5]

1971–1990 [93]

North Kerala 1901–1980 [4]

1870–1900 [5]

ISM retreat Andhra Pradesh 1952–1990 [82]

IWM onset Tamil Nadu 1901–1990 [82]

IWM retreat Tamil Nadu 1901–1990 [83]

References to European climate and weather

SLP Azores, Iceland 1870–1997 [60] http://www.cru.uea.ac.uk/cru/data

GWL Central Europe 1881–1997 [43]

Precipitation Germany 1881–1997 [7]

SAT Central Europe 1881–1997 [7]

Central England 1870–1997 [79] http://www.cru.uea.ac.uk/cru/data

Central European streamflow

Runoff Dresden, Elbe 1870–1997 Courtesy PIK

leading five MP-FM modes. If the method is suited to uncover organized dynamics
in complex data by means of sparse approximation, the solar input should provide
a good test case to demonstrate just this. The structure books (Table 5.2) document
sparse approximations indeed in terms of captured signal energy: 97.4 % by the
modes #1–5 each. Given the great similarity of both time series (save scaling), their
modal structures represent alternative, likewise probable pathways in fact of the

http://www.ngdc.noaa.gov
http://www.ngdc.noaa.gov
http://www.ngdc.noaa.gov
http://www.cru.uea.ac.uk/cru/data
http://www.cru.uea.ac.uk/cru/data
http://www.cru.uea.ac.uk/cru/data
http://www.cru.uea.ac.uk/cru/data
http://www.cru.uea.ac.uk/cru/data
http://www.cru.uea.ac.uk/cru/data
http://www.cpc.ncep.noaa.gov/data/india
http://www.cpc.ncep.noaa.gov/data/india
http://www.cru.uea.ac.uk/cru/data
http://www.cru.uea.ac.uk/cru/data
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Fig. 5.1 MP-FM analysis, annual SRAD, Be10 and SSN (anomalies), 1870–1997; left panel:
leading five SRAD and Be10 modes; right panel: SSN modes #1–10
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Fig. 5.2 MP-FM analysis 1870–1997, annual SRAD (left panel) and Be10 (right panel) anoma-
lies: reconstructions by modes #1–5

greedy algorithm. For reasons that will become plausible, the SRAD decomposition
is preferred, and that of Be10 is taken to provide supplementary information.

That internal structure in these series has not fully been realized before is small
wonder, given this sensitive MP-FM response. Carrier periods (1=fc) of SRAD #2
and #3 relate to one another like 1 W 2—that is, SRAD #3 might bear a “Hale
cycle” [52]. Both modes differ in modulation frequency Qf and index ˇ, however,
and traverse different FM phases. In combination with mode #4, some irregular
Hale cycle may be inferred indeed (Fig. 5.2, left panel), which appears to perform a
period doubling transition (a sort of period doubling is captured by only one mode
(#4) in the Be10 decomposition). In relation to the Schwabe cycle, SRAD #2, it
runs from a two-cycle pace at lower insolation into a three-cycle one toward the end
of the record. This transition is mediated by SRAD #4, which might reflect motion
on a “bumpy” torus, some hardly ever studied type of modulational instability (MI;
e.g., [113]), or bear the signs of an unstable periodic orbit (UPO; e.g., [91]). SRAD
#2 is parameterized as a mode that passes a phase of its multicentennial modulation
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Table 5.2 MP-FM structure books of annual insolation [15] and related time series, 1870–1997:
anomaly modes #hki and signal energy captured by modes #1–5/#1–10a

k ˛k sk uk f b
k �k Qfk ˇk e�k

SRAD, in W=m2 (97.4 %/99.3 % signal energy)

1 �7:900 1024 23 0:00629 �0:184 0:001065 0:35 2:749

2 2:411 128 105 0:06816 �0:120 0:001715 16:14 0:196

3 2:384 256 115 0:03408 �0:130 0:005769 1:85 �2:553
4 1:200 64 88 0:11463 1:976 0:005290 14:73 �2:945
5 0:868 256 32 0:08839 0:104 0:009291 5:00 3:142

� � �
7 0:607 1024 14 0:04232 3:070 0:003285 6:77 1:963

13 0:227 32 14 0:01433 0:239 0:000000 0:00 0:000

SSN (91.9 %/97.7 % signal energy)

1 411:729 256 106 0:05731 �0:931 0:001642 23:71 0:196

2 200:532 1024 99 0:02866 �2:909 0:001213 18:26 �2:945
3 138:301 256 97 0:10977 0:904 0:008158 1:71 �0:196
4 103:574 32 95 0:21953 2:547 0:006570 29:38 2:945

5 85:162 256 51 0:05033 �1:768 0:002762 14:08 �0:982
� � �
7 57:652 256 37 0:09639 �1:553 0:005290 14:08 2:160

Be10, scaled (97.4 %/99.1 % signal energy)

1 1:567 1024 43 0:01372 2:588 0:001213 6:76 2:945

2 0:484 32 106 0:20131 1:487 0:006024 29:38 �2:553
3 0:405 128 94 0:06527 3:113 0:006291 6:20 1:178

4 0:319 256 44 0:10066 �2:952 0:002645 29:41 2:356

5 0:204 256 48 0:07117 1:174 0:005524 8:76 �0:785
a SRAD #7,13 are referred to in Sect. 5.4.2, Fig. 5.7, SSN #7 in Sect. 5.4.2 (text)
b In the structure books heretoforth carrier frequency fc of component k is written fk

which beneath the given time window just moves it through the carrier period range
of SRAD #5 (11:3 years). It shows the well-known drift toward the shorter-period
edge of the 10 � � �12 years Schwabe cycle [40].

Together with marked terrestrial responses to the signal energy of SRAD #4
(envelope synchronization), this Schwabe cycle behaviour lends credence to the
SRAD decomposition, the more so since that of Be10 misses the perhaps most
striking SRAD feature: interdomain synchrony between modes #1 and #3. FM of the
latter leads the time domain evolution of the former by just about one sunspot cycle
length (�11 years) and almost perfectly matches its functional shape (“internal
interdomain” [15]; cf. Sect. 5.5, Fig. 5.17). Considering signal energy expenses,
the secular change of insolation does certainly drive the frequency drift of SRAD
#3—of which also the multidecadal evolution deserves scrutiny. Possible changes
notwithstanding for data periods that differ in length and/or are shifted along the
time axis (“cross validation” problem), the internal SRAD structure found indicates
that the method is capable of unveiling organized dynamics in complex modal
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webs—sensitivity of MP-FM response to these data notwithstanding. The SRAD
time series itself bears valuable information and should not be shelved.

Structure books (Table 5.2) do not unveil at a glance that SRAD #1 and Be10
#1 are nearly identical in both functional shape and phase, a correspondence that
lends further realism to SRAD #1 (yet not necessarily to its leading rank). Be10
#1 and SSN #2 coincide in scale s and modulation frequency Qf . A (bi- to multi-)
decadal mode like SRAD #3 or Be10 #4 is missing in SSN, however (Fig. 5.1, right
panel): the Schwabe cycle dominates this modal structure, and the slow secular
mode (here at rank #2) has a shorter period. Be10 #2 appears to reflect response
to, or continuation of, a similarly localized mode in SSN (rank #4). Envelope
maxima of both are depart from each other just by one Schwabe cycle length again
(parameter u in Table 5.2). Either localized mode contributes in shaping one of the
strong solar cycles #19 and #21 with maxima around 1957–1958 and 1979–1980,
respectively. SRAD #4 appears to comprise both signals; these in turn may provide
hints at different mechanisms behind its growth and decay—and thus perhaps lend
weight to UPO interpretation of SRAD #4.

5.4.2 Thermal Evolution: Into Another Stagnation

The entire MP-FM structure of customary temperature series of the global climate
system bears intriguing features in its leading phase space flows. Modes #1–5 each
of global and hemispheric SAT and global SST are presented in Fig. 5.3, and
corresponding spectrograms are shown in Fig. 5.4. Secular warming expectedly
occupies SAT and SST at rank #1. Their functional shapes are more stretched than
those of the slow insolation mode—a fact that offers a certain chance to separate
centennial direct solar from thermal effects [15]. Table 5.3 displays the structure
books of either global series, Table 5.4 presents those of hemispheric SAT.
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Fig. 5.3 MP-FM analysis (leading five anomaly modes each) of annually aggregated tempera-
tures; left panel: global SAT/SST; right panel: northern/southern hemispheric SAT
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Fig. 5.4 MP-FM spectrograms (leading ten anomaly modes each) of annually aggregated global
SAT (left panel, 1870–1997 [17]) and global SST (right panel, 1870–1995)

Table 5.3 MP-FM structure books of annual mean global SAT and SST (in K); anomaly modes
#hki, signal energy captured by modes #1–5/#1–10, and periods of analysisa

k ˛k sk uk fk �k Qfk ˇk e�k
Global SAT (86.1 %/93.3 % signal energy), 1870–1997

1 1:923 1024 18 0:00507 2:983 0:001112 0:30 2:749

2 0:909 256 126 0:03881 1:602 0:002533 9:15 �2:160
3 0:563 256 74 0:16210 2:355 0:006024 9:61 1:963

4 0:462 256 51 0:03408 0:122 0:004448 3:54 0:000

5 0:433 256 30 0:20131 �3:038 0:004260 21:83 �2:749
� � �
12 0:221 16 30 0:27263 2:961 0:013139 16:74 2:945

14 0:158 1024 1 0:00000 0:000 0:000000 0:00 0:000

15 0:149 32 80 0:25000 �2:370 0:007481 29:41 2:749

Global SST (87.8 %/95.4 % signal energy), 1870–1995

1 �1:788 1024 18 0:00577 �0:134 0:001112 0:27 �2:553
2 0:830 1024 70 0:02516 �0:294 0:002426 2:86 3:142

3 0:546 128 74 0:13631 2:639 0:013139 3:26 1:178

4 0:410 64 86 0:19278 0:600 0:022097 4:58 �1:767
5 0:387 256 61 0:02993 �1:408 0:002323 8:76 0:589

� � �
11 0:167 128 61 0:04819 �0:677 0:005290 4:79 0:393

12 0:160 128 93 0:00000 0:000 0:000000 0:00 0:000

17 0:096 128 35 0:12500 2:684 0:003741 29:38 2:160

a SAT #12,14,15 and SST #11,12,17 are residual slow components (SAT #14 is a highly stretched
half-Gaussion that emulates a constant offset, SST #12 is a Gaussian centered 1962)

Modes #3 and #5 of global SAT, both with carriers in the El Niño–Southern
Oscillation (ENSO) range of period (�3–7 years), show secular frequency drifts in
nearly perfect (#3, FM inverted) or approximate (#5) interdomain synchrony with
rank #1 solar and thermal modes, respectively (cf. also Sect. 5.5, Fig. 5.17, left
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Table 5.4 MP-FM structure books of annual mean hemispheric SAT (in K); 1870–1997; anomaly
modes #1–5 and signal energy captured by #1–5/#1–10a

k ˛k sk uk fk �k Qfk ˇk e�k
NH SAT (82.9 %/92.7 % signal energy)

1 1:883 1024 11 0:00465 3:002 0:001020 0:24 �0:393
2 1:071 128 99 0:03716 1:216 0:002533 8:77 �2:553
3 0:698 256 74 0:16210 2:308 0:006024 9:61 1:963

4 0:560 64 27 0:14235 �0:820 0:004260 29:38 2:160

5 0:464 256 77 0:13053 2:316 0:011538 6:76 �0:785
� � �
8 0:367 64 90 0:25000 �2:079 0:007481 29:41 �2:945
10 0:285 16 12 0:15523 0:627 0:007812 15:36 �2:749
15 0:184 256 84 0:04615 �0:564 0:001381 29:38 2:749

SH SAT (85.1 %/92.8 % signal energy)

1 1:945 512 91 0:03716 �1:695 0:001112 29:38 �2:945
2 0:746 256 71 0:06250 0:378 0:001870 29:38 2:160

3 0:540 64 86 0:19278 3:108 0:017039 6:76 �1:767
4 0:518 64 72 0:14865 �0:444 0:004448 29:38 �2:749
5 0:437 128 49 0:21022 �0:005 0:019404 4:40 �2:553
� � �
6 0:378 512 80 :03263 �2:960 :001791 12:38 �2:160
8 0:301 128 49 :10511 2:026 :003285 24:73 �2:749
12 0:204 64 54 :00265 0:016 :000000 0:00 0:000

a NH SAT #8,10,15 and SH SAT #6,8,12 are referred to in Fig. 5.6

panel). Perfect coincidence of NH and global SAT modes #3 (Tables 5.3 and 5.4)
hints at the geographic source of this interdomain companion of SRAD #1. This
might be taken as endorsing both existence of robust signals here and reliability of
the MP-FM method. SST #3 appears to integrate the slower parts of SAT #3 and #5,
introducing another modulation period this way—an interpretation that is supported
by nearly perfect phase and amplitude coincidence around 1930 of SST #3 with
the sum of SAT #3 and #5 [15] (Fig. 5.5, left panel). The two SAT modes just ran
into quadrature and were crossing one another at that period (cf. Fig. 5.4, left panel),
thus together matching SST #3 there with remarkable precision [15]. The right panel
of Fig. 5.5 shows the concurrent evolution of hemispheric SAT #4 modes (cf. also
right panel of Fig. 5.3), representing a thermal wave that changes the hemispheres,
thereby exhibiting a common “bump” just around 1930 (not rescaled to global in
the figure). Notice the remarkable similarity until the 1970s of the sunspot mode
SSN #7 (Fig. 5.1, rightmost column) with this combined thermal wave effect. Given
distinct growth and decay paths again, the question arises if this might not hint at
the terrestrial manifestation of another solar UPO.

The �12–15 years in question coincide with the core period of the first global
warming shove of the twentieth century (Fig. 5.6) which “kicked” the system from
one oscillatory regime into another one at generally higher thermal level. How the
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Fig. 5.6 NH vs. SH warming (1870–1997, in K) in terms of the slow MP-FM anomaly modes
#1,2,4,10,15 (NH) and #1,2,4,6,8,12 (SH) of hemispheric SAT, and linear regression (left panel);
inclusion of NH SAT #8 modifies the picture, mainly during the mid-century period of recurrence
oscillations (dashed black line, opaque circles vs. full green line, filled circles)

climate system is dynamically organized within these regimes is looked at in the
sections to follow. Among the thermal features, global multidecadal (SAT & SST
#2) and bidecadal modes (SAT #4, SST #5, which bear close resemblance to one
another) as well as hemispheric SAT modes #2 (cf. Fig. 5.3) are of special interest.

The stagnation period in all bidecadal-to-centennial temperature modes toward
the end of the twentieth century (Figs. 5.3 and 5.6) was unexpected at its discovery
around the turn of the century [14, 15]. Coincidentally, the data set does not include
the strong El Niño year 1998 with its marked warming pulse (starting with monsoon
data of 1870, the 128 year window chosen for technical reasons ends 1997), thus
leaving uncertainty about potential boundary effects of the method—the more since
“officially” global warming appeared to continue [92]. Only recently, a heated
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debate evolved about the “hiatus”, the pause in global warming lasting now for
15–20 years, and its absence in GCM based projections [6, 36, 41, 68, 104]. The
MP-FM analysis here hints at such a hiatus since the early 1990s, thus supporting
the conclusion in [41].

The north-south distribution of slow global warming (Fig. 5.6) shows a dominant
NH effect since the beginning of the 1970s. More close inspection (inclusion of
NH SAT #8) makes the curve more restless and modifies the shape of oscillations
between the mid-1930s and the beginning of the 1980s, thus unveiling a common
warming fluctuation of the early 1940s at both hemispheres. The early 1970s, in
contrast, have seen a marked “cool NH” excursion, Southern Hemisphere (SH)
warming notwithstanding. At the beginning of the 1970s, the NH was as cool as in
the late 1920s. The warm NH SAT of the early 1940s, in turn, was reached again not
before the mid-1980s, halfway NH warming of this decade. From the early 1930s to
the mid-1970s, “global” warming was an SH phenomenon in effect, accompanied
by strong fluctuations. Since the 1980s, in contrast, gradual SAT stagnation in the
South is accompanied by shorter-scale fluctuations in the North.

Centennial thermal modes #1 most directly fit the idea of “global warming”
during the past century, and the multidecadal modes at rank #2 are major carriers of
the episodic nature of the process (SH SAT has a weaker multidecadal component
at rank #6). A “swarm” of interdomain companions (Sect. 5.5, Fig. 5.17, right
panel) bears strong indication of a regime character across the climate system of
these dynamics. The oscillatory SAT regime until about 1910 is largely carried by
the interplay of bi- and multidecadal modes (Fig. 5.6). The substantial growth of
multidecadal signal energy in global SAT, which appears to be borne in the growing
NH mode but might have even deeper roots (e.g., the evolving structured solar
forcing; Sects. 5.4.1 and 5.5), gradually adopts the lead. It fully dominates since
the 1970s until the end of the record, whereby the system is dissolved from the
regime of yeasty oscillations around solar cycle #19 (the strongest on record), i.e.
from its second oscillatory regime, to run into the present stagnation. Note already
here that European SAT does not show any multidecadal mode (Sect. 5.6.1), which
hints at a tropic/subtropical origin (cf. also [87]).

That leading slow global SST modes do not exhibit growing signal energy (their
Gaussian envelopes show maximum “allowed” spread), might mean the oceans have
not “taken over” until the end of the twentieth century to set the global warming
rules, including the important multidecadal pace. Centennial modes #1 are least
certain under the 1870–1997 time window (showing up only half-periods), but
for global SAT and SST #1 identical modulation frequencies Qf and very similar
modulation depths ıf have been found, and their carriers fc are within range of
mutual modulation depths.

Figure 5.7 shows slow-mode phase plots of global SAT vs. SST (left panel; data
until 1995) and global SAT vs. SRAD (right panel). The left panel also does not
hint at a leading role of ocean warming as compared with that of the surface–
near atmosphere. The phase plot of modes #1 alone (turquoise) approaches the
regression line of balanced SAT/SST evolution and bears almost precise recurrence
since the mid-1980s along the warming route, with a state in 1995 very close
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Fig. 5.7 Global warming, slow MP-FM anomalies; left panel: global SAT vs. SST modes #1
(turqouise) and SAT #1,2,4,12,14,15 vs. SST #1,2,5,11,12,17 (black with opaque circles), plus
respective linear regressions (1870–1995, in K; right panel: global SAT (full slow-mode data, cf.
left panel) vs. SRAD #1,3,4,7,13 (1870–1997, in W/m2)

to that of 1973. Altogether, this means that multidecadal NH SAT has taken
over. Note that stagnation until 1997 in global warming, as represented by SAT,
commenced with decreasing slow insolation since 1991 (turning point in the right
panel, SAT vs. SRAD). The cyclic mid-century SAT/SRAD excursion calls for
further clarification with respect to the potential UPO manifestation in the climate
record (forcing/response; recall Sect. 5.4.1). The SAT/SRAD state in 1997 is in line
with the discernible trend of the 15 year period 1927–1942. The combined solar–
terrestrial system became attracted and temporarily captured then for 40 (or even
55) years by some phase space object (the figure reminds of a homoclinic orbit).

5.4.3 Dynamic Indices

Persistent SLP gradients may drive climatic subsystems and are thus taken as indices
to grasp their dynamics in terms of single time series. A customary NAO index is
the normalized SLP difference between Azores High (station Ponto Delgada) and
Iceland Low (Stykkisholmur). The winter NAO (NAOW; December–March) refers
to Lisbon, Portugal, to represent the Azores High [56]. The north–south seesaw
of the NAO controls the tracks across central Europe of cyclonic weather systems
and is therefore relevant to the hydrology of the region. The east–west seesaw
of the SO represents the atmospheric branch of the tropical ENSO system. The
SO index (SOI), a normalized SLP difference between Tahiti and Darwin (North
Australia), indicates the appearance and strength of El Niño (negative SOI) and
La Niña (positive SOI) events which leave their marks in worldwide weather and
hydrology (e.g., [84]). Figure 5.8 shows MP-FM spectrograms of either index. The
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Fig. 5.8 MP-FM spectrograms (leading ten anomaly modes each) of annually aggregated time
series of (left panel) NAO index [17] and (right panel) SO index; 1870–1997 [15]

smoothest one obtained as yet is just that of the NAO—to which slow signatures of
other subsystems appear to be imprinted (cf. Fig. 5.10, right panel).

To what extent the NAO is part of a larger system is subject to conceptual
debate (e.g., [25, 105, 107]). Accordingly, the pathways remain unclear how the
NAO may be affected by other dynamic subsystems (e.g., [70]). Atlantic–Pacific
teleconnections are studied for long with a view on NH stormtracks and midlatitude
blocking phenomena (e.g., [23, 34]), both in the search for a possible ENSO impact
on Europe at interannual to decadal scales (e.g., [39, 45, 46]) and in order to
understand the degree and mechanisms of NAO/SO interaction (e.g., [53, 86]). Time
domain relationships might episodically exist and be controlled in part by Eastern
Pacific equatorial SSTs [53]. A customary measure of the latter is their average over
the “Niño-3” area. Table 5.5 presents MP-FM structure books of these three time
series.

Systematic FM relationships between NAO #1, SOI #2 and Niño-3 modes #3,4
are shown in Fig. 5.9, as they are found in the TF plane (left panel; cf. also
Fig. 5.8) and as normalized departures from their respective carrier modes (right
panel). Excepting the initial period, NAO #1 and Niño-3 #3 are interdomain (FM)
companions of the slow time domain evolution of NAO #5 (Fig. 5.10, left panel).
NAO #1 appertains to a triplet of NAO modes (#1,7,9) with common FM (Table 5.5).
Also, FM of NAOW #1 (Table 5.6) approximately fits the multidecadal FM pace of
SOI #2 and Niño-3 #4, which are part of the larger set of interdomain companions of
the rank #2 thermal modes that have taken over to rule the pace of global warming
since the 1970s (cf. Sect. 5.5, Fig. 5.17, right panel). SOI #2 belongs also to a triplet
of SOI modes (#2,6,9) with common carrier frequency—throwing another bridge to
the monsoon system (Sect. 5.4.4).

Counterintuitive, however, is the fact that a direct rational relationship between
the two FMs that make up Fig. 5.9 does not appear to exist; the obvious systematic
emerges from a combined ( Qf ; Q�) effect. A close FM companion to NAO #1, namely
NAO #4 (cf. Fig. 5.10, right panel), shows FM relationships to Europe (Iceland SLP
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Table 5.5 MP-FM structure books of annual NAO and SO indices and Niño 3 SSTs; anomaly
modes #hki, signal energy captured by #1–5/#1–10, and data periods

k ˛k sk uk fk �k Qfk ˇk e�k
NAOI (61.2 %/85.5 % signal energy), 1870–1997

1 2:421 256 60 0:15523 0:630 0:007481 6:51 0:000

2 2:326 128 73 0:26107 �0:779 0:012049 11:62 �0:785
3 1:643 128 31 0:22925 �1:447 0:005524 28:20 1:178

4 1:610 256 73 0:31046 1:230 0:007812 15:36 �0:196
5 1:471 512 34 0:02993 0:128 0:001506 15:36 2:749

� � �
7 1:272 256 60 0:35355 �2:485 0:007481 12:03 2:160

9 1:130 256 115 0:06250 �1:225 0:007481 2:98 3:142

10 0:988 256 73 0:17678 0:180 0:006024 13:55 �1:571
Niño 3 SST, in K (61.9 %/84.6 % signal energy), 1871–1996

1 2:945 512 111 0:18460 0:800 0:004079 23:77 �0:196
2 2:419 128 42 0:23940 �0:575 0:013139 9:57 1:178

3 2:160 256 31 0:16210 2:710 0:007481 16:75 �2:553
4 1:894 128 77 0:22925 �1:863 0:017794 8:76 �2:945
5 1:700 128 37 0:32421 2:963 0:008158 13:48 3:142

� � �
10 1:120 64 28 0:32421 2:451 0:018581 4:84 2:749

SOI (62.4 %/85.6 % signal energy), 1870–1997

1 3:863 128 45 0:19278 �2:754 0:010132 9:99 2:356

2 3:068 256 66 0:29730 �1:380 0:017794 11:24 �2:356
3 2:854 128 82 0:21953 �1:267 0:006024 24:76 1:963

4 2:334 64 18 0:28470 �1:743 0:022097 8:60 1:767

5 2:286 64 105 0:32421 �0:880 0:022097 6:34 1:963

6 2:058 64 25 0:29730 1:355 0:015625 12:80 �0:589
� � �
9 1:523 128 63 0:29730 �0:095 0:013721 13:12 2:160

& CET #6, Baur’s SAT #5, GWL NWZ #4; cf. Tables 5.12, 5.14 and 5.16), but
these are links to be expected. It remains thus to decode the time domain behaviour
of the leading slow NAO mode #5. In the extreme modulation phase it attains,
the mode reaches (below the given time window) an apparent carrier frequency
(fc � Qf ˇ D) 0.00680, i.e. a �147 year period. The secular decline of the NAO
during the twentieth century [86] is grasped by this mode as a slow oscillation that
evolves into its extreme FM phase with little frequency drift (Table 5.5)—though
at the beginning of the record it misfits harmonic FM (Fig. 5.9, right panel). Of the
system’s slow forcing modes, this matches only the actual apparent carrier period
of SSN #2, which in its extreme (slowest) modulation phase here may reach a
�154 year period. Since about 1900, both modes keep distance to one another in
the time domain by about one Schwabe cycle length (Fig. 5.9, right panel; SSN
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Fig. 5.9 Systematic FM phase relationships between leading anomaly modes of the annual NAO
index (#1), Niño 3 modes #3 and #4, and SOI #2; left panel: carrier mode position in the TF plane
unchanged; right panel: normalized fluctuations relative to each carrier mode [17], supplemented
by the time evolutions of NAO #5 and inverted SSN #2 (both normalized by their own envelopes;
Niño-3 SSTs 1871–1996)

1870 1890 1910 1930 1950 1970 1990

time / years

-0.2

-0.1

0.0

0.1

-0.3

0.0

-0.3

0.0

(a
n
o
m

a
ly

)

-0.4

-0.2

0.0

0.2

-0.4

-0.2

0.0

0.2

0.4

NAOI, MP-FM #1-5 & envelopes

1880 1900 1920 1940 1960 1980 2000

time / years

-0.6

-0.3

0.0

0.3

-0.6

-0.3

0.0

0.3

-0.6

-0.3

0.0

0.3

-0.6

-0.3

0.0

0.3

-0.8

-0.4

0.0

0.4

0.8

SOI, MP-FM #1-5 & envelopes

-30 0 30 60 90 120 150 180 210

years after 1870 (cf. lags)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

(n
o
rm

a
liz

e
d
)

NAO FM (lagged, FM, interdomain) relationships

#1 FM

#2 FM

#3 inv FM

#4 FM lag 18

#7 inv FM lag 21

#8 FM lag 21

#9 FM lag -11

#10 FM lag 30

SRAD #1 lag 23

SST #1 lag 30

SOI #1 FM lag 17

AIR-S #1 inv FM lag 6

Fig. 5.10 MP-FM analysis of annually aggregated time series; left panel: NAO and SO indices
(leading five anomaly modes each, 1870–1997); right panel: NAO FM relationships to SRAD &
SST #1 (time domain) and SOI & AIR-S #1 (frequency domain)

#2 inverted), but toward the end of the record they tend to further synchronize (in
counterphase). If NAO #5 is not a robust, genuine European (/North Atlantic) mode,
it might thus be increasingly controlled, with growing insolation, by (structured)
solar forcing.

Inconclusive observational evidence of NAO–SO relationships notwithstanding,
a “small-world” network of modal interactions does exist. “Third-party” mediation
as suggested by [53] (cf. also Fig. 5.9), and by [34] in a different context, may
be borne in the role that either subsystem plays with respect to the global water
cycle. Figure 5.10 (right panel) provides such a hint in showing, among others,
lagged FM synchrony between NAO #2 and All-India rainfall (AIR-S) #1 (cf.
Sect. 5.4.4). Considering intrinsic uncertainty in period identification of centennial
modes beneath a 128-year window, FM of NAO #3 and #10 may also resemble



5 Synchronous Climatic Motions 151

Table 5.6 MP-FM structure book of the winter NAO (NAOW) index, 1870–1997; anomaly
modes #hki and signal energy captured by modes #1–5/#1–10a

k ˛k sk uk fk �k Qfk ˇk e�k
NAOW (61.8 %/83.1 % signal energy)

1 9:321 128 84 0:20131 �2:630 0:017039 4:80 0:589

2 8:507 128 114 0:05488 �2:692 0:003582 10:41 2:945

3 7:977 256 47 0:42045 �0:373 0:002762 21:72 1:767

4 6:767 512 128 0:10977 1:358 0:006291 11:86 3:142

5 5:736 128 42 0:38555 �2:231 0:028656 3:84 0:000

6 5:374 128 80 0:28470 2:593 0:022097 8:60 �1:571
� � �
12 3:211 32 83 0:14865 �3:013 0:004448 29:38 2:945

a NAOW #12 is referred to in Sect. 5.6.1, Fig. 5.18 (left panel)
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Fig. 5.11 As in Fig. 5.9, but for FM of anomaly modes NAOW #6, SOI #4,5, and global SST #4
(ranges of existence not displayed again; cf. text)

the phase evolutions of SST #1 and SRAD #1, respectively (lagged interdomain
synchrony).

Figure 5.10 (left panel) and Table 5.5 show SOI #5 as a continuation of SOI #4,
with identical Qf but changed fc and ıf (cf. also Fig. 5.8). The shift appears around
1930 again. These two SOI modes set the trace to a remarkable weak-coupling link
to the NAO in boreal winter (NAOW; cf. Table 5.6), where its strongest signal is
found in general. Figure 5.11 shows FM phase relationships between SOI #4,5,
NAOW #6, and global SST #4; a clear time domain companion has not been found.
NAOW #6 and SOI #4 exactly coincide in all frequency parameters ( Qf , ıf , fc) and
share their carrier with the leading triplet in ISM onset over South Kerala (MOSK),
a key phenomenon and time series of the global water cycle (Sect. 5.4.4, Table 5.7).
This extremely improbable coincidence is lost around 1930 with the fading of SOI
#4, but the replacement mode SOI #5 fully synchronizes FM phase with NAOW #6
(which overarches SOI #4,5 in their range of existence).
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5.4.4 Atmospheric Water Cycle: Asian Monsoons

Representing critical transitions in the seasonal march (e.g., [19]), monsoon onsets
and retreats bear sensitive indices of the interannual climatic evolution—most
directly and simplest by the Julian days of their occurrence. They represent thus
a sort of Poincaré maps of global climate dynamics. Remarkably, 1918, the year
of the earliest MOSK on record, coincides with startup of the first global warming
episode of the twentieth century. Further, the localized MOSK #4 signal and its
MONK #3 companion (Fig. 5.12, left panel)—the spot or patch in the spectrograms
of Fig. 5.13 which signify an exceptional period of early ISM onset—relate to a
phase of reorganized NH circulation [64]. Monsoon anomalies are known to extend
to planetary scale (e.g., [110]).

Table 5.7 shows MP-FM structure books of the MOSK, MONK and NEMO
series. A prominent feature is the leading MOSK triplet with identical carrier
frequency. It also appears as a carrier in other monsoon onset and retreat data
(MONK #5, NEMO #6, NEMR #7,10), in All-India rainfall (AIR-S #5), the winter
NAO (NAOW #6), the Southern Oscillation (SOI #4; Tahiti SLP #3) and elsewhere.
FMs of the leading MOSK pair, though, are solitary among the leading ten modes
each across the whole data set analyzed as yet. This is surprising, given the fact
that the deep MOSK oscillations (Fig. 5.13, left panel) are most intense during
the period of global thermal oscillations (Figs. 5.6 and 5.7) around the height of
Schwabe cycle #19. Though signal structures turn out to be more complex there,
it is also not unplausible that for technical reasons (limitations to Qf =f and ıf ; cf.
Appendix) the sparsest approximations have not been reached here.

The localized MOSK/MONK signal of Figs. 5.12 and 5.13 is shown in the left
panel of Fig. 5.14 to commence just when the unstable SRAD #4 mode reaches
its maximum—at solar cycle #19. It does thus certainly reflect a forcing–response
relationship. A related solar connection concerns the leading MOSK pair (right

1890 1910 1930 1950 1970 1990

time / years

-4

-2

0

2

-12

-6

0

6

-6

-3

0

3

o
n

s
e

t 
a

n
o

m
a

ly
 /

 d
a

y
s

-8

-4

0

4

-10

-5

0

5

10

MOSK, MP-FM #1-5 & envelopes

1890 1910 1930 1950 1970 1990

time / years

-4

-2

0

2

-8

-4

0

4

-16

-8

0

8

-12

-6

0

6

-10

-5

0

5

10

MONK, MP-FM #1-5 & envelopes

1870 1890 1910 1930 1950 1970 1990

time / years

-4

-2

0

2

-4

-2

0

2

-6

-3

0

3

a
n

o
m

a
ly

 /
 d

a
y
s

-6

-3

0

3

-8

-4

0

4

8

NEMO, MP-FM #1-5 & envelopes

1880 1900 1920 1940 1960 1980 2000

time / years

-8

-4

0

4

-8

-4

0

4

-8

-4

0

4

-18

-9

0

9

-24

-12

0

12

24

NEMR, MP-FM #1-5 & envelopes

Fig. 5.12 MP-FM analysis (leading five anomaly modes each) of monsoon onset and retreat series
over peninsular India [15]; left panel: MOSK & MONK; right panel: NEMO & NEMR; data
periods between 1870 and 1990



5 Synchronous Climatic Motions 153

Table 5.7 MP-FM structure books of onset dates of the Indian summer and winter monsoons,
ISM and IWM (Julian days; leap-years considered); anomaly modes #hki, signal energy captured
by #1–5/#1–10, and periods of analysisa

k ˛k sk uk fk �k Qfk ˇk e�k
MOSK (69.5 %/89.9 % signal energy), 1891–1990

1 41:249 64 66 0:28470 0:352 0:026278 4:95 0:196

2 35:672 64 57 0:28470 �0:902 0:024097 7:47 0:393

3 28:890 128 34 0:28470 �2:701 0:018581 10:76 1:178

4 27:792 16 71 0:02993 �2:571 0:000000 0:00 0:000

5 23:520 128 58 0:31046 2:488 0:012049 14:11 �0:589
� � �
7 19:430 64 19 0:15523 �0:465 0:004645 29:38 �2:749
10 12:195 256 83 0:11970 �2:994 0:004645 17:51 �2:749
MONK (67.7 %/90.3 % signal energy), 1870–1980

1 42:586 64 83 0:27263 1:722 0:010580 11:34 �2:945
2 36:287 32 76 0:36921 0:224 0:065267 1:07 1:963

3 30:928 16 93 0:27263 �2:227 0:013139 16:74 �2:749
4 26:510 64 21 0:23940 �0:820 0:007164 29:38 2:553

5 24:898 256 65 0:28470 2:576 0:008520 17:61 �2:160
� � �
9 17:360 512 36 0:04232 �2:940 0:002130 15:36 2:945

NEMO (77.8 %/94.2 % signal energy), 1901–1990

1 38:259 128 44 0:32421 3:057 0:010580 13:23 0:196

2 27:892 128 47 0:33856 �2:081 0:014328 7:68 1:963

3 25:565 256 61 0:15523 2:455 0:010132 8:05 1:767

4 20:735 128 59 0:09230 0:735 0:003906 18:26 2:356

5 19:550 128 34 0:35355 2:240 0:028656 3:49 �2:160
6 15:801 128 46 0:28470 �2:011 0:011538 18:20 2:356

a MOSK #7,10 and MONK #9 are referred to in Sects. 5.4.3, 5.5 and 5.6.1
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Fig. 5.13 MP-FM spectrograms (leading ten anomaly modes each); left panel: MOSK, 1890–
1990 [17]; right panel: MONK, 1870–1980
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#3 as well as SRAD & global SST modes #4

panel) which contributes to a signal that comprises interdomain, quadrature, and
envelope synchronies at once: Beneath signal envelopes which mirror those of
SRAD #4, SST #4 and SH SAT #3, the leading MOSK pair runs into mutual
FM quadrature, thereby flanking as interdomain companions the time domain
evolution of the (growing, multidecadal) mode SRAD #3. If the MOSK spectrogram
(Fig. 5.13, left panel) offers a glance at a real-world UPO manifestation in terms of
its signal energy distribution, Fig. 5.14 gives detailed phase information how the
solar impact on the terrestrial water cycle might be organized in such a case.

When adopting this suggestive view of marked solar signals in the hydrologic
cycle, one may be wondering about one missing signal, the Schwabe cycle
mode(s) SRAD #2,5. The issue is difficult to appraise due to technical reasons
(cf. Appendix): The solar cycle may have been identified as a combination of two
SRAD modes (recall Table 5.2) since MP-FM is not prepared for two simultaneous
frequency modulations. That FM is subject here to further technical restrictions,
may be relaxed in a second-generation study. A problem that concerns the signal
space dimension due to higher-order nonlinearity, however, is more difficult to
handle.

