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Preface

Transport of mobile ions in ionic conductors of many kinds is the key to perfor-

mance in a wide variety of applications, including portable energy sources from

primary and secondary batteries, chemical sensors, ionic switches, electrochromic

displays, power generators, fuel cells, component in electronic devices, and electric

car technology. These applications have become a major part of the world econ-

omy, and their advances in research and development in the future may shape the

way of life of the present and future generations. Thus the field of research on ionic

motions in ionic conductors has practical implications particularly in the search and

discovery of materials with desired or optimal properties for applications in the bulk

form and in the nanometer scale.

The dynamics of mobile ions leading to conductivity and diffusivity in various

kinds of ionic conductors are interesting from the basic research perspective. In

most ionic conductors, liquid and solid, the density of the mobile ions are consid-

erable, and non-negligible is the effect of ion-ion interaction on the ion dynamics as

well as interaction between the ions and the matrix in which the ions are embedded.

Randomness and disorder in liquid and glassy ionic conductors may also compli-

cate the dynamics. Brownian diffusion or random walk of particles without inter-

action is a well-known solved problem, but ceases to apply in most ionic conductors

of interest. The presence of ion-ion interactions poses difficulty in visualizing the

motion of the ions and in explaining the properties. This is because it requires the

solution of a many-ion problem of irreversible process (conductivity or diffusion) in

statistical mechanics, which does not exist at the present time. The nonexistence of

a universally accepted solution to the problem is remarkable in view of the fact that

more than a century has gone by since 1905 when Einstein solved the Brownian

diffusion problem. Actually over the years very few attempts have been made just

to attack the problem theoretically. This unique situation offers a fantastic oppor-

tunity at the present time for someone to make a great contribution in science by

solving this fundamental problem.

However, an acceptable solution must be able to explain satisfactorily all known
essential and critical experimental facts or at least be consistent with all of them.
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By now many experimental techniques have been applied in the study of the ion

dynamics over time scales ranging from microscopic times to macroscopic times

and experimental data abound in the literature. They need to be collected, catego-

rized, and summarized so the essentials can be brought out without neglecting any.

This task is attempted by us in this book with the purpose of benefitting the research

community engaged in solving this centuries-old problem in condensed matter

physics. If a theory can account for the collection of properties of ionic conductors

in general, it can be considered to be close to a final solution of the problem.

Another purpose is to make those involved in applications aware of the properties

and limitations of typical ionic conducting materials. This knowledge will help

them in the search for new materials to suit the purpose of the application or for

better performance.

By extracting the results from experiments and molecular dynamics simulations

of ionic conductors with diverse chemical and physical structures (crystalline,

liquid, and glassy), we are able to present overwhelming evidences of universal

dynamics and properties of ions in many different ionic conductors. The universal

properties found suggest they originate from some fundamental physics governing

the motion of the ions. The universal behavior makes the problem more exciting

and inspiring for others to solve the problem. Moreover, the universal dynamics of

ions has analogs in the relaxation of structural units of glass-forming substances and

systems. The analogy links the two research areas together, and it suggests that

understanding the dynamics of ions can have impact on the research field of glass

transition, which is currently also considered as an unsolved problem. Some of the

ionic conductors are not glass-forming, and even the glass-forming ones have the

ionic conductivity relaxation decoupled from the structural relaxation. Notwith-

standing, the analogy continues to hold. This means that glass transition is just an

effect with the cause being the universal dynamics shared with ionic conductivity

relaxation in ionic conductors.

The authors of this book come from different backgrounds and have different but

complementary expertise. Junko Habasaki is an expert and leader in molecular

dynamics simulations of ionic conductors, ionic liquids, and porous ionic conduc-

tors. Carlos León has been engaged in experimental study of various ionically

conducting materials for years and now leads a pioneering effort in nanoionics in

his group. K.L. Ngai is a theoretician who works closely with experiments and

simulations in the broad fields of relaxation and diffusion in complex systems. He is

the originator of the Coupling Model, which has been applied with success to many

different phenomena and materials in various research disciplines. In the book, we

have combined our individual expertise in writing most of the chapters with

participations to various degrees from all three of us. The chapters are linked to

each other by their contents, which are either developments of the same subject in a

different light or by a different technique, or specialization to a particular system.

We deem that this book will be useful in various ways to readers with widely

different interest ranging from physicists, chemists, materials scientists, and engi-

neers, as well as for teaching a course of ionics in academic institutions. As far as

we know, a book of this kind does not exist at the present time.
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11.12.2 Origin of the Lévy Distribution: Fractional

Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . 526

11.13 Acceleration of the Motion on Surfaces . . . . . . . . . . . . . . . . . 527

11.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

12 Practical Introduction to the MD Simulations

of Ionic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

12.1 Examples of MD Simulation of Ionic System . . . . . . . . . . . . . 533

12.2 Example 2: Analysis of the Lévy Flight and Lévy
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Chapter 1

Introduction

By now the study of ion transport and conductivity in ionically conducting mate-

rials is a subject of interest to physicists, chemists, materials scientists, and engi-

neers. The interest of physicists is to understand the complex motion of ions leading

to steady state diffusion and conductivity. This is a challenging endeavor because of

the large number of ions in most ionic conductors of practical interest. The motions

of the ions are not independent due to mutual ion interactions as well as interactions

with the matrix ions. For this reason the problem of diffusion and electrical

conductivity of interacting many-ion system has remained unsolved up to the

present time. Historically it was Michael Faraday who discovered ionic transport

in electrolytes in the years after 1830 [1]. Following Faraday, it was Kohlrausch [2]

in G€ottingen, Germany who made the first measurement of electrical relaxation of

alkali ions in the Leyden jar (a glass) in 1854. For experimental data, see

[3]. He found the relaxation has time-dependence given by

ϕK tð Þ ¼ exp � t=τð Þ1�n
h i

, where 0 < 1� nð Þ � 1; ð1:1Þ

the stretched exponential functions, or the Kohlrausch decay function, which

continues to be relevant in conductivity relaxation of ionic conductors, structural

relaxation of glass-forming liquids, and other research areas. By the way, the

stretched exponential function (1.1) was found to describe well the mechanical

relaxation in the natural polymer, silk, in 1863 and 1866 by F. Kohlrausch [4, 5], the

son of R. Kohlrausch. Nowadays, the function is known to fit well the structural

relaxation of glass-forming materials and systems in general. However, since the

times Faraday or Kohlrausch started the field, 180 years have gone by and remark-

ably the problem has not been solved in the physics world. Surprisingly few

theoretical attempts have been made in the past years to solve the problem.

One purpose of this book is to make the readers aware of this unusual situation in

physics research, and therefore the opportunity for anyone to make a significant

contribution towards solving this fundamental and important problem. Many ionic
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J. Habasaki et al., Dynamics of Glassy, Crystalline and Liquid Ionic Conductors,
Topics in Applied Physics 132, DOI 10.1007/978-3-319-42391-3_1

1



conductors with different physical and chemical structures have been discovered or

fabricated. A variety of experimental techniques have been applied to elucidate the

structures, and characterize the dynamics of ions over many orders of magnitude of

frequency/time from vibration of ions to d.c. conductivity. By this time, the wealth

of experimental data accumulated and the contrasting interpretations given in the

literature can overwhelm anyone entering the field. Chapter 2 gives a brief descrip-

tion of each of the theories and models of ion dynamics that are currently active.