All-India rainfall and IWM retreat (AIR-S, NEMR; Table 5.8, Fig. 5.15) also
show the signs of higher-order modulations: AIR-S #3,4,6,7,8 form a web of
splitting, joining and drifting modes which reflect a complex situation that the
present MP-FM does not appear to cope with in sparsest approximation (Fig. 5.15,
left panel). The disturbed NEMR spectrogram (right panel) may signify FM drift,
i.e. higher order FM as well, carried by modes #2,1,10 (in this sequence; cf. also
Fig. 5.12, right panel), of which the latter one mirrors NEMR #1 in FM quadrature,
with only slightly differing modulation depths. The accompanying change of carrier
frequencies lately falls into the prominent one of the leading MOSK triplet. This
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Table 5.8 MP-FM structure books of All-India rainfall (AIR-S; in mm), and monsoon retreat
dates (MRAP and NEMR); anomaly modes #hki, signal energy as captured by #1–5/#1–10, and
periods of analysisa

k ˛k sk uk fk �k Qfk ˇk e�k
AIR-S (63.0 %/87.0 % signal energy), 1870–1992

1 374:795 128 86 0:38555 �1:869 0:012049 3:32 2:945

2 336:587 128 65 0:08839 2:738 0:006291 9:55 �1:767
3 296:894 256 18 0:26107 1:434 0:010580 18:90 2:356

4 269:674 64 34 0:26107 �1:444 0:017039 7:63 �0:785
5 268:657 128 46 0:28470 0:762 0:008897 23:60 0:589

6 253:651 64 95 0:31046 0:165 0:027441 5:47 �1:374
7 203:727 32 51 0:21953 �1:698 0:021160 6:20 2:160

8 183:694 64 95 0:36921 �1:921 0:019404 6:18 0:982

� � �
11 132:372 128 54 0:01013 �2:311 0:001953 1:11 0:000

MRAP (97.1 %/99.6 % signal energy), 1952–1990

1 26:346 64 19 0:29730 0:604 0:028656 4:89 2:749

2 23:238 32 13 0:12500 �0:090 0:010580 6:21 2:749

3 17:743 32 25 0:36921 �1:773 0:038808 3:35 �2:356
4 9:012 16 25 0:32421 0:542 0:037163 4:57 1:374

5 6:267 128 15 0:32421 1:759 0:023075 4:77 �2:356
NEMR (69.3 %/92.6 % signal energy), 1901–1990

1 63:891 32 47 0:29730 �2:383 0:035587 4:22 2:553

2 52:733 32 21 0:27263 �0:927 0:015625 13:44 �2:749
3 43:878 1024 8 0:04819 2:110 0:003285 7:71 �0:785
4 40:245 128 33 0:32421 �1:321 0:020263 8:39 2:356

5 36:508 256 53 0:23940 2:124 0:017039 9:55 �2:945
� � �
7 31:540 256 26 0:28470 �0:777 0:010132 19:74 �2:945
10 22:449 64 70 0:28470 1:262 0:035587 3:93 0:196

a AIR-S #11 is referred to in Sect. 5.6.1

might indicate completion of a dynamic regime transition, which both for sparse
approximation and the present MP-FM version was most challenging.

The terrestrial water cycle, as represented by the monsoon systems here, exhibits
most active dynamics across the data set. Its potential (pre)chaotic organization at
planetary scale [19] would offer a sea of UPOs on Earth which may be stabilized
by even weak external control. “Collision” of solar and terrestrial UPOs might have
produced the mid-century recurrence oscillations and their signature notably in the
MOSK series.



156 P. Carl

0
1870 1880 1890 1900 1910 1920 1930

time / years

1940 1950 1960 1970 1980 1990 2000 1870 1880 1890 1900 1910 1920 1930

time / years
1940 1950 1960 1970 1980 1990 2000

0.05

0.1

0.15

0.2

0.25

0.3

fr
eq

ue
nc

y 
/ c

py

fr
eq

ue
nc

y 
/ c

py

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 5.15 MP-FM spectrograms (leading ten anomaly modes each) of the AIR-S (left panel, 1870–
1992) and NEMR series (right panel, 1901–1990)

5.5 Global Cross-Connections: Dynamic Regimes

Though one might not be inclined to lend too much credit to the short series of ISM
retreat over Andhra Pradesh (MRAP) and its decomposition (Fig. 5.16, left panel;
Table 5.8), just these data may bear the most direct real-world signature of topology-
conditioned interannual climate variability rooted in the atmospheric hydrologic
cycle. As found in the GCM study [19], roughly three retreat categories of the boreal
summer monsoon may exist, which besides different circulation regimes also bear
variable retreat dates (“breathing” seasonal cycle). The MRAP data period centers
around the early 1970s, and MRAP #1 shows a deep TF fluctuation shadowed by
MRAP #3, with their common turning points just at the height of the “cool NH”
excursion (cf. Fig. 5.6). Systematic phase effects in the boreal summer-to-autumn
transition (the variable MRAP dates) thus accompanied a marked excursion of the
climate system. Note that both MRAP #1 and NEMR #1 fluctuate around a carrier
that appears almost as frequently as that of the leading MOSK triplet, notably in
the water cycle as well. FM connections to other leading monsoon modes (NEMO
and MONK #1, AIR-S #3) also exist for MRAP #2, the low-frequency TF “scar” in
Fig. 5.16 (left panel).

Before turning to the right panel of the figure, notice almost perfectly syn-
chronized interdomain motions in Fig. 5.17 of leading insolation (SRAD #1; left
panel) and thermal modes of the system (SAT & SST #2; right panel) in the time
domain, with leading modes of insolation, temperatures, dynamic indices and the
hydrologic cycle in the frequency domain. Whereas the left panel may bear another
substantiation of the reality of control by relatively weak irradiance variations of the
system’s free oscillators, the right panel displays a large “swarm” across the whole
climate system of interdomain companions to the important rank #2 multidecadal
thermal modes. This may be taken as a clear sign of a regime character of present-
day climate dynamics, including modes of the water cycle as integral parts.

SAT and SST #1 do not show likewise broad and perfect global-scale interdomain
synchronies, but there is an important exception. MOSK #7 (the “scar” in Fig. 5.13,
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Fig. 5.16 MP-FM spectrogram (leading ten anomaly modes) of the MRAP series (left panel,
1952–1990) and episodic time domain synchronies (right panel) of SRAD #3, in company with
SAT & SST #2 and monsoonal components to shape the exceptional episodes around 1918 and
since the 1970s (arrows at the upper and lower margins of figure)
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SRAD #1 vs. FM in AIR-S #2 and (inverted) in modes #3 of SRAD itself, global & NH SAT, SOI,
as well as in NAOW #4; right panel: global SAT & SST #2 vs. FM in the monsoons, ENSO,
NAOW and SH SAT

left panel) is a fading decadal mode that evolves in time domain synchrony
with AIR-S #2 and SRAD #3 (which are interdomain companions of SRAD #1;
Fig. 5.17, left panel) since the turn of the nineteenth century until the mid-1920s
[15] (Fig. 5.16, right panel). Decadal MOSK modes #7,10 with identical modulation
frequency thereby form the earliest MOSK on record, 1918 (MOSK #10 not shown).
SOI #3, and global & NH SAT #3 are interdomain companions of SRAD #1 as well
(Fig. 5.17, left panel). FM of MOSK #7, in contrast, fits the time domain evolution
of global SAT #1 (Sect. 5.6.1, Fig. 5.23) until it fades away during the 1960s. That
is, there was an interdomain link via the water cycle between centennial insolation
and thermal modes which has been lost only in the 1960s.

A replacement connection emerges in the 1970s, however, now at multidecadal
scale: Time domain synchrony with SRAD #3 and interdomain company by MRAP
#1 FM characterize the second warming episode of the study period (Fig. 5.16,
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right panel). The solid background regime of this episode displayed in Fig. 5.17
(right panel) includes: NAOW & Darwin SLP #1, SOI #2, MOSK & SH SAT
#3, Niño 3 & AIR-S #4, NEMR & SH SAT #5. Whether or not the SRAD #3
synchronization also contributed to growing signal energy in global and NH SAT #2,
awaits clarification. Though multidecadal signal energy grows strongest in NH SAT
#2, there is no corresponding European SAT signature (Sect. 5.6.1). The centennial-
scale multidecadal climate regime hints at a prominent role of the Tropics/subtropics
in either warming shove of the twentieth century indeed.

5.6 European “Vertical” Climate Signal Tracing

Tropic/subtropical impacts on European climate and weather might be mediated via
teleconnections like the Pacific–North American (PNA) pattern with its eastward
extension to the North Atlantic, and a Mediterranean link appears to exist to the
South Asian monsoon in boreal summer (e.g., [85]). European floods increased
attention to such links (e.g., [26, 77]). Robust connections have been found for
paleoclimatic timescales (e.g., [89]), but mechanisms may differ from those of
present-day. Recently, quasi-resonant states of circumglobal planetary waves have
been detected that may be blamed for extreme hydrologic events in northern
midlatitudes [28]. Tropic/subtropical links of these patterns may exist but have
apparently not yet been addressed. Here a general low-latitude perspective is
adopted with a view on European climate and weather regimes and their hydrologic
signatures.

5.6.1 Central European Climate and Weather Regimes

The marked reorganization of NH circulation in concert with the exceptional
period of early MOSK around 1960 [64] (Sect. 5.4.4) provides another test for
both existence of such a cross-connection in the data and the quality of MP-FM
based data modelling. Figure 5.18 (left panel) shows a localized NAOW signal
(#12, cf. Table 5.6) which precedes and accompanies the “bump” of MOSK #4.
It modifies the growing (bi)decadal NAOW #2 mode, just toward perfect in-phase
evolution with MOSK #4 at its foreflank—thereby directly shaping its upcoming
multidecadal pace that is about to synchronize with SRAD #3. Combined NAOW
#2+12 continues to match the MOSK #4 envelope until the signal terminates.
Altogether, this substantiates reality of monsoon/NAO phase interactions and a
potential solar influence; recall also the link to sunspot cycle #19 (Sect. 5.4.4,
Fig. 5.14).

With positive (negative) NAO index, cyclone tracks are shifted northward
(southward), thus reducing (enhancing) precipitation over central and southern
Europe [61]. Figure 5.19 (left panel) and Table 5.9 show SLP modal structures at
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Fig. 5.19 MP-FM analysis (leading five anomaly modes each); left panel: annual mean Azores
and Iceland SLP (1870–1997, in hPa); right panel: Baur’s (1881–1997) central European SAT, in
K, and German precipitation, in mm/d

the NAO centers of action. Azores SLP #1 and annual NAO #2 are connected with
AIR-S #1 via common slow FM. All three are interdomain companions of the slow
mode AIR-S #11 (Fig. 5.18, right panel). To further decode functional shapes of the
slow modes NAO #5, Azores SLP #4 and MONK #9, note that the latter two show
identical bidecadal carrier periods and modulation depths ıf , as well as closely
neighbouring multicentennial FM. NOA #5, in turn, shares its modulation index ˇ
with MONK #9, and both carrier and modulation frequencies of the two relate to
one another by a factor of

p
2. Recall also that NAO #5 has NAO #1 and Niño-3 #3

as interdomain companions (Fig. 5.9, right panel).
Slow evolutions in the atmospheric part of the global water cycle thus might

exert control over one of the NAO centers of action, the Azores High. Iceland SLP
adds a carrier triplet at ranks #1,3,6 which shares the common carrier of retreat
modes #1 of ISM (MRAP) and IWM (NEMR), and of the SOI triplet (#2,6,9)—
a dominating carrier mode within the global climate system. This network further
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Table 5.9 MP-FM structure books of annual mean SLP at NAO centers of action (1870–1997, in
hPa); anomaly modes #hki and signal energy captured by modes #1–5/#1–10

k ˛k sk uk fk �k Qfk ˇk e�k
Azores (59.0 %/82.8 % signal energy)

1 60:772 128 31 0:33856 0:832 0:012049 4:98 �2:945
2 57:383 128 67 0:19278 �1:284 0:009291 16:04 �1:374
3 45:269 256 43 0:22925 0:607 0:008520 16:08 �0:982
4 43:038 128 26 0:04232 �1:068 0:002224 14:71 2:749

5 40:953 128 74 0:32421 0:527 0:011049 15:39 �2:553
Iceland (58.1 %/84.1 % signal energy)

1 94:907 128 71 0:29730 2:577 0:016317 7:97 2:749

2 86:862 256 84 0:25000 2:117 0:006860 18:95 0:000

3 81:507 512 75 0:29730 3:095 0:010580 18:90 �0:393
4 69:165 256 110 0:17678 �2:478 0:006291 21:72 2:749

5 64:986 128 69 0:06527 2:039 0:005066 8:76 1:571

6 60:743 128 91 0:29730 2:028 0:007812 24:32 �1:178
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Fig. 5.20 MP-FM spectrograms (leading ten modes each) of annually aggregated Baur’s central
European SAT (left panel) and German precipitation (right panel), 1881–1997

extends via common FM of Iceland SLP #3 and leading monsoon modes, which
altogether might mark an Arctic Oscillation pathway of monsoon impact on Europe
(not shown in detail).

Synoptic systems that accompany circulation types bear typical thermal and pre-
cipitation patterns [43]. German precipitation and central European SAT according
to Baur [7] (Fig. 5.19, right panel; Table 5.10) thus relate to the temporal succession
of weather regimes and its variability and evolution in concert with climate change.
There is no central European multidecadal SAT mode, though, that would contribute
to global and NH SAT #2 (cf. Sect. 5.5). The same holds for the central England
temperature (CET [79]) not discussed here.

Figure 5.20 shows MP-FM spectrograms of Baur’s data sets [7]. There are two
drifting modulations in the SAT series which the present MP-FM version cannot
directly capture, thus selecting two modes each (left panel): Mode #2 has a precursor
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Table 5.10 MP-FM structure books of annual mean Baur’s central European SAT and German
precipitation, 1881–1997; anomaly modes #hki and signal energy captured by modes #1–5/#1–10

k ˛k sk uk fk �k Qfk ˇk e�k
SAT, inK (69.1 %/89.4 % signal energy)

1 3:546 1024 26 0:02026 0:529 0:001020 15:36 2:945

2 2:932 64 78 0:10977 0:937 0:018581 1:85 �1:767
3 2:469 64 47 0:43906 1:730 0:013139 3:81 �1:571
4 2:306 128 73 0:25000 1:921 0:024097 3:73 �1:767
5 1:919 256 91 0:25000 �0:397 0:007812 19:20 �1:767
� � �
8 1:441 64 38 0:14865 0:359 0:017039 1:11 0:785

9 1:437 32 106 0:42045 0:866 0:035587 1:97 0:196

precipitation, in mm/d (68.8 %/89.0 % signal energy)

1 4:158 128 65 0:26107 �1:925 0:010580 7:56 2:945

2 2:889 128 93 0:29730 0:265 0:017039 10:56 1:767

3 2:669 64 79 0:31046 2:177 0:023075 7:80 1:767

4 2:512 128 34 0:25000 �1:265 0:012049 15:77 2:160

5 2:328 64 95 0:26107 �0:604 0:009702 22:68 2:945

� � �
7 �1:797 512 14 0:00552 �0:010 0:001112 0:72 2:356

(#8) with smaller modulation depth and higher carrier frequency, whereas mode #3
is followed by a signal (#9) with substantially shorter FM period. These thermal
transitions occur just around 1930 and 1970 again. There is also a bifurcation around
1930 of deeply fluctuating modes in Baur’s precipitation (right panel). A variety of
further links and modal networks exists, notably of this series. Together with Iceland
SLP #3 and GWL WA #2, FM of its leading mode joins a group including leading
monsoon onset modes (MONK, NEMO #1) and AIR-S #3. Baur’s precipitation
#2 joins another prominent group of carriers: the leading monsoon retreat modes
(MRAP, NEMR #1) and the SOI triplet (#2,6,9)—plus even a quadruple (#3,4,5,10)
of GWL Northwesterly Cyclonic (NWZ; not shown).2

Central European weather regimes as represented by four of the leading GWLn
here exhibit MP-FM modal structures as shown in Figs. 5.21 and 5.22. The eye-
catching behaviour of HM #1 and BM #3 marks a centennial exchange of the
dominating patterns (cf. e.g. [43]) of high pressure conditions over the region. The
functional shape of (inverted) HM #1 settles between that of global SAT #1 and
SST #1; BM #3 is more stretched. The multidecadal mode BM #4 is an interdomain
companion of HM #1, and thus an approximate one as well of these two major
global warming modes.

2To save space, MP-FM structure books are no longer displayed heretoforth; for frequencies f , Qf
consult the summarizing tables in Sect. 5.7. A complete set of structure books of the study may be
obtained from the author on request.
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Fig. 5.21 MP-FM analysis (leading five anomaly modes each): annual frequencies of GWL
occurrence over central Europe, 1881–1997; left panel: High Middle Europe (HM) and Bridge
Middle Europe (BM); right panel: Westerly Cyclonic (WZ) and Anticyclonic (WA)
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Fig. 5.22 MP-FM spectrograms (leading ten anomaly modes each) of annual GWL occurrences,
1881–1997; top: HM (left) and BM (right); bottom: WZ (left) and WA (right)

At neighbouring carriers, HM #5,6 exhibit identical modulation frequencies and
the same modulation depth ıf . These modes are arranged in the TF plane so as to
support, by their FM phase lags, emergence of HM #2 as a shadowing, apparently
resonant enhancement of the signal energy distribution in the TF plane around HM
#5,6 until the 1960s (Fig. 5.22, top left panel). HM #6 shares its carrier frequency
with the fading mode MONK #4, at even identical modulation frequency and index
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ˇ, but different FM phase. During its period of pronounced existence, HM #2 FM
fits FM of Azores SLP #1 as well, and thus of AIR-S #1 and NAO #2 in their
interdomain relationships with Azores SLP #4, NAO #5, and MONK #9.

For the BM #1 event around 1990 (Fig. 5.22, top right panel) there is no precursor
or companion, but an apparent response in WZ #5 (bottom left panel). Given its
maximum in 1991, Mt. Pinatubo’s eruption in June could have played a role, but
recall also the 1991 turning point in the slow motions of global SAT vs. SRAD
(Fig. 5.7, right panel). Other exceptional situations in 1991 include Kuwaiti oil
well fires and violent East Asian monsoon dynamics [20]. An apparent monsoon
response (or common response to solar cycle #19) is also found in a WZ “bump” at
rank #14 (not shown) which almost perfectly fits the MOSK #4 signal. The leading
WZ patch (#1) follows a common event in WZ #7 and global SAT #12.

In contrast to the patchy WZ modal structure, GWL WA shows a more smooth
one. At rank #4 a nearly persistent mode coincides in both carrier and modulation
frequencies with NEMR #7, and thus with the leading MOSK carrier triplet (#1–3)
at the one hand, and with FM in SOI #1 at the other one. Coincidence with NEMR
#7 even extends to scale and translation (lag 2), but not to the phase constant of
modulation.

Finally, Fig. 5.23 (left panel) shows clear time domain synchrony over the whole
record of the basic modes of global, hemispheric and European centennial warming
with the leading slow mode (#7) of Baur’s precipitation. Note that this is the
only direct signature found as yet of the system’s centennial thermal evolutions
which serves the traditional view of dynamic correspondence, namely time domain
coevolution. Interdomain companions include BM #4, WZ #4—and MOSK #7,10
as noticed in Sect. 5.5.

1870 1890 1910 1930 1950 1970 1990

time / years

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

(n
o

rm
a

liz
e

d
)

global & Baur’s SAT, PREC: leading slow modes & companions

global SAT #1 / env 

NH SAT #1 / env

BAUR SAT #1 / env

BAUR PREC #7 / env

GWL BM #4 FM

GWL WZ #4 FM (inv) 

MOSK #7 FM

MOSK #10 FM (inv)

1870 1890 1910 1930 1950 1970 1990

time / years

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

d
e

p
a

rt
u

re
 f

ro
m

 c
a

rr
ie

r 
m

o
d

e
 (

n
o

rm
a

liz
e

d
)

MONK #9, Baur’s precipitation #1 FM & companions

Baur PREC #1 FM

SLP_ice #3 FM (inv)

GWL WA #2 FM (inv)

MONK #1 FM

NEMO #1 FM (inv)

AIR-S #3 FM (inv)

Elbe dtrans #2 FM (inv)

Elbe dtrans #4 FM

MONK #9 / env

Fig. 5.23 MP-FM synthesis global–regional, left panel: normalized global SAT #1 in parallel to
hemispheric and central European SAT #1, Baur’s German precipitation (#7), plus interdomain
companions (GWL BM and WZ #4, MOSK #7,10); right panel: normalized MONK #9 and
another group of approximate interdomain companions (cf. Fig. 5.18, right panel), including Baur’s
precipitation #1, GWL WA #2, Iceland SLP #3, MONK and NEMO #1, AIR-S #3, as well as
MP-FM modes #2,4 of the driven-transient FSD component of the Elbe river (Dresden gauge; cf.
Sect. 5.6.2); centered analyses
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Further “vertical” tracing (Sect. 5.6.2) is motivated in the right panel of Fig. 5.23
which shows European and global climate modes as interdomain companions of
the slow mode MONK #9 again (cf. also Fig. 5.18, right panel), in concert with
modulations found in two MP-FM modes of the driven-transient FSD component
of the Elbe mainstream near Dresden. Even SOI #1 FM and its “relatives” (NEMO
#3 FM, GWL WA #4 and BM #5, NEMR #7) closely neighbour the modulations
shown, and either MP-FM mode of the runoff component bears the rare coincidence
in both carrier and modulation frequency with two leading rainfall modes: Baur’s
German precipitation #1 and AIR-S #3. It makes sense indeed to look further
downward.

5.6.2 Runoff of the Elbe Mainstream Near Dresden

As with the climate and weather time series, total runoff and its FSD components
are treated as complex composites fed by multiple, distributed sources. Figure 5.24
displays the observed daily runoff of the Elbe river near Dresden (left panel). FSD
has been applied to overlapping 11-year segments, and the resulting component
structures have temporally been aggregated to yield the respective annual time
series for the period 1870–1997 (right panel). The combined FSD/MP-FM analysis
(Fig. 5.25) of this long daily record has been motivated by a first hint obtained in
[22] at possible selective responses in conceptual FSD components to weather and
climate variability.

MP-FM modal structures of total runoff g.t/ and its fast, driven transient, and
slow FSD components (gf .t/, gtd.t/, gs.t/) as displayed in the figure show close
relationships between total and slow runoff in their respective modes #1–4. The
highly persistent mode #5 of total flow, in contrast, appears to run into a high-

1870 1890 1910 1930 1950 1970 1990

time / years

0

1000

2000

3000

4000

5000

d
is

c
h

a
rg

e
 (

m
^3

/s
)

total streamflow, Dresden gauge, Middle Elbe, 1870-1997

1870 1890 1910 1930 1950 1970 1990

time / years AD

0

200

400

600

800

d
is

c
h

a
rg

e
 (

m
^3

/s
)

Middle Elbe near Dresden, annual mean total & component flows

total

transient (+ilf) 

slow

ilf

Fig. 5.24 Dresden gauge of the Middle Elbe river mainstream, runoff im m3/s; daily total flow
(g.t/, left panel) and its annually aggregated FSD component structure (right panel): fast (gf ,
black), driven-transient (gtd , green), slow (gs , red) and ilf (g`, dashed)



5 Synchronous Climatic Motions 165

1870 1890 1910 1930 1950 1970 1990

time / years

-40

-20

0

20

-80

-40

0

40

-80

-40

0

40

ru
n
o
ff
 a

n
o
m

a
ly

 (
m

^3
/s

)

-80

-40

0

40

-120

-60

0

60

120

total flow, MP-FM #1-5 & envelopes

1880 1900 1920 1940 1960 1980 2000

time / years

-12

-6

0

6

-20

-10

0

10

-20

-10

0

10

-20

-10

0

10

-20

-10

0

10

20

FSD fast, MP-FM #1-5 & envelopes

1870 1890 1910 1930 1950 1970 1990

time / years

-20

-10

0

10

-20

-10

0

10

-24

-12

0

12

ru
n
o
ff
 a

n
o
m

a
ly

 (
m

^3
/s

)

-30

-15

0

15

-140

-70

0

70

140

FSD dtrans, MP-FM #1-5 & envelopes

1880 1900 1920 1940 1960 1980 2000

time / years

-30

-15

0

15

-50

-25

0

25

-50

-25

0

25

-50

-25

0

25

-80

-40

0

40

80

FSD slow, MP-FM #1-5 & envelopes

Fig. 5.25 Dresden gauge of the Middle Elbe, MP-FM analysis (leading five anomaly modes each)
of annual runoff and its FSD components (1870–1997, in m3/s); left panel: total flow and fast
component (g, gf ); right: driven transient and slow components (gtd , gs)

0
1870 1880 1890 1900 1910 1920 1930

time / years
1940 1950 1960 1970 1980 1990 2000

0.05

0.1

0.15

0.2

0.25

0.3

fr
eq

ue
nc

y 
/ c

py

fr
eq

ue
nc

y 
/ c

py

0.35

0.4

0.45

0.5

0
1870 1880 1890 1900 1910 1920 1930

time / years
1940 1950 1960 1970 1980 1990 2000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 5.26 Dresden gauge, MP-FM spectrograms (leading ten anomaly modes each) of annual
runoff (1870–1997): total flow (g, left panel) and its fast FSD component (gf , right panel)

frequency singularity (modelled as part of a slow, deep harmonic FM) just during
the exceptional climate period around 1930. A similar feature in modes #2,4 of the
fast component centers around 1918, the year of earliest MOSK on record. MP-FM
spectrograms of total runoff and its fast FSD component are given in Fig. 5.26.

During the first half of the record, the fast component, which should comprise
any singular contents of total runoff, naturally occupies the high-frequency range
of the spectrogram (Fig. 5.26, right panel). Increasing water management since the
1930s at the Czech part of the Elbe mainstream may be blamed for reduced high-
frequency activity and should also result in modifications to climatic signatures in
the fast and driven-transient components. The solitary rank #1 peak of the latter
(the localized scar across the whole frequency range of the spectrogram; Fig. 5.27,
left panel) signifies a severe hydrologic event in 1941–1942 (cf. right panel in daily
resolution) that coincides with a global climatic anomaly which included a marked
El Niño [46], three of the coldest European surface winters of the twentieth century,
and midwinter stratospheric warmings in conjunction with an extreme ozone excess
anomaly over the continent [10]. Recall also entrance in the early 1940s of the global



166 P. Carl

0 91 182 274 365 456 548 639 730

time / days from 01.01.1941

0

500

1000

1500

2000

2500

3000

d
is

ch
a
rg

e
 (

m
^3

/s
)

Middle Elbe near Dresden, daily total and component flows

total

transient + ilf 

slow

ilf

0
1870 1880 1890 1900 1910 1920 1930

time / years

1940 1950 1960 1970 1980 1990 2000

0.05

0.1

0.15

0.2

0.25

0.3

fr
eq

ue
nc

y 
/ c

py

0.35

0.4

0.45

0.5

Fig. 5.27 Dresden gauge, MP-FM spectrogram (leading ten anomaly modes) of the annual
mean driven-transient FSD component (gtd , 1870–1997; left panel) and the 1941–42 daily FSD
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climate system into its second (“UPO shaped”?) period of thermal oscillations
(turning points in Figs. 5.6 and 5.7).

Fast and driven-transient FSD components are complementary in that the former
comprises all data contents not grasped by a smooth (lower envelope) approxi-
mation, whereas the latter results from an iterate of just this envelope operator.
Leading slow MP-FM modes of both, at rank #7 in either case, exhibit mirror
(anti-)symmetry across the data period, with its reflection point 1939 close to the
1941–1942 runoff anomaly (Fig. 5.28, left panel). Anti-symmetric synchrony in
slow evolutions of these two components, the dominant singular and the regular
but (statistically) self-similar one (operator iterate), either might have to do with
crossing the basin boundary of the attractor that is going to capture the climate
trajectory, may hint at some unknown fundamental interplay at the regular/singular
borderline of runoff, may reflect a selective impact of the NAO—or may have
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Fig. 5.29 Dresden gauge, 1870–1997; left panel: MP-FM spectrogram (leading ten anomaly
modes) of the annual ilf component g`; right panel: MP-FM modes #1–4 (top to bottom) of total
runoff g and its FSD components slow gs , ilf g` and subsurface (g` C gt ), respectively

appeared just by chance. The first three cases would deserve scrutiny, though this
goes with the risk of falling into speculation. The fact is just noticed here.

Whereas hidden time domain synchronies like this are difficult to carve out,
interdomain companions galore are found via structure book screening, notably
again with respect to the slow modes MONK #9 and AIR-S #11 (Fig. 5.28, right
panel; cf. also Fig. 5.23, right panel). Identical FM of total, slow and subsurface
(ilf+transient) MP-FM modes #4 reflects the dominance of slow runoff in the
mainstream, as expected. Figure 5.29 (left panel) shows the ilf spectrogram, whereas
the right panel displays the leading four MP-FM modes of total, slow, ilf and
subsurface runoff. Their only qualitative distinction appears as an isolated “bump”
of ilf #4, centered around 1982/1983, the years of an extreme El Niño event. The
slow FSD component, in contrast, integrates this hydrologic signature into its deeply
modulating mode #5 (Fig. 5.25, rightmost column).

The bidecadal mode #3 of the fast component (Fig. 5.25, second column) is
shown in Fig. 5.30 (left panel) to enter for half a century the time domain coalition
of global SAT #4 and SST #5 which is accompanied in the frequency domain by
GWL BM #2. It leaves this global connection together with the central European
interdomain GWL companion in the 1960s—just when the leading slow monsoonal
mode MOSK #7 is fading, thus dissolving the global water cycle from its dynamic
link to centennial warming (Sect. 5.5).

Finally, another rare coincidence of identical carrier and modulation frequencies
as well as modulation indices ˇ (and thus also depths ıf in this case) is shown
in the time domain evolution in Fig. 5.30 (right panel): Baur’s precipitation mode
#5, which coincides in these parameters with the largely identical runoff modes
subsurface #6 and slow #7, grows up since the 1920s and episodically matches them
rather well (perfect matching would require identical phase constants). Localized
modes NH SAT #10 and GWL WZ #7 show up further episodic time domain
synchrony with these latter two modes at the beginning of the record. There is also
a couple of frequency domain companions (not shown) to the precipitation mode,
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including GWL NWZ #1, WA & HM #3, and FSD fast #3 again of which the time
domain behaviour has been displayed in the left panel.

Breaking news are not apparent from the present exploratory “vertical” signal
tracing down to the river basin scale, but incorporation of this scale into a “small
world” network of weakly coupled MP-FM modes has been demonstrated. Borne in
prior FSD application, this fact supports the idea of selective hydrologic signatures
of regionally external signals. Central Europe is not a core region of the global
water cycle, but slow-mode links to Asian summer monsoon dynamics have been
identified. Recall that this exploratory study did not focus on extreme events.
That the combined FSD/MP-FM procedure is sufficiently robust has been shown
in a number of cases. The suspicion has also been substantiated that transient
(sub)components may become predicated targets and carriers of selective hydro-
logic response [22]—a certainly convincing example is the driven-transient runoff
response to the leading precipitation mode over Germany (Fig. 5.23, right panel).
Lately, it became plausible that FSD is reasonably applied not only to headwater
catchments (which use has been made of in its development [21, 22]).

5.7 Summary and Discussion

The present second part of a conceptual modelling and observational data study into
the global climate system’s “geometry of behaviour” [1] addressed synchronous
motions at planetary scale across the instrumental record (1870–1997) and traced
their signatures down to the Elbe river basin via the European climatic and synoptic
scene. Guided by the GCM study outlined in [19], the search for synchronies
(of any kind) aims to uncover hints at potential low-dimensional contributions
to climate dynamics. In order to behave low-dimensionally, a high-dimensional
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dynamic system like the global climate must undergo substantial synchronizations
which to unveil improves the knowledge of its dynamical status and potential
evolution.

Data analyses should not prejudice by the choice of method any notion of debate.
Accordingly, to provide adequate targets for a broad range of signal types, the
dictionary of analyzing signals (Gaussian logons that allow for deep frequency
modulation, FM), used here in the sense of best fit, is highly overcomplete, not
necessarily orthogonal, and applied in superresolution. It comprises harmonic bases
of both Fourier and Wavelet Transforms. Univariate sparse approximations of
customary climate time series have been presented first, using a Matching Pursuit
approach [73]. Tables 5.11 and 5.12 summarize carrier and modulation frequencies,
respectively, of the leading ten MP-FM modes each of the 20 time series analyzed
(cf. also Table 5.18).

A multivariate perspective, dismissed in the analysis stage, is provided by
subsequent synthesis. “Structure books” of the set of signal parameters provide
quantitative support, though visual inspection cannot be dispensed with. A network
of leading MP-FM modes has been identified at global scale. Based on this
approximation of observed global climate dynamics, European climate and weather
data (Tables 5.13 and 5.14) and basin scale hydrology as exemplified by runoff of
the Elbe mainstream near Dresden (Tables 5.15 and 5.16) have been investigated
for climatic signatures. In contrast to the Indian monsoon region, which has early
been perceived as a source, or “nodal,” region of global climate dynamics (e.g.,
[78]), European climate has been viewed here as a non-nodal region, a notion that
is largely confirmed by the results.

Six types of synchrony or correspondence may be found in the climate system’s
motion: (1) phase coherence in the time domain, (2) phase–frequency (“interdo-
main”) synchrony, (3) signal envelope synchrony, (4) quadrature and other phase
relationships, (5) rational frequency relationships, and (6) general concurrence
in signal parameters (pairs, triplets, quadruples etc. of modes which share cer-
tain parameters or their combinations). Phase coherence makes up synchronized
motion in the time domain and customary statistical correlation in one. It occurs
only temporarily here in most cases, but displays remarkable signals, notably
in monsoon–NAO relationships and in changing synchronies to insolation mode
SRAD #3. Interdomain synchrony, i.e. frequency drift of one oscillator in parallel to
the phase evolution of another one here (maybe lagged), is the dominating type
of synchronous motion found—though not normally recognized when applying
traditional tools of signal analysis. This sort of synchrony occurs both internally
(between different MP-FM modes of one and the same time series, like SRAD
#1/#3) and as coevolution between modes of different time series (e.g., SRAD #1
and its centennial companions). Envelope synchrony may uncover kinship between
signals that exist in distinct ranges of the TF plane, like those related to the MOSK
mode #4. Coincidence in signal parameters scale s and translation u means perfect
envelope synchrony, but there are physically justified lags in general.

Though arbitrary phase lags may occur in purely empirical analyses, notably in
the frequency domain, quadrature relationships might hint at a specific data type, the



170 P. Carl

T
ab

le
5.

11
D

is
tr

ib
ut

io
n

of
ca

rr
ie

r
fr

eq
ue

nc
y

oc
cu

rr
en

ce
s

am
on

g
th

e
le

ad
in

g
te

n
M

P-
FM

m
od

es
ea

ch
of

20
an

nu
al

ti
m

e
se

ri
es

(A
ll

-I
nd

ia
ra

in
fa

ll
af

te
r

[8
1]

,
A

IR
-P

,n
ot

di
sc

us
se

d)
a

#
SR

A
D

SS
N

B
e1

0
gl

ob
.S

A
T

N
H

SA
T

SH
SA

T
gl

ob
.S

ST
N

iñ
o

3
SL

P
Ta

h
SL

P
D

ar
#

1
�3

�
�0

.5
˚

�2
.5

?
�4

˚
�3

.5
4

�0
.5

4
�4

˝
1

˝
1.

5
?

2
4

1

2
0.

5
ˇ

�1
.5

˚
2

�
�1

?
�0

.5
4

0
˛

�1
�

2
ı

1.
5

ˇ
1.

5
˝

2

3
�0

.5
ˇ

0.
5

?
�0

.5
˝

1
˚

1
˚

2
ˇ

1.
5

ˇ
1

˚
2.

5
�

1
˝

3

4
0.

5
˚

1.
5

?
1

�
�0

.5
ˇ

1.
5

�
1.

5
4

2
ˇ

1.
5

˚
2

?
�1

˝
4

5
0.

5
˛

0
�

0.
5

�
2

�
0.

5
˝

2
4

�1
ı

2
˚

1
?

2.
5

ı
5

6
1

˚
2

ˇ
1.

5
ˇ

2.
5

ˇ
2.

5
4

�1
.5

˝
1.

5
?

1
ˇ

2.
5

ı
2.

5
˛

6

7
�0

.5
ı

1
ˇ

1
ı

2
ı

2
˝

2
4

2
˚

1.
5

ı
1

ı
2

˛
7

8
1

˝
1

˛
1

?
1

˚
2

˛
1

4
2

4
2.

5
ı

3
4

2
ı

8

9
0.

5
ı

2
˝

2
ı

3
ˇ

2.
5

ˇ
2

ı
2

4
1.

5
ˇ

2
ˇ

1
4

9

10
1.

5
ˇ

1.
5

˛
1.

5
4

2
�

1
?

2.
5

�
2.

5
�

2
˚

�0
.5

?
1.

5
˝

1
0

#
SO

I
M

O
SK

M
O

N
K

M
R

A
P

N
E

M
O

N
E

M
R

A
IR

-S
A

IR
-P

N
A

O
N

A
O

W
#

1
2

ˇ
2.

5
�

2.
5

ˇ
2.

5
4

2
˚

2.
5

4
3

ˇ
3

ˇ
1

?
2

�
1

2
2.

5
4

2.
5

�
2

˝
1

˛
2.

5
ı

2.
5

ˇ
0.

5
˛

2
˛

1.
5

˝
�0

.5
?

2

3
1.

5
?

2.
5

�
2.

5
ˇ

2
˝

1
?

0
ˇ

1.
5

˝
1.

5
?

1.
5

˚
3

4
3

4
2.

5
�

�1
ı

2
ı

2
˚

0
˝

2
˚

1.
5

˝
1.

5
ˇ

2
?

0.
5

?
4

5
2

˚
2

?
2.

5
�

2
˚

2.
5

˛
2

ı
2.

5
�

3
4

�1
ı

3
ˇ

5

6
2.

5
4

2
˚

1.
5

4
0.

5
˚

2.
5

�
0.

5
˛

2
?

�1
?

1
4

2.
5

�
6

7
1.

5
˛

1
?

2.
5

ˇ
2

˝
2

ı
2.

5
�

1.
5

?
2

˝
2.

5
˛

1
?

7

8
2

˛
2.

5
4

1.
5

˝
2.

5
4

1
?

2.
5

ˇ
2

˝
1.

5
˝

2.
5

˚
2

˝
8

9
2.

5
4

2.
5

ı
�0

.5
ı

1.
5

˚
0.

5
˝

3
ˇ

1
�

2.
5

4
0

˛
0.

5
ı

9

10
1.

5
˝

1
ı

1.
5

4
2.

5
ı

2.
5

4
2.

5
�

2
?

2.
5

�
1.