Chapter 3 introduces the various experimental techniques utilized in the research of

ionic conductivity relaxation and diffusion. We make it easier for the readers to

grasp the essentials of the knowledge gained in experimental research in Chap. 4 by

organizing the facts and phenomena into general categories, and systematically

bringing out the salient and general features or properties of the ion dynamics. The

different methods of analyzing the data advocated by different workers, and the

interpretations resulting from the analyses are critically discussed.

In physics, veracity of theory is not judged by how intuitively appealing it is or

by the degree of mathematical complexity and rigor. Rather it is judged by

agreement of predictions with experiments, and more such predictions a theory

has, the better is the theory. Therefore in this book, we emphasize comparisons of

theory or models with all experimental findings that are well established. This

practice is followed in Chaps. 4–7, where data of widely different materials from

different experimental techniques are brought out to challenge any theory to

explain, much more than contained in the old reviews [6–8]. Other review articles

in the literature will be cited in the chapters. In this way the limitation and/or

validity of any theory/model/interpretation becomes so transparent that the readers

can make their own judgements.

Despite the fact that many ionic conductors with widely different physical and

chemical structures are considered in Chaps. 4–7, the many-ion dynamics in them

conform to the same pattern. In other words, for most of all the ionic conductors

discussed in this book the many-ion dynamics are similar, suggesting some com-

mon but fundamental physics is at work. The universal behavior is an outstanding

phenomenon in condensed matter physics challenging anyone to provide a theo-

retical explanation. Awareness of the universal ion dynamic properties may help as

a guide in the research of new materials. Therefore, to make it convincing, plenty of

examples showing similar properties or the universality of ion dynamics in diverse

materials are given, item by item, in the chapters of this book. In the literature,

others have proposed universal scaled frequency dependence of ionic conductivity,

which we show is faulty and should not be considered anymore.

Molecular dynamics (MD) simulations of ion dynamics can bring out properties

and provide information with details that are not obtainable by experiments. The

results can be additional critical tests of theory. These days realistic interaction

potential of ions in some archetypal ionic conductors are known and the dynamics

obtained by the MD simulations can faithfully reproduced the ion dynamics, albeit

the drawback from time scale limitation in simulation is unavoidable. Notwith-

standing, MD simulations are playing important role in the research on the ion

dynamics in many different types of material. Moreover, MD simulations can be
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used to explore the feasibility of ionic conductor with certain desired properties, but

that material has not yet been synthesized or fabricated. In view of the importance

of MD simulations in ionics, Chap. 8 introduces the general methodology of MD

simulations. In Chaps. 9–11, MD simulations of alkali silicate glasses and room

temperature ionic liquids are shown, and they can be used as examples of how to

use MD simulations in the research of ionic conductivity relaxation. The results

from the MD simulations are compared with experimental data presented before in

Chaps. 4–7. In Chap. 12, a practical introduction to perform MD simulations is

given to show the art and technique of MD simulations, the set-up of the simula-

tions, the execution of the program, and the extraction of information from the data,

such that the reader can learn step by step in how to perform MD simulations on

their own.

The rapid growth of research and application of ionic conductors we witness in

recent years would not be possible without the contributions of chemist and

material scientists who synthesize or fabricate new materials, and characterize

them for potential applications. The activities are driven by the search of materials

of high ionic conductivity to serve as the electrolyte in many electrical and

electrochemical devices including primary and secondary batteries, fuel cells,

memristors, sensors, smart windows, and electrochromic displays. New materials

enable innovations in the electrode and electrolyte components, critical in the

development of batteries with high energy density suitable for large scale everyday

applications [9–13].

Examples of recent developments in new materials are the room temperature

ionic liquids (RTILs) and nanoionics materials [14–24]. The RTILs are molten salts

composed of bulky, asymmetric organic cations and inorganic anions, and have

many beneficial properties such as low vapor pressure, environmentally friendly,

non-flammability, high electrical conductivity, excellent thermal and electrical

stability. Some RTILs have been used as electrolytes for lithium-ion batteries. In

principle many RTILs can be obtained by different combinations of organic cations

and inorganic anions, and this is the reason why new materials appear every now

and then. RTILs are usually glass-formers, and thus they can be used to study not

only ion conductivity relaxation but also the structural relaxation and glass transi-

tion on cooling. The relation between the two distinctly different relaxations is also

of interest. Therefore the study of RTILs and ionic liquids in general span two

currently active research areas, glass transition and ionics. Some RTILs have

properties of ion conductivity relaxation not found in solid amorphous and crystal-

line ionic conductors, and these properties are instrumental in acquiring a deeper

understanding of the dynamics of ions.

Nanoionics is another new field outgrown from bulk ionic conductors to explore

how structure and dynamics are changed when one or more dimensions of the

material are reduced to the nanometer length-scale [25–32]. The studies of ion

dynamics in nanoionics have found changes of the bulk properties, which demand

any theory proposed for the bulk to explain further. Observed in many nanoionics

materials is significant increase in ionic conductivity, and this beneficial change

makes possible some novel and rapidly developing technological applications.
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The book is written with the intent that the content can be useful for a broader

readership and different purposes. Topics including basic concepts, theories/

models, experimental techniques, experimental data, interpretations and explana-

tions, methods of and sample results in molecular dynamics simulations are all

covered in the book. Thus it can be used for teaching a special course by academics.

If some topics are chosen to be the emphasis of the course, the materials in the book

on these topics can be easily expanded in details and coverage by consulting the

references cited.

For those readers who are interested in materials engineering, the choice of ionic

conductors with optimal properties for specific applications is the major concern.

For example, although there are many ionic conductors that can be used as

electrolytes in solid-state batteries, in some cases they are unstable against typical

negative electrodes such as graphite and metallic lithium, or may react easily with

positive electrode materials and give rise to poor charge-transfer kinetics [9–

13]. Trying to maximize the ionic conductivity of the electrolyte is another exam-

ple. It is known that increasing the concentration of mobile ions results in higher

activation energy for ion diffusion and consequently in a decrease of ion mobility. It

is necessary to follow new strategies to find materials showing lower activation

energies for ion diffusion, exploiting size effects, space-charge effects, controlling

and modulating structural disorder, and etc. This is in fact one of the current

challenges in solid state ionics. The variety of ionic conductors and their properties

discussed in this book provide easy access to the characteristics as well as limita-

tions of the materials available for their specific applications. Despite the lack of

fundamental understanding of the dynamics of mobile ions in ionically conducting

materials, the book provides insights into the possible mechanisms for ion diffu-

sion, examples of how tuning structure to enhance ionic conductivity by changing

composition in materials with different structures, and also useful trends observed

in ionic conductivity for different families of materials that, overall, are intended to

pave the way towards the design of novel and optimized ionic conductors.

For scientists entering the field of ionic conductors for basic research and

applications, the book is perhaps one of the best media to be brought to the forefront

proficiently by the critical review of the available experimental tools and methods,

the phenomena, the salient experimental findings, the theoretical considerations and

explanations, and guidance to performmolecular dynamics simulations and analyze

the results.