5
˛

1
ı

1
0

a
Sy

m
bo

ls
m

ar
k

ei
gh

t
fa

m
il

ie
s

of
ca

rr
ie

r
m

od
es

w
it

hi
n

th
e

fr
am

ew
or

k
of

a
ba

si
ca

ll
y

dy
ad

ic
an

al
ys

is
(c

f.
Ta

bl
e

5.
18

);
[
n

�]
m

ea
ns

:
[

re
fe

re
nc

e
fr

eq
ue

nc
y

of
th

e
�f

am
il

y,
m

ul
ti

pl
ie

d
by
2
n

].
T

he
se

re
fe

re
nc

e
ca

rr
ie

r
fr

eq
ue

nc
ie

s
(f
c
;i

n
cy

cl
es

pe
r

ye
ar

,c
py

)
ar

e
as

fo
ll

ow
s:

ˇ
: D
0
:0
4
8
1
9
,�

: D
0
:0
5
0
3
3
,4

: D
0
:0
5
2
5
6
,

ı
: D
0
:0
5
9
8
5
,˛

: D
0
:0
6
2
5
0
,?

: D
0
:0
7
7
6
2
,˚

: D
0
:0
8
1
0
5
,˝

: D
0
:0
9
2
3
0



5 Synchronous Climatic Motions 171

T
ab

le
5.

12
A

s
in

Ta
bl

e
5.

11
,b

ut
fo

r
m

od
ul

at
io

n
fr

eq
ue

nc
ie

sa

#
SR

A
D

SS
N

B
e1

0
gl

ob
.S

A
T

N
H

SA
T

SH
SA

T
gl

ob
.S

ST
N

iñ
o

3
SL

P
Ta

h
SL

P
D

ar
#

1
�2

ˇ
�1

.5
4

�2
.5

?
�2

�
�3

˝
�2

�
�2

�
�1

˝
1.

5
�

2
4

1

2
�2

?
�2

.5
?

0.
5

ˇ
�1

.5
˚

�1
.5

˚
�1

.5
ı

�1
.5

?
1.

5
4

1.
5

˝
1

˛
2

3
�0

.5
˝

0
˝

0.
5

�
0.

5
ˇ

0.
5

ˇ
2

ˇ
1.

5
4

0.
5

ı
1.

5
˝

2
ı

3

4
0

ı
0.

5
4

�1
ı

0
�

0
ˇ

0
�

2
˛

2
�

3
4

0
ı

4

5
1

4
�1

˛
0

˛
0

ˇ
0.

5
˝

1.
5

?
�1

4
0

˝
1

?
1

?
5

6
1

ˇ
1

˝
2

4
0

˚
0.

5
˚

�2
˚

1
ˇ

0
ı

1.
5

?
2

˝
6

7
�0

.5
4

0
ı

�0
.5

˚
0

?
�0

.5
?

0.
5

4
3.

5
4

�1
˝

0.
5

?
1.

5
ˇ

7

8
0.

5
?

0.
5

?
0

˛
2

?
0.

5
ı

�0
.5

4
1

ı
2

˚
1

˛
0.

5
4

8

9
0

˛
3

˚
�0

.5
�

3
�

0
˝

1
˛

0.
5

˝
0.

5
ı

1.
5

4
�0

.5
�

9

10
1.

5
ı

0
ı

0
�

2
ı

0.
5

˛
0

˝
2

ˇ
2

4
�1

.5
˚

2
4

1
0

#
SO

I
M

O
SK

M
O

N
K

M
R

A
P

N
E

M
O

N
E

M
R

A
IR

-S
A

IR
-P

N
A

O
N

A
O

W
#

1
0.

5
˚

2.
5

4
1

ı
2

˚
1

ı
3

�
1.

5
ˇ

1.
5

�
0.

5
ı

2
ˇ

1

2
2

�
2.

5
ˇ

3
˝

1
ı

1
˚

1.
5

˛
0.

5
�

1
ı

1.
5

ˇ
�1

˚
2

3
0.

5
ˇ

2
4

1.
5

4
2.

5
?

0.
5

˚
�0

.5
4

1
ı

0.
5

˚
0

˛
�1

˛
3

4
2

˛
–

—
0

˚
3

4
�0

.5
˛

1.
5

˚
2

ˇ
0.

5
?

0.
5

˛
0.

5
�

4

5
2

˛
1.

5
ˇ

1
ˇ

1.
5

˝
2

˚
2

ˇ
1

�
0.

5
˝

�1
.5

ˇ
2

˚
5

6
1.

5
˛

1.
5

?
1

˚
�1

?
0.

5
˝

�1
ı

2
?

�1
�

0
ı

2
˛

6

7
0

ı
0

4
0.

5
?

1.
5

�
2

?
0.

5
˚

2
ı

0
˝

0.
5

ı
1

?
7

8
0.

5
?

2
ˇ

0.
5

˛
1.

5
˚

0
?

0.
5

˝
1.

5
?

2
4

0.
5

˚
�1

˚
8

9
1

?
2

4
�1

ˇ
1.

5
ˇ

1.
5

˛
0

�
0

ˇ
0.

5
�

0.
5

ı
�1

.5
˚

9

10
2

ı
0

4
1

ı
2.

5
˚

0
?

3
�

0
˚

1
˛

0.
5

ˇ
0

4
1
0

a R
ef

er
en

ce
m

od
ul

at
io

n
fr

eq
ue

nc
ie

s
(

Q f,
in

cp
y)

of
th

e
in

di
vi

du
al

gr
ou

ps
ar

e
as

fo
ll

ow
s:

ˇ
: D
0
:0
0
4
2
6
0
,

�
: D
0
:0
0
4
4
4
8
,

4
: D
0
:0
0
4
6
4
5
,

ı
: D
0
:0
0
5
2
9
0
,

˛
: D
0
:0
0
5
5
2
4
,
?
: D
0
:0
0
6
8
6
0
,

˚
: D
0
:0
0
7
1
6
4
,

˝
: D
0
:0
0
8
1
5
8
.

C
ar

ri
er

fr
eq

ue
nc

ie
s
f
c

of
Ta

bl
e

5.
11

de
si

gn
at

ed
by

th
e

sa
m

e
sy

m
bo

l
re

la
te

to
m

od
ul

at
io

n
fr

eq
ue

nc
ie

s
Q f

he
re

as
f
c
=

Q f
D
2
3
:5

(a
n

ar
bi

tr
ar

y
ch

oi
ce

)



172 P. Carl

T
ab

le
5.

13
A

s
in

Ta
bl

e
5.

11
bu

tf
or

te
n

an
nu

al
E

ur
op

ea
n

ti
m

e
se

ri
es

#
SL

P
A

zo
SL

P
Ic

e
C

E
T

B
au

r
SA

T
B

au
r

PR
C

G
W

L
.H

M
.B

M
.N

W
Z

.W
A

.W
Z

#

1
2.

5
ı

2.
5

4
1

ı
�2

˚
1.

5
˝

�3
.5

ı
1.

5
4

1
˝

1.
5

˛
2

?
1

2
2

ˇ
2

˛
�3

.5
�

0.
5

?
2.

5
4

1
˚

2.
5

˛
1.

5
˚

1
�

1.
5

ı
2

3
1.

5
˚

2.
5

4
2.

5
?

2.
5

?
2

?
2.

5
4

�4
.5

˚
2.

5
4

2
˝

2
ı

3

4
�0

.5
ı

1.
5

˛
1

ı
2

˛
2

˛
1.

5
?

�1
.5

˚
2.

5
4

2.
5

�
2.

5
˛

4

5
2

˚
�0

.5
˝

1
˝

2
˛

1.
5

˝
1.

5
˝

1
˚

2.
5

4
1

˝
1.

5
˛

5

6
1.

5
˝

2.
5

4
2.

5
˛

1.
5

�
2

?
2

ı
2.

5
ˇ

1
˚

0
˛

2.
5

˛
6

7
2

˚
3

�
1.

5
˚

1
˛

�3
.5

˛
2

˚
2.

5
�

1
˝

2.
5

ˇ
2.

5
ˇ

7

8
2.

5
4

2
˛

2.
5

ı
1.

5
4

2
?

1.
5

ı
2.

5
ˇ

2
˝

2.
5

ˇ
3

4
8

9
2.

5
ˇ

1
�

0.
5

?
3

4
2.

5
�

2.
5

4
2

˝
2

?
1

˝
2

˚
9

10
0

˚
2.

5
˛

2.
5

�
2

ı
2

˝
2

˚
0.

5
˚

2.
5

4
2

˚
2.

5
ˇ

1
0



5 Synchronous Climatic Motions 173

T
ab

le
5.

14
A

s
in

Ta
bl

e
5.

13
,b

ut
fo

r
m

od
ul

at
io

n
fr

eq
ue

nc
ie

s

#
SL

P
A

zo
SL

P
Ic

e
C

E
T

B
au

r
SA

T
B

au
r

PR
C

G
W

L
.H

M
.B

M
.N

W
Z

.W
A

.W
Z

#

1
1.

5
ˇ

1
˝

1.
5

ˇ
�3

˝
1

ı
�2

�
4

?
0.

5
?

0
ı

3.
5

ı
1

2
1

4
0

?
�2

.5
˛

2
4

2
ˇ

1.
5

�
3.

5
ˇ

1.
5

4
1

ı
0.

5
ı

2

3
1

ˇ
1

ı
1.

5
4

1.
5

4
1.

5
˝

0.
5

?
–

—
1.

5
˝

0.
5

?
1

?
3

4
�1

�
0.

5
�

1
ˇ

2.
5

ˇ
1.

5
ˇ

0.
5

ı
�0

.5
?

0.
5

˛
0.

5
˚

�0
.5

?
4

5
1

˛
�0

.5
˚

2
ˇ

0.
5

˛
0.

5
?

0
˚

0.
5

˚
1.

5
˝

1
˛

4
?

5

6
1

˚
0.

5
˛

0.
5

˛
1

˛
2

ˇ
0

˚
0.

5
˝

�0
.5

˝
�1

.5
ı

2.
5

ˇ
6

7
3

4
�0

.5
?

1
ˇ

�0
.5

ı
�2

�
3

ˇ
0.

5
˛

0
˛

1.
5

˝
1.

5
˛

7

8
2

˚
2.

5
˛

0.
5

ı
2

ˇ
2

�
�0

.5
˚

1
�

0
˚

1
ı

2.
5

˚
8

9
3

4
�0

.5
ˇ

�0
.5

4
3

�
1

˝
�1

˝
1.

5
?

0.
5

?
0.

5
ˇ

0.
5

˝
9

10
�1

?
0

?
�0

.5
?

1
4

2
4

3
�

1
?

0
?

1.
5

˝
0.

5
˝

1
0



174 P. Carl

T
ab

le
5.

15
A

s
in

Ta
bl

e
5.

11
bu

tf
or

ni
ne

an
nu

al
ti

m
e

se
ri

es
of

th
e

E
lb

e
m

ai
ns

tr
ea

m
ne

ar
D

re
sd

en

#
to

ta
l(
g

)
sl

ow
(g
s
)

dt
ra

ns
(g

dt
)

fa
st

(g
f

)
tr

an
s

(g
t
)

ft
ra

ns
(g

ft
)

il
f

(g
`
)

m
lo

w
a

su
bs

fc
#

1
1

4
1

�
2

˛
0.

5
˚

2
˛

1.
5

˛
1

4
0.

5
˛

1
4

1

2
0.

5
˝

0.
5

˝
1.

5
˝

2.
5

ı
1.

5
�

1
?

1
˛

2
4

0.
5

˝
2

3
2.

5
ˇ

2.
5

ˇ
1.

5
?

�1
˚

1.
5

�
2

˛
2.

5
ˇ

1
ˇ

2.
5

ˇ
3

4
2.

5
˛

2.
5

˛
1.

5
˝

3
ˇ

2
?

1.
5

?
�1

.5
ı

2.
5

ˇ
2.

5
˛

4

5
2.

5
ˇ

1
�

2
ı

1
˝

0
˝

2.
5

ˇ
1.

5
ı

0.
5

˝
1

�
5

6
1.

5
˝

1.
5

˛
0.

5
˛

2
˚

2
˚

2.
5

�
2.

5
˛

0
˛

1.
5

˝
6

7
2.

5
4

1.
5

˝
�1

˝
�1

˝
�1

ı
2.

5
ˇ

0.
5

˝
2.

5
ı

1.
5

˝
7

8
1.

5
4

2
ı

1.
5

˛
1.

5
˝

2.
5

4
0.

5
ı

2.
5

ˇ
2

�
2

4
8

9
2.

5
�

1.
5

˝
2

?
2

?
2.

5
˛

2.
5

ˇ
0.

5
ı

2.
5

˛
1.

5
4

9

10
2.

5
ˇ

1.
5

˚
�1

˛
3

4
2.

5
˛

2
?

2
4

�0
.5

˚
0

˚
1
0

a
“m

lo
w

”
is

th
e

tr
ad

it
io

na
lm

on
th

ly
lo

w
flo

w
no

td
is

cu
ss

ed
he

re



5 Synchronous Climatic Motions 175

T
ab

le
5.

16
A

s
in

Ta
bl

e
5.

15
,b

ut
fo

r
m

od
ul

at
io

n
fr

eq
ue

nc
ie

s

#
to

ta
l(
g

)
sl

ow
(g
s
)

dt
ra

ns
(g

dt
)

fa
st

(g
f

)
tr

an
s

(g
t
)

ft
ra

ns
(g

ft
)

il
f

(g
`
)

m
lo

w
su

bs
fc

#

1
0.

5
˝

1.
5

ˇ
3.

5
?

1.
5

�
4

�
–

—
0.

5
˝

0.
5

˝
0.

5
˝

1

2
0.

5
˚

0.
5

˚
1

ı
2

?
1

ˇ
1

˛
1

˛
1

4
0.

5
˚

2

3
3

4
3

4
0.

5
˝

0
?

0.
5

?
2

ı
3

4
�1

.5
˝

3
4

3

4
1.

5
�

1.
5

�
1

ı
3

ı
2

ı
2.

5
˛

–
—

3
4

1.
5

�
4

5
1

4
�0

.5
ˇ

1.
5

�
�0

.5
˚

�1
.5

ı
0.

5
˚

0
?

0.
5

˚
0

˝
5

6
0.

5
˛

4
˝

�0
.5

ˇ
2

˛
1

˚
1.

5
4

3.
5

ı
1.

5
ˇ

0.
5

?
6

7
2.

5
�

0.
5

?
�2

˛
�2

˛
�1

.5
4

0.
5

˛
0.

5
?

2.
5

?
0.

5
ˇ

7

8
0

�
1

˛
0

˚
2

˛
1

ı
�1

.5
˚

1.
5

�
0.

5
˝

3
˝

8

9
2.

5
4

1
˝

2.
5

ˇ
0.

5
˝

1.
5

˛
0.

5
�

�1
.5

˚
2

˚
2.

5
ˇ

9

10
0.

5
˚

0.
5

˚
0

?
1

�
1

?
1.

5
˚

0.
5

�
�1

.5
˝

�0
.5

˛
1
0



176 P. Carl

analytic signal. Decoding the complex terrestrial signal(s) around Schwabe cycle
#19 is a related challenge. Archetypal of internal structure that hints at organized
dynamics are low rational frequency relationships as well, and hidden structure may
also be found via dyadic exponents that emerge in the definition of the present MP-
FM dictionary (cf. Appendix). Generally, given the high signal space resolution
used, coincidence in more than one signal parameter between two or more MP-FM
modes may rarely occur just by chance and hints thus at potential kinship.

Conceptual background of the “vertical” search for climate signals, via Europe
down to the river basin scale, is the notion of a regime character of climate variability
and change (e.g., [44]). Of the six types of synchrony or parameter coincidence
found to apply at global scale, phase coherence (type 1) bears one of the rare
persistent time domain effects throughout the analysis period, the (lagged) parallel
evolution of the slow mode #7 of Baur’s precipitation for Germany [7] with secular
warming as represented by global and European SAT #1. Interdomain (type 2)
synchrony is not that dominant over Europe as it is at global scale, but global SAT
#1, for example, is accompanied by secular frequency drifts in modes #4 of the
central European weather regimes (GWLn) BM and WZ. Such type connection to
centennial global warming is largely missing at planetary scale, where multidecadal
modes have taken the lead since the 1970s. Signal envelope (type 3) synchrony is
regionally encountered in slightly lagged localized signals again. GWL WZ #14, for
example, reflects the changing NH circulation around 1959 [64], in company with
changes in the boreal summer monsoon and the winter NAO (same scale and time
location, but much differing variability).

Among such more general signal parameter coincidences (type 6), perhaps
most noticeable with a view on the water cycle are solid links between the
Indian monsoon and German precipitation. European climate and weather regimes
expectedly show clear signatures of the global climatic evolution. Encouraging
with a view on further hydrologic downscaling was the comparably high internal
organization and external integration of Baur’s precipitation series for Germany,
which provides the strongest links to basin-scale hydrology, as demonstrated for the
middle Elbe gauging station near Dresden. To identify potential selective response
of the water body, a functional streamflow disaggregation technique (FSD [21]) has
been applied to generate a set of conceptual flow components which are thought to
represent distinct sources and response times of (sub)surface hydrology. Links may
be traced down indeed from Indian monsoon rainfall via Baur’s precipitation to
both driven-transient and slow FSD components of the middle Elbe mainstream.
It is certainly remarkable that the most convincing “vertical” connections are
found in runoff components that belong to the greedy FSD version, as compared
to those of the shortcut one which tended to provide analogues to the classical
conceptual components overland flow, interflow, and baseflow [22]. The MP-FM
modal structure of FSD components of whatever combination, though, is rather
robust. The combination of both methods thus appears to provide an adequate
strategy of objective analysis to grasp the signatures of climate variability and
change at river basin scale.
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The study was exploratory in various aspects:

(i) Existence of sparse approximation of climate dynamics was uncertain, though
GCM results indicated substantial low-dimensional shares [19].

(ii) A generic method to obtain the “sparsest” approximation, i.e. to minimize the
`0 norm (number of modes) does not exist as yet (e.g., [11]).

(iii) An established method (and tool) is still missing to efficiently search for
diverse types of synchrony in a data base of MP-FM structure books (adding
to the fact that structure book screening alone does not suffice).

(iv) Archetypal signs in data structures that point to organized dynamics are low
rational frequency relationships at top of the Farey tree of rational numbers
[63] (Table 5.17), but the dyadic scheme of the dictionary used (though a
reasonable choice) does not directly match Farey’s construction rule.

(v) The choice of adequate signal space resolutions, also in scale s and modula-
tion phase constant Q�, requires experience.

(vi) Stability of MP-FM modal structures against shifted/varied time windows
(cross validation) is an issue that calls for extensive studies.

(vii) There was no prior information about the robustness of the combined
FSD/MP-FM approach.

(viii) Though motion across the basin is ruled by the respective attractor, it is
not clear how the varying distance of a trajectory from the inertial manifold
influences dynamic synchronizations and their visibility.

(ix) Unstable periodic orbits are difficult to identify in time series of natural
systems (it is thus of basic interest to learn how their signs may look like).

(x) Allowance for deep FM in the MP dictionary evolved from previous weaker-
FM dictionaries which did not show “sparse enough” modal structures.

Major non-technical global scale issues and results of the study include

(a) the fundamental role of FM, even deep FM, for interdomain synchrony;
(b) structured insolation that is basically composed of five MP-FM modes and

appears to have been found in “almost sparsest” approximation;
(c) the interplay of centennial, multi- and bidecadal thermal modes to shape

the global warming process in an episodic manner, with discernible regimes,
marked turning points that signify climatically exceptional situations, and lately
unexpected stagnation (“hiatus”) near the end of the twentieth century;

(d) systematic FM phase relationships, partly in interdomain synchrony, between
NAO and SO, accompanied by SST and monsoonal modes;

(e) complex signals of monsoon response to leading insolation modes, including
apparent UPO manifestation which feeds forward to the system’s thermal
evolution at the height of solar cycles #19 and #21 at least;

(f) centennial scale solar–terrestrial interdomain synchrony between SRAD #1 and
top-rank monsoonal, thermal, and (EN)SO modes.

“Vertical” signal tracing via European climate and weather systems down
to the Elbe river mainstream near Dresden uncovers inclusion of a network of
regional MP-FM modes into globally organized dynamics. Above all,
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(g) global centennial warming is found in like manner as leading mode of European
SAT, but there is no analogue across Europe of the growing multidecadal
modes—which thus appear to be of tropic/subtropical origin.

Remarkably however,
(h) the only persistent time domain companion of centennial warming found as yet

is the leading slow mode (#7) of German precipitation as compiled according
to Baur [7];

(i) leading slow monsoonal modes also occupy only lower ranks (MONK #9, AIR-
S #11) but nevertheless appear to guide a variety of interdomain companions
across the climate system, including leading monsoon modes itself (internal
interdomain), those of NAO and SO, of European weather regimes, of German
precipitation (#1 FM), and of FSD runoff components at the Dresden gauge
(total & fast #1, dtrans #2,4,5, among others);

(j) selective global and regional climate and weather signatures in runoff compo-
nents of the middle Elbe both qualify the river as integral part of the global
water cycle and hint at preferred pathways of potential impacts.

5.8 Conclusions

5.8.1 Some Rudimentary Statistics

Though structure book screening is only part of the “track securing” here, this
concise quantification of modal structures provided by MP is a unique feature of
the method that calls for more extended use. Besides convenient exchange of the
results of MP based TF analyses and syntheses in terms of only few numbers
(in place of full TF plane distributions), some statistics might be based on these
tables. Figure 5.31 shows for both global (left panel) and European data sets (right
panel) the distribution of frequencies fc (top row) and Qf (bottom row) in the
left part each of panel. The right parts display corresponding mappings on the
Farey tree of rational numbers (Table 5.17) in terms of (negative, inverse) dyadic
exponents �1=log2fc and �1=log2 Qf (recall the dyadic scheme used in the MP-
FM code, and cf. Table 5.18). Shown are the number of occurrences among the
leading 10 MP-FM modes each, the corresponding rank-weighted numbers (weights
.11 � rank/=5:5), and the total signal energy ratio captured by each frequency,
normalized by the average signal energy (90.995 % global/86.740 % Europe) as
grasped by the ten leading modes each of all (20/10) time series incorporated.
Whereas rank weighting does not much change these distributions, signal energy
weighting expectedly accents the leading slow (thermal and insolation) modes.

Weighting aside, the two dominating carrier frequencies at global scale (left
panel) are 0.2847 cpy (period �3.52 years; MOSK #1–3, Tahiti SLP #3, SOI #4,
MONK & AIR-S #5, etc.) and 0.2973 cpy (period �3.36 years; MRAP & NEMR
#1, SOI #2,6,9, etc.). Variables of the water cycle also contribute in shaping either
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Fig. 5.31 Left panel: carrier (top) and modulation (bottom) frequency distributions (left) and their
hidden Farey tree occupations (right) of modes #1–10 each of 20 global climate time series: number
of occurrences (shaded), rank-weighted number (normalized; opaque circles with or without dotted
line), and signal energy captured (normalized; dashed line with filled circles); right panel: the same
for ten European climate and weather time series

first sideband of this central bulk. Excepting solar and thermal slow-mode peaks, the
modulation frequency distribution exhibits one dominant centennial peak, made up
of leading monsoon modes as well (MONK & NEMO #1, MRAP #2, AIR-S #3).
In the Farey tree representation, the central peaks become more slim with signal
energy weighting, and sidebands at higher levels (which are exclusively occupied
by slow modes) grow up. Farey level 8 dominates among the carrier frequencies,
and pronounced sidebands are found at levels 4–5,11,13. Modulation frequencies
settle around level 12, with only one substantial (slow mode) sideband at level 16.

For the European time series (right panel), the carrier frequency distribution loses
the sidebands of its central peak which itself is located at frequency 0.2973 cpy
as well (NWZ quadruple, e.g.). The globally dominating carrier of the MOSK
triplet does not play a substantial role regionally, and slow, secular modes do not
gain too much relative weight here in terms of captured signal energy. Weighting
has practically no effect on the carrier distribution in terms of hidden Farey tree
occupations. If compared with the global scene, the regional distribution accents
Farey levels 4 and 8, both making up the left (upper) edge of the two broader peaks
found for global climate data. Slow-mode (carrier) peak enhancement due to signal
energy weighting, as seen at global scale, does not emerge in the European case.
As for modulation frequencies, weighting accents the 80 � � �100 years range of FM
periods, out of a broader (structured) “bulk” of modulations. In contrast to the global
data set, the hidden Farey tree occupation shows a broader peak at levels 12–13, and
weighting induces certain growth of a sideband at levels 9–10. Broader (sharper)
features of carrier (modulation) frequency distributions in the global data set might
reflect the dominance of interdomain effects in its dynamic organization, in contrast
to the regional scale.
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Signal distributions of the type presented in Fig. 5.31 have also been constructed
for parameters scale s and translation u, and have been followed in their temporal
evolution (not shown) in order to find statistics that make appropriate use of structure
book collections. Statistically unsettled tendencies have been noticed toward higher
frequencies and shorter scales globally, as could be expected for a dynamic system
under increasing forcing strength, either internally or externally. Locations u of
maximum signal energy over Europe favour the 1940s and 1950s, i.e. the period
of dynamic reorganization that followed the first warming episode of the twentieth
century.

A set of related standard diagnostics may be developed, not to the least in order to
objectively evaluate next-generation analyses. When subspace zooming is applied,
Diophantine approximation (rational approximation of irrational numbers) to the
system’s frequencies, perhaps just using Farey’s construction rule [63], might gain
even more weight. Rational frequency relationships have only very scarcely been
addressed here but may contain additional invaluable information—as might be
inferred from Tables 5.11, 5.12, 5.13, 5.14, 5.15, and 5.16. Closer scrutiny is also
indicated of phase (or modulation phase) lags; specifically, quadrature relationships
may hint at hidden analytic signals.

5.8.2 Final Remarks on Climate Dynamics

An organized global climate system is seen in MP-FM based sparse approximation
of its interannual dynamics in terms of representative time series of the instrumental
period. Its behaviour hardly indicates that the Earth’s climate might obediently fol-
low any forcing scenario: It follows its own dynamic rules governed by a rich variety
of internal feedbacks, though in conjunction with the actual degree of forcing. Direct
comparison to the GCM study [19], where the focus was on intraseasonal aspects,
could not be provided here. A general consequence of low-dimensional behaviour,
however, namely a substantial degree of internal synchronization that the (high-
dimensional) system necessarily displays, has been uncovered.

A complex, dynamically excited system may act as a sensitive receiver, not to the
least in generating a variety of unstable periodic orbits (UPOs) on which it may be
temporarily stabilized by external control. It is thus not surprising that relatively
weak solar signatures are manifest in the climate record. Paradoxically, if ever
higher dynamic excitation parallels increasing anthropogenic forcing, this should
increase the system’s sensitivity and might thus engrave ever weaker external (e.g.,
solar) signals into the records—thus perhaps confusing the observer about the very
cause of climate change.

Considering projections of the hydrologic cycle, the structured solar input has
been found indeed to play an important role. As a straightforward mechanism,
uptake of water vapour over large oceanic areas (“solar collector surfaces” in this
respect) by the low-level monsoonal circulations, and release of its latent energy in
the subsystem’s deep convections, may be blamed for these signatures. In addition
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to scenarios of anthropogenic impacts, those of insolation might thus be needed
as well. Given the “almost sparsest” approximation obtained here for the 128 year
insolation series, at enhanced projective power of the method (notably by raising
internal restrictions, by subspace zooming, etc.) such solar scenarios might be
constructed for the short term, i.e. over a sunspot cycle or two in advance.

That global warming proceeds in an episodic manner bears no surprise if one
sheds a glance at the instrumental climate record. What is new and very important,
however, is the evolution toward dominance of shorter timescales, notably the
apparent takeover by multidecadal modes of the process of global warming.
Growing signal energy in corresponding SAT modes appears to be borne in the
lower latitudes, under active participation of the tropic/subtropical water cycle. A
fundamental question arises about the pathway that climate change has adopted: Is
a route to planetary-scale turbulence (rather than obedience to forcing scenarios)
imaginable? Whether this would be good or bad news remains an open issue, but
couldn’t it even undermine a general oceanic takeover (and thus excitation of much
longer time scales of climatic change)? Altogether at least, a “chaos control” notion
of present-day climate dynamics, variability and change appears to be indicated.

Acknowledgements Thanks are due to Fred Hattermann of the Potsdam Institute for Climate
Impact Research (PIK) who provided the Elbe runoff data. Generally, the success of the study
hinges on the quality of data, and the author hopes to have expressed his respect to this community
in spending substantial effort and using advanced techniques in order to make the best of the data.
MP-FM is an own product, but its coding has much profited from the detailed MP description given
in [73]. Further sources which helped in own software developments over the years have been
acknowledged in [21]. Last but not least, however, graphics solutions as provided by the freely
available GrADS [33] and Xvgr packages [99] are explicitly referred to here with due gratitude.

Appendix

Analytic Signal

A deep-rooting question concerns the nature of complex elements like  � or  Q� .
The “analytic signal” (AS), a specific complex extension of a real signal (from a
sea of possible ones), is defined by a single-sideband (SSB), nonnegative-frequency
Fourier spectrum [42]. A sufficient condition for a complex signal  .t/ to exhibit
the SSB property, the quadrature relationship between real and imaginary parts (as is
the case with the complex exponential), is guaranteed for Hilbert pairs, =f .t/g D
Hf r.t/gI  r.t/ D <f .t/g, where H denotes the Hilbert transform (HT)

Hf r.t/g WD 1

�
D
Z 1

�1
 r.�/

� � t
d� (5.6)
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(DR is Cauchy’s principal value).3 The linear operator

ASf r.t/g �  AS.t/ WD  r.t/C i Hf r.t/g (5.7)

is often (but nevertheless incorrectly) adopted as definition of the AS, though this
discards one degree of freedom at least, borne in zero frequency components of the
SSB. Whereas extension to harmonic FM does not destroy the AS feature of the
complex exponential (the adverse statement in [49] notwithstanding), the Gaussian
envelope does so, thus making the Gabor atom only “approximately analytic” [72].
A “true” AS not yet exploited in the present context is the common harmonically
amplitude- and frequency-modulated (AM-FM) complex exponential [8].

That the AS of a real signal  r.t/may be obtained without direct computation of
the time domain transform Hf r.t/g is technically interesting. The Fourier Trans-
form (FT) O r.!/ � Ff r.t/g.!/ WD R1

�1  r.t/e
�i!tdt and its backtransform

 r.t/ D F�1f O r.!/g.t/ WD 1
2�

R1
�1 O r.!/ei!td! offer a convenient way to

construct a complex SSB signal: interpretingHf r.t/g as convolution of r.t/ with
the Hilbert kernel h.t/ D 1=�t , i.e. Hf r.tg D h.t/ ?  r.t/, yields the Fourier
domain relations (e.g., [49])

OHf O r.!/g D Oh.!/ O r.!/ D �i sgn.!/ O r.!/ (5.8)

and

bASf O r.!/g D .1C sgn.!// O r.!/ : (5.9)

AS construction via the Fourier domain thus simply reads

 AS.t/ D F�1
bASFf r.t/g : (5.10)

From a discussion around Bedrosian’s product theorem for the HT [9], there
remained a notion of this Fourier domain tour being valid only for narrow-band
signals. To the best of the author’s knowledge, the narrow-band condition is a
sufficient one that can be relaxed.

Design of the MP-FM Tool

The analytic signal regularizes the otherwise ill-posed task of � determination
(having dissolved by definition the signal’s phase from its energy localization,
an implicit regularization has been raised). From  AS.t/, phase constant � may

3HT definitions in mathematical and signal processing contexts may differ by sign.
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be determined, thus reducing the “active” signal space dimensions by one. To
relax potential bandwidth restrictions, however, transition to the complex plane is
postponed here until the analyzing signal and its translations are projected to the
time series (residue). This “convolved inner product” bears a convenient way, again
in the Fourier domain, to get the full set of projections in the translation dimension
(u) at once with sampling accuracy [96]. It saves explicit exploration of another
signal space dimension.

The remaining 5D space has to be traced in high resolution, however, to find
the best-matching element  r Q�k .t/. This is done “by brute force” as yet; intelligent
searching strategies like subspace zooming, or parallel evaluation of alternative
pathways of this greedy algorithm in order to minimize the `0 norm [11], have
not been applied thus far. Dyadic fc and Qf spacings with 16 tones per octave
result in resolutions of 1=128 along either frequency axis. A maximum of 26 FM
depths ıf is traced, the range 2� of modulation phase constants Q� is divided into
32 equidistant angles, and 11 (dyadic) scales are used for the width of the Gaussian
window (s D 20 : : : 210). For a time series length of  128 entries, this signal space
resolution bears a web of analyzing wavelets of the order of 1010 elements, of which
about 108 are included in the explicit search. In the frequency plane (fc , Qf ) a dyadic
web is spanned, based on 8 families which relate to one another as seen in Table 5.18
(this “coherence” of the dictionary is not exploited in the matching process itself and
does not introduce artificial coherence to the data target of the study).

The resulting MP decomposition of a time series, .t/ � P
k k.t/ DP

k �k r Q�k .t/ (where �k D ˛k= k  r Q�k .t/ k and k � k is the `2 norm, i.e. the
signal energy), is fixed then in a structure book of eight numbers for each mode
k, comprising 7D signal space locations and the projection coefficient ˛k . As a
rule, � is chosen so as to make ˛ positive, but this is occasionally violated due to
a minor software blemish (that affects � but does not bear further consequences).
Concise quantification of modal structures is a prominent MP feature, in contrast
to other TF methods. Interdomain effects might be studied for any e�p � Q� on
principle, but explicit time dependence is provided in the Gaussian logon only for
phase and frequency. Discussion of interdomain synchronies thus focused on time
and frequency domains here, where highest resolution applies. In this case, relation
(5.1) specifies as �i .t/ � P. Q!; Q�;u/f�j g.t/.

Overcompleteness of the (homogeneous) dictionary, i.e. its extension beyond a
basis, is essential for both sparse approximation and treatment of nonstationary data,
but due to a latitude of possible parameterizations synchronies may be obscured
then in the structure books. Those redundancies include cases of extreme phase
of a slow FM, for example, which beneath the actual time window may pretend
different carrier modes. The full tableau of synchronous modal interactions across
the data set is thus hardly recognized by structure book screening alone. Visual
inspection is also indicated due to technical limitations: At its present state of
development, the method is neither well-prepared for two or more simultaneous
frequency modulations, nor may it directly cope with a “modulation of modulation.”
FM itself has been restricted to Qf  4 fc , in reminiscence of the radio broadcasting
condition Qf 	 fc (which allows to clearly grasp the carrier frequency of an FM
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signal), and the modulation depth ıf is accordingly limited. Finally, by construction
of the method (by definition of the analyzing waveform and its signal space),
harmonic FM may directly match only those evolutions in the time domain which
are largely harmonic; that is, interdomain synchrony between time and frequency
domains may best be recognized for MP-FM modes with only small frequency drift
beneath the actual time window.

The probability of a specific parameter combination is <0:001 for (s; u) and
<0:0001 for (fc; Qf ); envelope synchrony thus may appear by chance with a prob-
ability of <10�6, frequency domain coincidence with <10�8, and for (fc; Qf ; ıf )
a probability <10�10 holds. Searching through the five leading modes each, say,
of a set of 20 independent time series, raises all probabilities of coincidence
by two orders of magnitude. Since explicit time dependence is provided only
for phase and frequency, the system’s trajectories may be evaluated for mutual
synchronies in three dynamic projections: phase–phase, phase–frequency, and
frequency–frequency. For the first case, either phase constant (�, Q�) is equally
important—which makes time domain (phase–phase) synchronies even less prob-
able and more difficult to find empirically. Time delays and otherwise conditioned
phase shifts (including shifts in modulation phases), however, do not bear concep-
tual problems for a purely empirical analysis (and synthesis), like the present one
is.

Even if perhaps not the “sparsest” approximations, all MP-FM decompositions
here are valid in the sense of proven convergence of the greedy, stepwise extraction
of maximum signal energy (e.g., [11, 31, 73, 97]), and de facto exponential conver-
gence of each analysis (e.g., [48]). Given low probability of synchronous motion in
the extremely sparse data problem chosen, fake synchronies are highly improbable,
and the organized motions found should thus be understood as representing a lower
margin of the level of dynamic organization present in the data. Any synchronous
motion may add authenticity (and thus should be taken seriously as a potential brick
that fits) to an emerging mosaic of low-dimensional climate dynamics.

A technical advantage of using elementary signals like (5.5) rests in the fact
that their Wigner–Ville distribution (WVD) [27] is analytically solvable. This may
be exploited to build MP-FM spectrograms without masking effects [73]. Due to
an “uncertainty principle” (e.g., [72]), though, the temporal extension of a signal
relates inversely to the thickness of the WVD trace which represents it: sharp, thin
lines mark highly persistent modes, whereas broader “scars” represent signals with
shorter timescale. Concerning the graphical resolution, traces in form of sequences
of spots should be read as continuous lines.

MP-FM Performance: A Sketch

Structure books of a 128-entries test signal made up of five components, and its MP-
FM reconstructions for two types of resolution in ıf (fully equidistant, or dyadic
over half the frequency axis), are given in Table 5.19. As shown in Fig. 5.32,
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Table 5.19 Structure book of the test series and of its (uncentered) MP-FM analyses using either
equidistant or (half-) dyadic resolution of modulation depth ıf

k ˛k sk uk fk �0
k

Qfk ˇk Q�0
k

Test signal components (100 % signal energy)

(1) (100) 32 64 0.0000 0:000 0.00000 0:00 0:000

(2) (100) 128 16 0.2109 0:785 0.00000 0:00 0:000

(3) (100) 512 32 0.3047 1:571 0.00000 0:00 0:000

(4) (100) 2048 95 0.2500 0:000 0.03125 2:40 0:000

(5) (100) 2048 95 0.4375 1:963 0.05469 0:80 0:982

MP-FM equidistant (99.1 % signal energy)

1 100.00 32 64 0.0000 0:000 0.00000 0:00 0:000

2 58.04 128 28 0.2109 �2:150 0.00000 0:00 0:000

3 41.38 512 5 0.3047 0:139 0.02410 0:41 �1:178
4 21.62 512 85 0.4375 �0:413 0.05488 0:91 �2:356
5 18.26 256 33 0.2500 3:104 0.03125 2:56 0:393

MP-FM (half-)dyadic (99.1 % signal energy)

1 100.00 32 64 0.0000 0:000 0.00000 0:00 0:000

2 57.78 128 31 0.2102 1:826 0.00000 0:00 0:000

3 41.30 1024 81 0.3242 1:115 0.00098 20:48 3:142

4 21.68 256 36 0.2500 1:393 0.03125 2:24 0:982

5 19.26 256 35 0.4391 0:387 0.05488 0:73 �0:785
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Fig. 5.32 MP-FM reconstruction with half-dyadic resolution of ıf spacing: time–frequency view
of the test signal (contour) and its reconstruction (modes #1–5, coloured)
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Fig. 5.34 As in Fig. 5.32, but reconstructions via WVD (top left), STFT (top right; window 25),
ST-MESA (bottom left; window 25, order 12) and WT (bottom right; Morlet)

the linear composition of one Gaussian “bump,” two unmodulated components
(one decreasing, one nearly persistent), and two persistent FM modes may almost
precisely be reconstructed—though in the structure book this is less obvious for the
second case than for the first one.