With the multiple purposes of the book in mind, the chapters are organized and

arranged in order as given in the Table of Contents. Ionic conductivity relaxation is

one of the dissipative or irreversible processes. Chapter 2 introduces the basic

concepts and general formalism of treating irreversible process in statistical

mechanics. Specializing to ionic conductivity relaxation, we introduce the phe-

nomenological approaches based on the assumption of a distribution of exponential

time correlation functions with different ionic conductivity relaxation times can

account for some of the observed experimental data. These are followed by brief

descriptions of theories and models of ionic conductivity relaxation and diffusion to

let the reader be familiar with the various attempts to explain the ion dynamics.

4 1 Introduction

http://dx.doi.org/10.1007/978-3-319-42391-3_2


More detailed description of some will be given in Chap. 4. Any theory will be

mentioned again wherever it makes contact with or is relevant to experiment

findings and simulation results in all following chapters.

Techniques derived from nuclear magnetic resonance have been profitably

applied to the study of ion dynamics, and the accomplishments are summarized

in Chap. 5. The emerging field of nanoionics is reviewed in Chap. 6. Ionic liquids

and especially the room temperature ionic liquids have attracted much attention in

recent years because their properties are not only beneficial in technological

applications but also having impact on fundamental understanding of ion dynamics.

For this reason, Chap. 7 is devoted entirely to the discussion of this class of ionic

conductors.

Brought out by a multitude of experiments discussed in Chaps. 4–7 in a wide

variety of ionic conductors, the properties of ion dynamics turn out to be universal.

Even more remarkable is that the universal ion dynamics are analogous to the

universal structural relaxation dynamics of glass-forming substances and systems

[33]. It is hoped that the overwhelming evidences of universality of ion dynamics

and structural relaxation of glass-formers could stimulate some readers to identify

the underlying fundamental physics and solve these basic problems in condensed

matter physics in the near future.

Methodology of molecular dynamics (MD) simulations explained in Chap. 8 are

used in the studies of alkali silicate glasses, including mixed alkali system and room

temperature ionic liquids in Chaps. 9–11. The results of MD are compared with

experiments and theories. Characteristics of complex (heterogeneous) jump (hop-

ping) motions of ions obtained by MD simulations, which are briefly described in

Chap. 2 with the related theories, are explained in details there. More practical

introduction of MD explaining methods for the fundamental setting of simulations,

preparation of initial configurations, available programs and examples of analysis is

given in Chap. 12. An exercise of MD simulation for a lithium silicate glass and

following analysis and visualization will be useful for starting and understanding

MD simulations by others.

In Chap. 13, several applications of ionics to related fields are described. The

ionics discussed in the present book will give hints for designing several properties

of materials, such as high conductivity. Fabrication of porous materials in MD is a

topic closely related to nanoionics discussed in Chap. 5. Increase of conductivity in

porous materials has been reported for several systems. Acceleration of the ionic

motion is predicted by MD simulation of porous lithium disilicate and further

studies will be useful for material designs of electric devices.

The studies of ions are closely related to the field of glass transition. Especially,

insights obtained from the studies of ionic liquid, which can be glass forming, are

useful to understand the glass transitions. Some hints to consider the problems are

also discussed in this chapter.

Some concepts and methods used for the studies by MD simulations, such as

Lévy distribution and multifractal are explained separately in Appendixes 1–7.

The main part of the MD code (CUDA, FORTRAN) for GPGPU (General-purpose

computing on graphics processing units) is found in the Appendix A.8. The usage
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of Excel file for Fast Fourier Transform (FFT) included in Electronic Supplementary

Materials (ESM) is explained in the Appendix A.9

Electronic Supplementary Materials (ESM) are available online. (http://extras.

springer.com/). A short MD program, which works on Windows machine, initial

configuration of lithium silicate glass and some related files used in the exercise of

MD simulation mentioned in Chap. 12 are included. Several interactive free

Computational Document Format (CDF) files (CDF player is freely available) for

manipulation of parameters of Lévy distribution, MD simulation of a small soft-

sphere system and some examples of analysis of jump motions of ions are also

included. Some movie clips for the motion of ionically conducting glass and a

crystal, as well as ionic liquid can be found there.

“Data Tables for the Fourier Transform of the Time Derivatives of the Stretched

Exponential Functions” as well as Excel files for performing FFT, explained in

Appendix A.9, are included. The reader is welcome to use these files but at his/her

own risk.
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Chapter 2

Theories and Models of Ion Diffusion

This chapter describes some models that are often used in trying to understand

experimental data and fundamental questions in ion diffusion in ionically

conducting materials. The basics of linear response theory are introduced first,

with the definition of the linear response function, the Kramers-Kronig relations,

and the Fluctuation-Dissipation theorem. The second section is devoted to present

the Debye model and several other phenomenological descriptions of dielectric

relaxation in materials whose electrical response is dominated by bound charges.

This helps to understand the conductivity relaxation that occurs in materials with

mobile charges like ionic conductors, and to introduce the so called conductivity

formalism and electric modulus formalism for the analysis of experimental data of

ion diffusion dynamics. A simple model of ion hopping is introduced that accounts

for the thermally activated behavior often found in ionic conductivity data. The

relationship between non-Debye relaxation and non-Gaussianity of the dynamics in

the real space is also discussed in this chapter. Finally, three different models for ion

diffusion are described in some detail. These are the Random Barrier Model, the

MIGRATION concept, and the Coupling Model.

2.1 Linear Response Theory

In physics and material science we often encounter the problem of understanding,

and even predicting how the system of interest will respond when an external force

or perturbation is applied to drive it away from equilibrium. Response theory is

devoted to this goal [1]. For example, if a temperature gradient is applied to a

material, the response is heat transport through it, and this response is determined

by the thermal conductivity of the material. Or when we apply an electric field as an

external force to the same material, the free electrical charges will flow and give

© Springer International Publishing Switzerland 2017
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rise to a current density in response. The magnitude of the current density is

determined by the electrical conductivity of the material, and, if the response is

linear, the current density will be proportional to the magnitude of the applied

electric field.

We may be interested in the stationary response of the system when applying a

time independent external force on it, or in the transient response of the system.

The latter is how the system evolves with time to reach a stationary state under a

time independent external force or, conversely how it returns to equilibrium with

time after the external force is removed. We may be also interested in the response

of the system if the applied external force is time dependent. In this case, if the

response is linear, we can use Fourier analysis to obtain the response of the system

as a superposition of the responses to sine waves of different frequencies that are the

Fourier components of the time dependent applied force. This is why the study of

the response of a system at different frequencies is relevant. In the following, we

shall present a general introduction to linear response theory, and then specialize it

to the case of ionically conducting materials.