MP-FM reconstruction is contrasted in Fig. 5.33 with results of the SSA, and in
Fig. 5.34 with those of customary time–frequency methods, including the WVD,
the Short-Time (windowed) FT (STFT; [3]), the evolutionary Maximum Entropy
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Spectral Analysis (ST-MESA; [35]), and the Wavelet Transform (WT; [30]) with a
“Morlet” as analyzing wavelet. MP-FM clearly outperforms these representations
which all do not properly capture FM—though it may be an ubiquitous feature of
oscillatory complex systems. The method in its present version (without advanced
zooming etc.) may fail if too coarse a resolution has been chosen, or due to
other internal restrictions. MP-FM appears to be suited, however, to approach
“sparsest” approximations with a further extended signal space (at massively
parallel computation).
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Chapter 6
Application of Random Matrix Theory
to Complex Networks

Aparna Rai and Sarika Jalan

Abstract The present article provides an overview of recent developments in
spectral analysis of complex networks under random matrix theory framework.
Adjacency matrix of unweighted networks, reviewed here, differ drastically from
a random matrix, as former have only binary entries. Remarkably, short range cor-
relations in corresponding eigenvalues of such matrices exhibit Gaussian orthogonal
statistics of RMT and thus bring them into the universality class. Spectral rigidity of
spectra provides measure of randomness in underlying networks. We will consider
several examples of model networks vastly studied in last two decades. To the end
we would provide potential of RMT framework and obtained results to understand
and predict behavior of complex systems with underlying network structure.

6.1 Introduction

6.1.1 Complex Networks

Last two decades have been an era of complex systems analyzed in complex network
framework. Each complex system can be assumed as a collection of interacting
units, and hence can be represented in term of a network where nodes correspond
to units of the complex system and links between nodes denoting interactions. This
complex networks framework has demonstrated remarkable success in predicting
and controlling functional behavior of corresponding complex system [1, 2]. The
network concept has been applied to real systems coming from various differ-
ent fields such as biology (e.g. food-web, nervous system, cellular metabolism,
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protein-protein interaction network, gene regulatory networks), social systems (e.g.
scientific collaboration, citation), linguistic networks, and technological systems
(e.g. Internet, power-grid) etc. (for reviews, see, e.g., [1]).

The first step towards the success of network framework was the detection of
universal features in systems as diverse as human brain and world-wide-web, and
its ability to propose simple models capturing these universalities. These network
models are based on very simple rules, and contain basic information governing
behavior and evolution of corresponding systems.

Traditionally, networks have been studied under graph theory. Random graphs
were studied by Erdös and Rényi in a series of papers during late 1950s [3].
According to the random graph model, a complex system can be denoted by nodes
N and links, where every pair of nodes are connected with a probability p, and thus
creating a graph with approximately pN2 edges distributed randomly. For about
40 years, the model was a huge success in describing various phenomena. And
then came a huge transition, brought by two different groups of A.-L. Barabási
and S. Strogatz, which demonstrated that real world systems may not have only
random interactions, and indeed they exhibit some universal properties such as
scale-free and small-world. Barabási et al. proposed a very simple model based
on some physical principles leading to the emergence of scale-free nature of a
growing network [4]. According to this model a new node gets attached to a
previously existing node based on a preferential attachment. This rule leads to
a power law degree distribution, where only few nodes are responsible to carry
the whole network and hence are very important. Watts and Strogatz proposed an
algorithm to generate popularly known as small-world network [5]. This model
captures randomness characterized by small diameter, and regularity characterized
by clustering of real-world networks. This model emphasizes on the importance of
random connections in networks. Following this came spurt of activities in complex
system studies under network framework.

These works have mainly focused on following aspects: (1) direct studies of the
real-world networks and measuring their various structural properties such as degree
distribution, diameter, clustering coefficient etc., (2) proposing new random graph
models motivated by these studies, and (3) computer simulations of the new models
and measuring their properties [1, 2].

6.1.2 Structural Properties of Various Model Networks

As discussed above, investigations done by Barabási et al. for various real world
systems reveal that they are scale-free, which means that the degree distribution
p.k/, fraction of nodes that have k number of connections with other nodes, decays
as power law, i.e. p.k/ / k�� , where exponent � depends on the topology of the
networks. The scale-free nature of networks suggests that there exist few nodes
with very high degree. Some other analysis, by Newman and others, of real-world
networks reveal that complex networks have community or module structures [6, 7].
According to these studies, there exists few nodes with very high betweenness,
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and are responsible to connect different communities. This direction of looking
at the networks focuses on the importance of nodes based on its position in the
network. On the other hand, Erdös-Rényi (ER) and Watts-Strogatz (SW) models
emphasize on random connections in the networks. In ER model any two nodes
are connected with probability p. One of the most interesting characteristics of ER
model is a sudden emergence of various global properties; most important one being
emergence of giant cluster. For a p > pc , while number of nodes in the graph remain
constant, giant cluster emerges through a phase transition. Further, Watts-Strogatz
model exhibits the small-world transition with fine tuning of the number of random
connections.

6.1.3 Spectral Properties of Model Networks

Apart from the above mentioned investigations which focus on direct measurements
of structural properties of networks, there exists a vast literature demonstrating that
properties of networks or graphs could be well characterized by the spectrum of
associated adjacency and Laplacian matrix [8]. For an unweighted graph, adjacency
matrix is defined in following way: Aij D 1, if i and j nodes are connected and zero
otherwise. For undirected networks, adjacency and Laplacian both are symmetric
matrices and consequently have real eigenvalues. Eigenvalues of graph are called
graph spectra and they provide information about some basic topological properties
of underlying network [8, 9]. Recently, in order to characterize networks, it was
proposed to study spectra of eigenvalues of the adjacency matrices as a fingerprint of
the networks [10]. The rich information about the topological structure and diffusion
processes can be extracted from the spectral analysis of the networks. Studies of
spectral properties of the complex networks may also be of a general theoretical
interest.

During last 20 years several important applications of the spectral graph theory
in physics and chemistry problems have been discovered [8, 9]. For example liquid
flowing through a system of communicating pipes are described by a system of
linear differential equations. The corresponding matrix appears to be the Laplacian
of the underlying graph. Speed of convergence of the liquid flowing process towards
an equilibrium state is measured by the second smallest eigenvalue of graph
Laplacian [8]. Second smallest eigenvalue of graph Laplacian is called the algebraic
connectivity of a graph and is used to understand behavior of dynamical processes
on the underlying networks as well [11, 12]. Particularly, Laplacian spectra of
networks have been investigated enormously to understand synchronization of
coupled dynamics on networks [13, 14]. Extremal eigenvalues of the Laplacian have
been shown to exhibit high influence on the synchronizability of a network [15].
Similarly, multiplicity of eigenvalues, particularly at 0 and 1, have direct relations
with properties of graphs [16, 17].
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6.1.4 Random Matrix Theory

Random matrix theory (RMT) was proposed by Wigner to explain statistical
properties of nuclear spectra [18]. Later this theory was successfully applied for
studying of spectra of different complex systems including disordered systems,
quantum chaotic systems, spectra of large complex atoms etc. [19]. RMT is also
shown to be of great interest in understanding the statistical structure of the
empirical cross-correlation matrices appearing in the study of multivariate time
series. The classical complex systems where RMT has been successfully applied
are stock market (cross-correlation matrix is formed by using the time series of price
fluctuations of different stock) [20]; brain (matrix is constructed by using EEG data
at different locations) [21]; patterns of atmospheric variability (cross-correlations
matrix is generated by using temporal variation of various atmospheric parameters)
[22], etc.

In the following we describe main RMT tools which have been used to
analyze network spectra. Recently there has been considerable amount of work
done in the context of random matrix analysis of complex networks. These
works have mainly used two most popular tools of RMT, i.e. eigenvalue fluc-
tuations in terms of short range correlations, and spectral rigidity to probe long
range correlations in eigenvalues. For completeness we describe these aspects
of RMT which have been used to study network spectra. In the random matrix
analysis of eigenvalues spectra, one has to consider two kinds of properties:
(1) global properties, like spectral density or distribution of eigenvalues �.�/,
and (2) local properties, among which eigenvalue fluctuations around �.�/ is
the most popular one. Spectral density of random matrices, whose elements
are Gaussian distributed random numbers, follows Wigner’s semicircular law
[18].
Nearest Neighbor Spacing distribution: We denote the eigenvalues of networks by
�i ; i D 1; : : : ; N , where N is the size of the network. The eigenvalue fluctuations
are generally obtained from the nearest neighbour spacing distribution (NNSD)
of the eigenvalues. In order to get universal properties of the fluctuations of the
eigenvalues, it is customary in RMT to unfold the eigenvalues by a transformation
�i D N.�i/, where N is the averaged integrated eigenvalue density [18]. Since
we do not have any analytical form for N , we numerically unfold the spectrum
by polynomial curve fitting. After the unfolding, the average spacing will be unity,
which is independent of the system. Using the unfolded spectra, we calculate the
spacing as

s.i/ D �iC1 � �i (6.1)

and due to the above unfolding, the average nearest-neighbor spacing hsi becomes
unity being independent of the system. The NNSD (P.s/) is defined as the
probability distribution of these si ’s. In case of Poisson statistics, P.s/ D exp.�s/,
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whereas for GOE, P.s/ D �
2
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��s2
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. For the intermediate cases, the spacing

distribution is described by Brody distribution [23];

Pˇ.s/ D Asˇ exp
��˛sˇC1� ; (6.2)

where

A D .1C ˇ/˛ and ˛ D
�
�

�
ˇ C 2

ˇ C 1

��ˇC1

This is a semiempirical formula characterized by the parameter ˇ. As ˇ goes from
0 to 1, the Brody distribution smoothly changes from Poisson to GOE. We fit the
spacing distributions of different networks by the Brody distribution Pˇ.s/. This
fitting gives an estimation of ˇ, and consequently identifies whether the spacing
distribution of a given network is Poisson or GOE or intermediate of these two.

The NNSD reflects only local correlations among the eigenvalues. The spectral
rigidity, measured by the �3-statistic of RMT, gives information about the long-
range correlations among the eigenvalues and is more sensitive test for RMT
properties of the matrix under investigation [18, 24]. Following we describe the
procedure to calculate this quantity.

3 statistics: It measures the least-square deviation of the spectral staircase function
representing the cumulative density N.�/ from the best straight line fitting for a
finite interval L of the spectrum, i.e.,

�3.LI x/ D 1

L
min
a;b

Z xCL

x

h
N.�/ � a� � b

i2
d� (6.3)

where a and b are obtained from a least-square fit. Average over several choices
of x gives the spectral rigidity �3.L/. The most rigid spectrum is the “picket
fence” with all spacings equal (e.g., 1-D harmonic oscillator), therefore maximally
correlated with constant �3.L/ .D 1=12/. At another extreme, for the uncorrelated
eigenvalues, �3.L/ D L=15, reflecting strong fluctuations around the spectral
density �.�/. The GOE case is intermediate of these two extremes. Here �3.L/

depends logarithmically on L, i.e.,

�3.L/ � 1

�2
lnL: (6.4)

The article is arranged as follows: after the first introductory section about
importance and excitement of network theory, we introduce various RMT tools
used to analyze complex networks. The next section provides a short introduction
to spectral density of networks. Section 6.3 considers different model networks,
viz. random, scale-free, small-world and modular networks one by one, and explain
random matrix results for their spectra. Last section lists down major results
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of random matrix analysis of networks and discusses future prospective of this
framework.

6.2 Spectral Density of Networks

First of all we would review known properties of spectral density of various model
networks. The spectral density of the adjacency matrix of ER random graphs,
whose elements are randomly 0 or 1, tend to have the asymptotic spectral density
with the semicircle shape in accordance with the Wigner theorem which is a
classical result of RMT [18]. However, Rodgers and Bray have demonstrated that
the density of eigenvalues of a sparse random matrix deviates from the Wigner
semicircular distribution and has a tail at large eigenvalues [25, 26]. With the
increasing availability of large maps of real-world networks, the analysis of spectral
densities of adjacency matrix of real-world networks and model networks having
real-world properties have also begun [27–29]. These analyses elucidate that the
spectral densities of model networks and real-world networks are not semicircular,
instead they have some specific features depending on the minute details of the
corresponding models. Spectral density of scale-free model networks exhibits
triangular distribution [27, 29] with the tail exhibiting a power law behavior. This
power law behavior was analytically confirmed by Dorogovtsev et al. for tree-like
scale-free graphs [28, 30]. Explicit solutions reveal that the spectral density of scale-
free networks decay as a power law with the decay exponent �a D 2��1 [31]. Using
replica method Rodgers et al. found a similar power law for Goh, Kahng and Kim’s
static model in the limit p ! 1 [32]. Spectral density of weighted Laplacian and
weighted adjacency matrices for scale-free networks in limit of large mean degree
has been derived by Kim and Kahng [33]. Small-world model networks have very
complex spectral density with many sharp peaks, while the spectral density of scale-
free model networks exhibits triangular distribution [27, 29]. Real world networks
exhibit very different spectral density than exhibited by any of the model networks
discussed above [34, 35]. In general, they have a very high peak at zero eigenvalue
of the adjacency matrix [17, 29, 35].

6.3 Random Matrix Analysis of Network Spectra

One of the most celebrated techniques in RMT is nearest neighbor spacing
distribution �.s/ of eigenvalues. For matrix having Gaussian distributed random
numbers, it follows GOE statistics of RMT, as described in Sect. 6.1.4. As seen from
the previous section describing spectral density of adjacency matrix of networks,
one can notice that network spectra have very different properties than exhibited
by those of random matrices. Even spectra of random networks also deviate from
Wigner’s prediction towards the tail.



6 Application of Random Matrix Theory to Complex Networks 201

Before proceeding further we would like to note few basic differences of
adjacency matrix generated for unweighted networks and random matrices. The
first most important difference is that the entries in adjacency matrices are 0
and 1. Other differences follow from different types of networks, and networks
model based on properties of real world systems. Scale-free networks lead to
matrices having very large entries of 1 in few rows and most of the rows
having as few as only one non-zero entry. Modular networks have patches of
dense 1 entries. Since real world networks are sparse, i.e. they have very less
average degree, which leads to most of zeros in corresponding adjacency matrix.
Because of all these properties of adjacency matrix of networks, it is but natural
to expect that spectral density would differ considerably than that of random
matrices, and hardly we get surprised by observing deviation from Wigner’s
semicircular law and typical structural characteristic being reflected in density
distribution.

Upon applying other tools of RMT to network spectra, Jalan and coauthor
found that though spectral density deviates from RMT predicted results, eigenvalue
fluctuations characterized by nearest neighbor spacing density and spectral rigidity
of network spectra do follow GOE statistics of RMT [35]. Furthermore they
demonstrated that spectra rigidity test performed by �3 statistics provide a measure
for randomness in random networks [36]. In the following we review all the results
obtained for network spectra under RMT framework.

6.3.1 Random Networks

First we consider an ensemble of random networks generated by using Erdös-Rényi
algorithm. Starting with N nodes, random connections between pairs of nodes are
made with probability p. The average degree of the graph is k D 2Nc=N D
p.N �1/ � pN. There exists a critical probability pc.N / for which one gets a large
connected component. The degree distribution of this random graph is a binomial
distribution

P.k/ D CN�1
k pk.1 � p/N�1�k

The corresponding adjacent matrix would have 2pN2 entries with 1 and rest .1 �
2p/N 2 entries zero, with summation of row entries depicting binomial distribution
as stated in the previous line. For N D 2;000, value of p D 0:01 yields a connected
network with average degree p � N D 20. We can see that for such a small value
of p, only 1% entries in the adjacency matrix are nonzero, and rest entries are zero.
The motivation behind such a small p values are sparseness observed in real world
networks [1].

First, eigenvalue spectrum of the network generated using the above algorithm
is calculated. These eigenvalues are unfolded using the technique described in
Sect. 6.1.4. This method yields eigenvalues with constant spectral density on the



202 A. Rai and S. Jalan

-10 -5 0 5 10
λ

0

0.02

0.04

0.06

0.08
ρ(

λ)

(a)

0 1
s

0

0.5

1

P
(
s
)

β=0.98

(b)

2 3 0 100 200 300
L

0

0.2

0.4

Δ
3(
L
)

(c)

1.0 2.0 3.0 4.0 5.0
ln L

0
0.1
0.2
0.3
0.4

Δ
3(
L
)

Fig. 6.1 (a) Density distribution, (b) NNSD and (c) �3 statistics for random network with size
N D 2;000 and average degree hki D 20. In middle panel, the histograms are numerical results
and the solid lines represent fitted Brody distribution. For last panel, the circles are numerical
results and the solid curve is the GOE prediction of RMT. Inset plots the�3.L/ in semi-logarithmic
scale, in this scale it has the slope 0:0975. All figures are plotted for the average over ten
realizations of the networks

average. These unfolded eigenvalues are used to calculate NNSD. The same
procedure is repeated for an ensemble of the networks generated for different
random realizations. Figure 6.1 plots ensemble average spacing distribution NNSD
and �3 statistics [35]. By fitting this ensemble averaged NNSD with the Brody
formula given in Eq. (6.2) provides an estimate of the Brody parameter. The
estimated value of Brody parameter noted in the figure clearly indicates that NNSD
follows GOE prediction of RMT. As explained in the introduction that NNSD
only tells about the short range correlations among the eigenvalues. Therefore, to
probe for the long range correlations �3.L/ statistic is used. �3.L/ is calculated
following Eq. (6.3). Figure 6.1 plots this statistics for the same ensemble as
used for the NNSD calculations above [37]. It can be seen that �3.L/ statistic
agrees very well with the RMT prediction, given by Eq. (6.4), up to very large
value of L, i.e., L � 300. Inset of this figure exhibits the same in semi-
logarithmic scale. Here one can see the expected linear behavior of �3.L/ with
slope of 0.0978 which is very close to the RMT predicted value 1=�2 '
0:1013.

All results discussed here are for ensemble average. Each individual network in
the ensemble follows random matrix predictions with very good accuracy, however
to make the statistical analysis more credible, one considers results for an ensemble.
For smaller network size one needs to take more realization in an ensemble in order
to get good accuracy.

6.3.2 Scale-Free Networks

Scale-free networks are mostly modeled using algorithm provided by Barabási
and Albert [1]. Starting with a small number, m0 of the nodes, a new node
with m  m0 connections is added at each time step. This new node connects
with an already existing node i with probability �.ki / / ki , where ki is the
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Fig. 6.2 (a) Density distribution, (b) NNSD and (c)�3 statistics for scale-free network withN D
2;000 and hki D 20

degree of the node i. After � time steps the model leads to a network with
N D � C m0 nodes and m� connections [38]. This model generates a scale-free
network, i.e., the probability P.k/, that a node has degree k decays as a power law;

P.k/ � k�� ;

where � is a constant and for the type of probability �.k/ used here � D 3.
Other forms for the probability �.k/ are also possible which give different
values of � . However, nature of spectral density and correlations in eigenvalues
are independent of the value of � . Figure 6.2 presents spectral density, NNSD
and �3 statistics plots for network parameters N D 2;000 and hki D 20

[35, 37]. NNSD and �3 statistics are calculated following same procedure as
described for random networks. Figure 6.2a demonstrates that spectral density
follows typical triangular shape with peak at zero. Figure 6.2b demonstrates
that NNSD of scale-free network follows GOE statistics with Brody parame-
ter close to ˇ � 1. Figure 6.2c depicts that �3 statistics for scale-free net-
work agrees very well with the RMT prediction for very large value of L.
Inset of this sub-figure depicts the expected linear behavior of �3.L/ in semi-
logarithmic scale for this range with slope very close to the RMT predicted value of
1=�2.

Universality of NNSD for random and scale-free networks seems to give the
impression that these networks have same amount of randomness but�3 results tell
that the scale-free network is not as much random as the random network. This is
obvious from their construction algorithms as well, but �3 statistics captures this
property which is a very important result. The finding also suggests that scale-free
networks have some specific features that cannot be modeled by RMT. It may be
noted that one can generate scale-free networks by using other algorithms as well
[39, 40], for these networks also spacing distributions and spectral rigidity results
will have qualitatively similar behaviors, except that the range of agreement of L
with the random matrix prediction would depend upon the amount of randomness
in the networks.
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Fig. 6.3 For small-world network with N D 2;000 and hki D 20. (a) illustrates the density
distribution depicting multi-peak structure. (b) depicts that nearest-neighbor spacing distribution
(NNSD) P.s/ of the adjacency matrices of small-world network follows GOE statistics. The
histograms are numerical results and the solid lines represent fitted Brody distribution. (c) plots
�3.L/ statistics for eigenvalues spectra of the random network. The circles are numerical results
and the solid curve is GOE prediction of RMT. Inset shows the �3.L/ in semi-logarithmic scale

6.3.3 Small-World Networks

Small-world networks are constructed using the following algorithm of Watts and
Strogatz [5]. Starting with an one-dimensional ring lattice of N nodes in which
every node is connected to its k=2 nearest neighbors, each connection of the lattice
is rewired randomly with the probability p such that self-connections and multiple
connections are excluded. Thus p D 0 gives a regular network and p D 1 gives a
completely random network. For N D 2;000 and hki D 20, the typical small-world
behavior is observed around p D 0:005 [36]. Figure 6.3 plots density distribution,
NNSD and �3 statistics for ensemble average of networks generated with above
parameters. Same procedure as described in Sect. 6.1.4 has been used to calculate
NNSD and�3 statistics for the spectra. Figure 6.3a indicate that density distribution
is complicated with several peaks. One peak is always at � D 0. For different
network parameters, the exact positions of other peaks may vary but overall form
of spectral density remains similar. Figure 6.3b demonstrates that NNSD of this
network follows GOE statistics with ˇ very close to 1. Figure 6.3c plots the �3.L/

statistic for the spectrum of adjacency matrix corresponding to the small-world
network with p D 0:005. Inset of this figure shows the expected linear behavior
of�3.L/ in semi-logarithmic scale for L � 30 with slope of very close to the RMT
predicted value 1=�2.�3.L/ statistics for the small-world network agrees very well
with the RMT prediction for sufficiently large L, (i.e., L � 30 for these network
parameters), but much less than the same for random and scale-free networks,
implying that besides randomness, small-world network has specific features also.
This again suggests that the behavior of �3 statistics can be used to understand the
amount of randomness in the networks. More specifically deviation from the GOE
predicted behavior corresponds to the system specific features in the network [36].

All simulations here are quoted for average degree 20. For sparser (hki < 20)
and denser networks (hki > 20 to hki � N ), same universal behavior are found as
far as there exists a certain amount of randomness. Problems exist with very sparse
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networks, such as degree two, and very dense networks such as degree � N . For
sparse networks one gets several degenerate eigenvalues [41]. In those cases, one
has to first get rid of the degeneracy to conclude anything under RMT framework.
Similarly for dense networks, universal spacing distribution is observed till very
large value of average degree. For hki � N , largest eigenvalue has very high value
than the rest of N � 1 eigenvalues which are very close to each other, becoming
equal in the limiting case of all to all connections hki D N � 1. For example,
random networks with p D 0:95 (which means that the network has 95% of
maximum possible connections), also follow RMT predictions of universal spacing
distributions till very large scale. As the number of connections is increased further,
one starts getting degenerate eigenvalues and for p D 0:999 high degeneracy at
various values (such as � D �1; 0; 1) are observed keeping it trivially out from the
RMT studies.

6.3.4 Modular Networks

In this section we would present results for spectral behavior of networks having
community structure under the framework of RMT. The study of community
structure helps to elucidate the organization of networks, and eventually could be
related to the functionality of groups of nodes [6, 7]. Regardless of the type of
real world networks in terms of the degree and other structural properties [1], it
is possible to distinguish communities in the whole networks [6]. However, the
question of definition of the community is problematic, and usually community is
assigned to the nodes which are connected densely among themselves, and are only
sparsely connected with other nodes outside the community. This simple approach
considers more densely connected nodes as a definition of community, and does not
pay attention to the detailed structure of the connections [7].

RMT analysis of network spectra demonstrates that spectra carries signature
of community structure. NNSD detects even a small mixing of communities in a
network, whereas spectral rigidity test performed by�3 statistics provides signature
for larger mixing, which is, in general observed in real world networks.

Let us assume, for simplicity, that communities are modeled by random net-
works. Random matrices corresponding to unweighted random networks have
entries 0 and 1, where number of 1’s in a row follows a Gaussian distribution with
mean p and variance p.1 � p/. This type of matrix is very well studied within the
RMT framework [18, 42] and as explained in Sect. 6.3.1. Let us turn our attention
to the following structure: (1) Takem random networks with connection probability
p; the spectral behavior of the matrix corresponding to each of these sub-networks
(blocks) separately follows GOE statistics. The matrix corresponding to the full
network would be a m block diagonal matrix. (2) Introduce random connections
among these sub-networks with probability q. This configuration leads to m block
matrix, with blocks having entries one with portability p, and off diagonal blocks
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having entries one with probability q. The above networks can be casted in the
following form [43]:

A D A0 C Aq (6.5)

A0 is a m blocks diagonal random matrix, where each block represents one
community, and the off-diagonal block matrix Aq denotes the interactions among
the communities. Each block in Aq is a random matrix, which for large N has
mean q and deviation q.1 � q/. The ratio q=p, which can be considered as the
relative strength of Aq and A0, measures the deformation from the block-diagonal
form of the matrix, or from the perfect structured network. The value q=p D 1,
which corresponds to equal strength of inter and intra-community connections,
yields complete random network.

Left panel of Fig. 6.4 plots the spectral density for m D 2 block matrices having
qN2 non-zero off diagonal entries, corresponding to the two sub-networks connected
with probability q. As discussed earlier q varies from q D 0, which corresponds to
the two completely disconnected sub-networks (A D A0), to q D p leading to a
single random network. The cases for 0 < q << p correspond to the configurations
when the initial community structure is almost preserved. Increase in the value of
q leads more entries of one in the matrix Aq [Eq. (6.5)]. Finally the q D p case
destroys the community structure completely, and the network can be treated as one
single random network. Left panel of Fig. 6.4 presents the density distribution of
eigenvalues for various values of q. The eigenvalues are scaled with respect to the
spectra of the network for q=p D 1. With this scaling, the density distributions
are not semicircular for values of q < p. As the coupling between the two blocks
increases (q > 0), the density distribution manifest a transition to the semicircular
form at q D p:
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Fig. 6.4 Density distribution (left panel), NNSD (middle panel), �3 statistics (right panel) of the
two random sub-networks connecting each other with probability (a) q D 0 and q=p D 0; (b)
q D 0:001 and hence q=p D 0:1; (c) q D 0:005, hence q=p D 0:5 and (d) q=p D 1 which
corresponds to q D 0:01 . Each block (random network) has size N D 500. The axes are scaled
in such a way that the semicircle corresponding to q D p has unit radius (see text). All graphs are
plotted for 20 realizations of random sets of connections among the two sub-networks
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where �0 is the radius of the semicircular distribution for q D p calculated from
the spectra of network as �0 D .�max � �min/=2, �max and �min being the highest
and the lowest eigenvalue. Now we turn our attention to the statistics of eigenvalue
fluctuations.

As can be seen from the middle panel of Fig. 6.4, for q=p � 0:001.q � 10�5/,
the value of the Brody parameter ˇ � 0:2, which suggests that distribution is very
close to the Poisson [P.s/ D exp.�s/] denoted by the dotted curve in the figure.
As the value of q increases, ˇ also increases, and it is of the order of 1 for the value
of q=p � 0:01 (which corresponds to the value of q as less as 10�4), and becomes
insensitive for a further increase in q. For larger values of q, we analyze the spectra
using the spectral rigidity test of RMT.

As seen from the last panel of Fig. 6.4, the �3.L/ statistics follows RMT
predictions of GOE [Eq. (6.4)] up to a certain L. It has a linear behavior in semi-
logarithmic scale with the slope of �1=�2. The value of L for which it follows
GOE statistics depends upon q. For small values of q such as q=p D 0:01 and
q=p D 0:05, �3 follows RMT prediction till very small range of L � 5 and
L � 20, respectively. As q increases, the value of L for which �3 follows the
GOE statistics also increases. For q=p D 0:1, it agrees with the RMT predictions of
GOE behavior for L � 75, and after this value, deviation from the RMT prediction
is seen. This deviation corresponds to the existence of community structure in the
network. As the value of q increases, the communities have more and more random
connections between them. For q D p the community structure is destroyed fully,
and the network is a complete random network. This fact is reflected in the �3

statistics corresponding to q=p D 1. At this value of q, it follows RMT prediction
up to a very long-range L � 150. After this value of L, for the network of size
N �m D 1;000 we do not have a meaningful calculation of the �3 statistics [24].
For q D 0:005 .q=p D 0:5/, where the strength of inter-community is as large
as �50% of the intra-community connections strength, the �3 statistics correctly
reflects the deviation from complete random matrices, suggesting the existence of
communities in the network.

6.4 Conclusion and Discussion

In summary, RMT analysis of complex networks demonstrates that these networks
follow the universal GOE statistics. These results tell that we can apply random
matrix theory, a very well developed branch of Physics, to study and analyze
complex networks.

Though the spectral densities of the random, the scale-free and the small-world
networks are different, their eigenvalues spacing distributions are same and follow
GOE statistics. This universal GOE behavior of NNSD tells that the networks
are sufficiently random, or there exists minimal amount of randomness in the
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network required to introduce the correlations among the neighboring eigenvalues.
�3 analysis seems to characterize the level of randomness in the networks based on
the range of the correlations among the eigenvalues. �3 analysis of the random
network follows RMT prediction for very long range of L, which is not very
surprising as random network follows RMT at each level starting from semi-circular
density distributions. However interestingly scale-free and small-world networks
also follow RMT for sufficiently large value of L. Beyond this value of L, deviation
in the spectral rigidity is seen, indicating a possible breakdown of universality. This
is quite understandable as small-world network is highly clustered and scale-free
network also has specific features like hubs, so it is natural that they are not as
random as the random network. Particularly small-world network is generated using
Watts and Strogatz algorithm which generates networks with very high clustering
coefficient and very less number of random connections. This very small number of
random connections makes network sufficiently random to introduce the short range
correlations among the eigenvalues.

Next, NNSD exhibits transition from Poisson statistics to GOE as network is
deformed from perfect community structure to a random one. Poisson to GOE
transition is found for many different systems, for example spectra of insulator-
metal transition, order-chaos transition etc. [19]. The �3 statistics, which measures
long-range correlations among the eigenvalues, detects deformation from a network
having two coupled sub-networks, to a single random network. More deformation
of the network from community structure, leads to a larger range of L for which
�3 follows the GOE statistics. Note that, for the case of sub-networks being
completely random, the spacing and the �3 statistics of each of them follows RMT
prediction. Therefore, any deviation from GOE statistics is due to the community
structure these two sub-networks form when considered as a single network. These
indicate that very small random interaction between communities is enough to
introduce short-range correlations among them, spreading the randomness in the
whole network. Second, further increase in coupling among the sub-networks is
reflected by long-range correlations among eigenvalues. For networks having some
structure, �3 statistics follows RMT prediction of GOE for very long range of
L. Beyond this value of L deviation in the spectral rigidity is seen, indicating a
possible breakdown of universality. This means the network under consideration has
sufficient randomness which may be due to robustness of the systems with regularity
which may be to perform some functional task.

Mixture of random connections and regular structure have been emphasized at
various places, for instance information processing in the brain is considered to
be random connections among different modular structure [44]. According to the
many recent studies, randomness in the connection is one of the most important and
desirable ingredients for the proper functionality or the efficient performance of the
systems having underlying network structures. Based on above results one can study
the role of random connections in behavior and evolution of such systems in a better
way under [45]. The RMT approach may be used to detect the connections most
responsible to increase the complexity of networks. For example effect of oxygen
molecule on biochemical networks is recently studied and is shown to increase the
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complexity of networks leading to a major transition in the history of life [46].
Furthermore, deviation from the universal RMT predictions can be used to identify
system-specific, non-random properties of system under consideration, and it might
provide clues about important interactions [45, 47]. Moreover,�3 statistics may be
used to address complexity of the systems [48] having network structures under the
RMT framework, and thus helping to understand the dynamical behavior [49] and
robustness of such systems better.

Results on spectral properties of network with the community structure, on one
hand advances the studies of spectral properties of modular networks under the
universal RMT framework; on the other hand, variations in the correlations among
eigenvalues shed light on the coupling among communities. For the simulations, the
community structure in network is modeled by the very simple random or scale-
free sub-networks, and the interactions among these sub-networks are considered
random, whereas real world networks have richer structure [7]. However, the
results achieved so far provide a platform to investigate the community structure
of networks using a well developed theory of random matrices; the further investi-
gations in this direction should deal with real world networks with richer and more
complicated structure under the deformed random matrix framework [50].

Overall, work reviewed here demonstrates applicability of random matrix theory
to complex network spectra, and hence opening a new platform for complex system
research. To give an example, we discuss here importance of these RMT results
for real world systems, particularly to biological systems. Several studies have
revealed that the development of multi-target drugs might give better results than the
traditional methods targeting a single protein. Single-target design might not always
give satisfactory results, as there might be a backup system, which replaces the
function of the inhibited target protein. By using multi-target drugs one can decrease
the functionality of entire protein cascades producing more effective results. Multi-
target drugs attacking hubs of the protein-protein interaction network, ‘hub-links’
(links connecting hubs), bridges (inter-modular links having high ‘betweenness
centrality’) or nodes in the overlap of numerous network modules, might give better
results [51, 52]. Similarly, targeting genes corresponding to the non-universal part
of the spectra may lead to important effect as well.

This review article is restricted only to undirected networks which lead to
symmetric matrices. Corresponding spectra has all real eigenvalues. Further new
challenges arise when one considers directed networks leading to asymmetric
matrices, and hence corresponding spectra may have complex eigenvalues [53].
So far there exist considerably very less understanding of spectral properties of
such networks under RMT framework [54–56] though substantial part of real
world systems have underlying network structure which are directed. Applicability
of RMT framework for undirected networks sets up future directions to analyze
directed networks as well under this framework.
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Chapter 7
Some Time-Delay Finding Measures
and Attractor Reconstruction

Sanjay Kumar Palit, Sayan Mukherjee, Santo Banerjee, M.R.K. Ariffin,
and D.K. Bhattacharya

Abstract Topologically equivalent attractor reconstruction is one of the major
issues in nonlinear analysis. This is because of the fact that the underlying dynamical
model of some nonlinear phenomena may not be known and thus it is necessary
to retrieve the dynamics from the data it generates. One way to achieve this
is the reconstruction of the attractor. The basis of such reconstruction is the
famous Taken’s embedding theorem, which asserts that an equivalent phase space
trajectory,preserving the topological structures of the original phase space trajectory,
can be reconstructed by using only one observation of the time series. However, in
some cases topologically equivalent attractor reconstructions can also be done by
using multiple observations. All these things involve the choice of suitable time-
delay(s) and embedding dimension. Various measures are available to find out
the suitable time-delay(s). Among them, linear auto-correlation, Average mutual
information, higher dimensional mutual information are mostly used measures for
the reconstruction of the attractors. Every measures have certain limitations in the
sense that they are not always useful in finding suitable time-delay(s). Thus it is
necessary to introduce few more nonlinear measures, which may be useful if the
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aforesaid measures fail to produce suitable time-delay/time-delays. In this chapter,
some comparatively new nonlinear measures namely generalized auto-correlation,
Cross auto-correlation and a new type of nonlinear auto-correlation of bivariate data
for finding suitable time-delay(s) have been discussed. To establish their usefulness,
attractors of some known dynamical systems have been reconstructed from their
solution components with suitable time-delay(s) obtained by each of the measures.
These attractors are then compared with their corresponding original attractor by
a shape distortion parameter Sd. This shape distortion parameter actually checks
how much distorted the reconstructed attractor is from its corresponding original
attractor. The main objective of this chapter is to address the problem of recon-
struction of a least distorted topologically equivalent attractor. The reason is that if
the reconstructed attractor is least distorted from its original one, the dynamics of
the system can be retrieved more accurately from it. This would help in identifying
the dynamics of the corresponding system, even when the dynamical model is not
known. Out of the three measures discussed in this chapter, the generalized and cross
auto-correlation measures produce least distorted topologically equivalent attractor
only by consideration of multiple solution components of the dynamical system.
On the other hand, by using the measure—new type of nonlinear auto-correlation
of bivariate data, one can reconstruct a least distorted topologically attractor from
single solution component of the dynamical system. Various numerical results on
Lorenz system, Neuro-dynamical system and also on two real life signals are
presented to prove the effectiveness of the aforesaid three comparatively new
nonlinear time-delay finding measures. Finding of suitable embedding dimension
is another important issue for attractor reconstruction. However, this issue has not
been highlighted in this chapter because we have restricted this discussion only to
three dimensional attractor reconstruction.

7.1 Introduction

Real life phenomena can be broadly classified into two categories—deterministic
and stochastic. Deterministic phenomena are generally studied in two ways. The
widely used way is to consider a dynamical system as a model of real life
phenomena, to develop its qualitative theory to inquire about the behavior of its
solutions including its chaotic behavior. The other one is the dual approach, where
the nature of the real life phenomenon are explored directly from the output data
it generates, by considering its phase space reconstruction [1–16]. Since in most
of the cases, the dynamical models fail to reveal the true characteristics of the
corresponding phenomena, the dual approach is a better alternative as the phase
space that reveals the long term dynamics is reconstructed directly from the data.
Phase space is basically a flow or solution space of the underlying dynamical models
described by differential equation with initial conditions in continuous case. In this
context, a solution with an initial condition of the dynamical model is like a path
of a fixed point which is dropped in that flow. This path is called trajectory in
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the phase space. Sometimes, it may happen that, whatever the movement of the
trajectory, they always [11] converge to a region. The region is called attractor
[17]. There are three types of attractor—regular, strange non-chaotic and chaotic
[17]. As the dynamical models we have considered in this discussion are all
chaotic in nature, we confine our discussion to strange chaotic attractors only.
By chaotic attractor [13] we mean, a bounded region with fractal dimension [1],
where all the trajectories converge in erratic manner. More precisely, whenever
the solution .y1.t/; y2.t/; y3.t/; : : : : : : ; yn.t// 2 R

n of the respective dynamical
model with their initial conditions: .y1.a1/; y2.a2/; y3.a3/; : : : : : : ; yn.an// goes to
another position and moves in an eccentric manner with the change of t in the
phase space, chaos may occur for the said model. This type of chaos is actually
known as deterministic chaos [17]. In this case, trajectories of the system move in a
bounded region and form a dense orbit, called chaotic attractor [17]. The existence
of chaos can be measured by Largest Lyapunov exponent (LLE) [18]. It plays a
very important role in the analysis of a possibly chaotic system, since Lyapunov
exponents not only show qualitatively the sensitive dependence on initial conditions
but also give a quantitative measure of the average rate of separation or attraction of
nearby trajectories on the attractor. Various algorithms are available for calculating
Lyapunov exponent details of which are available in [19–29].

The basic problem in formulation of the dynamics from the data is that
when analyzing time series, we almost always get only incomplete information.
Although more and more multiprobe measurements are being carried out, still
the vast majority of time series are single-valued. Even if multiple simultaneous
measurements are available, they will not typically cover all the degrees of freedom
of the system. However, the missing information can be recovered from time
delayed copies of the available data, if certain requirements are fulfilled. The idea
of connecting the phase space or state space vector y.t/ of dynamical variables of
the physical system to the measured time series x.t/ was first addressed by Packard
et al. [30] in 1980. They proved that reconstruction of a higher dimensional state-
space vector was possible by using time delays with the measured scalar time series
x.t/. Thus, a surrogate vector z.t/ D .x.t/; x.tC�/; x.tC2�/; :: : : :/ for y.t/could
be formed from scalar measurements. These surrogate vectors actually constitute the
reconstructed attractor of the said physical system. At this point, the natural query
is—Does this reconstructed attractor resemble the original one? The theoretical
framework for this approach is set by a number of theorems, all of which specify
the precise conditions when an attractor in delay coordinate space is equivalent to
the original attractor of a dynamical system in phase space. In fact, it is enough
to study the attractor of the phase space instead of studying the entire phase space
because most of the important and relevant information of the phase spaces are
concentrated on this attractor. Thanks to the celebrated Taken’s theorem [11] which
ensures such attractor reconstruction from a single time series. It states that “an
equivalent phase space trajectory, which preserves the topological structures of the
original phase space trajectory, can be reconstructed by using only one observation
of the time series respectively”. Later on, this study was extended by Sauer et al.
[12] in 1991. This reconstruction [1–16] of the dynamics of the system on the
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basis of the given data is of paramount importance, as it ensures that under certain
generic conditions, such a reconstruction is equivalent to the original attractor. This
equivalence ensures that differential information is preserved and it also allows us
to consider both qualitative and quantitative analysis. Since its inception Taken’ s
embedding theorem [11] has been applied in time series analysis of different fields
ranging from system characterization and approximation of invariant quantities
to noise-filtering and prediction. The embedding theorem asserts that for some
systems the true dynamics may not be known, while the equivalent dynamics can
be obtained under suitable conditions with the use of time delays of a single time
series, treated as a one-dimensional projection of the system trajectory. Thus most of
the applications related to embedding theorem are based on uni-variate time series,
although measurements of two or more quantities for the same system are often
available. One of the first applications of multivariate embedding was in the context
of spatially extended systems, where embedding vectors were constructed from
data representing the same quantity measured simultaneously at different locations
[31–33]. In nonlinear multivariate prediction, the prediction with local models on
a space reconstructed from a different time series of the same system was studied
in [16, 31]. This study was extended in [34] by having the reconstruction utilizing
all the observed time series. Multivariate embedding with the use of independent
components analysis was considered in [35] and after that multivariate embedding
with varying delay times was studied in [36, 37]. In fact, the time-delay along
with the embedding dimension play the vital role in attractor reconstruction, or
embedding [12] of a time series. This is because, when time-delay is too short,
the attractor will be very narrow or squeezing in nature and when time delay is
large, the attractor will be of circular or elliptical nature. Thus for a topologically
equivalent attractor reconstruction, it is better to have a moderate time-delay.The
state vectors/attractors contain all the information available about the state of the
process at a given time and provide the most valuable information in order to
forecast the next state of the process. Since the publication of theoretical results
about the dimension needed to reconstruct the structure of a series through an
embedding in its phase space [11, 12], many methods have been developed for
estimating this dimension, such as Correlation dimension [38], False neighbors [36],
Box-Counting [12] and minimum dimension [39, 40]. Regarding the time-delay
selection [41–47], the common approaches are to use of the auto-correlation (AC)
of the series [42, 43], or the Average mutual information (AMI) [44, 45]. The idea of
these measures is to select variables as attractor components that are as uncorrelated
or independent as possible. However, the AC is a linear measure of dependency.
It is only applied in a linear context. The AMI is a non-parametric measure of
dependency between variables and is applicable in both linear and nonlinear cases.
Though AMI is commonly used for delay selection, it has two major limitations.
The first one is that AMI is generally computed between two variables only and
hence it can detect only the relations between two attractor values properly, but
it cannot provide the information about high-dimensional relationships between
all attractor values. The second limitation is that in this process only a unique
delay is selected. The attractors are constructed using variables that are equally
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distributed in time (as multiples of the chosen delay). This approach artificially
limits the attractors in the sense that the delay selection is based on two-dimensional
information, while the attractors themselves may be higher dimensional. A more
general approach would be to select different delays for the various variables taken
into account in the reconstruction of the attractors. The selection of these delays
should ideally be performed in a space having dimension equal to that of the
attractors. A high-dimensional Mutual information (MI) estimator [46] is one such
attempt that addresses this more general problem. In [47], the high-dimensional MI
estimator was used for better phase space reconstruction with multiple components
of the solution vector of Lorenz [48] and Rössler system [49]. Since Rössler system
[49] is a particular case of Lorenz system, so in this case the study was practically
concentrated to Lorenz system only. Since MI is not a system dependent nonlinear
measure, it cannot vary with different choices of dynamical systems. Hence it may
not work for attractor reconstruction of any dynamical systems, in general. As a
matter of fact the results, which are found to be true for Lorenz [48] or Rössler
dynamical system [49] under the use of high dimensional MI estimator, may not
hold good for other systems.

The basic motivation of this chapter is to point out the necessity of modifying the
earlier tools for finding time-delay by developing newer and newer sophisticated
and finer tools and formulae. This is because it is not possible to reconstruct the
topologically equivalent attractor from the data unless we get a proper time-delay.
Even when a topologically equivalent attractor is reconstructed, the similarity of
this attractor with the original attractor (the attractor that is constructed from the
dynamical model which generates the data) needs to be verified. This is done by
shape distortion measure introduced in [50]. This similarity checking is important as
more similar is the reconstructed attractor with the original attractor, more accurate
will be our interpretation of the dynamics from this reconstructed attractor. This
would help in better understanding of some real phenomena from its reconstructed
attractor without knowing its underlying dynamical model and hence the original
attractor. Since the shape of the attractor with its trajectories can be best viewed and
can also be geometrically differentiated only up to three dimensional spaces, we
restrict the embedding dimension to three in this discussion.

The whole chapter is organized in the following manner. In broader sense, this
chapter has two major parts. The first part deals with an improved measure for
finding time-delay, which successfully reconstruct the best possible attractor from a
single time series. This measure is basically a new type of nonlinear auto-correlation
of bivariate data [51] and it produces the best possible reconstructed attractor,
which is topologically equivalent to the original attractor. Therefore, when only
one measurement of the real data is available, this measure may be used towards
getting the reconstructed attractor. In fact, this observation has been confirmed by
means of two suitable real life examples. In the next part, topologically equivalent
attractors are reconstructed from multiple solution components of the underlying
dynamical systems. In this section, the limitations of the mostly used delay finding
measures have been highlighted and a comparatively new nonlinear measure namely
Generalized Auto Correlation (GAC) with single and different time-delays [52]
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have been introduced and validated with suitable examples. The supremacy of this
method has also been established by comparing it with the existing delay finding
measures. Next, the limitation of GAC with single and multiple delays have also
been pointed out with suitable examples and as a remedy to this problem, another
much more improved nonlinear measure called Cross Auto Correlation (CAC) [53]
has been introduced. The use of multiple solution components for proper attractor
reconstruction as mentioned in [47] has also been established in both cases. In
fact, the second measure is more useful for finding proper time-delay for attractor
reconstruction in almost all cases by including multiple solution components of the
original dynamical system. Thus, if multiple measurements of some real data are
available, then the aforesaid measures for finding time-delay, more specifically the
second measure, stand as most powerful tools. The entire discussion is summarized
and concluded in the conclusion section.

7.2 Attractor Reconstruction and Verification of Topological
Equivalence

An attractor is a set in which all neighboring trajectories converge. For a scalar time
series fxt gNtD1 , the attractor can be reconstructed by using the method of delays. The
basic idea in the method of delays is that the evolution of any single variable of a
system is determined by the other variables with which it interacts. Information
about the relevant variables is thus implicitly contained in the history of any
single variable. On the basis of this an equivalent attractor can be reconstructed by
assigning an element of the time series xt and its successive delays as coordinates of
a new vector time series yt D fxt ; xtC� ; xtC2� ; : : : ; xtC.m�1/�g , where � is referred
to as the time-delay. Different measures are available for finding the suitable time-
delay for the reconstruction of the attractors of some dynamical systems. However
the measures that are more frequently used for this purpose is the linear auto-
correlation (AC) and the Average mutual information (AMI)—a general measure.

Once the attractor is reconstructed, the topological equivalence of this attractor
with its original one needs to be verified. One way of verification is to make use
of the shape distortion parameter Sd [50]. Sd measures, how much similar is the
reconstructed attractor of some dynamical system with its corresponding original
attractor. Let us describe the Sd measure in brief.

Let A be the original attractor and NA be the reconstructed attractor. The shape
distortion is measured with Mutual False Nearest Neighbors [54–56]. Let yn be a
point on A with ynk as its nearest neighbor and xn be the corresponding point on NA
with nearest neighbor xnr . The shape distortion (Sd) [50] is given by

Sd D< jjyn � ynk jjjjxn � xnr jj
jjxn � xnk jjjjyn � ynr jj

> (7.1)
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where < : > denotes the average of all points and jj:jj denotes the Euclidean norm.
Larger is the Sd, lesser is the distortion on the shape of the dynamics of the attractor.
The dynamics may be preserved though the reconstructed attractor is a stretched
or squeezed (or both) version of the original attractor. But the preservation of the
shape guarantees the preservation of the dynamics, since the shape of the attractor
is formed by its dynamics.

7.3 Some Time-Delay Finding Measures for Attractor
Reconstruction

One of the most important tasks for the reconstruction of attractors is the choice of
suitable time-delay(s). Various time-delay finding measures are available. However,
the measures that are most frequently used are linear auto-correlation (AC) [42, 43],
Average mutual information (AMI) [44, 45] and higher dimensional mutual infor-
mation (MI) with same and different time-delays [46, 47]. Some of the measures
are useful if the reconstruction is done from either single or multiple time series,
while some of them can be used in both cases. In this section, we revisit the
aforesaid frequently used measures, discuss their shortfalls and also discuss some
comparatively new nonlinear measures for time-delay selection.

We make the entire discussion in two subsections. First one is for the reconstruc-
tion of attractor from a single time series and the second one for multiple time-series.

7.3.1 For Single Time Series

7.3.1.1 Auto-Correlation (AC)

Auto-correlation [42, 43] is the correlation of a signal with itself. It refers to the
correlation of a time series with its own past and future values. Auto-correlation
is sometimes called lagged correlation or serial correlation, as it refers to the
correlation between members of a series of numbers arranged in time. Informally,
auto-correlation is the similarity between observations as a function of the time
separation between them. It is a mathematical tool for finding repeating patterns. It
is often used in signal processing for analyzing functions or series of values, such as
time domain signals. In statistics, the auto-correlation of a random process describes
the correlation between values of the process at different points in time, as a function
of the two times or of the time difference. Let X be some repeatable process, and
t be some point in time after the start of that process (t may be an integer for a
discrete-time process or a real number for a continuous-time process). Then Xt is
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the value (or realization) produced by a given run of the process at time t . Let the
process have mean �t and variance �2t for all times t . Then the definition of the
auto-correlation between any two time t and t1 is given by

R.t; t1/ D EŒ.Xt � �t/.Xt1 � �t1/�

�t�t1
(7.2)

whereE is the expected value operator. Note that this expression is not well-defined
for all time series or processes, because the variance may be zero (for a constant
process) or infinite. If the function R is well-defined, its value must lie in the
range Œ�1; 1�, with 1 indicating perfect correlation and �1 indicating perfect anti-
correlation. However, if xt is a second-order stationary process then the mean�t and
variance �2t are time-independent, and further the auto-correlation depends only on
the difference between t and t1 . This actually implies that the auto-correlation can
be expressed as a function of the time-delay, and this would be an even function of
the delay � D t � t1 . Thus for a stationary process, (7.2) reduces to

R.�/ D EŒ.Xt � �/.XtC� � �/�

�2
(7.3)

So, one can think that auto-correlation for a stationary process is the ratio of
auto-covariance and variance.

For the reconstruction of attractors from a single time series x.t/, the auto-
correlation between x.t/ and x.t C �/ is calculated for different values of � . These
are then plotted against � to form a correlogram diagram. The suitable value of the
time-delay � is one for which the auto-correlation attains its positive minimum for
the first time.

7.3.1.2 Average Mutual Information (AMI)

Though the most known measure of dependence between two random variables
is the coefficient of linear correlation, yet its application requires a pure linear
relationship, or at least a linear transformed relationship. This is because of the fact
that this correlation is nothing but a normalized covariance, which is measured only
for linear relationships. However, this statistics may not be helpful in determining
serial dependence if there is some kind of non-linearity in the data. In this context,
a measure of global dependence is sought, that is, some measure that captures
linear and nonlinear dependencies, without requiring the specification of any kind
of model of dependence. Mutual Information is one such measure of general
dependence of two variables. It is an information theoretic approach, where the
famous Shannon’s entropy, which provides formalism for quantifying the concepts
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of spreading and new information is used. The basic requirement for the use of
information theory is that the probabilities of the messages under consideration
must exist and are accessible. Strange attractors are ergodic and have well-defined
asymptotic probability distributions. Since the information theory is being applied
to the strange attractors and the messages under consideration are the values in
which the measurements of the strange attractor might take, the probabilities of
the messages under consideration must exist and their long time averages converge
to the probabilities. The pioneering and most important contributions towards the
development and application of mutual information were made by Fraser and
Swinney [44].

In this context, Average mutual information (AMI) [44, 45] is a particular type
of MI [46] between the signal itself. For a time series x.t/; t D 1; 2; : : : ::; N , AMI
[44, 45] is calculated by

AMI.�/ D
N��X

tD1
ProbŒx.t/; x.t C �/�log.

ProbŒx.t/; x.t C �/�

ProbŒx.t/�ProbŒx.t C �/�
/ (7.4)

� D 1; 2; 3; : : : ; N � 1, where Prob[.] denotes the probability.
For estimation of � , two criteria are important. First, � has to be large enough so

that the AMI [44, 45] at time tC� is significantly different from the AMI [44, 45] at
time t . Then it will be possible to gather enough information about all other system
variables that influence the value of x to reconstruct the whole attractor. Second,
� should not be larger than the typical time for which the system loses memory
of its initial state. We must be conscious about the second criteria, because chaotic
systems are unpredictable or lose memory of its initial state as time goes forward.
In [44], it is stated that the optimum time-delay is obtained, where the AMI [44, 45]
attains its first minimum value. Since, AMI [44, 45] is a nonlinear version of auto-
correlation, so this method is strongly recommended to apply on nonlinear signals
for finding suitable time-delay.

7.3.1.3 Nonlinear Auto-Correlation of Bivariate Data

Most of the time series encountered from real life phenomena are nonlinear with
different types of non-linearity. The goal is to find a proper time-delay of moderate
magnitude for the reconstruction of attractor [1–16] and so there is no loss of
generality in considering a small segment (length varies from 150 to 500) of the
given time series. This small segment of the time series is then approximated with
a nonlinear curve f that gives the best fit. Thus we get two data series, one is the
smaller segment of the time series and the other one is what is generated through
the nonlinear curve f .
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With these two data sets, we now define new type of nonlinear auto-correlation
of bivariate data [51] as follows:

Definition 1 Let X D fx.t/gNtD1 and Y D fy.t/gNtD1 be two time series and f .t/
be the function that approximates y.t/ from x.t/; t D 1; 2; 3; : : : :; N . Let Y 0 D
ff .x.t//gNtD1. Then the nonlinear correlation between X and Y , denoted by rX;Y is
defined as the linear correlation between Y D fy.t/gNtD1 and Y 0 D ff .x.t//gNtD1,
which is given by

rX;Y .�/ D
PN

tD1.y.t/ � y.t//.f .x.t// � f .x.t///
qPN

tD1.y.t/ � y.t//2
qPN

tD1.f .x.t// � f .x.t///2
(7.5)

where y.t/ and f .x.t// are the means of the time series Y D fy.t/gNtD1 and Y 0 D
ff .x.t//gNtD1 respectively.

Definition 2 Let X D fx.t/gNtD1 be a time series and ff .x.t//gNtD1 be its best
nonlinear curve fit. Then the nonlinear auto-correlation rX.�/ between X D
fx.t/gNtD1 and Y D fx.t C �/gNtD1 is defined as the linear auto-correlation between
Y D fx.t C �/gNtD1 and Y 0 D ff .x.t//gNtD1, i.e.;

rX.�/ D
PN��

tD1 .x.t C �/ � x.t C �//.f .x.t// � f .x.t///
qPN��

tD1 .x.t C �/ � x.t C �//2
qPN��

tD1 .f .x.t// � f .x.t///2
(7.6)

where x.t C �/ and f .x.t// are the means of the time series Y D fx.tC�/gN��
tD1 and

Y 0 D ff .x.t//gN��
tD1 respectively and 1  �  N

2
, if N is even and 1  �  N�1

2
, if

N is odd.

If no such best nonlinear fit is available for the smaller segment of the time series,
then determination of the suitable moderate time-delay by Eq. (7.6) for attractor
reconstruction [1–16] is not possible. This may happen if the time series is highly
non-stationary. But this is a very rare case.

Suppose that there exists a nonlinear curve of best fit for the given nonlinear
time series. The new nonlinear auto-correlation of bivariate data [51] given by (7.6)
is determined between two groups fx.t/gl��tD1 ,fx.t C �/gl��tD1; 150  t  500, by
considering a smaller segment fx.t/gltD1 of the time series fx.t/gNtD1. The time-
delay � is determined from the two dimensional correlogram diagram.Thus we get
the independent coordinates .x.t/; x.t C �/; x.t C 2�//, t D 1; 2; 3; : : : ::; N � 2� .
The attractor is finally reconstructed with these independent coordinates.
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7.3.1.4 Numerical Examples and Discussions

To validate the above new type of nonlinear auto-correlation of bivariate data [51],
let us consider the three dimensional Lorenz system [48] described by the following
differential equations:

dx1
dt

D s.x2 � x1/;
dx2
dt

D x1.r � x3/� x2;

dx3
dt

D x1x2 � bx3; (7.7)

with the initial condition x1.1/ D 8; x2.1/ D 9; x3.1/ D 2 and the parameter values
s D 10; r D 28; b D 8

3
.

The above Lorenz system given by (7.7) with the given initial condition gives
rise to a chaotic solution, which is shown by the attractor of the system given in
Fig. 7.1a.

For the purpose of reconstruction of the above attractor, we have considered
5,000 values of the solution vector .x1.t/; x2.t/; x3.t// of the aforesaid Lorenz
system given by (7.7). Let us first consider the solution component fx2.t/g5000tD1 and
find a suitable time-delay � under the new type of nonlinear auto-correlation of
bivariate data.

Since the solution component fx2.t/g5000tD1 of the aforesaid Lorenz system is
nonlinear, this nonlinear measure may be applied. For this purpose, we first take
a smaller segment of length 200 and find a best possible nonlinear curve fit f for it.
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Fig. 7.1 (a) Attractor of the Lorenz system given by (7.7), (b) best nonlinear curve fit for a smaller
segment of the solution component fx2.t/g5000tD1 of the Lorenz system
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This is given by

f .t/ D a0 C a1 cos.wt/C b1 sin.wt/C a2 cos.2wt/C b2 sin.2wt/C a3 cos.3wt/

C b3 sin.3wt/C a4 cos.4wt/C b4 sin.4wt/C a5 cos.5wt/C b5 sin.5wt/
(7.8)

where a0 D 8:44; a1 D 0:05261; b1 D �0:04536; a2 D �0:02356; b2 D
�0:09461; a3 D �0:1507; b3 D �0:07338; a4 D �0:4175; b4 D 1:353; a5 D
0:03087; b5 D �0:04881;w D 0:02525.

The above best possible curve fit given by Eq. (7.8) is shown by Fig. 7.1b.
Equation (7.5) is then used to determine the nonlinear auto-correlation rX.�/

between X D fx2.t/g200tD1 and Y D fx2.t C �/g200tD1. This is actually the linear AC
[42, 43] between Y D fx2.t C �/g200tD1 and Y 0 D ff .x2.t//g200tD1, where f is the
best nonlinear fit available for a smaller part of one of the solution components
fx2.t/g5000tD1 of the aforesaid Lorenz system [48]. Thus rX.�/ is obtained for different
values of the time-delay � and the suitable time-delay � is determined from the two
dimensional correlogram diagram [1] given by Fig. 7.2a.

It is evident from Fig. 7.2a that rX.�/ comes nearer to zero for the first time, when
� D 15. Thus we get the suitable time-delay and corresponding to this time-delay
the attractor of the Lorenz system is reconstructed, which is shown in Fig. 7.2b.

In a similar manner we have also reconstructed the attractor from the other
two solution components of the Lorenz system. However, when the Sd value is
calculated, it is found that the attractor reconstructed from fx2.t/g5000tD1 is least
distorted from the original attractor. So we have not presented the later attractors.

Next, we try to use the linear AC [42, 43] and AMI [44, 45] to reconstruct the
attractor of the Lorenz system. Since AC is a linear measure, but the solution com-
ponents of the aforesaid Lorenz system are highly nonlinear it is quite impossible
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Fig. 7.4 Reconstructed attractor of the Lorenz system (7.7) (a) with � D 63 obtained by AC
measure, (b) with � D 16 obtained by AMI measure

to get the proper value of for the reconstruction of the attractor. Figure 7.3a,b show
the plot of AC Rx2.�/ versus time-delay � and the plot of AMI versus time-delay � .

It is evident from the above figure that the auto-correlation attains its positive
minimum for the first time, when � D 63 and AMI [44, 45] comes nearer to zero
for the first time, when � D 16. The reconstructed attractor for the above Lorenz
system for � D 63 and � D 16 are given by Fig. 7.4a, b respectively.

We have also tried to reconstruct the attractor from the other two components
of the Lorenz system [48] but both of them were found to be even worsen than the
attractors given by Fig. 7.4a, b.
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Remarks Obviously, the reconstructed attractor given by Fig. 7.2b looks like the
original attractor of the Lorenz system given by Fig. 7.1a. In fact, Sd value of this
reconstructed attractor is more than that of the same reconstructed under linear
AC and AMI. Thus it is established that by using new type of nonlinear auto-
correlation of bivariate data, it is possible to reconstruct the attractor of the Lorenz
system properly and the attractor is even better and lesser distorted than the same
reconstructed under the other measures. Thus this new type of nonlinear auto-
correlation of bivariate data can be more effective for attractor reconstruction from
a single time series data.

7.3.1.5 Application on Real Data

Since this new nonlinear measure is found to be very effective on Lorenz dynamical
system, it is expected to work on real data in getting the least distorted reconstructed
attractor out of it. So, we present few applications of this comparatively new
measure on some real continuous signals, where the dynamical models behind the
generation of the signals are not known. In this context, we have chosen two music
signals—both of them are Indian classical Sarod recitals, one is of raga ‘Anandi’ and
the other is of raga ‘Bhairavi ’. Both of them were played by one of the renowned
Sarod player Ustad. Amjad Ali Khan and they were recorded at 16 bits per sample
with sample rate 44,100 by using Adobe Audition 1.5 software. None of them were
normalized. The reason of choosing music signals is that they are easier to collect
by available software, and more importantly the music signals are basically non-
stationary and are always found to possess different types of non-linearity. Though
these music signals are basically non-stationary as a whole, yet the smaller segments
(length varies between 150 and 500) of those signals have some definite form
in most of the cases. At this point, one may raise question regarding the loss of
generality for choosing such a smaller segment of the music signals. However, when
the auto-correlation of a signal is considered, it is basically the correlation between
two segments of the signal of finite length differing by one unit only. So, there is no
question of making an attempt for a nonlinear fit with the whole signal.

A. Test for Non-stationarity: Q-Q Plot

By non-stationary signal we mean a signal where the pattern of probability
distributions of different segments are not equal at all. To test the non-stationarity of
the signal, Quantile-Quantile plot (Q-Q plot) [57] is used. Basically it is a graphical
technique to determine whether or not two data sets come from populations with a
common distribution. More precisely, it is a plot of the quantiles of the first data set
against the quantiles of the second data set. If the two sets come from a population
with the same distribution, the points must fall approximately along the reference
line y D x. The greater is the departure from this reference line, the greater is the
evidence for the conclusion that the two data sets have come from populations with
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Fig. 7.5 Q-Q plots for the music signal of raga (a) ‘Anandi’ and (b) ‘Bhairavi’. In both the figures,
the points do not fall approximately along the reference line y D x and hence both the signals are
non-stationary

different distributions. This proves that the statistical parameters of the segments of
equal length are always different. In other words, signal is non-stationary.

Thus for the music signals based on raga ‘Anandi’ and raga ‘Bhairavi’, Q-Q
plots [57] are drawn (Fig. 7.5a, b) and non-stationarity of both the signals have been
established.

B. Test for Non-linearity: Surrogate Data Method

The existence of non-linearity in the underlying experimental data is generally
investigated by Surrogate data method, initially introduced by Theiler et al. [58]. In
this method, a null hypothesis is formed for a specific process class and the system
output is compared with this hypothesis at a level of significance ˛. In order to do
this, . 2

˛
� 1/ � 1

˛
surrogates are first generated for a one side (two-side) test. A

suitable statistic is then chosen and its value for the original data is compared to the
same of the surrogates. If the value of the statistic of the data deviates from that of
the surrogates, then the null hypothesis is rejected. In this concern, Schreiber and
Schmitz introduced an improved surrogate data method [59] which is used to test
non-linearity for all types of stationary and non-stationary signals. In this method,
the testing is done with significance level 0:01 in three steps. In the first step 99
surrogate data are generated by Iterative Amplitude Adjusted Truncated Fourier
Transform (IAATFT) [59] from the observed data, in the second step the nonlinear
version of auto-correlation statistics—Average Mutual Information .AMI/.� D 1/

is considered as discriminate statistics and finally a null hypothesis is formed against
which observations are tested.
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Fig. 7.6 Surrogate data test for the music signal of raga (a) ‘Anandi’ and (b) ‘Bhairavi’ under
AMI with � D 1. The surrogates are represented by the indices 1–99 and the index number 100
represents the original signal measured along X-axis. Y-axis represents the corresponding value of
AMI.� D 1/. In both the figures, the value of AMI.� D 1/ of the music signal is greater than the
same of their respective 99 surrogates and hence both the signals are nonlinear

In this connection, the null hypothesis .H0/ is taken as H0 W AMIexperimentalsignal

.� D 1/ D AMISUR.experimentalsignal/.� D 1/. The discriminating statistic AMI [44,
45] is basically a number that quantifies some aspect of the time series. If the value
of AMI (� D 1) for the experimental signal is different from all of its surrogates,
then the null hypothesis can be rejected with the given level of significance. If the
null hypothesis is rejected, the experimental signal must be nonlinear.

The Surrogate data test [59] with significance level 0:01 and the statistical
parameter AMI (� D 1) of the music signals of raga ‘Anandi’ and ‘Bhairavi’ are
given in Fig. 7.6a, b.

It is observed from Fig. 7.6a, b that the AMI of surrogate data series is not equal
to AMI of the given signals. Hence the null hypotheses H0 W AMIAnandi.� D 1/ D
AMISUR.Anandi/.� D 1/ and H0 W AMIBhairabi.� D 1/ D AMISUR.Bhairabi/.� D 1/

are rejected and thus the non-linearity of the music signal of raga ‘Anandi’
and‘Bhairavi’ are established by Surrogate data test [59].

C. Test for Chaos: Lyapunov Exponent

Since both the music signal of raga ‘Anandi’ and raga ‘Bhairavi’ are nonlinear, the
largest Lyapunov exponent (LLE) [18, 21, 29] of these signal is computed to test
the existence of deterministic chaos. This largest Lyapunov exponents [18, 21, 29]
quantify the exponential divergence of initially close state-space trajectories and
estimate the amount of chaos in a system. Several methods of finding this Lyapunov
exponent are available but in this case a comparatively new method [18, 21, 29]
has been used. The method follows directly from the definition of the LLE and is
accurate because it takes advantage of all the available data. The algorithm is fast,
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Fig. 7.7 Straight lines, fitted on the linear region of < ln(divergence) > for the music signal of
raga (a) ‘Anandi’ and (b) ‘Bhairavi’

easy to implement, and robust to changes in the following quantities: embedding
dimension, size of data set, reconstruction delay, and noise level. The LLE is easily
and accurately calculated by using a least-squares fit to the ‘average’ line defined by
y.i/ D 1

�
< ln.dj .i// >, where < : > denotes the average over all values of j and

dj .i/ is the distance between the j th pair of nearest neighbors after i discrete-time
steps, i.e., i�t seconds.

To find the LLE of both the music signals, straight lines are fitted on the average
of log(divergence) of the music signals of raga ‘Anandi’ and raga ‘Bhairavi’. The
coefficients a and b of the fitted straight lines x D at C b are given by a D
0:0044; b D 8:6947 for the music signal of raga ‘Anandi’ and a D 0:00064; b D
7:6042 for the music signal of raga ‘Bhairavi’. These are shown by Fig. 7.7a, b
respectively.

The LLE for the music signals of raga ‘Anandi’ and raga ‘Bhairavi’ are calculated
from the slope of the fitted straight lines in Fig. 7.7a, b. The values are found to be
0:88 and 0:128 respectively (by considering the sampling frequency as 200 Hz).
Thus the LLE for both the music signals are found to be positive. This indicates that
both the signals possess chaotic attractor.

D. Reconstruction of the Attractors

Let fxA.t/g10000tD1 and fxB.t/g10000tD1 be 10,000 samples of the recorded north Indian
Classical Music (Sarod) based on raga ‘Anandi’ and ‘Bhairavi’ respectively. The
time series plots of these signals are given by Fig. 7.8a, b respectively.

A best nonlinear curve fit for the smaller segment of length 200 of the music
signal based on raga ‘Anandi’ is then obtained. Similarly another best nonlinear
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Fig. 7.8 Time series plot of the music signals based on raga (a) ‘Anandi’, (b) ‘Bhairavi’

curve fit for the smaller segment of length 150 of the music signal based on raga
‘Bhairavi’ is obtained. These are respectively given by Eqs. (7.9) and (7.10).

f .t/ D a1 exp.�..t � b1/=c1/
2/C a2 exp.�..t � b2/=c2/

2/C a3 exp.�..t � b3/=c3/2/
Ca4 exp.�..t � b4/=c4/

2/C a5 exp.�..t � b5/=c5/
2/C a6 exp.�..t � b6/=c6/2/

Ca7 exp.�..t � b7/=c7/2/
(7.9)

where a1 D 5; 109; b1 D 172:5; c1 D 2:314; a2 D 4; 881; b2 D 182:8; c2 D 1:539;

a3 D 14; 430; b3 D 72:76; c3 D 10:7; a4 D �42; 800; b4 D 226; c4 D 150:5; a5 D
44; 280; b5 D 178:9; c5 D 47:44; a6 D 20; 420; b6 D 102:3; c6 D 24:66; a7 D
15; 340; b7 D 48:09; c7 D 15:19.

f .t/ D a0 C a1 cos.wt/C b1 sin.wt/C a2 cos.2wt/C b3 sin.3wt/C a4 cos.4wt/

C b5 sin.5wt/C a6 cos.6wt/C b6 sin.6wt/C a7 cos.7wt/C b7 sin.7wt/

C a8 cos.8wt/C b8 sin.8wt/
(7.10)

where a0 D �5:015� 1013; b1 D �4:742� 1015; a2 D 8; 754� 1013; b3 D 4:242�
1015; a4 D �6:004 � 1013; b5 D �4:933 � 1015; a6 D 4:397 � 1013; b6 D 4:319 �
1015; a7 D �2:616 � 1013; b7 D �1:569 � 1015; a8 D 4:83 � 1012; b8 D 2:189 �
1014;w D 0:0816.

The above curves of best fit for the music signals of raga ‘Anandi’ (Eq. 7.9) and
raga ‘Bhairavi’ are (Eq. 7.10) are shown by Fig. 7.9a, b respectively.
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We now reconstruct the underlying dynamics of both the music signals under the
notion of new type of auto-correlation of bivariate data [51] one by one. Let us first
consider the music signal of raga ‘Anandi’.

In this case, the new type of nonlinear auto-correlation rX.�/ between fx.t C
�/g200��tD1 and ff .x.t//g200tD1, given by Eq. (7.6) is first computed for different values
of � , where f is the best nonlinear fit of the music signal ‘Anandi’ given by Eq. (7.9).
This rX.�/ is then plotted against � to form the two dimensional correlogram
diagram. This is shown by Fig. 7.10a. The suitable value of the time-delay � D 6

is obtained from this correlogram diagram. The three dimensional attractor is
finally reconstructed with the coordinates .xA.t/; xA.t C �/; xA.t C 2�//; t D
1; 2; : : : ; .10000� 2�/. This is given by Fig. 7.10b.

We next reconstruct the attractor of the other music signal based on raga
‘Bhairavi’.
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To reconstruct the attractor of the aforesaid music signal based on raga
‘Bhairavi’, Eq. (7.6) is first used to determine the nonlinear auto-correlation [51]
rX.�/ between fx.t C �/g150��tD1 and ff .x.t//g150tD1, where f is the best nonlinear
fit available for a smaller segment of this music signal, given by Eq. (7.10). The
suitable value of � is obtained from the corresponding two dimensional correlogram
diagram as discussed in Sect. 7.3.1.1. In this case, the value of � is found to be three.
Finally, the three dimensional attractor is reconstructed with time-delay � D 3,
which is given by Fig. 7.11.

On the other hand, the linear AC measure is not applicable as both the signals
are perfectly nonlinear. However the general measure AMI may be used in these
cases. The plot of AMI(�)against the time-delay � for the music signals based on
raga ‘Anandi’ and ‘Bhairavi’ are shown by Fig. 7.12a, b.

It is evident from the above figures that the suitable time-delay for the music sig-
nals of raga‘Anandi’ and ‘Bhairavi’ are found to be 18. The respective reconstructed
attractors are given by Fig. 7.13a, b.
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Fig. 7.11 Reconstructed three dimensional attractor of the music signal based on raga ‘Bhairavi’
with � D 3 under the new type of nonlinear auto-correlation of bivariate data
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Fig. 7.13 Reconstructed three dimensional attractor of the music signal based on raga (a) ‘Anandi’
and (b) ‘Bhairavi’ with � D 18 obtained under AMI measure

7.3.1.6 Remarks

Three dimensional reconstructed attractor under AMI measure [44, 45] of the
music signals of raga ‘Anandi’ and ‘Bhairavi’ given by Fig. 7.13a, b respectively,
show lack of density in the orbits and hence they can not be considered as
attractors in the proper sense of the term. In fact, the attractor given by Fig. 7.13b
possesses many outliers also. However, the three dimensional attractors of both the
signals reconstructed under new type of nonlinear auto-correlation of bivariate data,
given by Figs. 7.10b and 7.11 show significant improvement over their respective
attractors reconstructed under AMI. The three dimensional attractors of Figs. 7.10b
and 7.11 reconstructed under this measure exhibit orbits, which are almost dense
except for very few outliers. So these attractors are supposed to be the least
distorted reconstructed attractor for the music signal of raga ‘Anandi’ and‘Bhairavi’
respectively. This not only establishes the applicability of this new type of nonlinear
auto-correlation measure, but also it claims the superiority of attractor reconstruc-
tion under this new type of nonlinear auto-correlation of bivariate data [51] over
those reconstructed under the AMI measure.

7.3.2 For Multiple Time Series

Let us first generalize the procedure for attractor reconstruction from a single
component of the solution vector of a system of differential equations such that
it is possible to reconstruct the attractor by utilizing multiple components of the
solution vector. Since the given Lorenz system [48] consists of three differential
equations, the solution vector of the Lorenz system has three components. Let
.x1.t/; x2.t/; x3.t/ be the solution vector of the given system. The independent
coordinates can be taken as .u.t/; u.t C �/; u.t C 2�//; t D 1; 2; 3; : : : :; N � 2� , for
the time-delay � , where u; v;w are chosen from x1; x2; x3. The suitable time-delay
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� is determined from the two dimensional correlogram as described earlier. Finally,
the attractors are reconstructed in three dimensions with these points.

In case of different time-delays, the independent coordinates are taken as
.u.t/; u.t C �1/; u.t C �1 C �2//; t D 1; 2; 3; : : : :; N � .�1 C �2/, for the time-delays
�1; �2, where u; v;w are chosen from x1; x2; x3. The suitable time-delays �1; �2 are
determined from three dimensional correlogram diagram. This is basically a three
dimensional plot of the time-delays �1; �2 against the respective correlation measure.
The three dimensional attractors are then reconstructed with these independent
coordinates.