2.1.1 Linear Response Function

Let us consider a small perturbation or external force x(t) acting on an isotropic

system in causing a response y(t). If we assume linearity (i.e. the reaction of the

system to the sum of two different perturbations is the sum of the two reactions

separately to each perturbation) and causality (that is, only forces applied in the past
contribute to the response at a given time t), the response can be related to the

perturbation by [2]:

yðtÞ ¼
ðt

�1
Jðt� t0Þ dxðt

0Þ
dt0

dt0, ð2:1aÞ

where J(τ) is known as the material function. This material equation is often written

also as

yðtÞ ¼ y1 þ
ðt

�1
Jðt� t0Þ dxðt

0Þ
dt0

dt0, ð2:1bÞ

where the magnitude y1 accounts for the instantaneous response of the system

(or its response for very short times, entirely due to fast processes, which are not

related to the response from processes that we are interested in, and may not be

accessible by experiment). The material function can be determined by measuring

the response of the system to a step-like perturbation, x tð Þ ¼ x0 for t � 0 and
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x tð Þ ¼ 0 before. In this case, dx tð Þ=dt ¼ x0δ tð Þ, with δ(t) the delta function, and

substituting in Eq. (2.1b) we obtain the material function J tð Þ ¼ y tð Þ � y1½ �=x0.
Equation (2.1a) describes the response of the system as a convolution of the

material function with the time derivative of the applied external force. Note that

the time dependence of the system only depends on the time interval between the

application of the force and the observation time t. We can then define a time

interval, τ ¼ t� t0, and write Eq. (2.1a) as

y tð Þ ¼
ð1
0

J τð Þ dx t� τð Þ
dτ

dτ; ð2:1cÞ

Partial integration of Eq. (2.1c) results in the following alternative expression

relating the response and the external force signals in the time domain:

y tð Þ ¼
ð1
0

dJ τð Þ
dτ

x t� τð Þdτ ¼
ð1
0

R τð Þx t� τð Þdτ; ð2:1dÞ

whereR τð Þ ¼ dJ τð Þ=dτ is the so-called response function (linear response function,
or impulse response function). This means that, in general, the value of y(t) will
depend not only on the present value of x(t), but also on past values, and we can

approximate y(t) as a weighted sum of the previous values of x t� τð Þ, with the

weights given by the response function R(τ). Note that for an impulse or delta

function perturbation, x tð Þ ¼ x0δ tð Þ, the response of a system will be proportional to

the (impulse) response function, y tð Þ ¼ x0R tð Þ.
By inverting Eq. (2.1) we obtain:

xðtÞ ¼
ðt

�1
Gðt� t0Þ dyðt

0Þ
dt0

dt0, ð2:2Þ

where x(t) and y(t) are a pair of conjugated variables. If y(t) is an extensive quantity,
the material function J(τ) is a generalized compliance, and the time dependent

process is defined as retardation. If y(t) is an intensive quantity, the material

function G(τ) is a generalized modulus, and the time dependent process is relaxa-

tion. It follows from Eqs. (2.1) and (2.2) that

ð1
�1

J t� t0ð ÞG t0ð Þdt0 ¼ δ tð Þ: ð2:3aÞ

J* ωð ÞG* ωð Þ ¼ 1: ð2:3bÞ
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Equation (2.3b) is obtained by Fourier transformation of Eq. (2.3a) and relates the

complex functions J*(ω) andG*(ω) in the frequency domain. If we are interested in

relating the response of the system to the external perturbation as a function of

frequency, we consider a stationary periodic time dependent perturbation of the

form, x tð Þ ¼ x0e
�jωt, where ω is the angular frequency. We obtain by Fourier

transform both sides of Eq. (2.1d) that

ð1
�1

y tð Þe�jωtdt ¼
ð1

�1

ð1
0

R τð Þx t� τð Þdτ
24 35e�jωtdt; ð2:4aÞ

ð1
�1

yðtÞe�jωtdt ¼
ð1

�1
xðt0Þe�jωt0dt

ð1
0

RðτÞe�jωτdτ, ð2:4bÞ

with t0 ¼ t� τ. The quantities, x (ω) and y(ω), which are respectively the Fourier

transforms of x(t) and y(t), satisfies the relation,

y* ωð Þ ¼ χ* ωð Þ x* ωð Þ; ð2:4cÞ

where the susceptibility function, χ*(ω), is the one-sided Fourier transform

(Laplace transform) of the impulse response function, R(τ):

χ∗ðωÞ ¼
ð1
0

RðτÞe�jωτdτ: ð2:5Þ

While the impulse response function is real, the susceptibility is complex,

χ∗ðωÞ ¼ χ0ðωÞ � jχ00ðωÞ, ð2:6Þ

and the real and imaginary parts of the susceptibility can be obtained from the

response function by

χ0 ωð Þ ¼
ð1
0

R τð Þ cosωτ dτ; ð2:7aÞ

χ00 ωð Þ ¼
ð1
0

R τð Þ sinωτ dτ: ð2:7bÞ

It follows straightforwardly from these relations that χ0(ω) is an even function of

frequency and χ00(ω) is an odd function of frequency.
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2.1.2 The Kramers-Kronig Relations

Since χ0(ω) and χ00(ω) are cosine and sine transforms of the same function, the real

and imaginary parts of the susceptibility are not independent of each other.

Provided that: (1) the response function is real and analytic, (2) the system response

at a given time only depends on the forces applied before that time (causality), and

(3) the susceptibility converges to zero stronger than 1/ω at high frequencies

(i.e. there is not time for the system to respond if the applied force oscillates at

enough high frequencies), it can be shown that χ0(ω) and χ00(ω) are related by the

Kramers-Kronig relationships [3–6]:

χ0 ωð Þ ¼ 1

π
P

ð1
�1

χ00 ωð Þ
ω0 � ω

dω0; ð2:8aÞ

χ00 ωð Þ ¼ �1

π
P

ð1
�1

χ0 ωð Þ
ω0 � ω

dω0; ð2:8bÞ

where the symbol P denotes the Cauchy principal value. Usually valid in most

physical situations, these relations show that the full susceptibility function can be

obtained if we just know its real (or imaginary) part at every frequency. An alternate

form for the Kramers-Kronig relations can be derived that involves only the

response of the system at positive frequencies. If we multiply the numerator and

denominator in Eq. (2.8) by ω0 þ ωð Þ we obtain:

χ0 ωð Þ ¼ 1

π
P

ð1
�1

ω0χ00 ωð Þ
ω02 � ω2

dω0 þ 1

π
P

ð1
�1

ωχ00 ωð Þ
ω02 � ω2

dω0; ð2:9aÞ

χ00 ωð Þ ¼ �1

π
P

ð1
�1

ω0χ0 ωð Þ
ω02 � ω2

dω0 � 1

π
P

ð1
�1

ωχ0 ωð Þ
ω02 � ω2

dω0: ð2:9bÞ

Since χ00(ω) and χ0(ω) are odd and even functions of frequency respectively, the

second integral in Eq. (2.9a) and the first integral in Eq. (2.9b) vanish, and we can

finally write:

χ0ðωÞ ¼ 2

π
P
ð1
0

ω0χ00ðωÞ
ω02 � ω2

dω0, ð2:10aÞ

χ00ðωÞ ¼ �2

π
P
ð1
0

ωχ0ðωÞ
ω02 � ω2

dω0: ð2:10bÞ
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The imaginary part of the susceptibility function is out of phase with the applied

force and therefore determines how energy is dissipated by the system. From the

Kramers–Kronig relations we can conclude that it is sufficient to measure the

dissipative response of a system in order to determine its in-phase response (and

vice versa).

2.1.3 The Fluctuation-Dissipation Theorem

We can further examine the relationship between the susceptibility, or the linear

response function, and the dissipation of energy in a system, by introducing the

Fluctuation Dissipation Theorem (FDT) [7, 8]. The FDT is a general result of

statistical thermodynamics that relates the microscopic fluctuations in a system at

thermal equilibrium and the response of the macroscopic system to applied external

perturbations. In other words, the FDT relates non-equilibrium dynamics of a

system driven away from (or relaxing towards) equilibrium to the existing fluctu-

ations and dynamics in the equilibrium state. The FDT thus allows the use of

microscopic or molecular models to predict material properties in the context of

linear response theory.

Thermodynamic quantities characterizing a macroscopic system are described in

statistical physics by their average values. These quantities actually fluctuate

around their mean value due to the stochastic motions of the particles in the system.

For instance, for a given quantity y(t) with average value, hyi, the fluctuations of the
quantity are defined as Δy tð Þ ¼ y tð Þ � yh i. The correlation function φ(τ) is

introduced in order to describe the dependence of the fluctuations at a given time

Δy tþ τð Þ on their value Δy(t) at a previous time separated by the time interval τ,
and it is defined as the average of the product of these two values of the fluctuations

at two times separated by τ, φ τð Þ ¼ Δy tð ÞΔy tþ τð Þh i. In the case of a stationary
process the time t is irrelevant and the correlation function can be written as:

φ τð Þ ¼ Δy 0ð ÞΔy τð Þh i: ð2:11Þ

A normalized correlation function, ϕ τð Þ ¼ φ τð Þ=φ 0ð Þ, is often considered,

ϕ τð Þ ¼ Δy 0ð ÞΔy τð Þi=hΔy 0ð ÞΔy 0ð Þh i; ð2:12Þ

so that ϕ 0ð Þ ¼ 1. Note also that it is expected that the correlation function tends to

zero for long enough τ, i.e. ϕ 1ð Þ ¼ 0.

It is worthwhile to emphasize that every correlation function of an observable

quantity can be expressed in terms of the so-called memory function K(t) by [9]

dϕ tð Þ
dt

¼ �
ðt
0

K t� τð Þϕ τð Þdτ: ð2:13Þ
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From the expression above, the time dependence of the correlation function is

obtained if the memory function can be calculated by using a microscopic or

molecular model or if the memory function can be described by an empirical

function.

Again for the case of stationary processes, the so called spectral density function

(or the power spectral density function, or simply the power spectrum), Sy(ω), is
defined as the Fourier transform of the correlation function:

Sy ωð Þ ¼
ð1

�1
φ τð Þe�jωτdτ: ð2:14Þ

The spectral density function is a measure of the frequency distribution of the

fluctuations. It can be shown that the response function is related to the correlation

function by:

R τð Þ ¼ � 1

kT

dφ τð Þ
dτ

; ð2:15Þ

and therefore, the spectral density function in the classical limit (no quantum

effects) is related to the imaginary part of the susceptibility by:

SyðωÞ ¼ 2kT

ω
χ00ðωÞ: ð2:16Þ

Within the approximations of the linear response theory, the Fluctuation Dissipa-

tion Theoremmeans that the relaxation dynamics of a macroscopic non-equilibrium

disturbance is governed by the same mechanisms as the regression of spontaneous

microscopic fluctuations in the equilibrium state [10, 11].

2.2 Dielectric Relaxation

Before analyzing relaxation dynamics driven by mobile ions in ionically

conducting materials, it is instructive to describe the case of dielectric relaxation

in materials with polarization charge. The dielectric relaxation that takes place in a

dielectric material with bound electric charges at small electric field strengths can

be analyzed within the framework of the linear response theory. In dielectrics the

external perturbation is an applied electric field E(t), and the response of the system
is the polarization P(t), or the electric displacement D(t) [12]. Let us consider an
isotropic system and a homogeneous electric field. We can then describe the time

dependence of the magnitude of the polarization inside the material as:
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P tð Þ ¼ ε0

ðt
�1

χ t� t0ð ÞE t0ð Þdt0; ð2:17aÞ

P tð Þ ¼ ε0

ð1
0

χ τð ÞE t� τð Þdτ; ð2:17bÞ

where χ(τ) is the corresponding response function for the polarization and ε0 the
permittivity of a vacuum. Since the polarization is an intensive thermodynamic

quantity, the function χ(τ) is a generalized compliance. In the frequency domain,

the polarization and the electric field are related through the complex dielectric

susceptibility, χ*(ω), which is the one sided Fourier transform of χ(τ)
(see Eq. (2.5)), and

P∗ðωÞ ¼ ε0χ
∗ðωÞE∗ðωÞ: ð2:18Þ

Since the polarization can only depend on the electric field at previous times, a

consequence of causality, the real and imaginary parts of the complex susceptibility

must satisfy the Kramers–Kronig relations (see previous section).

Analogously, we can obtain the following relation between the electric

displacement, D, and the electric field amplitudes if the electric field oscillates

periodically at a given frequency, by using the complex dielectric permittivity,

ε* ωð Þ ¼ 1þ χ* ωð Þ,

D* ωð Þ ¼ ε0E
* ωð Þ þ P* ωð Þ ¼ ε0ε* ωð Þ E* ωð Þ: ð2:19Þ

Note that the frequency dependence of the susceptibility leads to frequency

dependence of the permittivity, and characterizes the dispersion properties of

the material.

2.2.1 Debye Relaxation

Debye theory of dielectric relaxation is the simplest model of rotational Brownian

motion of spherical dipoles in a viscous medium where inertia effects are neglected

[13, 14]. In this case it is found that the response function has the exponential time

dependence. The same behaviour can be explained by assuming that, in the absence

of an electric field, if there exists a polarization due to the occurrence of a field in

the past, the decrease rate of the polarization at a given instant is independent of the

history of the material and depends only on the value of the polarization at that

instant, with which it is proportional. The proportionality constant has the
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dimension of a reciprocal time and is often denoted by 1/τD, giving rise to the

following first order differential equation:

�dP tð Þ=dt ¼ P tð Þ= τD; ð2:20Þ

the solution of which is

P tð Þ ¼ P 0ð Þe�t= τD : ð2:21Þ

It follows that the impulse response function can be written as

χ tð Þ ¼ 1

τ
e�t= τD ; ð2:22Þ

with τD the so called (Debye) relaxation time (see Fig. 2.1). The frequency

dependence of the complex dielectric permittivity is given by

ε* ωð Þ ¼ ε1 þ Δε
1þ jωτD

: ð2:23Þ

Figure 2.2 shows the frequency dependence of the real and imaginary parts of the

dielectric permittivity of a system with a Debye relaxation. It can be observed that

the real part shows an increase of Δε with decreasing frequency below the charac-

teristic frequency ωD ¼ 1=τD, while the imaginary part shows a symmetric peak

with the maximum at ωD. The relaxation time is usually found to be thermally

Fig. 2.1 Sketch showing the exponential time dependence of the polarization P(t) for an

ideal Debye relaxation in a dielectric material. The polarization starts to decrease after

removing the application of an external electric field, E(t), at t¼ 0. The time τD is the Debye

relaxation time (see text)
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activated, which can be explained in terms of a potential barrier for the dipoles to

rotate in the system [2].

Within the framework of the memory function formalism (see Eq. (2.13)), the

Debye relaxation is obtained by using

K t� τð Þ ¼ δ t� τð Þ
τD

; ð2:24Þ

which implies that the orientational rotations of the electric dipoles are random and

uncorrelated (independent) events in the Debye relaxation model and characterized

by one and the same relaxation time.