7.3.2.1 Higher Dimensional MI

One of the major limitation of AMI [44, 45] discussed in Sect. 7.3.1 is that it was
computed between two variables x.t/ and x.t � �/ only, where � is the time-
delay. This actually constrains the higher dimensional attractor in the sense that the
variables x.t�2�/,x.t�3�/; : : : :: etc. are selected automatically, without care of the
information content added by these variables to the information already contained in
x.t/ and x.t � �/. This problem can be solved in two ways. One way is to evaluate
the information contained as a whole by all variables involved in the reconstruction
of attractors. The other way is to allow more freedom by removing the constraint
that time-delays are multiple one from another. In other words, instead of same
time-delay .�/ repeated, different time-delays �1; �2; �3; : : : :: may be used. Thus, a
multidimensional criterion needs to be incorporated with the notion of MI. From
this view point, the notion of higher dimensional MI [46, 47] was introduced. In
this section, we briefly discuss this measure under same time-delay repeated and
different time-delays.

A. Same Time-Delay Repeated

Let the attractor to be reconstructed is m dimensional. We define the required m
variables as follows: X1 D x.t/; X2 D x.t � �/; X3 D x.t � 2�/; : : : :; Xm D
x.t � .m � 1/�/.

Equation (7.4) is then generalized to obtain m-dimensional MI given by
Eq. (7.11).

MI.X1;X2; : : : :; Xm/

D
X

t

ProbŒX1;X2; : : : :; Xm�log.
ProbŒX1;X2; : : : :; Xm�

ProbŒX1�ProbŒX2� : : : ::ProbŒXm�
/: (7.11)

Thus, MI is a measure of the discrepancy between the probability density of the
joint variables and the product of the marginal densities.
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The suitable time-delay � is obtained in exactly the same way as it was obtained
for AMI [44, 45].

However, it is very difficult to estimate this higher dimensional MI in practice.
This is because, the unknown probability densities cannot be estimated accurately
in a high-dimensional space. Thus, it is estimated in an alternative way proposed by
Kraskov et al. [46]. This idea is based on a K-NN estimator [46].

B. Different Time-Delays

Higher dimensional MI with different time-delays �1; �2; �3; : : : :; �m�1is a further
generalization of the higher dimensional MI with same time-delay repeated [46].
This measure is determined by similar technique as discussed in the previous section
with the exception that the m-variables X1;X2; : : : :; Xm are taken as x.t/; x.t �
�1/; x.t � �2/; : : : ; x.t � �m�1/ respectively.

7.3.2.2 Generalized Auto-Correlation (GAC)

It has already been highlighted in the introduction section that the best possible
approach for understanding real life nonlinear phenomena is to reconstruct the
dynamics of the system from the data itself, which involves choice of proper time-
delay and proper embedding space. However, most of the real life nonlinear data
are non-stationary and thus the linear AC measure and even the AMI measure fail
to produce the proper time-delay for phase space reconstruction in such cases. As
a remedy to this problem, the earlier strategy was to first make the time series
stationary and then to apply the known methods of analysis of stationary time series.
But in this process, some important information might be lost. In this section, our
purpose is to modify the auto-correlation measure in such a way that it is applicable
to any signal (time series), whether stationary or non-stationary. Let fx.t/gNtD1 be
such a non-stationary time series. It is known [42, 43] that the time-delay � for which
x.t/ and x.t C �/ are linearly independent, is the first value of � corresponding
to which the auto-correlation coefficient is positive minimum in the correlogram
diagram. Obviously in this case x.t/; x.t C �/; x.t C 2�/; : : : :: are also linearly
independent. At this point, the following limitations may be noted:

1. The very definition of auto-correlation demands that the time series must be
stationary, as the means and the variances are taken to be the same in all stages
of the signal. Naturally the investigations are not applicable to non-stationary
signals;

2. It is not possible to find out the independent coordinates with different delay of
the form .x.t/; x.t C �1/; x.t C �1 C �2/; : : : : : :/, although there is no specific
reason in choosing same � in determining them linearly independent coordinates
.x.t/; x.t C �/; x.t C 2�/; : : : ::; x.t C .n � 1/�//.
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With a view to overcoming such shortfalls in the earlier discussions, we consider
generalizations of auto-correlation functions. Obviously to compare two and three
stages of a non-stationary signal, our modified definition of auto-correlation works.
Moreover, our generalized definition of auto-correlation [52] works well for any
finite dimensional attractor reconstruction [1–16].

A. Different Time-Delays

Let fx.t/gNtD1 be the given time series. The generalized auto-correlation [52] of the
given time series with respect to different time-delays �1; �2 is defined by

Rx.�1; �2/ D
P.N��1��2/

tD1 �t �tC�1�tC�1C�2qP.N��1��2/
tD1 �2t

qP.N��1��2/
tD1 �2tC�1

qP.N��1��2/
tD1 �2tC�1C�2

(7.12)

�t D .x.t/ � x.t//; �tC�1 D .x.t C �1/� x.t C �1//; �tC�1C�2

D .x.t C �1 C �2/� x.t C �1 C �2//

where x.t/; x.t C �1/ and x.t C �1 C �2/ are the means of the time series
fx.t/gN�.�1C�2/

tD1 ; fx.t/gN��2
tD1C�1 and fx.t/gNtD1C�1C�2 respectively and 1  �1; �2  N

2
,

if N is even and 1  �1; �2  N�1
2

, if N is odd.
The suitable time-delay .�1; �2/ is one, where GAC with different time-delays

[52] Rx.�1; �2/ given by (7.12) comes nearer to zero for the first time in the three
dimensional correlogram diagram.

B. Same Time-Delay Repeated

In particular, when �1 D �2 D � , Eq. (7.12) reduces to

Rx.�/ D
P.N�2�/

tD1 �t �tC��tC2�qP.N�2�/
tD1 �2t

qP.N�2�/
tD1 �2tC�

qP.N�2�/
tD1 �2tC2�

(7.13)

�t D .x.t/ � x.t//; �tC� D .x.t C �/� x.t C �//; �tC2�

D .x.t C 2�/ � x.t C 2�//

where x.t/; x.t C �/ and x.t C 2�/ are the means of the time series fx.t/gN�2�
tD1 ;

fx.t/gN��
tD1C� and fx.t/gNtD1C2� respectively and 1  �  N

2
, if N is even and 1 

�  N�1
2

, if N is odd.
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The suitable time-delay � is one, where GAC with same time-delay repeated [52]
(Rx.�/) given by (7.13) comes nearer to zero for the first time in the two dimensional
correlogram diagram.

7.3.2.3 Cross Auto-Correlation (CAC)

Cross auto-correlation (CAC) [53] is a measure, which basically fits a nonlinear
curved surface trend. The problem of attractor reconstruction [1–16] still depends
on finding proper time-delay and embedding dimensions [11, 12]. The newly
introduced concept of nonlinear method gives better result in determining the
suitable time-delay and hence indirectly helping in attractor reconstruction. For
geometrical clarity, once again we like to consider the embedding dimension to
be three. We first define CAC [53] step by step.

A. Total Correlation

In determining linear regression coefficients, a line of best fit is tried for the given
two dimensional points by the method of least squares. In case of two dimensional
nonlinear points, the points do not lie on a line or more precisely they cannot
be approximated by a line of best fit. Thus to find the corresponding nonlinear
regression coefficients, a curve of best fit is tried with the given two dimensional
nonlinear points by the method of least squares. Since the points have a nonlinear
trend, the method of nonlinear correlation needs to be applied. However, when two
sets of data points have nonlinear trend, ultimately by proper substitution, two sets of
data points with linear trend are obtained and the same correlation formula for linear
trend is used to compute the correlation coefficient even in this case of nonlinear
trend.

The difficulty arises when three time series of any suitable size is considered.
If the points have a planar trend, then plane of regression may be tried. But
this precisely means that variable corresponds to one of the time series must be
related with the two other variables correspond to two other time series by a linear
function. Thus, a new data set of the approximated time series is obtained. Naturally
correlation formula for these two series—one is the given time series and the other
one is the approximated time series is calculated, which is defined as the total
correlation [60] of the given three time series having planar trend.

When n time series are compared simultaneously a hyper-plane of best fit of
the form w D a1u1 C a2u2 C a3u3 C : : : : : : C an�1un�1 C an is tried with
the n-dimensional non-planer points .x1.t/; x2.t/; x3.t/; : : : ::; xn.t// to find total
correlation coefficient. By applying the method of least squares and using these
given n dimensional points, values of a1; a2; a3; : : : : : : ; an are determined. Thus, a
plane of the form w D f .u1; u2; u3; : : : ::; un�1/ is obtained, where f is a known
linear function of u1; u2; u3; : : : ::; un�1. We call this new data set as fw0g. The total
correlation coefficient [60] is defined as the linear correlation coefficient between
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fw0g and the set fw00g , which is given by the nth component of the n-dimensional
points .x1.t/; x2.t/; x3.t/; : : : ::; xn.t//.

B. Cross Correlation

Suppose the three time series have a curved surface trend instead of a planar
trend. In this case, it is not possible to get two time series with linear trend by
proper substitution as done in the two dimensional case. So the correlation of three
time series with linear trend is extended to correlation of three time series with
nonlinear trend. We call it cross-correlation in general and cross-auto-correlation
in particular. Obviously in this case, the points on the attractor lie on a fractal set
consisting of different non-planar, non-smooth points. As a matter of fact, these non-
planar points cannot be approximated by plane of best fit. Rather, these points can
be better approximated by a smooth hyper-surface, which we call a hyper-surface
of best fit. Even when more than three time series are compared simultaneously, the
same procedure is followed. In this process, the actual non-planar n-dimensional
points .x1.t/; x2.t/; x3.t/; : : : ::; xn.t//, where each xi .t/; i D 1; 2; 3; : : : : : : ; n

is a time series, are approximated by fitting a smooth hyper-paraboloid of the
form w D a1un�1

1 C a2un�1
2 C a3un�1

3 C : : : : : : C an�1un�1
n�1 C an and then the

method of least square is applied to obtain the hyper-surface of best fit given by
w D a1un�1

1 Ca2un�1
2 Ca3un�1

3 C: : : : : :Can�1un�1
n�1Can , where a1; a2; a3; : : : : : : ; an

are determined from the following equations:

X
w D a1

X
un�1
1 C a2

X
un�1
2 C : : : :C an�1

X
un�1
n�1 C nan;

X
un�1
1 w D a1

X
u2n�2
1 C a2

X
un�1
1 un�1

2 C : : : :C an�1

X
un�1
1 un�1

n�1 C an
X

un�1
1 ;

X
un�1
2 w D a1

X
un�1
1 un�1

1 C a2
X

u2n�2
2 C : : : :C an�1

X
un�1
2 un�1

n�1 C an
X

un�1
2 ;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

X
un�1
n�1w D a1

X
un�1
n�1u

n�1
1 C a2

X
un�1
n�1u

n�1
2 C : : : :C an�1

X
u2n�2
n�1 C an

X
un�1
n�1;

(7.14)

Thus a hyper-surface of the form w D f .u1; u2; u3; : : : ::; un�1/ is obtained,
where f is a nonlinear function of u1; u2; u3; : : : ::; un�1. Let us denote this new
data set as fw0g. The cross correlation coefficient is defined as the linear correlation
coefficient between fw0g and the set fw00g, which is given by the nth component
of the n-dimensional points .x1.t/; x2.t/; x3.t/; : : : ::; xn.t//. Since the equation of
the hyper-paraboloid contains one linear term and n � 1 nonlinear terms, while
the other surfaces like hyper-ellipsoid or hyper-hyperboloid contain n nonlinear
terms, the calculation becomes more complex and unmanageable and takes more
computational time in the later cases. For this reason, only a hyper-paraboloid
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w D a1un�1
1 Ca2un�1

2 Ca3un�1
3 C : : : : : :Can�1un�1

n�1Can is fitted to the given non-
planar points, which definitely minimizes the computation time. Moreover, there
is no loss of generality in choosing such a simpler form of hyper-surface, because
only small segments of the time series have been taken for considering non-linearity
of the time series and hence it makes no difference whether we consider a hyper-
paraboloid or a hyper-ellipsoid or a hyper-hyperboloid as a hyper-surface of best fit.

C. Cross Auto-Correlation

It is a particular case of cross correlation. Cross-correlation was developed for
comparing n time series simultaneously. But when a single time series is considered,
cross-correlation becomes cross-auto-correlation (CAC) [53].

Let x1.t/; x2.t/; x3.t/; : : : ::; xn.t/ be the solution component of some n-
dimensional dynamical system. To define CAC for a single solution component
fx.t/gNtD1 of the dynamical system with copies under same time-delay repeated and
different time-delays, we proceed as follows:

Let us first consider single time series with copies under same time-delay
repeated [53].

In this case, we first find the n independent coordinates .x.t/; x.t C �/; x.t C
2�/; : : : :; x.tCn � 1�// with time-delay � as follows: Firstly, the time series is par-
titioned into n groups, viz. fx.t/gN�.n�1/�

tD1 ; fx.t/gN�.n�2/�
tD1C� ; fx.t/gN�.n�3/�

tD1C2� ; : : : ::;

fx.t/gNtD1C.n�1/� . Thus we have n sets of data in n-dimensional spaces given
by ut;1; ut;2; ut;3; : : : :; ut;n, where ut;1 D x.t/; ut;2 D x.t C �/; ut;3 D
x.t C 2�/; : : : : : : :; ut;n D x.t C .n � 1/�/; t D 1; 2; 3; : : : :; N � .n � 1/� .
ut;1; ut;2; ut;3; : : : :; ut;n�1 are then substituted for u1; u2; : : : ; un�1 in the equation
w D a1un�1

1 C a2un�1
2 C a3un�1

3 C : : : : : :C an�1un�1
n�1 C an of the best fitted hyper-

surface to obtain a new time series fwt gN�.n�1/�
tD1 . The cross auto-correlation between

these n time series ut;1 D x.t/; ut;2 D x.t C �/; ut;3 D x.t C 2�/; : : : : : : :; ut;n D
x.t C .n � 1/�/ denoted by rn;x.�/, is defined as the correlation between
fwt gN�.n�1/�

tD1 and fut;ngN�.n�1/�
tD1 with respect to the time-delay � and is given by

Rx.�/ D
PN�.n�1/�

tD1 .ut;n � ut;n/.wt � wt /qPN�.n�1/�
tD1 .ut;n � ut;n/2

qPN�.n�1/�
tD1 .wt � wt /2

(7.15)

where ut;n and wt are the means of the time series ut;n and wt respectively and
� D 1; 2; 3; : : : :; N � 1.

The suitable time-delay � for the reconstruction of attractor is obtained from the
two dimensional correlogram diagram exactly in a similar manner as it was obtained
under GAC with same time-delay repeated [52].

We next consider single time series under different time-delays [53].
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To find the n independent coordinates .x.t/; x.t C �1/; x.t C �1 C
�2/; : : : : : : ; x.tC�1C�2C: : : : : :C�n�1// for attractor reconstruction with different
time-delays �1; �2; : : : ::; �n�1, the time series is sub-divided into n groups—
fx.t/gN�.�1C�2C:::::C�n�1/

tD1 ; fx.t/gN�.�2C:::::C�n�1/
tD1C�1 ; : : : ::; fx.t/gNtD�1C�2C:::::C�n�1

.
Proceeding similarly as above, the CAC [53] between the time series ut;1 D

x.t/; ut;2 D x.t C �1/; ut;3 D x.t C �1 C �2/; : : : : : : :; ut;n D x.t C �1 C �2 C
: : : ::C �n�1/; t D 1; 2; 3; : : : :; N � .�1 C �2 C : : : ::C �n�1/ is defined with respect
to the time-delays �1; �2; �3; : : : ::; �n�1, denoted by rn;x.�1; �2; �3; : : : ::; �n�1/ as the
correlation between fut;ngN�.�1C�2C:::::C�n�1/

tD1 ; fwt gN�.�1C�2C:::::C�n�1/
tD1 , given by

Rx;n.�1; �2; �3; : : : ::; �n�1/ D
PPn�1

iD1 �i
tD1 .ut;n � ut;n/.wt � wt /q

PPn�1
iD1 �i

tD1 .ut;n � ut;n/2
q
PPn�1

iD1 �i
tD1 .wt � wt /2

(7.16)

where ut;n and wt are the means of the time series ut;n and wt respectively and
�1; �2; �3; : : : ::; �n�1 D 1; 2; 3; : : : :; N � 1.

To find the suitable time-delays �1; �2; �3; : : : ::; �n�1 for the reconstruction of
attractor, Rx;n.�1; �2; �3; : : : ::; �n�1/ is plotted against �1; �2; �3; : : : ::; �n�1 to form
the n-dimensional correlogram diagram. This is just an extension of the three dimen-
sional correlogram diagram and so the suitable time-delays �1; �2; �3; : : : ::; �n�1 are
obtained similarly as obtained under GAC with different time-delays [52].

For multiple time series with copies under same time-delay repeated, the
independent coordinates are taken as .x.t/; x.t C �/; x.t C 2�/; : : : : : : ; x.t C
n � 1�//, under single time-delay � , such that x.t/ D xi1 .t/; x.t C �/ D xi2 .t C
�/; x.t C 2�/ D xi3.t C 2�/; : : : : : : ; x.t C n � 1�/ D xin.t C n � 1�/ where
i1; i2; i3; : : : : : : ; in 2 f1; 2; 3; : : : ; N g. The CAC between these n time series is
then obtained by using Eq. (7.15) and suitable time-delay � is obtained in a similar
manner as described earlier for CAC with same time-delay repeated [53].

In case of multiple time series with different time-delays �1; �2; �3; : : : ::; �n�1, the
independent coordinates are taken as .x.t/; x.t C �1/; x.t C �1 C �2/; : : : : : : ; x.t C
�1 C �2 C : : : : : : C �n�1// ,t D 1; 2; 3; : : : ::; N � Pn�1

iD1 �i such that .x.t/ D
xi1.t/; x.t C �1/ D xi2.t C �1/; x.t C �1 C �2/ D xi3.t C �1 C �2/; : : : : : : ; x.t CPn�1

iD1 �i / D xin .t C Pn�1
iD1 �i /, where i1; i2; i3; : : : : : : ; in 2 f1; 2; 3; : : : ; N g.

The CAC [53] between these n time series is obtained by using Eq. (7.16) and
suitable time-delays �1; �2; �3; : : : ::; �n�1 are obtained in a similar manner from
n-dimensional correlogram as described earlier in case of CAC with different time-
delays.

It is evident from the above definitions that CAC [53] is a nonlinear
measure. Also since w D a1un�1

1 C a2un�1
2 C a3un�1

3 C : : : :: C an�1un�1
n�1 C an

represents a family of hyper-paraboloid, so for different sets of values of
a1; a2; a3; : : : :; an we get different members of the family. Again different sets
of values of a1; a2; : : : :; an are found from the equations given by (7.12) for
different set of points .x1.t/; x2.t/; x3.t/; : : : ::; xn.t//, which are points on the
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attractor itself. As the dynamical systems vary, their attractors satisfy different
.x1.t/; x2.t/; x3.t/; : : : ::; xn.t// and so the values of a1; a2; a3; : : : :; an are also
found to be different. Thus this nonlinear measure varies from dynamical system to
dynamical system. In other words, CAC [53] is actually system dependent.

7.3.2.4 Experimental Results and Discussion

Let us first consider the Lorenz system given by Eq. (7.7) (Sect. 7.3.1.4).
We have already taken a wrong attempt of reconstructing the attractor of the

Lorenz system [48] from each of its solution components separately under the
notion of linear AC [42, 43] and AMI [44, 45] (Sect. 7.3.1.4). Therefore, we first
try attractor reconstruction of the Lorenz system [48] from a single component of
its solution vector under GAC with same time-delay repeated and different time-
delays [52].

We apply GAC with same time-delay repeated [52] on the solution component
fx2.t/g5000tD1 to find a suitable � for the reconstruction of the attractor for the aforesaid
Lorenz system given by (7.7). In this case, the suitable value of � is obtained from
the two dimensional correlogram, where the GAC Rx2.�/ for different values of �
are calculated by using Eq. (7.13). This is shown in Fig. 7.14a. It is evident from the
above figure that the GAC [52] comes nearer to zero for the first time, when � D 32.
The attractor reconstructed with this value of � is given by Fig. 7.14b.

In a similar manner, we reconstruct the attractor from the other two components
fx1.t/g5000tD1 and fx3.t/g5000tD1 of the solution vector by using GAC measure. The three
dimensional attractors thus reconstructed are given by Fig. 7.15a, b respectively.

It is observed that the use of GAC with same time-delay repeated [52] is unable
to give the proper value of time-delay towards reconstruction of the best attractor
for the Lorenz system [48] by using its single solution component. However, the
reconstructed attractors have improved a bit over that reconstructed under the
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Fig. 7.14 (a) Two dimensional correlogram for the solution component fx2.t/g5000tD1 of the Lorenz
system under the notion GAC with same time-delay repeated, (b) three dimensional reconstructed
attractor of the Lorenz system with time-delay � D 32 under the same measure
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Fig. 7.15 Three dimensional reconstructed attractor of the above Lorenz system from the solution
component (a) fx1.t/g5000tD1 and (b) fx3.t/g5000tD1 under the notion of GAC with same time-delay
repeated
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Fig. 7.16 Best form of the reconstructed attractors of the aforesaid Lorenz system with different
combinations of the solution components Œ.x3.t/; x2.t C �/; x1.t C 2�//� under GAC with same
time-delay � D 2 repeated

standard auto-correlation function, with the use of this newly proposed notion. This
motivates us to use this notion with multiple solution components of the Lorenz
system.

Thus we next consider multiple solution components to reconstruct the attractor
of the Lorenz system. One of the best reconstructed attractors using three compo-
nents and suitable time-delay is shown in Fig. 7.16.

Actually, most of the reconstructed attractors for the aforesaid Lorenz system
[48] show lack of density in the orbits and similarity to the original attractor
(Fig. 7.1a). Hence they cannot be considered as attractors in the proper sense of the
term. Some of them exhibit orbits, which are almost dense except for some outliers.
Hence they may be considered as approximate attractors for the aforesaid Lorenz
system. However, the reconstructed attractors given by Fig. 7.16 exhibits complete
dense orbits and it may be considered as the least distorted forms of attractors,
reconstructed for the Lorenz system. In fact, this attractor reconstructed with the
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independent coordinates .x3.t/; x2.t C �/; x1.t C 2�//, t D 1; 2; 3; : : : ::; N � 2� ,
with � D 2 looks almost similar to the original attractor of the Lorenz system given
by Fig. 7.1a.

So we finally consider GAC with different time-delays [52] to reconstruct the
attractor of the Lorenz system from its multiple solution components. Obviously
the reason is to get an attractor, whose distortion from the original attractor is
even lesser than that least distorted attractor reconstructed under GAC with same
time-delay repeated [52]. In this context, it may be noted that under the notion
of GAC with different time-delays [52], it is not possible to obtain proper time-
delays for all combinations of the solution components x1; x2; x3. This actually
reveals that not all combinations of the solution components are useful for the
reconstruction of the attractor of the aforesaid Lorenz system. However, most of
the attractors reconstructed under the notion of GAC with different time-delays [52]
are almost similar to the actual attractor of the Lorenz system [48]. Among those, the
attractors reconstructed with the combinations .x1.t/; x3.tC�1/; x3.tC�1C�2// and
.x3.t/; x1.t C �1/; x3.t C �1 C �2// look exactly same (and obviously topologically
equivalent) as the original attractor of the Lorenz system given by Fig. 7.1a. These
are shown by Fig. 7.17a, b respectively.

Thus, by the use of GAC with different time-delays [52], it is possible to recon-
struct topologically equivalent attractor, which is least distorted from the original
attractor of the Lorenz dynamical system [48]. In fact, this new measure can also be
used to find proper time-delay for the best possible topologically equivalent attractor
reconstruction from multiple time series. This not only establishes the superiority
of attractor reconstruction with different time-delays but it also highlights that
consideration of a single component of the solution vector of the dynamical system
is not always sufficient to reconstruct the best possible attractor for it. However,
if the time series data is highly nonlinear, the aforesaid measure may not be
workable. One such counter example is a known Neuro-dynamical system [61],

50

50

40

30

20

20

10 10

0

0

–20

–10

0

50

50

45

40

35

30

25

20

20

15

15

–1510

105
5

0

0
–5

–10
–20

a

b

Fig. 7.17 Best forms of the reconstructed attractors of the aforesaid Lorenz system with dif-
ferent combinations of the solution components (a) .x1.t/; x3.t C �1/; x3.t C �1 C �2// and
(b) .x3.t/; x1.t C �1/; x3.t C �1 C �2// under GAC with different time-delays
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where this GAC measure with same time-delay repeated or different time-delays
[52] do not work properly even by considering multiple solution components. In
this connection, we first highlight the inadequacy of the GAC measure [52].

For this purpose, let us consider the Neuro-dynamical system [61] described by
the following differential equations:

dx1
dt

D Œ1C expf�ˇ1.w21x2 C w31x3 � 	1/g��1 � ˛1x1;

dx2
dt

D Œ1C expf�ˇ2.x1 � 	2/g��1 � ˛2x2;

dx3
dt

D Œ1C expf�ˇ3.x1 � 	3/g��1 � ˛3x3; (7.17)

with the initial condition x1.1/ D 0:8; x2.1/ D 0:5; x3.1/ D 0:1 and the parameter
values w21 D 1;w31 D �6:2; ˛1 D 0:62; ˛2 D 0:42; ˛3 D 0:1; ˇ1 D 7; ˇ2 D
7; ˇ1 D 13; 	1 D 0:5; 	2 D 0:3; 	3 D 0:7.

Under these values of the parameters, the system gives a chaotic attractor shown
by Fig. 7.18.

Solving the above Neuro-dynamical system for x1; x2; x3, we have three time
series fx1.t/g10000tD1 , fx2.t/g10000tD1 and fx3.t/g10000tD1 as solutions. We try for attractor
reconstruction for the aforesaid Neuro-dynamical system [61] by using the notion
of GAC under same time-delay repeated and different time delays [52]. For this,
we make use of single as well as multiple components of the solution vector of the
Neuro-dynamical system [61]. The procedure is discussed in details in Sect. 7.3.2.2.
Most of the attractors thus reconstructed under same time-delay repeated and
different time-delays are not at all well-formed and they cannot be called attractor
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Fig. 7.18 Chaotic Attractor for the aforesaid Neuro-dynamical system given by (7.17)
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Fig. 7.19 Reconstructed attractors of the Neuro-dynamical system with different combinations of
the components of its solution vector under GAC with (a) .x2.t/; x1.t C �/; x3.t C 2�/ [under
same time-delay repeated], (b) .x3.t/; x1.t C �1/; x3.t C �1 C �2// [under different time-delays]

in the proper sense of the term. However, few of them are quite well-formed and
among those two best forms of the reconstructed attractors, one under the notion
of GAC [52] with same time-delay repeated and the other under different time-
delays are given by Fig. 7.19a, b respectively. However, even these best forms of
the reconstructed attractors are not at all comparable with the original attractor of
the aforesaid Neuro-dynamical system [61]. Thus it is seen that under the notion of
GAC [52] it is impossible to find proper time-delay(s) towards better (topologically
equivalent) attractor reconstruction for this dynamical system from its single or
multiple solution components with same time-delay repeated or different time-
delays. Therefore, a new measure is sought in order to resolve this problem.

We next highlight the inadequacy of the other time-delay finding measures viz.
AMI [44, 45] and higher dimensional Mutual information (MI) [46, 47] in the
reconstruction of the least distorted attractor of the aforesaid Neuro-dynamical
system [61].

Note that we have not even considered the linear AC measure [42, 43] as the
solution components of the Neuro-dynamical system [61] are non-stationary and
highly nonlinear.

Consider the solution component fx3.t/g10000tD1 of the above Neuro-dynamical
system [61] for the reconstruction of its three dimensional attractor. The plot of
AMI [44, 45] against time-delay � is given by Fig. 7.20a. It is seen from Fig. 7.20a
that AMI [44, 45] comes nearer to zero for the first time, when � D 30 . The
corresponding three dimensional reconstructed attractor is given by Fig. 7.20b.

It is clear from Fig. 7.20b that it is not at all attractor in the proper sense of
the term. The method is then applied for the solution components fx1.t/g10000tD1 and
fx2.t/g10000tD1 of the Neuro-dynamical system [61], but the attractor reconstruction
does not improve. In fact, in the later cases the reconstructed attractors [1–16] are
even worse than the present one.

We now use higher dimensional MI [46, 47] with same time-delay repeated
to find suitable time-delay to reconstruct the attractor of the Neuro-dynamical
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Fig. 7.20 (a) Plot of AMI against time-delay for the solution component fx3.t/g10000tD1 of the
Neuro-dynamical system, (b) three dimensional reconstructed attractor of the Neuro-dynamical
system with � D 30 obtained under AMI
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Fig. 7.21 The best form of reconstructed attractor with different combinations of solution
components under higher dimensional MI with same time-delay repeated

system [61] from multiple components of its solution vector. The attractors are
reconstructed from all possible combinations of the solution component with same
time-delay repeated. All the attractors, when judged visually, show that their best
form is given as in Fig. 7.21.

Though Fig. 7.21 shows a bit improvement over Fig. 7.20b in the sense that in
the present case we get a better dense region with lesser number of outliers but the
improvement is not at all remarkable.

We next use higher dimensional Mutual Information with different time-delays
[47] to find proper time-delays for reconstruction of the attractor for the Neuro-
dynamical system from multiple components of its solution vector. All the attractors
reconstructed under higher dimensional MI [47], when judged visually, show that
their best form is given as in Fig. 7.22.
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Fig. 7.22 The best form of
reconstructed attractors with
different combinations of
solution components under
higher dimensional MI with
different time-delays
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Figure 7.22 shows a comparatively better dense region with lesser number of
outliers as compared to the previous ones. But it still differs much from the original
attractor given by Fig. 7.18. As our intention is to reconstruct not only topologically
equivalent attractor but also a least distorted attractor, more improvements remain to
be achieved. But this cannot be done by existing methods as mentioned above. We
now illustrate another nonlinear measure—CAC [53] by means of two examples.
One is the aforesaid Neuro-dynamical system [61] for which least distortion
attractor cannot be reconstructed by AC [42, 43], AMI [44, 45], higher dimensional
MI with same time-delay repeated and different time-delays [46, 47] and even by
GAC with same time-delay repeated and different time-delays [52]. The other is the
Lorenz system, where our intention is to observe some further improvement in the
form of the reconstructed attractor [1–16].

We first reconstruct the attractor of the Neuro-dynamical system [61] under CAC
from single component of its solution vector with same time-delay repeated [53].
We consider each of the solution components separately and try to reconstruct the
attractors. None of them are found to be satisfactory except one that is reconstructed
from the solution component fx2.t/g10000tD1 . Since the Neuro-dynamical system [61]
is three dimensional, CAC [53] rn;x2.�/ given by Eq. (7.2) with n D 3 is used to
find the independent coordinates .x2.t/; x2.t C �/; x2.t C 2�//. The time-delay �
is obtained by plotting rn;x2.�/ against � as given by Fig. 7.23a. The value of � is
found to be 7 and the attractor reconstructed with this � is shown by Fig. 7.23b.

Obviously, the attractor given by Fig. 7.23b exhibits orbits and it is almost dense
and even better than those obtained even under higher dimensional MI with same
time-delay repeated and different time-delays [47]. But it does not resemble the
original attractor of the Neuro-dynamical system [61].

We next reconstruct the attractors under CAC [53] from single component of the
solution vector with different time-delays.

For this purpose, we consider the same solution component fx2.t/gNtD1 of the
solution vector of the Neuro-dynamical system [61] under different time-delays �1
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Fig. 7.23 (a) Two dimensional correlogram diagram for the solution component fx2.t/g10000tD1

of Neuro-dynamical system under CAC with same time-delay repeated, (b) three dimensional
reconstructed attractor of the Neuro-dynamical system with � D 7 obtained from the correlogram
diagram
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Fig. 7.24 (a) Three dimensional Correlogram for the solution component fx2.t/g10000tD1 of the
Neuro-dynamical system under CAC with different time-delays, (b) three dimensional recon-
structed attractor of the Neuro-dynamical system with �1 D 1; �2 D 6 obtained from the
correlogram diagram

and �2 and calculate the CAC rn;x2.�1; �2/ given by (7.14) for different values of
�1 and �2. These values of CAC are then plotted against �1; �2 to form the three
dimensional correlogram given by Fig. 7.24a. It is found from Fig. 7.24a that the
value of the CAC rn;x2.�1; �2/ comes nearer to zero for the first time when �1 D
1; �2 D 6. The reconstructed attractor is shown in Fig. 7.24b.

A further improvement in the quality of the reconstructed attractor is observed
in Fig. 7.24b. In fact, the orbits of this attractor reconstructed by CAC [53] measure
with different time-delays are much denser even than the previous one reconstructed
under same time-delay repeated. Thus so far as reconstruction is concerned from
single component, this measure is even better than higher dimensional MI with same
time-delay repeated and different time-delays [47]. But still this attractor does not
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Fig. 7.25 A comparatively
less distorted attractor of the
Neuro-dynamical system
reconstructed from its
multiple solution components
under CAC with same
time-delay � D 2 repeated
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resemble the original attractor given by Fig. 7.18. So we try to improve the quality
of this reconstructed attractor by considering multiple solution components of the
Neuro-dynamical system [61].

For reconstructing the attractor of the above Neuro-dynamical system [61] from
multiple solution components with same time-delay repeated, we first obtain the
independent coordinates .x.t/; x.t C �/; x.t C 2�//, where � is the time-delay and
x.t/ D xi1.t/; x.t C �/ D xi2 .t C �/; x.t C 2�/ D xi3 .t C 2�/; i1; i2; i3 2 f1; 2; 3g.

However not all of them are attractors in the proper sense of the term. Among all
of those attractors, the least distorted form is shown by Fig. 7.25.

Definitely, this attractor reconstructed with the combinations x2; x3; x2 can be
considered as a much improved form of the attractor for the Neuro-dynamical
system [61], as it exhibits complete dense orbits. Also this reconstructed attractor is
less distorted from the original attractor of the Neuro-dynamical system [61] given
by Fig. 7.18.

Finally, we reconstruct attractors for the Neuro-dynamical system [61] from its
multiple solution components by choosing the independent coordinates .x.t/; x.tC
�1/; x.tC�1C�2// , for two different time-delays �1; �2, where x.t/ D xi1.t/; x.tC
�1/ D xi2 .t C �1/; x.t C �1 C �2/ D xi3.t C �1 C �2/; i1; i2; i3 2 f1; 2; 3g.

The least distorted form among those reconstructed attractors is presented in
Fig. 7.26.

Actually, the reconstructed attractor with the combination x3; x2; x1 under
different time-delays has remarkably improved compared to that obtained for same
time-delay repeated (Fig. 7.25) in the sense that this attractor (Fig. 7.26) contains
lesser number of outliers and also a better dense orbit as compared to those obtained
under same time-delay repeated (Fig. 7.25). Also it is least distorted to the original
attractor of the Neuro-dynamical system given by Fig. 7.18.

In a similar manner, we obtain reconstructed attractors of Lorenz system [48]
under CAC [53] measure.
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Fig. 7.26 The least distorted reconstructed attractor of the Neuro-dynamical system with different
combinations of the components of its solution vector under different time-delays Œ.x3.t/; x2.t C
�1/; x1.t C �1 C �2// with �1 D 1; �2 D 3� under CAC

We now compute the value of the shape distortion parameter (Sd) [50] in each
case under all of the time-delay finding measures discussed above for the Neuro-
dynamical system [61] and the Lorenz system [48].

The calculation shows that the value of Sd [50] is 0:0014 for the attractor
reconstructed with .x3.t/; x3.t C �/; x3.t C 2�// under AMI [44, 45] measure,
0:0125 for the attractor reconstructed with .x1.t/; x3.t C �/; x1.t C 2�// under
higher dimensional MI with same time-delay repeated [47], 0:165003 for the same
reconstructed with .x2.t/; x1.t C �1/; x2.tC �2// under higher dimensional MI with
different time-delays [47], 0:367 for the attractor reconstructed with .x2.t/; x3.t C
�/; x2.t C 2�// under CAC with same time-delay repeated [53] and 0:4242 for the
same reconstructed with .x3.t/; x2.tC�1/; x1.tC�1C�2// under CAC with different
time-delays [53] for the Neuro-dynamical system [61].

For the Lorenz system [48] the value of Sd [50] is 0:5838 for the attractor
reconstructed with .x1.t/; x1.t C �/; x1.t C 2�// under AMI [44, 45] measure,
0:6298 for the attractor reconstructed with .x3.t/; x1.t C �/; x2.t C 2�// under
higher dimensional MI with same time-delay repeated [47], 0:8896 for the same
reconstructed with .x3.t/; x1.t C �1/; x1.tC �2// under higher dimensional MI with
different time-delays [47], 0:7625 for the attractor reconstructed with .x3.t/; x1.tC
�/; x2.t C 2�// under CAC with same time-delay repeated [53] and 0:8994 for the
same reconstructed with .x3.t/; x1.tC�1/; x1.tC�1C�2// under CAC with different
time-delays [53].

Thus, it is evident from the above results that the largest Sd value [50] occurs for
CAC measures with different time-delays [53] in both cases. Hence the dynamics
is best preserved in these cases. However, in both cases consideration of multiple
solution components is mandatory. Thus CAC with different time-delays [53] stands
as a best tool for attractor reconstruction, when multiple time-series are considered.
Note that we have not calculated the value of Sd [50] under GAC [52] measure as
for Neuro-dynamical system [61] the attractors reconstructed under this measure are
not at all well-formed.
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7.4 Conclusions

One of the two important factors in attractor reconstruction [1–16] is the proper
selection of the time-delay. The attractor reconstructed from one or multiple ensem-
bles will be topologically equivalent to the original attractor of the corresponding
system only when proper time-delay and embedding dimension are chosen. If the
time-delay is selected properly, the topological properties are preserved even if the
attractor is reconstructed in lesser embedding dimension. Amongst the available
time-delay finding measures, the widely accepted and mostly used measures are the
AMI [44, 45] and higher dimensional mutual information (MI) [47] for attractor
reconstruction from single and multiple observations respectively. The linear AC
measure [42, 43] is sometimes found to be handy but as most of the real life
phenomena are nonlinear and non-stationary, it is not much useful in most of the
cases. In almost all cases the attractors reconstructed under the former two measures
are found to be topologically equivalent to its original attractor. However, it is not
at all desirable to constrain the study up to this topologically equivalent attractor
reconstruction. Rather, it is encouraged to develop newer and newer sophisticated
measures for finding proper time-delay(s) in order to get the reconstructed attractor
as least distorted from the original one. If this can be done, then more precise
information regarding the dynamics behind the generation of the data can be
retrieved from its reconstructed attractor. Keeping in view of the above fact, some
comparatively newer time-delay finding measures [51–53] have also been presented
in this chapter. The basic motivation is not only to reconstruct topologically
equivalent attractors [1–16], but also to reconstruct least distorted attractors as much
as possible.

Towards this goal, a nonlinear measure—GAC [52] with same time-delay
repeated and with different time-delays have been introduced and validated for
Lorenz system [48]. It has been observed that it produces a lesser distorted recon-
structed attractor of Lorenz system [48] compared to the other time-delay finding
measures, especially when multiple solution components of the Lorenz system
are considered. However, this measure fails to produce a topologically equivalent
attractor of some known three dimensional Neuro-dynamical system [61], even
by considering its multiple solution components. As a remedy to this problem, a
system dependent nonlinear measure—CAC [53] with same time-delay repeated
and different time-delays have also been presented and a remarkable improvement
has been achieved. In fact, the attractor reconstructed under this measure especially
with different time-delays produces the best possible reconstructed attractor of
both Lorenz [48] and Neuro-dynamical system [61], when the multiple solution
components of the respective systems are considered. The comparison of all of
these reconstructed attractors with their original attractors have been made by a
shape distortion measure (Sd) [50], which determines, how much distorted are the
reconstructed attractors from their original attractors. Because of its dependency on
the underlying dynamical systems, the CAC measure [53] especially with different
time-delays is expected to work for a least distorted attractor reconstruction in
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almost all cases. Thus, the major scope of application of this measure in real world is
limited to attractor reconstruction from multiple copies of the real data. Naturally, a
similar type of nonlinear measure, which can produce a best possible reconstructed
attractor from a single observation of real data is sought for. For this reason,
another time-delay finding measure called new type of nonlinear auto-correlation
of bivariate data [51] is presented. The beauty of this measure lies in the fact that
it takes care off different type of non-linearity present in different data and hence
in almost all cases, it produces most suitable time-delay for a best possible attractor
reconstruction. This measure is first successfully validated for Lorenz system by
the Sd measure [50]. Further, some real life applications of this measure have been
presented. It has been found that the attractor reconstructed from the music signals
of two different ragas—‘Anandi’ and ‘Bhairavi’ under this new type of nonlinear
auto-correlation is much better than those reconstructed under other measures.

In a nutshell, this chapter highlights the importance of finding suitable time-
delay for a more similar attractor reconstruction of the dynamical systems. For
this purpose, it presents three comparatively new nonlinear measures and proves
that these methods are also useful. One of the measures—CAC [53] produces
least distorted topologically equivalent attractors by considering multiple solution
components of the respective dynamical system compared to that reconstructed
under the mostly used measures in almost all cases. Thus, this measure may be used
in attractor reconstruction from multiple copies of real data. Another measure—
new type of nonlinear auto-correlation of bivariate data [51] does the same thing
from a single solution component of the dynamical systems and so it may be used
for attractor reconstruction from a single observation of real data. This type of
attempt is extremely necessary as topological equivalence is the minimum criterion
for retrieving the dynamics from the reconstructed attractor and so lesser and lesser
distorted attractor we can reconstruct, more and more accurately we can retrieve the
dynamics responsible behind the generation of the real data. Future scopes of this
article includes but not limited to the least distorted attractor reconstruction from
multiple ensembles of real data by CAC especially with different time-delays [53].
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Chapter 8
Turing and Non-Turing Patterns
in Two-Dimensional Prey-Predator Models

Malay Banerjee

Abstract Spatial patterns are ubiquitous in nature, and study of spatio-temporal
pattern formation for prey-predator models are initiated based upon the seminal
work of Turing on morphogenesis (Turing, Philos Trans R Soc Lond B 237:37–
72, 1952). Interactions between individuals of different species over a wide range
of spatial and temporal scales often modify the temporal dynamics as well as
stability properties of the population distributed over natural landscape. Segel and
Jackson (J Theor Biol 37:545–559, 1972) first used reaction-diffusion systems to
explain ecological pattern formation by interacting populations. This idea used
afterwards to explain pattern formation in plankton systems, semiarid vegetation
patterns, invasion by exotic species and distribution of prey-predator distribution
over homogeneous space. After the seminal works by Segel and Jackson (J Theor
Biol 37:545–559, 1972) and Levin and Segel (Nature 259:659, 1976), researchers
were interested to study the Turing-type pattern formation, but now a days it
shifted towards non-Turing patterns and spatio-temporal chaos. Empirical evidence
in support of spatio-temporal chaotic patterns in interacting populations remain in
vein but the resulting patterns have similarity with the irregular distribution over
spatial domain. Further, the formation of spatio-temporal chaotic patterns within
Turing-Hopf domain remains a controversial issue, whether it arises near the Turing-
Hopf boundary or away from it. This article aims to review the recent development
of Turing and non-Turing pattern formations in prey-predator models having
prey-dependent and ratio-dependent functional response with special emphasis on
spatio-temporal chaos.

8.1 Introduction

The spatio-temporal models of predator-prey interaction are studied to understand
the role of random mobility of the species, within their habitat, on the stability
and persistence of interacting species. Investigation on spatio-temporal models of
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interacting population reveal that the movement of the individuals of one or more
species some time act as a stabilizing factor and in some cases they are capable
to induce some destabilization. Interestingly, destabilization of homogeneous dis-
tribution of population is not a threat towards the survival of population rather it
may settle down to inhomogeneous distribution of individuals over their habitats
producing localized patches. These localized patches may be time invariant or may
not be. Diffusivity of individuals has power to stabilize as well as destabilize the
coexistence scenario. As a result, researchers are interested to study various types
of stationary and non-stationary spatio-temporal pattern formation by the interacting
populations. Mathematical analysis and numerical simulation of spatio-temporal
models provide the idea that how individuals of certain species are distributed
over two dimensional landscapes or within the aquatic environment. In reality,
the distribution of plant and animal populations is not homogeneous rather they
are packed in localized patches. These localized patches either remain fixed or
change with time [21]. Time invariant patches and the patches moving with time
correspond to stationary and non-stationary patterns. Non-stationary patterns may
be oscillatory, quasi-periodic or chaotic. Various types of resulting patterns can be
classified as spot pattern, labyrinthine pattern, stripe pattern, target pattern, spiral
pattern, tip-splitting pattern and interacting spiral pattern [7, 18].

Significance and importance of spatial aspect towards the stabilization and long
term existence of certain species was first observed by Gause [24]. His observation
was based upon the laboratory experiments to study growth of paramecium and
didinum [9]. Effect of spatial distribution on stability of population and persistence
or extinction properties was studied by Luckinbill [39, 40]. A detailed discussion
on the role of space and mobility of individuals on the interaction of ecological
species are available in the book by Okubo and Levin [48]. All the research works
on spatio-temporal pattern formation due to small perturbation to the homogeneous
distribution of population are based upon the seminal work of Turing [63]. Turing’s
idea of pattern formation in reaction-diffusion system was first applied to justify
ecological pattern formation by Segel and Jackson [57]. The same idea was carried
out to explain to explain patchy distribution in plankton community by Levin
and Segel [37] and for semiarid vegetation patterns by Klausmeier [32]. Now a
days the literature on pattern formation by interacting populations is very rich
as huge number of articles is published in this direction and a wide variety of
spatial patterns are reported [2, 8, 9, 11, 12, 15, 16, 21, 23, 30, 32, 41, 44–46, 51–
53, 58, 59, 66]. Initially the works in this direction was focused on the Turing
patterns only. Recently, attempts are made to study the non-Turing patterns with
special emphasis on spatio-temporal chaos. Few recent works demonstrated the
mechanism of spatio-temporal chaotic patterns which are biologically realistic to
some extent. But empirical evidence and field data supporting spatio-temporal chaos
are not abundant. Rather, existence of chaos in ecological system still remains a
controversial issue. However, spatio-temporal chaotic patterns are able to explain
the irregular distribution of population which is frequently observed in nature.

Majority of literature on spatio-temporal pattern formation in the spatially
extended prey-predator models are focused with the models having prey-dependent
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functional response and death rate of the predators is directly proportional to their
density [23, 41, 51]. These types of models are unable to produce Turing patterns.
But the consideration of prey-predator models with nonlinear death rate for predator
are capable to exhibit Turing patterns [12, 44, 64]. But Turing and non-Turing
pattern formation in case of spatially distributed populations with ratio-dependent
functional response are now getting attention from the researchers [2, 6, 8, 9, 68].
As the temporal models of prey-predator interaction with ratio-dependent functional
response produce much richer dynamics (see [5, 29, 31, 34, 35, 70] and references
cited therein) compared to the models with prey-dependent functional response so
it is expected that the spatial extension of ratio-dependent prey-predator model
will produce a wide variety of patterns. Initially the ratio-dependent functional
response faced strong criticism as it is undefined at the origin [1, 3, 4, 25]. Arditi and
Ginzburg [4] argued that the functional response could be a function of the prey-
to-predator ratio when interaction is characterized by the heterogeneity of space
and time. Further, the dependence of the functional responses upon the densities
of prey and predators are now established by the theoretical biologists. The ratio-
dependent functional response is more suitable when predators have to search for
prey individuals and hence they have to compete among themselves.

Formation of spatio-temporal patterns are obtained by analyzing the partial
differential equation models of prey-predator interaction. Most of the models are
extension of ordinary differential equation models by incorporating diffusion terms
to model the mobility of the individuals of each species. Classical Gause type prey-
predator system is governed by the system of coupled ordinary differential equations

dN

dT
D Q.N;K/N �R.N;P /P;

dP

dT
D eR.N; P /P �M.P/P; (8.1)

subjected to non-negative initial conditions [22]. In above formulation,N � N.T /

and P � P.T / denote the prey and predator population densities respectively at
any instant of time ‘T ’. Q.N;K/ is the density-dependent per capita growth rate of
prey in absence of predator and the positive constantK stands for the environmental
carrying capacity for the prey.Q.N;K/ satisfies some basic properties:Q.K;K/ D
0, Q.0;K/ > 0, lim

K!1Q.0;K/ < 1, QN.N;K/ < 0, QK.N;K/ � 0,

lim
K!1QN.N;K/ D 0 and QNK.N;K/ > 0. The sole link between the growth

of prey and predator populations is the functional response R.N;P /, which is a
function of both the prey and predator population and stands for the amount of prey
biomass consumed by per predator per unit of time. Further, it is assumed for a
wide range of prey-predator models that the growth rate of the predators due to prey
consumption is simply proportional to the functional response. The proportionality
constant is e (0 < e < 1) and is known as the conversion efficiency. Several
authors have considered the fact that the consumption of prey biomass by their
predators is solely depend upon the abundance of prey biomass only and hence
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the functional response is a function of prey population only, Q.N;P / � Q.N/.
This type of functional response in known as prey-dependent functional response.
Q.N/ always satisfies two properties, Q.N/ > 0 for all N > 0 and Q.0/ D 0

and monotonic prey-dependent functional response satisfies additional condition
QN.N/ > 0 [19]. There are some non-monotonic functional responses, namely
Holling type-IV [33] and Monod-Haldane type functional response [10, 26, 49].
The ratio-dependent functional response can be obtained from the prey dependent
functional response, replacingN byN=P . The ratio-dependent functional response,
given by Q.N=P /, satisfy additional condition lim

.N;P /!.0;0/
PQ.N=P / D 0 [34].

There are several evidences like field data, laboratory experiments etc. towards
the consideration of functional response as a function of both the prey and the
predator population densities. Beddington-DeAngelis functional response [62],
ratio-dependent functional response [3, 4] are examples of the functional response
involving predator population density also. M.P/ is the per capita intrinsic death
rate for the predator and mostly it is assumed to be a constant. The Gause type prey-
predator model is capable to describe the dynamic behavior of specialist predator’s
only as the growth rate of predator population is zero in the absence of the prey [13].

Here we first recall the mathematical criteria for the Turing pattern formation
for spatio-temporal prey-predator model where individuals are assumed to be dis-
tributed over two-dimensional bounded domain. Mathematical model is described
in terms of non-homogeneous parabolic partial differential equations subjected to
positive initial conditions and no-flux boundary conditions. Then we look at the
pattern formation for the models having ratio-dependent functional response terms.
The spatial extension of classical Holling-Tanner model is revisited to show the
transition in pattern formation and sensitivity of patterns to initial conditions. Most
of the results discussed here are already available in literature [8, 9, 65]. Results are
recollected here to ensemble the varieties of patterns produced by the interacting
prey-predator models whose temporal counterpart exhibit very rich dynamics. The
role of temporal instability and spatial instability to induce spatio-temporal chaotic
pattern is discussed in the concluding section.

8.2 Basic Spatio-Temporal Model

A general spatio-temporal prey-predator model is governed by the following system
of two nonlinear coupled partial differential equations

@N.T;X; Y /

@T
D NF.N; P /CDN

�
@2N

@X2
C @2N

@Y 2

�

@P.T;X; Y /

@T
D PG.N; P /CDP

�
@2P

@X2
C @2P

@Y 2

�
(8.2)
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subjected to known non-negative initial distribution of populations,

N.0;X; Y / D N0.X; Y / � 0; P.0;X; Y / D P0.X; Y /; .X; Y / 2 �; (8.3)

and zero-flux boundary conditions

@N

@�
D @P

@�
D 0; .T;X; Y / 2 .0;1/ � @�: (8.4)

N � N.T;X; Y / and P � P.T;X; Y / denote the density of the prey and the
predators respectively at any instant of time‘T ’ and at the position .X; Y / within the
square bounded domain � having boundary @� . F.N;P / and G.N;P / are the per
capita growth rates of the prey and predator population respectively and DN , DP

are their rate of diffusions. The governing system (8.2) can be written in terms of
dimensionless variables as follows [47]

@n.t; x; y/

@t
D nf .n; p/C

�
@2n

@x2
C @2n

@y2

�

@p.t; x; y/

@t
D pg.n; p/C d

�
@2p

@x2
C @2p

@y2

�
(8.5)

subjected to the initial conditions,

n.0; x; y/ D n0.x; y/ � 0; p.0; x; y/ D p0.x; y/; .x; y/ 2 �; (8.6)

and boundary conditions

@n

@�
D @p

@�
D 0; .t; x; y/ 2 .0;1/ � @�: (8.7)

Here n, p are dimensionless population densities, t , x, y are dimensionless
independent variables and d (D DP=DN ) is the ratio of diffusivities. Majority
of the research works are based upon the dimensionless versions of the nonlinear
coupled partial differential equations as they contain less number of parameters.
The temporal model corresponding to the spatio-temporal model (8.5) is a system
of two nonlinear coupled ordinary differential equations

dn.t/

dt
D nf .n; p/;

dp.t/

dt
D pg.n; p/; (8.8)

with non-negative initial conditions n.0/; p.0/ � 0. This type of system admits a
trivial equilibrium point .0; 0/ (provided f .:/ and g.:/ are defined at .0; 0/), one or
two axial equilibrium points and coexisting equilibrium point(s) is(are) solution(s)
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of the system of algebraic equations f .n; p/ D 0 D g.n; p/ [22, 33]. The number
of axial and interior equilibrium point solely depends upon the functional forms
of f .n; p/ and g.n; p/. Let E�.n�; p�/ denotes interior equilibrium point and for
Turing-instability conditions we need the local asymptotic stability condition of E�
only. The Jacobian matrix for the system (8.8) evaluated at E� is given by

J� � J.n; p/jE�
D
�
j11 j12
j21 j22

�
; (8.9)

where

j11 D n
@f

@n

ˇ̌
ˇ
ˇ
E�

; j12 D n
@f

@p

ˇ̌
ˇ
ˇ
E�

; j21 D p
@g

@n

ˇ̌
ˇ
ˇ
E�

; j22 D p
@g

@p

ˇ̌
ˇ
ˇ
E�

:

Interior equilibrium point E� is locally asymptotically stable whenever the
following conditions are satisfied,

Tr.J�/ D j11 C j12 < 0; (8.10)

Det.J�/ D j11j22 � j12j21 > 0: (8.11)

According to the Routh–Hurwitz criteria [47], Tr.J�/ < 0 and Tr.J�/ > 0

ensure that the two eigenvalues of J� are negative or having negative real parts.
The interior equilibrium point looses stability through Hopf-bifurcation [28] when
Tr.J�/ D 0. Solving the equation Tr.J�/ D 0 in terms any parameter ‘˛’ (say)
involved with the system we can find the Hopf-bifurcation threshold (denoted by
˛H , for convenience) and instability of interior equilibrium point is ensured when
the transversality condition for the Hopf-bifurcation is satisfied. This transversality

condition is
d

d˛
Tr.J�/

ˇ
ˇ̌
ˇ
˛D˛H

¤ 0. Small amplitude periodic solution arises

through Hopf-bifurcation and interior equilibrium point is surrounded by a limit-
cycle. The stability or instability of the limit-cycle is determined through the sign of
first Lyapunov number [36, 50].

The components of interior equilibrium point define a homogeneous steady-state
for the reaction-diffusion system. n.t; x; y/ D n� and p.t; x; y/ D p� satisfy
the system of partial differential equations (8.5) along with the initial and boundary
conditions. The condition under which a small heterogeneous perturbation around
the homogeneous steady-state develop with the advancement of time is known as the
Turing instability condition. The development of small inhomogeneous perturbation
leads to spatio-temporal pattern formation.

To obtain the Turing instability condition, the perturbation around the homoge-
neous steady-state is defined by

n.t; x; y/ D n� C u.t; x; y/; p.t; x; y/ D p� C v.t; x; y/; (8.12)



8 Turing and Non-Turing Patterns in Two-Dimensional Prey-Predator Models 263

where u D �1e
�t cos.kxx/ cos.kyy/ and v D �2e

�t cos.kxx/ cos.kyy/. �1 and

�2 are two small non-zero real numbers and k D
q
k2x C k2y is the wave number.

Substituting (8.12) into (8.5) and then linearizing the system about .n�; p�/ we get
the following characteristic equation

jJk � �I2j D 0; (8.13)

where

Jk D J� � k2diag.1; d/ I2 D
�
j11 � k2 j12

j21 j22 � dk2

�
: (8.14)

For Turing instability requires that at least one eigenvalue of the matrix Jk must
have positive real root. Violation of at least one of the following two inequalities
imply the onset of Turing instability,

j11 C j12 � .1C d/k2 < 0; (8.15)

h.k2/ � d.k2/2 � .dj11 C j22/k
2 C j12j21 � j12j21 > 0: (8.16)

The condition (8.15) is always satisfied when interior equilibrium point of the
temporal model is locally asymptotically stable and d; k2 > 0. The only relevant
instability condition can be achieved through the violation of the inequality (8.16)
for a range of values of k. h.k2/ attains its minimum at k2 D k2T , where

k2T D dj11 C j22

2d
> 0: (8.17)

As j11 C j22 < 0 and kT is a real quantity, the feasible existence of kT demands
that j11 and j22 must be of opposite sign. The models for which j11j22 � 0, one can
not find any Turing pattern. As ‘d ’ is a positive parameter, the conditions j11Cj22 <
0 and dj11Cj22

2d
> 0 are satisfied simultaneously whenever j11 and j22 are of opposite

sign, that is, j11j22 < 0. Substituting k D kT in the expression of h.k2/, we find a
sufficient condition for Turing instability,

0 < 2
p
d
p
j12j21 � j12j21 < dj11 C j22: (8.18)

Turing bifurcation curve is given by h.k2T / D 0 which defines a boundary in
the parametric space. Turing instability cannot occur in the case of equal diffusivity
(i.e. d D 1). For prey-predator models, in general, j22  0 and again one can
not find the situation of Turing instability whenever j22 D 0. For j22 < 0,
the occurrence of Turing instability demands the satisfaction of the restriction
d > � j22

j11
> 1.
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Now h.k2/ is a continuous function of k2, which is a parabola, and for Turing
instability we need h.k2T / < 0. In this case we find two values of k2 (by
solving (8.16) for k2) which are given by

k21;2 D dj11 C j22 �p
.dj11 C j22/2 � 4d.j11j22 � j12j21/

2d
; (8.19)

such that h.k2/ < 0 whenever k2 2 .k21 ; k
2
2/. This interval gives us range of

unstable wave numbers.

8.3 Turing and Non-Turing Patterns

In this section we explore the structure of Turing bifurcation domains and various
types of stationary and non-stationary patterns exhibited by two dimensional prey
predator models with ratio dependent and prey dependent functional responses. The
classical Gauss type prey-predator models with prey dependent function response
fail to produce any Turing patterns. Temporal dynamics of those models are
governed by the system of nonlinear coupled ordinary differential equations

dn

dt
D nq.n/� r.n/p;

dp

dt
D er.n/p � mp; (8.20)

subjected to positive initial conditions. q.n/ is per capita growth rate of prey in
the absence of predators, r.n/ denotes the rate of grazing by the predators, e
(0 < e < 1) is the conversion efficiency and ‘m’ is the intrinsic death rate
for predators. Spatio-temporal models with these type of temporal counterpart are
unable to produce Turing patterns as j22 D 0 and hence the condition j11j22 < 0

can not be satisfied.
In the forthcoming subsections, we are going to discuss three different models

for prey-predator interactions which exhibit Turing as well as non-Turing patterns
for specific choices of parameter values. Two ratio-dependent prey-predator models
and Holling-Tanner model with prey-dependent functional response is considered
here as all of them exhibit Turing patterns. To obtain the spatio-temporal patterns,
numerical simulations are performed using the Euler scheme for the reaction part
and five point explicit finite difference scheme for the diffusion part. All the numeri-
cal simulation results presented here are obtained by considering zero-flux boundary
conditions and small amplitude random perturbation around homogeneous steady-
state (if not specified otherwise) [42]. The choices of the lattice size along with
temporal and spatial stepping are mentioned at relevant places. The domain of
integration, for all the simulation results presented here, are taken as square domain.
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8.3.1 Ratio-Dependent Prey-Predator Model

Dynamical interaction between prey and predator species with ratio-dependent
functional response is governed by the following system

@n.t; x; y/

@t
D n.1 � n/ � ˛np

nC p
C
�
@2n

@x2
C @2n

@y2

�
;

@p.t; x; y/

@t
D ˇnp

nC p
� �p C d

�
@2p

@x2
C @2p

@y2

�
; (8.21)

subjected to the initial and boundary conditions as described in the previous section.
The parameters ˛, ˇ, � and d are dimensionless positive parameters and detailed
description of the model can be found in [9]. In [9], we have obtained spatio-
temporal patterns within and outside the Turing domain for specific choices of
parameter values.

The temporal dynamics of the system (8.21) is governed by the following system
of equations

dn.t/

dt
D n.1 � n/ � ˛np

nC p
;

dp.t/

dt
D ˇnp

nC p
� �p; (8.22)

with the initial condition n.0/ n0 � 0 and p.0/ p0 � 0. The function
np

nC p
is not defined at the origin but lim

.n;p/!.0;0/

�
n.1 � n/ � ˛np

nC p

�
D 0 and

lim
.n;p/!.0;0/

�
ˇnp

nC p
� �p

�
D 0. To maintain the continuity of the system in

R2
0C D ˚

.n; p/ 2 R2 W n; p � 0
�
, we can redefine [9] the temporal model

as follows

dn.t/

dt
D n.1 � n/ � ˛np

nC p
;

dp.t/

dt
D ˇnp

nC p
� �p; .n; p/ ¤ .0; 0/;

dn.t/

dt
D dp.t/

dt
D 0; .n; p/ D .0; 0/: (8.23)

In a similar fashion the spatio-temporal model (8.21) can be redefined easily.
The temporal steady-states for the system (8.23) are .0; 0/ (trivial equilibrium),
.1; 0/ (axial equilibrium) and unique interior equilibrium point .n�; p�/ D�
1 � ˛.ˇ � �/

ˇ
;
.ˇ � �/n�

�

�
. The feasibility conditions for the existence of
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interior equilibrium point are given by ˛ <
ˇ

ˇ � � and � < ˇ. These two

conditions are automatically satisfied for ˛ < 1.
Nature and stability properties of various equilibrium points are available in [9,

17, 35, 70] and references cited therein. Local asymptotic stability condition of E�
is given by

˛ < ˛� � ˇ

ˇ C �

�
� C ˇ

ˇ � �
�
: (8.24)

The stability condition is automatically satisfied for ˛  1 and in fact, E� is
a global attractor. For ˛ > 1, interior equilibrium point losses stability when ˛
crosses the threshold magnitude ˛� and limit-cycle arises through Hopf-bifurcation.
Limit cycle encircling the interior equilibrium point is stable and unique [5].

We now discuss the spatio-temporal pattern formation by the model (8.21). To
obtain the Turing patterns, we have to identify the parameter values which satisfy
the conditions (8.10), (8.11) and (8.18). u.t; x; y/ D u� and v.t; x; y/ D v� define
a homogeneous steady-state for the system (8.21). Diffusive instability never sets in

for ˛  1 as j11 D .˛ � 1/ � ˛ı2

ˇ2
 0 and j22 D � .ˇ � ı/ı

ˇ
< 0 (ˇ > ı

whenever E� is feasible). Note that the ratio of diffusivities is always positive and
hence the condition (8.17) can not be satisfied for ˛  1. We find Turing patterns
for the model (8.21) only for ˛ > 1 and suitable choice of the parameter ‘d ’.

Our next task is to determine the Turing bifurcation domain and obtain Turing
and non-Turing patterns for the model (8.21). The parameters ˇ and � are fixed at
the values ˇ D 1 and � D 0:6 (hypothetical parameter set [9]) and consider ˛ and
d as bifurcation parameters. For chosen parameter set, the Turing bifurcation curve
and Hopf-bifurcation curves are shown in Fig. 8.1. These two bifurcation curves
divide the domain into four parts and we obtain stationary as well as non-stationary

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
0

5

10
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20
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30

Turing
Domain Turing−Hopf

Domain

Fig. 8.1 Bifurcation diagram is obtained for ˇ D 1 and � D 0:6, blue curve is the Turing-
bifurcation curve and the vertical green line is Hopf-bifurcation curve. Red asterisks represent the
points in the ˛ � d -parametric space corresponding to which the numerical simulations for the
model (8.23) are performed
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Fig. 8.2 Patterns exhibited by prey (left column) and predator (right column) for .˛; d/ D
.1:77; 25/ (upper panel); .˛; d/ D .1:9375; 25/ (middle panel); .˛; d/ D .2:2; 25/ (lower
panel). All the patterns presented here are stationary patterns and obtained at t D 700

spatio-temporal patterns for parameter values taken from the Turing domain and
Turing Hopf-domain respectively.

We fix the ratio of diffusivity at d D 15 and take three different values of
˛, namely ˛ D 1:77; 1:9375; 2:2 and correspondingly the three points lying in
the Turing domain, on the Hopf-bifurcation curve and in the Turing-Hopf domain
respectively of the parameter space (see Fig. 8.1). For these choices of parameter
values, the model (8.21) is simulated over a 400 � 400 lattices and taking �t D
0:01 and �x D �y D 1. To ensure that the reported patterns are free from
numerical artifacts, the same model is simulated with smaller step sizes and the
simulation results remain invariant. Resulting patterns are presented in Fig. 8.2, the
reported patterns are observed at t D 700. For .˛; d/ D .1:77; 25/ we find
cold-spot pattern, these cold spots started coalescing at .˛; d/ D .1:9375; 25/

and ultimately leads to labyrinthine pattern when .˛; d/ D .2:2; 25/. All these
patterns are stationary patterns as they remain unaltered with the further increase
in time. This stationary property is illustrated in Fig. 8.3, where spatial average of
population densities are plotted against time. The labyrinthine pattern sustain for
d D 25 whenever ˛ < 2:5. There is no feasible homogeneous steady-state for
˛ � 2:5. It is important to note here that the temporal steady-state is unstable
and started oscillating for ˛ > 1:9375 (the Hopf-bifurcation threshold for ˇ D 1

and ı D 0:6) but stationary distribution for both the species are obtained here.
One natural question arises here, whether we always get stationary patterns for all
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Fig. 8.3 Plot of spatial averages for prey and predator population for ˛ D 1:77 (blue curve);
˛ D 1:9375 (green curve); ˛ D 2:2 (red curve) and d D 25

parameter values within the Turing-Hopf domain where the system loses its stability
behavior under small amount temporal and spatial perturbation to the homogeneous
steady-state. To answer this question we have to examine the patterns for other
choices of parameter sets within the Turing-Hopf domain.

There is no mechanism by which one can choose the parameter values within
the Turing-Hopf domain for which we find non-stationary patterns. To illustrate
such pattern, we choose ˛ D 2:35 and d D 15. Numerical simulations with this
choice of parameter values reveal spatio-temporal chaos and resulting patterns never
settle down to any stationary inhomogeneous distribution. Rather they continue to
develop irregular patterns which can be classified as spatio-temporal chaotic pattern.
In Fig. 8.4 the spatial distribution of prey and predator species is presented at t D
1;500 along with the spatial average of the two species against time. Phase portrait
for the population density of prey verses predator at the location .200; 200/ is also
plotted in the same figure. The illustrations at the lower panel clearly indicates the
chaotic nature of population distributions.

The spatio-temporal patterns we discussed so far for the model (8.21) are
obtained for the choice of parameter values inside the Turing domain. Now we can
see that the inhomogeneous spatial distribution of prey and predator species can
be obtained for the choice of parameter values outside the Turing domain. For this
purpose, we choose ˛ D 2:05 and d D 1. Numerical simulation reveals that the
resulting pattern is chaotic. From the sake of brevity the spatio-temporal chaotic
nature is not illustrated here. This chaotic nature can be verified in a similar manner
as explained in the last paragraph. In Fig. 8.5, the spatial distributions of prey species
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Fig. 8.4 Upper panel: Spatial distribution of prey (left) and predator (right) at t D 1;500 for
˛ D 2:35 and d D 15. Lower panel: Plot of u.200; 200/ against v.200; 200/ (left) and time
evolution of spatial averages of prey and predator density (right)

Fig. 8.5 Spatio-temporal chaotic pattern is observed for ˛ D 2:05 and d D 1. Spatial
distribution for prey population at t D 500 (upper-left); t D 600 (upper-right); t D 700

(lower-left) and t D 800 (lower-right). It is a dynamic pattern
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at different time is presented to show the continuous change in the distribution of
species. Patterns are presented here for the latest time t D 800, but the existence
of similar patterns are verified with long time simulations. This type of pattern is
classified as interacting spiral pattern and it is a non-Turing pattern.

8.3.2 Ratio-Dependent Holling-Tanner Model

Classical Holling-Tanner type prey-predator was developed to describe the interac-
tion between generalist predator and their most favorable food as prey. Holling-
Tanner type prey-predator model with ratio-dependent functional response was
proposed and analyzed by Liang and Pan [38]. Recently, we have studied the sta-
tionary and non-stationary pattern formation for the spatio-temporal Holling-Tanner
model with ratio-dependent functional response [8]. Spatio-temporal dynamics
of the Holling-Tanner type prey-predator model with ratio-dependent functional
response is governed by the following system of nonlinear coupled parabolic partial
differential equations

@n.t; x; y/

@t
D n.1 � n/ � np

nC ıp
C
�
@2n

@x2
C @2n

@y2

�
;

@p.t; x; y/

@t
D �

	
�� p

n



p C d

�
@2p

@x2
C @2p

@y2

�
; (8.25)

subjected to known positive initial conditions n0.x; y/; p0.x; y/ � 0, .x; y/ 2 �

and zero-flux boundary conditions
@n

@�
D @p

@�
D 0 for .t; x; y/ 2 .0; 1/ � @� .

This model is also undefined at the origin and the reaction kinetics at the origin can
be defined in a similar fashion as described in the previous subsection. The non-zero

homogeneous steady-state is .n�; p�/ D
�
1 � �

�ı C 1
; �n�

�
and the feasibility

condition is � < �ı C 1.
Before going to the pattern formation, here we discuss briefly the local asymp-

totic stability property of interior equilibrium point E�.n�; p�/ for the temporal
model corresponding to the spatio-temporal model (8.25). Calculating the quantities
jrs , r; s D 1; 2 we find,

j11 D �2ı.1� ı/C 2�.1� ı/� 1

.ı�C 1/2
; j12 D � 1

.ı�C 1/2
; j21 D �2�; j22 D ���:

From these expression one can easily verify that the interior equilibrium point
E� is always locally asymptotically stable for ı � 1 and we are unable to find any
Turing pattern for the associated spatio-temporal model as j11j22 � 0. For ı < 1,
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Fig. 8.6 Turing (blue coloured) and Hopf-bifurcation (green coloured) curves are drawn for
.˛; d/ D .0:4; 25/ (left panel) and .˛; d/ D .0:4; 10/ (right panel) respectively. Hopf-
bifurcation curve divides the Turing domain lying above the Turing domain into two regions.
Parameter values for which numerical simulations are performed are marked with red coloured
stars

E� is locally asymptotically stable if � >

�
ı�C 2

.ı�C 1/2
� 1

�

�
and small amplitude

periodic solution bifurcates from the coexisting equilibrium point through Hopf-
bifurcation [8, 28]. Clearly, we will look at the Turing patterns for ı < 1.

In the previous subsection, we have considered the ratio of diffusivity as
bifurcation parameter and described various types of pattern formation by taking
different values for d . Here we consider ı and d at some fixed values and consider
� and � as bifurcation parameters. In other words, firstly we have to identify Turing
and Turing-Hopf domain in the � � � parameter space and then look at the various
stationary and non-stationary patterns for the specific choices of parameter values.
In Fig. 8.6 the Turing bifurcation curve and Hopf-bifurcation curve are plotted for
˛ D 0:4 and d D 25 and d D 10 respectively. Numerical simulations are
performed for the parameter values within Turing domain and chosen parameter
values are marked with red coloured stars in the bifurcation diagram. For the
Holling-Tanner model with ratio-dependent functional response we find clod spot
pattern and labyrinthine pattern for parameter values taken from Turing domain and
Turing-Hopf domain respectively. These two patterns are obtained for .�; �/ D
.0:3; 0:9/ and .�; �/ D .0:3; 1:3/ respectively and both the patterns presented in
Fig. 8.7 are stationary patterns. Numerical simulations are performed with �t D
0:01, �x D 1 D �y and over 400 � 400 lattice and using zero flux boundary
condition and small random perturbation around homogeneous steady-state as initial
conditions.
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Fig. 8.7 Cold spot (upper panel) and labyrinthine pattern (lower panel) produced by prey (left
column) and predator (right column) species, involved with the ratio-dependent Holling-Tanner
model, at t D 400. Both of these patterns are obtained for fixed ˛ D 0:4, � D 0:3, d D 25 and
� D 0:9 and � D 1:3 respectively

In the previous subsection we have considered the ratio of diffusivities as bifur-
cation parameter and illustrated how spatio-temporal chaos emerges for parameter
values within and outside the Turing domain. Here it is important to note that the
model under consideration in this subsection is unable to produce chaotic pattern
when d D 25. Spatio-temporal chaotic pattern is obtained for the model (8.25)
when d  12, (for ˛ D 0:4) and some specific choices of � and � in the Turing-
Hopf domain. Spatio-temporal chaotic pattern presented in Fig. 8.8 is obtained for
˛ D 0:4, � D 0:3, � D 1:6 and d D 10. This spatio-temporal chaos is a dynamic
pattern as the distribution of prey and predators over two dimensional space changes
continuously with the advancement of time. Patterns are checked for longer times
also and it is observed that they never settle down to any stationary level. This model
is also capable to produce interacting spiral type spatio-temporal chaotic pattern for
d D 1 and not presented here to avoid repetitions.

8.3.3 Holling-Tanner Model

In the previous two subsections we have observed spatio-temporal patterns produced
by prey-predator models with ratio-dependent functional response. Both the models
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Fig. 8.8 Spatio-temporal chaotic pattern produced by prey (left column) and predator (right
column) for the parameter values ˛ D 0:4, � D 0:3, � D 1:6 and d D 10. Patterns are
obtained at t D 1;000 (upper panel); t D 1;250 (lower panel) and t D 1;500 (lower panel)
respectively

produce cold spot and labyrinthine patterns as stationary patterns. Here we consider
the spatio-temporal version of classical Holling-Tanner type prey-predator model to
show the transition of Turing pattern from cold spot to hot spot through labyrinthine
pattern and this transition takes place with gradual change in one parameter value.
Turing and travelling wave patterns for this Holling-tanner model is recently
investigated by Upadhyay et al. [65]. Spatio-temporal model for Holling-Tanner
type prey-predator interaction is given by

@n.t; x; y/

@t
D n.1 � n/ � np

nC �
C
�
@2n

@x2
C @2n

@y2

�
;

@p.t; x; y/

@t
D 	

�
1 � �p

n

�
p C d

�
@2p

@x2
C @2p

@y2

�
; (8.26)

subjected to the positive initial condition and no-flux boundary condition. Spatio-
temporal pattern formation for this model is investigated in details by Upadhyay
et al. [65] but the populations are labeled as phytoplankton and zooplankton respec-
tively. The dynamical behavior of the temporal counterpart of the model (8.26) is
well-known and available in the literature [43, 47, 62].
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To show the transition if spatio-temporal pattern produced by the system (8.26),
we consider the fixed parameter set � D 0:1, 	 D 0:25 and consider � as free
parameter. For the chosen parameter set, we find the co-existing homogeneous
steady-state E�.n�; p�/ where

n� D �p�; p� D 9� � 10Cp
121�2 � 180� C 100

20�2
:

The condition for local asymptotic stability of co-existing equilibrium point for the
associated temporal model can be obtained in terms of �. One important observation
is that the equilibrium point loses its stability through Hopf-bifurcation at �H1 D
0:3227 and regains its stability through another Hopf-bifurcation at �H2 D 1:0244.
Hopf-bifurcating limit cycle exist for �H1  �  �H2.