2.2.2 Non-Debye Relaxation

Although the Debye model provides a simple understanding of the relaxation

phenomena, in most cases the measured dielectric relaxation spectra is more

complex and show departures from the behavior expected from Eq. (2.23). In

particular, it is usually found that the relaxation peak in the imaginary part of the

susceptibility or dielectric permittivity functions is asymmetric and broader

than expected for a Debye response. This behaviour is known as non-Debye

(or sometimes non-ideal) dielectric relaxation. While the ultimate reason for the

observed non-Debye relaxation is still a matter of scientific debate and may

be different for different systems, there are usually two different approaches in

the several proposed models to account for the non-Debye response. One

approach is based on considering that the individual dipole rotations are not

independent but correlated, and the relaxation is thus the result of a cooperative

Fig. 2.2 Sketch of the frequency dependence of the real and imaginary parts of the dielectric

permittivity ε* ¼ ε0 � jε00ð Þ for a dielectric material showing a Debye relaxation with relaxation

time τD. The values of the real part of the dielectric permittivity at low and high frequencies are

taken as εs ¼ 12 and ε1 ¼ 3, respectively
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process such as that proposed by Adam and Gibbs from configurational entropy

arguments [15]. Cooperative relaxation also arises from interaction between the

relaxation units, and the many-body relaxation is dynamically heterogeneous

[16–18]. The other approach relies on considering that the individual dipole

rotations take place as random and independent events, and each can be described

as true Debye-like process, but that they are characterized by different relaxation

times due to an inhomogeneous or disordered environment in the system giving

rise to an energy landscape.

While the validity of the different approaches or models for the dielectric

relaxation remains a subject of scientific debate, the non-Debye response of the

relaxation process is often described in terms of phenomenological functions either

in the time or frequency domains which can be used to obtain information about the

dynamics and eventually to discriminate between the different theoretical models.

One of the most used empirical functions to describe a relaxation process from long

time ago is the so-called Kohlrausch-Williams-Watts (KWW) function [19–22]. Its

time dependence is a stretched exponential decay of the form

ϕ tð Þ ¼ e� t= τKWWð ÞβKWW ð2:25Þ

for the correlation function. The exponent or stretching parameter βKWW is a

fractional number between 0 and 1, what leads to an asymmetric broadening

of the susceptibility spectra compared to the case of an ideal Debye exponential

decay (βKWW ¼ 1). The corresponding memory function for a correlation function

of the KWW type can be estimated to be [2, 9]

K t� τð Þ ¼ δ t� τð Þ
ζ τð Þ , with ζ τð Þ � τKWW

1�βKWW : ð2:26Þ

Since the KWW function usually represents experimental data quite well, there has

been a long standing search for realistic models that lead to KWW behavior

[23, 24]. In particular, Ngai’s Coupling Model (CM) [25, 26] provides a physical

basis for the KWW behavior in the relaxation of complex systems with many

applications. It assumes that at short times, before a crossover time tc of the order
of a few picoseconds, the relaxing species are independent from each other, and this

primitive relaxation process is Debye-like with a characteristic primitive relaxation

time τ0. The onset of cooperativity after tc would give rise to the slowing down of

the relaxation dynamics and the corresponding KWW behavior of the correlation

function. The important relationship derived in the CM model,

τKWW ¼
h
τ0t

ðβKWW�1Þ
c

i1=βKWW ð2:27Þ

between the primitive relaxation time τ0 and the experimentally determined values

of τKWW and βKWW allows the experimental verification of the model [18].

2.2 Dielectric Relaxation 19



While the KWW function allows for a fairly good description of many experi-

mental relaxation data in the time domain, there are other important and widely

used empirical descriptions of the relaxation processes that describe the suscepti-

bility or permittivity function in the frequency domain. Among these empirical

functions is the so called Havriliak-Negami function [27] which reads

ε* ωð Þ ¼ ε1 þ Δε
1þ jω τHNð Þαð Þβ

: ð2:28Þ

The fractional parameters α and β describe the symmetric (β ¼ 1) or asymmetric

β < 1ð Þ broadening of the relaxation peak in the dielectric spectra.

These parameters being less than 1 account for the experimentally observed

fractional power-law frequency dependence of the dielectric permittivity,

the so-called Jonscher’s law or universal dielectric response [28], since the

limiting behavior of the dielectric loss at low and high frequencies is given by

ε00 ωð Þ � ωα and ε00 ωð Þ � ω�αβ respectively. The memory function which leads to

a relaxation behavior according to the Havriliak-Negami function can be approx-

imated by [9]

K t� τð Þ ¼ Ω0τ�α t� τð Þβ�2

Γ β � 1ð Þ : ð2:29Þ

The case β ¼ 1 in the Havriliak-Negami function leads to the so-called Cole-

Cole (CC) function [29],

ε* ωð Þ ¼ ε1 þ Δε
1þ jω τCCð Þαð Þ ; ð2:30Þ

which describes the case of a symmetric relaxation spectra, with the dielectric loss

given by ε00 ωð Þ � ωα and ε00 ωð Þ � ω�α in the limit of low and high frequencies

respectively. It accounts for broader spectra compared to the Debye case, which is

in fact the limiting case for α ¼ 1. Another phenomenological expression that is

often used to describe relaxation spectra was given by Davidson and Cole [30]. The

Cole-Davidson (CD) function reads

ε* ωð Þ ¼ ε1 þ Δε
1þ jω τCDð Þβ ; ð2:31Þ

and results from setting the parameter α ¼ 1 in the HN function. Although there are

other empirical descriptions of dielectric relaxation, the Havriliak-Negami, Cole-

Cole and Cole-Davidson functions in the frequency domain, together with the

KWW function in the time domain, are most often used in the literature to describe

non-Debye relaxation spectra or response function [12].
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2.3 Conductivity Relaxation

2.3.1 Electric Modulus Formalism

While in the case of dielectric relaxation the response of the system is due to bound

electric charge, when analyzing conductivity relaxation dynamics in ionically

conducting materials, it is important to bear in mind that it is driven by mobile

electric charge carried by the ions. In this case the relaxation process is the decay of

the electric field E(t) inside the conductor after applying an electric displacement

D(t). Analogous to the description of dielectric relaxation, let us assume an isotro-

pic system and a homogeneous electric displacement. If an ionic conductor is

placed between the charged plates of a condenser at time t¼ 0, the displacement

vector can be described by a step-function with amplitude D0. It gives rise to an

electric field that causes the mobile ions to diffuse and accumulate, which results in

an additional and opposite electric field that increases with time until the total

electric field that mobile ions feel inside the material cancels out. Therefore, the

electric field inside the ionic conductor decays with time (see Fig. 2.3), and we can

describe the time dependence of this electric field after t¼ 0þ as:

E tð Þ ¼ D0

ε0ε1
Φ tð Þ; ð2:32Þ

where ε0ε1 is the “high frequency” value of the dielectric permittivity, and

E t ¼ 0þð Þ ¼ D0=ε0ε1. The “high frequency” permittivity accounts for all possible

contributions to the decay of the electric field between t¼ 0 and t¼ 0þ and always

before the mobile ions start to move. Thus, the correlation function for the electric

field relaxation due to mobile ions is given by Φ(t).