The model (8.26) is simulated numerically keeping fixed the parameters � D
0:1, 	 D 0:25 and d D 25. Three different stationary patterns are obtained for
� D 0:28, � D 0:7 and � D 1:15. Numerical simulations are performed with the
same set up as explained in the previous subsections. Three different Turing patterns
are presented in Fig. 8.9.

For the chosen set of parameter values and considering � as parameter we
find that the interior equilibrium point loses and regains the stability through two
consecutive Hopf-bifurcations. The occurrence two successive Hopf-bifurcation

Fig. 8.9 Hot spot (upper panel; � D 0:28), Labyrinthine (middle panel; � D 0:7) and cold spot
(lower panel; � D 1:15) patterns are obtained through numerical simulation for varying � and
keeping other parameters fixed at � D 0:1, 	 D 0:25 and d D 25. These stationary patterns are
obtained at t D 600
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Fig. 8.10 Distribution of prey species over two dimensional landscape for � D 0:5 (left column)
and � D 0:9 (right column) at t D 500, with � D 0:1, 	 D 0:25 and d D 25. Patterns
presented in the upper panel are obtained with small random perturbation around homogeneous
steady-state as initial condition and zero flux boundary condition. Patterns presented in the lower
panel are obtained with the pattern obtained at � D 0:9 and � D 0:5 as initial conditions

is here responsible to generate hot spot and cold spot type Turing patterns.
Labyrinthine pattern is observed for the parameter values lying in the Turing-Hopf
domain. There is no spatio-temporal chaotic pattern exhibited by the model (8.26)
for chosen set of parameter values.

An interesting phenomena for pattern formation takes place for this Holling-
Tanner model when parameter values are inside the Turing-Hopf domain. Patterns
produced by the prey and predator population are sensitive to initial conditions.
Sensitivity of spatial pattern is presented in Fig 8.10. At the upper panel, patterns
are obtained for two different values of the parameter � keeping other parameters
fixed at the level as described above and with small random perturbation around the
homogeneous steady-states as the initial conditions. The patterns are obtained for
� D 0:5 and � D 0:9, they are stationary patterns. In order to check the sensitivity
of initial condition, the stationary pattern obtained at � D 0:9 is used as the initial
condition and the spatio-temporal model is simulated numerically with � D 0:5 and
the stationary pattern obtained at t D 500 is presented at the left of lower panel in
Fig. 8.10. Similarly, the pattern obtained for � D 0:5 is used as initial condition to
obtain the pattern when � D 0:9 and we have obtained a different pattern compared
to that was obtained with the usual initial condition used here.
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8.4 Discussion

Autonomous temporal models of prey-predator interaction always results in either
stable stationary coexistence or oscillatory coexistence or extinction of one or both
the species. Spatio-temporal models are developed to take care of the mobility of
individuals over their habitats. Individuals of various species attempt to find out
most favorable habitat as well as patches where availability of their essential foods
is abundant. Again carnivorous predators have to chase their prey to get the food and
hence they have to run faster from their predators. Similarly, the swimming speed of
zooplankton within aquatic environment should be greater than the moving speed
of phytoplankton due to water current within the aquatic environment. All these
requirements are reflected through the condition d > 1, where d is the ratio of
diffusivities of the prey and their predators. At the initial stages of the research on
pattern formation, it was believed that the inequality in the ratio of diffusivity is
essential for spatio-temporal pattern formation. Afterwards, it is revealed that the
spatio-temporal patterns can emerge in case of equal diffusivities also [23, 41, 51].
Most important and interesting cases of pattern formation with equal diffusivities
are biological invasions and travelling wave-train [42, 45, 46, 58, 59, 61, 66, 67].
Recently, few authors have paid their attention towards the spatio-temporal chaotic
pattern formation due to wave of chaos. This scenario arises in most of the cases for
d D 1, (see [51, 64] and references cited therein).

In this chapter we have discussed pattern formation in prey-predator models
within Turing and Turing-Hopf domain with special emphasis on ratio-dependent
functional response. Prey-predator models with prey-dependent functional response
and intrinsic constant per capita death rate for predators are unable to produce
Turing patterns. Three models are considered here, ratio-dependent prey-predator
model, Holling-Tanner model with ratio-dependent functional response and classi-
cal Holling-Tanner model. The classical Holling-Tanner model is also known as
semi-ratio dependent model as the growth equation of the predators contains a
term which is proportional to the ratio of predator to prey. For fist two models,
we have observed that the stationary Turing patterns are cold spot patterns which
indicate the existence of circular patches with lower concentration of prey and
predators. In contrary, the stationary Turing patterns observed for the classical
Holling-Tanner model are of two types, hot spot pattern and cold spot pattern. Hot
spots are generated through the localized circular patches with high concentration of
population density. The labyrinthine pattern is observed for some particular choices
of parameter values within the Turing-Hopf domain. In the first two models, the
stationary cold spot pattern changed to labyrinthine pattern due to coalesce of nearby
circular patches with low concentration of population. This transition takes place as
parameter moves from Turing domain to Turing-Hopf domain. But the generation of
labyrinthine pattern in case of spatio-temporal Holling-Tanner model with Holling
type-II functional response can be explained in two ways. If we consider the increase
in the magnitude of � then labyrinthine pattern is generated by the coalescing of hot
spots and the same can be generated due the merging of nearby cold spots due
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to decrease in the magnitude of �. The three models considered here are capable
to generate another kind of stationary patterns which is a mixture of spot and
labyrinthine pattern. The stationary patterns obtained for the first two models are
independent of initial condition, we have checked this independence numerically
but the results are not presented here. The sensitivity of resulting pattern, or in
other words the dependence of stationary pattern on the choice of initial condition
is illustrated for the spatially extended classical Holling-Tanner model. We have
reported here the spatio-temporal chaotic patterns for parameter values within and
outside the Turing domain. Obviously the spatio-temporal chaotic patterns are not
stationary patterns rather they changes continuously with time and never settle down
to any stationary state.

In reality the spot and labyrinthine patterns obtained within Turing domain
are not realistic for the distribution of prey and predators distributed over two
dimensional landscapes but can be observed for vegetation patterns generated
through the interaction between autotroph and their herbivores. Again the patchy
patterns resulting from spatio-temporal chaos and labyrinthine type distributions
are observed for the vegetation patterns in semiarid regions [8, 14, 45, 69]. Spatio-
temporal chaotic patterns are also observed for the distribution of various plankton
biomass within aquatic environment. The discrepancy in the observed patterns
are either due to the over simplification in the modeling approach or due to the
consideration of distribution of individuals over two dimensional domain as a
continuum media. The patterns obtained for the models under consideration give
us the idea of size and rough shape of stationary patches for the distribution of prey
and predator species. Some times they give indication of colony formation by the
bacterial species and their predators. Apart from this distribution, the stationarity of
patterns provide the information regarding the time invariant distribution of species
over their spatial habitat.

Finally, we have addressed the issue of spatio-temporal chaotic patterns produced
by prey-predator model with ratio-dependent functional response terms. Spatio-
temporal chaotic pattern exists for parameter values within the Turing-Hopf domain
as well as outside the Turing domain. Emergence of spatio-temporal chaos for
parameter values above and below the Turing bifurcation curve ensures that the
interaction between temporal instability and spatial instability is not essential for
the onset of spatio-temporal chaos. Again, we have observed the existence of
stationary patterns for the parameter values within Turing-Hopf domain, it means
the coexistence steady-state of the reaction kinetics is unstable and local kinetics
is oscillatory. These observations ensure the fact that the interaction between the
temporal and spatial instability are unable to drive the system towards spatial and
temporal irregularity under any circumstances. Rather the existence of irregular
distribution of population over space and its continuous change with time depend
upon the complex interaction is taking place over spatial and temporal scale.
There are no unified criteria for the existence of spatio-temporal chaos. Further
the mobility of individuals within their habitat has some role towards the patchy
distribution of interacting populations. Recent works on continuous spatio-temporal
models for interacting populations and vegetation distribution indicate the existence



278 M. Banerjee

of spatio-temporal chaos but the conclusive evidence in favor of chaotic patterns in
realistic ecosystems are not abundant [20, 27, 46, 52, 54–56, 60]. Effect of cross-
diffusion, periodic changes in essential resources, random environmental condition
on the pattern formation for interacting population models with rich temporal
dynamics needs appropriate attention to understand the complex dynamical behav-
ior associated with the spatio-temporal pattern formation. Derivation of necessary
and sufficient analytical conditions for the appearance of spatio-temporal chaotic
patterns remain an open as well as challenging problem.
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Chapter 9
Realizing Chaotic Systems on Field
Programmable Gate Arrays: An Introduction

Bharathwaj Muthuswamy and Santo Banerjee

Abstract In this chapter, we discuss an overview and give examples of how
one could leverage the functionality of twenty-first century Field-Programmable
Gate Arrays (FPGAs) for implementing nonlinear dynamical systems that exhibit
chaotic behaviour. An FPGA is basically a “blank-slate” of hardware that can
be “programmed” to emulate a plethora of digital systems. The purpose of this
chapter is to expose this exciting engineering product for investigating scientific
phenomenon. As a result, this chapter is a guide line on how to implement chaotic
systems on an FPGA (the Altera Cyclone IV on a DE2-115 board).

9.1 Overview

In this chapter, we will explore how we can use Field Programmable Gate Arrays
or FPGAs to implement nonlinear ordinary differential equations or ODEs (that
exhibit chaotic behaviour). To illustrate the robustness of FPGAs, these differential
equations could also include time delay(s). There are a myriad of references on
chaos theory. Therefore this chapter will primarily focus on FPGAs, as used to
realize nonlinear dynamics.

The FPGA industry originated from the programmable read-only memory and
programmable logic devices industry of the 1970s [2]. Xilinx co-founders Ross
Freeman and Bernard Vonderschmitt invented the first commercially viable FPGA
in 1985—the XC2064 [2].

Over the last three decades, the FPGA industry has evolved rapidly. Hence, in
the twenty-first century, FPGA development platforms have a variety of on-board
peripherals—from gigabit ethernet to audio codec (coder/decoder). In this chapter
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we will utilize the audio codec’s digital-to-analog converter (DAC) to help visualize
chaotic trajectories as analog voltage waveforms.

Because FPGA technology evolves rapidly, this chapter can only provide a high
level overview, with an example for illustrative purposes. It is up to the interested
reader to pursue this exciting topic further!

The chapter is organized as follows: we will first discuss the big picture behind
implementing ODEs on FPGAs. Next we will discuss an example of implementing
the Ikeda Delay Differential Equation (DDE) on the FPGA, by highlighting the
important steps involved in realizing an ODE on an FPGA.

For notation used in this chapter: key ideas and steps will be highlighted in bold.
The mathematical notation used is standard. For example, t represents time, x.t/
(or x) represents the state variable with x (boldface) invariably reserved for vectors.
Px is dx

dt . � would represent time delay.

9.2 Implementing Ordinary Differential Equations
on FPGAs: The Big Picture

Consider Eqs. (9.1) through (9.3).

Px1 D f1.x1; : : : ; xn/ (9.1)

Px2 D f2.x2; : : : ; xn/ (9.2)

:::

Pxn D fn.x1; : : : ; xn/ (9.3)

We can use forward-Euler’s method1 [5] and rewrite Eqs. (9.1) through (9.3) as
Eqs. (9.4) through (9.6).

x1.t C ıt/ D x1.t/C f1.x1.t/; : : : ; xn.t//�t (9.4)

x2.t C ıt/ D x2.t/C f2.x1.t/; : : : ; xn.t//�t (9.5)

:::

xn.t C ıt/ D xn.t/C fn.x1.t/; : : : ; xn.t//�t (9.6)

But let us generalize Eqs. (9.1) through (9.3) to include time delay. Hence the
system of equations that we will discuss in this chapter is given by Eq. (9.7).

Px D f.t; x.t/; x.t � �i // (9.7)

1For a very brief discussion on FPGA numerical methods, refer to Sect. 9.3.
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Again utilizing forward-Euler method, we get Eq. (9.8).

x.t C ıt/ D x.t/C f.x.t/; x.t �Ni//�t (9.8)

In Eq. (9.8), we have slightly abused our notation and have used continuous time t
whereas the equation is actually discrete.

When implementing Eq. (9.8) on an FPGA, we define for the n-th time delay
ODE:

xNNew
4D xn.t/C fn.x1.t/; : : : ; xn.t �Ni//�t (9.9)

xN
4D xn.t C ıt/ (9.10)

In Eqs. (9.9) and (9.10), xNNew and xN are VHDL2 signals with N D
1; 2; � � � ; n. �t is the step-size in Euler’s method. ıt is the clock period for the
D flip-flop that results in synchronized xN . The delay Ni is related to �t and �i by

�t
4D �i

Ni�1 (refer to Sect. 9.6).
A block diagram representation of Eqs. (9.9) and (9.10) is shown in Fig. 9.1.
The block diagram in Fig. 9.1 will utilize a combination of Altera’s Simulink

(MATLAB) library—DSP Builder Advanced Block Set (blocks highlighted in
yellow) and VHDL. Although the entire design can be implemented within the
FPGA software framework provided by the FPGA vendor, utilizing Simulink will
illustrate the power of abstraction, that has become so prevalent in twenty-first
century FPGA designs.

reset

reset

Clock
Divider

X

Shift Register

D

reset
reset

reset

reset

fEuler = 1
δt

Q+f(x(t),x(t − Ni))

Δt

xNNew

xN

Global
clock

clockGlobal

x(t − Ni)

Fig. 9.1 Hardware block diagram for specifying nonlinear ODEs using forward-Euler’s method
[2]. We have highlighted the vector nature of xNNew and xN from Eqs. (9.9) and (9.10) as
xNNew and xN resp

2A detailed description of VHDL (Very high speed integrated circuit Hardware Description
Language), FPGA software tools and the underlying FPGA hardware is beyond the scope of this
chapter. For details, please refer to our book [2].
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In Fig. 9.1 the shift register is unnecessary for non-delay systems. The clock
divider block is configured to divide the global clock (usually obtained from the
FPGA board clock) so propagation delays associated with the various sub-modules
(such as the shift register) can be accommodated. Hence the clock divider output
clock (with frequency fEuler D 1

ıt
) is used as clock input for the shift register and

the D flip-flop synchronizer. Since the overall design is synchronous, all sequential
logic components have a well-defined reset state. xN (x.t C ıt/) and x.t �Ni/ also
serve as inputs to the audio codec DAC.

To complete the implementation of a nonlinear (chaotic) differential equation on
an FPGA, the following steps are required:

1. Thoroughly understand the hardware requirements for implementing the nonlin-
ear differential equation.

2. Discretize the system and simulate in Simulink to verify functionality.
3. Specify the necessary subsystems in DSP Builder Advanced Blockset.
4. Complete Euler’s method in VHDL.
5. Simulate design in ModelSim to verify VHDL functionality.
6. Fully synthesize the design (along with the necessary external audio codec

interface) onto the FPGA.

The next few section(s) will illustrate the steps above, using the Ikeda DDE [2] as
an example:

Px D � sin.x.t � �//� ˛x.t/ (9.11)

Parameter values are: � D 6; � D 1; ˛ D 1.

9.3 Hardware Requirements for the Ikeda DDE

The hardware platform that we will use in this chapter is a DE2-115 board from
Terasic corporation that incorporates a Cyclone IV FPGA from Altera [2]. This
platform highlights the hardware requirements for implementing nonlinear ODEs: a
modern FPGA that has on-chip peripherals such as Phase-Locked Loops (PLLs),
multipliers and RAM blocks. Moreover the associated board has our requisite
Wolfson WM8731 audio codec.

Note however that we are implementing a numerical algorithm on a discrete
platform (FPGA) for solving a continuous-time differential equations. Hence a
sound understanding of the numerical algorithm and the underlying FPGA archi-
tecture is a must. In this chapter, we chose to use Euler’s method. Although we
can implement more complicated numerical methods (such as 4th order Runge-
Kutta), these methods will also have issues converging to the correct solution, if
a sufficiently large step size is taken [4]. Thus we chose to use Euler’s method for
simplicity. As a rule of thumb, one should use a sufficiently small step size to ensure
that the numerical algorithm converges to the correct solution.
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We should also take into consideration the amount of memory required for
implementing the ODE. In this chapter, we will utilize only on-chip FPGA memory
for design simplicity. The on-chip memory requirements are dominated by the shift
register. Therefore when implementing a DDE, we can use the fact: �t D �

N�1
(for the Ikeda DDE, �i D �;Ni D N ). Suppose we choose �t D 0:001. For the
Ikeda DDE, we chose parameter � D 1. Thus N D 1;001. Hence we need 1001 D
flip-flops with a 32-bit datapath. This is not too stringent of a requirement for the
Cyclone IV.

A further detailed discussion of FPGA architecture,3 effects of sampling clock
and data path quantization is beyond the scope of this chapter, for details, please
refer to [2]. We can however continue to the next step: simulating the discretized
Ikeda DDE. A discrete system simulation is a must because we can quickly
determine if our step-size is too large or if our on-chip FPGA memory requirements
are too small.

9.4 Discrete System Simulation

The general discretized system equations were discussed in Sect. 9.2, an elegant
block diagram representation is in Fig. 9.2.

A specific block diagram for the Ikeda DDE is shown in Fig. 9.3. The discrete-
time integrator and delay blocks can be found under the Discrete library in Simulink.
The Trigonometric function, Gain and Sum blocks can be found under Math
Operations. The Constant block can be found in the Sources library.

Simulation results are shown in Fig. 9.4.
The complete reference design (including the Simulink .mdl file for this

section and all files for subsequent sections) can be downloaded from http://
www.harpgroup.org/muthuswamy/pubs/code/2014/DDEs/DE2ChaoticDDEs.zip.

Fig. 9.2 Simulating a DDE
in Simulink, block diagram
adopted from [2]. We utilize
the discrete-time integrator
but inherit the sample time
from the fixed-point
simulation period

3The discussion so far should also highlight the advantages of an FPGA as compared to a micro-
controller: a dedicated truly-parallel datapath for implementing nonlinear ODEs. The disadvantage
of an FPGA is the necessity to visualize the underlying hardware from the specification (VHDL)
in FPGA software.

http://www.harpgroup.org/muthuswamy/pubs/code/2014/DDEs/DE2ChaoticDDEs.zip
http://www.harpgroup.org/muthuswamy/pubs/code/2014/DDEs/DE2ChaoticDDEs.zip
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Fig. 9.3 Block diagram from Fig. 9.2, adopted to the Ikeda DDE. We have used Goto and From
blocks (Simulink signal routing library) for clarity
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Fig. 9.4 Ikeda DDE phase plot, simulation time is 500 units. x-axis is x.t/, y-axis is x.t � �/

The large file size is because the reference design is fully synthesized for Quartus
version 12.0. and the design also implements other DDEs (refer to Sect. 9.9).

Now that we have verified our discretization is functionally correct, the next step
would be to implement the appropriate modules using DSP builder, the topic of
Sect. 9.5.
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Fig. 9.5 The Base blocks library in the DSP builder advanced blockset

9.5 DSP Builder Advanced Blockset Subsystems

The concept behind DSP builder is to create a synthesizable subsystem that
incorporates our mathematical abstraction. The detailed steps are:

1. We first access the Altera DSP Builder Advanced Blockset4 library from
Simulink, as shown in Fig. 9.5.

2. We create a new Simulink model and then place the Control and Signals
block from the Base Blocks library in Fig. 9.5. Figures 9.6 and 9.7 show
the configuration parameters for these blocks. These parameters should be
satisfactory for practically all nonlinear ODEs.

3. We next set the solver configurations as shown in Fig. 9.8. The completed top
level is shown in Fig. 9.9. We have created a subsystem at the top level. Within
this subsystem, we will realize the nonlinear synthesizable subsystem.

4. Within the nonlinear subsystem, we place a Device block from the Base Blocks
library and configure the Device block as shown in Fig. 9.10. Figure 9.11 shows
the subsystem from the top level that incorporates the Device Block.

5. Inside the nonlinear synthesizable subsystem from Fig. 9.11, we specify our
design mathematically. In order to do this, we will use blocks from the Mod-
elPrim library, shown in Fig. 9.12.

6. There are two main blocks that should be part of any nonlinear synthesizable
subsystem: the Convert block shown in Fig. 9.13 and the SynthesisInfo block
shown in Fig. 9.14.

7. We finally enable port data types as shown in Fig. 9.15 as a visual debugging
tool, in case of errors.

Once we Run our top level in Simulink, DSP builder should generate the
appropriate hardware in the directory specified via the Control block (Fig. 9.6).
Make sure the constant input(s) from the Source library at the top level have single
as the output data type. The default is double and will generate 64-bit bus widths.

4Altera recommends the use of Advanced Blockset instead of Standard Blockset for newer designs.
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Fig. 9.6 In the control block, make sure generate hardware is checked and use an absolute path
for the hardware destination directory. Turn off automatic test benches. Set both address and data
width to 16-bits

We will next complete in Sect. 9.6 the shift register and the D flip-flop from
Fig. 9.1.

9.6 Completing Euler’s Method in VHDL

Listing 9.1 shows one approach to implement the shift register from Fig. 9.1 using
parameterization (generic keyword in VHDL) and the for keyword. Also, Line 22
in Listing 9.1 declares the internal delay lines to be 32 bits wide. However, we need
an array of these internal delay lines and hence we have declared it as “memory”.
Hence Listing 9.1 specifies a tapped delay line in VHDL.
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Fig. 9.7 In the signals block configuration, set the clock frequency to 50 MHz (the DE2 board
clock). There is no need to use a separate bus clock. Make sure the reset is active high

Listing 9.1 Realization of VHDL delay

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity addressableShiftRegister is
6 generic (numberOfFlipFlops : integer := 0;
7 delay : integer := 0);
8 port (
9 clk,areset : in std_logic;

10 In_x : in std_logic_vector(31 downto 0);
11 Out_xDelayed : out std_logic_vector(31 downto 0));
12 end addressableShiftRegister;
13
14 architecture behavioral of addressableShiftRegister is
15
16 component dFlipFlopWithAsyncReset is port (
17 clock,reset : in std_logic;
18 d : in std_logic_vector(31 downto 0);
19 q : out std_logic_vector(31 downto 0));
20 end component;
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Fig. 9.8 The solver should be configured as fixed-step and with no discrete states

Control Signals

Display

NonlinearSubsystem

Constant

xln yOut1

Hardware Generation is on
Address Width:16

Data Width:16
Big Endian

clk @ 50.00 MHz
areset (active High)
bus @ 50.00MHz

Fig. 9.9 The top level of our design. According to DSP Builder syntax, the synthesizable portion
of our design must be specified as a subsystem within the top level

21
22 type memory is array(0 to numberOfFlipFlops) of std_logic_vector(31 downto 0);
23 signal internalDataArray : memory;
24
25 begin
26
27 internalDataArray(0) <= In_x;
28 generateFlipFlops:
29 for i IN 0 to numberOfFlipFlops-1 generate
30 nFlipFlops : dFlipFlopWithAsyncReset port map (
31 clock => clk,
32 reset => areset,
33 d => internalDataArray(i),
34 q => internalDataArray(i+1));
35 end generate;
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Fig. 9.10 Device block configuration. We don’t have to explicitly set the Cyclone IV part number
since we are only going to be synthesizing a subsystem, not a stand-alone FPGA project from DSP
builder

Fig. 9.11 The device block must be placed within a subsystem, not at the top level that has the
control and signals blocks

36
37 Out_xDelayed <= internalDataArray(delay-1);
38 end behavioral;

Listing 9.2 is a simple D flip-flop in VHDL.
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Fig. 9.12 The ModelPrim library from the DSP builder advanced blockset

Fig. 9.13 This block is used to convert inputs and outputs to single precision (32-bit) floating
point
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Fig. 9.14 We need a SynthesisInfo block for controlling synthesis flow. By using the default
option of scheduled, we let DSP builder use a pipelining and delay distribution algorithm that
create fast hardware implementations from an easily described untimed block diagram

Fig. 9.15 Enable port data types helps us debug the design more easily. In our experience, the most
common error is incorrect data types. In the case of incorrect data types, functionally speaking, we
have domain and range errors
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Listing 9.2 VHDL specification of D flip-flop with asynchronous reset

1 library ieee;
2 use ieee.std_logic_1164.all;
3
4 entity dFlipFlopWithAsyncReset is port (
5 clock,reset : in std_logic;
6 d : in std_logic_vector(31 downto 0);
7 q : out std_logic_vector(31 downto 0));
8 end dFlipFlopWithAsyncReset;
9

10 architecture structuralDFlipFlop of dFlipFlopWithAsyncReset is
11
12 begin
13 process (clock,reset)
14 begin
15 if reset = '1' then
16 q <= X"00000000";
17 else
18 if rising_edge(clock) then
19 q <= d;
20 end if;
21 end if;
22 end process;
23
24 end structuralDFlipFlop;

Listing 9.3 shows the Ikeda DDE specification in VHDL that also incorporates
the Altera DSP builder advanced block set as a subsystem.

Listing 9.3 VHDL specification of the Ikeda DDE

1 -- This subsystem includes synchronization
2 -- but we do not use it in this chapter.
3
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.std_logic_signed.all;
7
8 entity ikedaDDESystem is port (
9 resetn, clockIn : in std_logic;

10 xFloatOut,xDelayedFloatOut : out std_logic_vector(31 downto 0);
11 xOut,xDelayedOut : out std_logic_vector(15 downto 0);
12 syncIn : in std_logic_vector(31 downto 0);
13 syncClock : out std_logic);
14 end ikedaDDESystem;
15
16 architecture behavioral of ikedaDDESystem is
17
18 signal reset : std_logic;
19 -- constants
20 signal dt : std_logic_vector(31 downto 0);
21 -- state variables
22 signal x,xDelayed,xNew,xFixed,xDelayedFixed : std_logic_vector(31 downto 0);
23 -- prescalar
24 signal count: integer range 0 to 64;
25 signal addressableShiftRegisterCount : integer range 0 to 128;
26 signal addressableShiftRegisterClock : std_logic;
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27 signal internalSyncClockCount : integer range 0 to 2048;
28 signal internalSyncClock : std_logic;
29
30 -- DSP builder top level. Add both the nonlinear subsystem and nonlinear
31 -- synthesizable
32 -- subsystem VHDL files to project.
33 component ikedaDDE_NonlinearSubsystem is
34 port (
35 In_dt : in std_logic_vector(31 downto 0);
36 In_sync : in std_logic_vector(31 downto 0);
37 In_x : in std_logic_vector(31 downto 0);
38 In_xDelayed : in std_logic_vector(31 downto 0);
39 y : out std_logic_vector(31 downto 0);
40 clk : in std_logic;
41 areset : in std_logic;
42 h_areset : in std_logic);
43 end component;
44 -- END DSP builder top level.
45
46 component addressableShiftRegister is
47 generic (numberOfFlipFlops : integer := 0;
48 delay : integer := 0);
49 port (
50 clk,areset : in std_logic;
51 In_x : in std_logic_vector(31 downto 0);
52 Out_xDelayed : out std_logic_vector(31 downto 0));
53 end component;
54
55
56 -- latency : 6 clock cycles
57 component floatingPointToFixed IS
58 PORT
59 (
60 aclr : IN STD_LOGIC ;
61 clock : IN STD_LOGIC ;
62 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
63 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
64 );
65 END component;
66
67 begin
68 reset <= not resetn;
69 -- Euler's method
70 -- We first synchronously update state variables at 781.250 KHz
71 -- (64 counts of 50 MHz clock)
72 -- Since dt = 1/1024, time scale is actually (781.250e3/1024) = 762 Hz
73 -- (approximately)
74 -- state memory
75 process(clockIn, resetn)
76 begin
77 -- constants (place outside reset and clock to avoid latches)
78 dt <= X"3A800000"; -- 1/1024
79 if resetn = '0' then
80 -- initial state
81 x <= X"3DCCCCCC";-- 0.1
82 count <= 0;
83 addressableShiftRegisterCount <= 0;
84 addressableShiftRegisterClock <= '0';
85 else
86 if rising_edge(clockIn) then
87
88 if count = 64 then
89 count <= 0;
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90 else
91 count <= count + 1;
92 end if;
93
94 if count = 63 then
95 x <= xNew;
96 end if;
97
98 if addressableShiftRegisterCount = 128 then
99 addressableShiftRegisterCount <= 0;

100 else
101 addressableShiftRegisterCount <= addressableShiftRegisterCount + 1;
102 end if;
103
104 if addressableShiftRegisterCount >= 63 then
105 addressableShiftRegisterClock <= '1';
106 else
107 addressableShiftRegisterClock <= '0';
108 end if;
109
110 -- for synchronizer period
111 if internalSyncClockCount = 2048 then
112 internalSyncClockCount <= 0;
113 else
114 internalSyncClockCount <= internalSyncClockCount + 1;
115 end if;
116
117 if internalSyncClockCount >= 1023 then
118 internalSyncClock <= '1';
119 else
120 internalSyncClock <= '0';
121 end if;
122
123 end if;
124 end if;
125 end process;
126
127 -- this design also includes synchronization
128 -- since y(t+dt)=y(t)+(-alpha*y+mu*sin(y(t-tau))+k(t)(x(t)-y(t)))*dt,
129 -- we also send in the sync signal into the DSP builder nonlinear subsystem.
130 staticNonlinearities : ikedaDDE_NonlinearSubsystem port map (
131 In_dt => dt,
132 In_sync => syncIn,
133 In_x => x,
134 In_xDelayed => xDelayed,
135 y => xNew,
136 clk => clockIn,
137 areset => reset,
138 h_areset => reset);
139
140
141 delay : addressableShiftRegister generic map (numberOfFlipFlops => 2048,delay => 1024)
142 port map (
143 In_x => x,
144 Out_xDelayed => xDelayed,
145 clk => addressableShiftRegisterClock,
146 areset => reset);
147 -- END Euler's method
148
149 --state outputs : convert scaled floating point variables to
150 -- 5.27 fixed point format DAC (no latency)
151 xOutFinal : floatingPointToFixed port map (
152 aclr => reset,
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153 clock => clockIn,
154 dataa => x,
155 result => xFixed);
156 xDelayedOutFinal : floatingPointToFixed port map (
157 aclr => reset,
158 clock => clockIn,
159 dataa => xDelayed,
160 result => xDelayedFixed);
161
162 xOut <= xFixed(31 downto 16);
163 xDelayedOut <= xDelayedFixed(31 downto 16);
164
165 xFloatOut <= x;
166 xDelayedFloatOut <= xDelayed;
167
168 syncClock <= internalSyncClock;
169 end behavioral;

Once we complete the VHDL specification of our nonlinear ODE, we
should include the VHDL audio codec interface and perform a functional
simulation using an industry standard tool such as ModelSim. This is the topic of
Sect. 9.7.

9.7 Functional Simulation

The idea of functional simulation is a natural followup to the Simulink discrete
simulation from Sect. 9.4. Functional simulation simply answers the question: does
the hardware perform as it is supposed to?

In the case of chaotic systems, a functional simulation will tell us if our design
functionally reproduces chaotic behavior. Functional simulation can also tell us how
the signals propagate within our hardware system. Hence a functional simulation
tests the fundamental correctness of our digital circuit. We will use the industry
standard ModelSim simulator for illustrating functional simulation.

First we need to design a VHDL file called as a “test bench” that mimics a
physical lab bench. The test bench for the Ikeda DDE is shown in Listing 9.4.

Listing 9.4 VHDL test bench for the Ikeda DDE

1 -- testbench for ikeda system
2
3 library ieee;
4 use ieee.std_logic_1164.all;
5 use ieee.numeric_std.all;
6
7 entity ikedaSystemtb is
8 end ikedaSystemtb;
9

10 architecture testbench of ikedaSystemtb is
11 signal clock,reset,resetn,trigger,increment,pulseOut,

syncClock : std_logic := '0';
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12 signal xFloatOut,xDelayedFloatOut,syncIn : std_logic_vector
(31 downto 0);

13 signal xOut,xDelayedOut : std_logic_vector(15 downto 0);
14
15 component ikedaDDESystem is port (
16 resetn, clockIn : in std_logic;
17 xFloatOut,xDelayedFloatOut : out std_logic_vector(31

downto 0);
18 xOut,xDelayedOut : out std_logic_vector(15 downto 0);
19 syncIn : in std_logic_vector(31 downto 0);
20 syncClock : out std_logic);
21 end component;
22
23 begin
24 ikedaDDESystemInstance : ikedaDDESystem port map (
25 resetn => resetn,
26 clockIn => clock,
27 xFloatOut => xFloatOut,
28 xDelayedFloatOut => xDelayedFloatOut,
29 xOut => xOut,
30 xDelayedOut => xDelayedOut,
31 syncIn => syncIn,
32 syncClock => syncClock);
33
34 clock50MHzProcess : process
35 begin
36 clock <= not clock;
37 wait for 10 ns;
38 end process clock50MHzProcess;
39
40 stimulus : process
41 begin
42 resetn <= '0';
43 syncIn <= X"00000000"; -- no synchronization
44 wait for 55 ns;
45 resetn <= '1'; -- unreset after 55 ns
46 wait; -- prevent process from being executed again
47 end process stimulus;
48 end testbench;

The salient features of the test bench are:

1. The entity statement has no input and/or output ports. This makes sense since the
test bench is a virtual environment that cannot be synthesized.

2. We have to generate a board (50 MHz) clock. This is done using the process
statement shown.

3. We then provide stimulus inputs to our module under test. Notice that since
VHDL processes execute concurrently, our stimulus process has a wait as the
last statement to prevent repeated process execution.

ModelSim commands can also be scripted and placed in a .do file, shown in
Listing 9.5.



9 Realizing Chaotic Systems on Field Programmable Gate Arrays: An Introduction 301

Listing 9.5 ModelSim script file for Ikeda DDE

1 # do vlib work only once!
2 # vlib work
3
4 vmap work work
5
6 # compile DSP builder advanced blockset source
7 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/math_package

.vhd
8 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/

math_implementation.vhd
9 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/hcc_package.

vhd
10 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/

hcc_implementation.vhd
11 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/

fpc_library_package.vhd
12 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/fpc_library.

vhd
13
14 # compile DSP builder advanced blockset nonlinearities
15 vcom ../../dspBuilder/ikedaDDE/dspba_rtl/ikedaDDE/

NonlinearSubsystem/ikedaDDE_NonlinearSubsystem.vhd
16 vcom ../../dspBuilder/ikedaDDE/dspba_rtl/ikedaDDE/

NonlinearSubsystem/NonlinearSynthesizableSubsystem/
ikedaDDE_NonlinearSubsystem_NonlinearSynthesizableSubsystem.
vhd

17
18 # compile source
19 vcom ../../floatingPointMultiplyDedicated.vhd
20 vcom ../../floatingPointToFixed.vhd
21 vcom ../../ikedaDDESystem.vhd
22 vcom ../../addressableShiftRegister.vhd
23 vcom ../../dFlipFlopWithAsyncReset.vhd
24
25 vcom ikedaSystemtb.vhd
26
27 vsim ikedaSystemtb
28 # configure wave window to have a white background color
29 configure wave -background white -foreground red -textcolor blue

-timecolor blue -vectorcolor red -wavebackground white -
cursorcolor black

30 add wave -divider "Clock and Reset"
31 add wave clock
32 add wave -label delayClock sim:/ikedasystemtb/

ikedaDDESystemInstance/addressableShiftRegisterClock
33 add wave resetn
34
35
36 add wave -divider "Outputs from the ikeda DDE model"
37 # obtained switch information below by using analog (automatic)

formatting in ModelSim
38 add wave -format analog-step -min -1662 -max 2030 -height 74 xOut
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39 add wave -format analog-step -min -1662 -max 2030 -height 74
xDelayedOut

40
41 #add wave -divider "ikeda DDE System Module Internal Signals"
42 add wave -label dt -hex sim:/ikedaSystemtb/ikedaDDESystemInstance

/dt
43 add wave -label count -hex sim:/ikedaSystemtb/

ikedaDDESystemInstance/count
44 add wave -label addressableShiftRegisterCount sim:/ikedasystemtb/

ikedaDDESystemInstance/addressableShiftRegisterCount
45 add wave -label xPlus_f1 -hex sim:/ikedaSystemtb/

ikedaDDESystemInstance/xNew
46
47 add wave -label x -hex sim:/ikedaSystemtb/ikedaDDESystemInstance/

x
48 add wave -label xDelayed -hex sim:/ikedaSystemtb/

ikedaDDESystemInstance/xDelayed
49
50 add wave -label xFixed -hex sim:/ikedaSystemtb/

ikedaDDESystemInstance/xFixed
51 add wave -label yFixed -hex sim:/ikedaSystemtb/

ikedaDDESystemInstance/xDelayedFixed
52
53 # run 10ms

Functional simulation results from the script file in Listing 9.5 is shown in
Fig. 9.16. Note the waveforms do seem to exhibit chaotic behaviour. We can now
move on to implementation results in Sect. 9.8.

Fig. 9.16 ModelSim wave window results. The simulation has been run for 60 ms and then analog
waveforms have been autoscaled after simulation completion
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Fig. 9.17 x.t � �/ vs. x.t/
for the Ikeda DDE in
Eq. (9.11). Oscilloscope
scales are 0.5 V/div for both
axis

9.8 Implementation Results

The result of implementing the Ikeda DDE on the DE2-115 and using the audio
codec output is shown in Fig. 9.17.

9.9 Conclusion

In this chapter, we showed a glimpse of the robustness of FPGAs in realizing
nonlinear (chaotic) differential equations. Understand that utilizing FPGAs for this
task involves a lot of engineering—both in hardware and software. However, the
results are exceptional. Hence as a concluding note, we show various chaotic ODEs
and DDEs in Fig. 9.18 that have been realized on FPGAs [2], to serve as motivation
for the reader to pursue this exciting topic further.
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Fig. 9.18 Various chaotic attractors obtained from the DE2-115 board (clockwise from top-left):
the classic Lorenz butterfly [1], the highly complex attractor system [3] with a hyperbolic tangent
nonlinearity, time-delay system with sigmoid nonlinearity [5] and time-delay system with signum
nonlinearity [5]
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