Fig. 2.3 Sketch showing the relaxation of the electric field inside an ionic conductor placed at

time t¼ 0 between the charged plates of a condenser where the displacement vector can

be described by a step-function with amplitude D0. The electric displacement gives rise to an

electric field that causes the mobile ions to diffuse and accumulate, which results in an additional

and opposite electric field that increases with time until the total electric field that mobile ions

feel inside the material cancels out. The electric field inside the ionic conductor decays with time

as E tð Þ ¼ E0Φ tð Þ
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By using the time derivative of Eq. (2.32) we can write

E tð Þ ¼ 1

ε0ε1
D tð Þ þ

ðt
�1

dΦ
dt

t� t0ð ÞD t0ð Þdt0
24 35 ð2:33aÞ

and therefore

E tð Þ ¼ D0

ε0ε1
1þ

ðt
0

dΦ
dτ

τð Þdτ
24 35: ð2:33bÞ

In the frequency domain, the relation between the electric field and the electric

displacement is obtained by performing the Fourier transform of Eq. (2.33),

resulting in

E* ωð Þ ¼ 1þ _Φ * ωð Þ� �
ε0ε1

D* ωð Þ: ð2:34Þ

where _Φ * ωð Þ accounts for the Fourier transform of the time-derivative of the

correlation function describing the electric field relaxation. By using the electric

modulus M* ωð Þ ¼ 1=ε* ωð Þ and Eq. (2.19) we can write

E* ωð Þ ¼ M* ωð Þ
ε0

D* ωð Þ; ð2:35Þ

and therefore

M* ωð Þ ¼ M1 1þ _Φ * ωð Þ� �
; ð2:36aÞ

M* ωð Þ ¼ M1 1þ
ð1
0

d

dt
Φ tð Þe�jωtdt

24 35 ; ð2:36bÞ

where M1¼1/ε1. Equation (2.36) means that the correlation function Φ(t) for the
time decay describing the relaxation of the electric field (often referred to as

electrical conductivity relaxation), which is governed by the dynamics of the

mobile ions, can be obtained from the electric modulus as a function of frequency.

By using the relation 1þ _Φ * ωð Þ ¼ jωΦ* ωð Þ, we can relate the Fourier transform of

the correlation function, Φ*(ω), to the experimental impedance spectra

Z* ωð Þ ¼ 1=σ* ωð Þ ¼ 1=jωε0ε* ωð Þ ¼ M* ωð Þ=jωε0 as

Φ* ωð Þ ¼ ε0ε1Z* ωð Þ ð2:37Þ
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2.3.2 Conductivity Formalism

Alternatively, we can think of the ion diffusion process in ionic conductors in terms

of the successive jumps of the ions from their sites to neighboring empty sites in the

structure. According to linear response theory, the frequency dependent complex

electrical conductivity due to ion hopping is proportional to the Fourier transform of

the current density autocorrelation function:

σ*hop ωð Þ ¼ V

3kBT

ð1
0

J 0ð ÞJ tð Þh ie�jωtdt ; ð2:38Þ

where V is the volume of the sample, and kB denotes Boltzmann’s constant. The
current density is given by

J tð Þ ¼ 1

V

X
i

qivi tð Þ ð2:39Þ

with qi and vi the charge and velocity of the ion i and the sum performed for all the

mobile ions in the sample. The combination of Eqs. (2.38–2.39) shows that the

electrical conductivity is related to velocity correlation function of the hopping

ions,
P
i, j

vi 0ð Þvj tð Þ
� �

; as

σ*hop ωð Þ ¼ q2

3VkBT

ð1
0

X
i, j

vi 0ð Þvj tð Þ
* +

e�jωtdt : ð2:40Þ

Similarly, the frequency dependence of the complex self-diffusion coefficient due

to ion hopping is proportional to the Fourier transform of the velocity autocorrela-

tion function:

D*
hop ωð Þ ¼ 1

3

ð1
0

v 0ð Þv tð Þh ie�jωtdt ; ð2:41Þ

and it is related to the complex electrical conductivity through the generalized

Nernst-Einstein equation:

σ*hop ωð Þ ¼ Nq2

VkBT H* ωð ÞD
*
hop ωð Þ; ð2:42Þ

with N the total number of mobile ions and H*(ω) the so-called Haven ratio. When

correlations between the velocities of different ions can be neglected, the velocity

correlation function is proportional to the velocity autocorrelation function,
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X
i, j

vi 0ð Þvj tð Þ
* +

¼ N v 0ð Þv tð Þh i ð2:43Þ

and the Haven ratio is real and equal to 1. But if cross correlations cannot be

neglected, then the Haven ratio is a complex function of the frequency.

In the particular case that the ions behave as random walkers, they have no

memory and their velocities are uncorrelated, so the velocity correlation function is

proportional to a delta function at time t¼ 0,

X
i, j

vi 0ð Þvj tð Þ
* +

random hops

¼ N Γ x20
2

δ tð Þ; ð2:44Þ

where, Γ and x0 are the hopping rate and the elementary jump distance of the ions,

respectively. Thus, random hopping yields a hopping conductivity which is real and

constant that is given by

σ*hop ωð Þ ¼ n q2 x20 Γ
6kBT

¼ n q2 D0

kBT
ð2:45Þ

with n¼N/V as the concentration of mobile ions, and a frequency independent

diffusion coefficient given by D0 ¼ x2
0
Γ

6
. However, experimental data usually

shows a dispersive (frequency dependent) complex conductivity, which is

interpreted in terms of the non-random nature of the ion hopping events. As in

the case of dielectric relaxation, there are models that consider the dispersive

behavior arises from the existence of a distribution of hopping rates because the

different ions experience different environments at a given time, and other models

where the dispersive conductivity is a consequence of the cooperative hopping of

mobile ions due to ion-ion interactions.

It is important to remark that independently of using the conductivity or electric

modulus formalism in order to analyze or interpret experimental data of the

electrical response of ionic conductors, they are just different representations of

the same data, that are related through

Z* ωð Þ ¼ M* ωð Þ=jωε0 ¼ 1=σ* ωð Þ ¼ 1

σ*hop ωð Þ þ jωε0ε1
; ð2:46Þ

and therefore contain the same information about ion dynamics.

2.3.3 Empirical Description of Ion Dynamics. Distribution
of Relaxation Times

The experimental data of electrical conductivity relaxation (ECR) from admit-

tance spectroscopy measurements can be represented in terms of the complex

conductivity or the electric modulus. The two alternative representations of the
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same data have proven to be very useful in the study of ion diffusion dynamics in

ionically conducting materials [26, 31]. Similar to the case of dielectric relaxation

in polarizable insulating materials, a Debye response function, i.e. exponential

time decay with a single relaxation time, is rarely observed [32]. The usual

behavior is a rather strongly non-Debye response, characterized by a frequency

dispersive electrical conductivity and therefore by a broader, and usually asym-

metric, peak in the imaginary part of the electric modulus spectra compared to that

expected from a Debye relaxation. The observed departure from a simple Debye

behavior in ECR has been mainly considered as due to either the presence of

structural disorder and randomness in the material [33], or to the effect of

interactions among ions in their cooperative motion [18, 34–37]. Before entering

in the description of some of these models that have been proposed to explain the

non-Debye character of the conductivity relaxation, we describe the main features

of the relaxation in the frequency and time domains and an empirical approach to

study the dynamics of mobile ions by using an analysis based on distributions of

relaxation times. Although it is a mathematical tool, it may offer hints in the

search of the physics behind the relaxation process. The ac conductivity σ0(ω) of
these materials shows a constant value at low frequencies, the so called

dc conductivity value, and a crossover to a power law dependence with frequency

at high frequencies, so that the real part of the conductivity can be expressed

as [28, 38, 39]

σ0 ωð Þ ¼ σdc þ Aωn ð2:47Þ

where σdc is the dc conductivity, A is a temperature dependent parameter and n is a

fractional exponent which usually lies between 0.6 and 1 [28, 40]. This universal

behavior is shown in Fig. 2.4. Equation (2.47) and Kramers-Kronig relations lead to

a frequency dependence of the complex conductivity which can be written as

Fig. 2.4 Frequency

dependent conductivity

of a sodium germanate

glass of composition

0.2Na2O � 0.8GeO2

at several temperatures.

Reproduced from [41]

with permission
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σ* ωð Þ ¼ σdc 1þ jω=ωcð Þn½ � þ jωε0ε1 ð2:48aÞ

σ* ωð Þ ¼ σ*hop ωð Þ þ jωε0ε1 ð2:48bÞ

where included is the high frequency permittivity term, jωε0ε1, due to the

contributions from all the polarization at higher frequencies, and ωc represents a

crossover frequency from the dc conductivity plateau (at ω < ωc) to the power law

frequency dependence (at ω > ωc).

Some authors [42–44] have argued the advantage of using the σ0(ω) representa-
tion of the measurements since it allows to separate the hopping dynamics from

the high frequency permittivity term due to other different physical processes

occurring at shorter times. However, it is important to note that the characteristic

crossover frequency characterizing ion hopping dynamics is always of the order of

ωc�σdc=ε0ε1 [33, 45], which shows that in fact ion dynamics are influenced by the

dielectric permittivity of the medium, in particular the time dependence of the

corresponding correlation function. It is also relevant to point out that the physical

significance arising from the additive character of the two contributions in

Eq. (2.47) has been questioned [46–48]. Equation (2.47) implies that both terms

contribute to the conductivity at all frequencies, like two independent conduction

mechanisms simultaneously present at every time. And this is actually at odds with

the finding of a crossover frequency proportional to the value of the dc conductivity

(ωc� σdc=ε0ε1), and also with the fact that experimental data of the imaginary part

of the complex conductivity do not usually increase indefinitely as the frequency

decreases. However, Eq. (2.47) is widely used in the literature in order to describe

empirical conductivity data of ionic conductors, since it describes rather well the

conductivity spectra, σ0(ω), particularly in the limits of low and high frequencies.

An alternative description of ECR has been made in the time domain [49–52] in

terms of electric field decay with the Kohlrausch-Williams-Watts (KWW) function

[19–22]. As previously stated, at constant displacement vector, the electric field

inside an ionic conductor shows a time decay Φ(t) well approximated by a KWW

function or stretched exponential function,

Φ tð Þ ¼ e� t= τ*ð Þ1�n ð2:49Þ

where τ* is a temperature activated relaxation time and 0< n< 1. Although the

physical significance of the KWW function is not generally agreed by researchers in

the field, it has been interpreted in terms of the slowing of the relaxation process due

to cooperative many-ion dynamics, with the parameter n as an index of correlations
between the ions in motion. The case n¼ 0 would thus correspond to the completely

uncorrelated ion motion giving rise to a Debye response characterized by exponen-

tial time decay function.

Experimental conductivity data are usually obtained in the frequency domain

from Admittance Spectroscopy, and the time decay Φ(t) is calculated from the

electric modulus data according to Eq. (2.36). The calculation of the decay
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function, Φ(t), involves a numerical Fourier transform of the measured data in the

frequency domain from which the parameters n and τ* that best characterize the

relaxation process by the KWW decay function can be obtained. However, it is well

known that the calculation of the Fourier transform by numerical methods from real

data in the frequency domain is affected by numerical errors arising from the fact

that the experimental data set is usually discrete and finite. An alternative procedure

has been proposed in order to calculate the time decay function without evaluating

any numerical Fourier transform [52]. It consists of finding the coefficients gi of a
distribution of discrete relaxation times τi so that the measured frequency response

may be approached as a superposition of Debye-like processes according to

_Φ * ωð Þ �
Xn
1

gi 1= 1þ jωτið Þ½ � ð2:50Þ

The time decay function can then be calculated as

Φ tð Þ �
Xn
1

giexp �t=τið Þ ð2:51Þ

Assuming a KWW dependence for the time decay, one can fit the parameters n and
τ* describing the conductivity relaxation in the time domain. Other methods based

on a complex non-linear least squares fitting of experimental data to equivalent

circuit models [53–55] can also be used in order to obtain the time decay function

from admittance spectroscopy data avoiding the numerical Fourier transform.

A different approach has been reported based on an analysis of the frequency

dependence of the electric modulus. The electric modulus spectra in ionic conduc-

tors can be usually well described by one of the empirical relaxation functions in the

frequency domain like the Cole-Cole, Cole-Davidson, or Havriliak-Negami. These

functions, described in the subsection devoted to dielectric relaxation, can also be

used to describe phenomenologically the electrical conductivity relaxation in ionic

conductors [56]. The advantage is that an analytical expression exists for the

distribution of relaxation times once the parameters characterizing the empirical

function (CC, CD or HN) in the frequency domain is obtained. This procedure

allows then a description of the decay function in the time domain by using

Eq. (2.51). Figure 2.5 shows experimental data of the electric modulus at different

temperatures for several ionic conductors. Since the plot is in a double logarithmic

scale, the linear behavior at both sides of the peaks is indicative of the power law

frequency dependence of the complex conductivity. Modulus plots are usually

presented in a linear scale, showing asymmetric peaks for the imaginary part

(M00(ω)) shifting to lower frequencies when temperature is decreased. However,

the linear scale obscures relevant features of the modulus spectra, like, for example,

the mentioned power law dependences. The asymmetric power law behavior of the

electric modulus data at low and high frequencies, suggests that conductivity

relaxation may be described using a Havriliak-Negami (HN) relaxation function
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(see Eq. (2.28)), and it is indeed the case as shown by the lines in Fig. 2.5 that are fits

of experimental data to a HN function [56].

The discrepancies observed between experimental data of Li0.5La0.5TiO3 and the

corresponding fitting functions at low frequencies and high temperatures, are due to

blocking effects. Blocking appears as a consequence of charge built ups at grain

boundaries or electrodes and do not affect experimental data at high frequencies.

This is further discussed in Chap. 4.
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Fig. 2.5 Imaginary part of the dielectric modulus against frequency presented in a double

logarithmic scale for (a) single-crystal YSZ at 480, 514, 532, 560, 587, 615 and 639 K (from

left to right), (b) Li0.5La0.5TiO3, at 179, 193, 206, 221 and 245 K (from left to right) and

(c) Li0.5Na0.5La(CrO4)3, at 262, 275, 296, 317 and 336 K (from left to right). The solid curves
are fits to Havriliak-Negami functions according to Eq. (2.53) (see text). Reproduced from [56]

with permission
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The parameters τHN, α and β in Eq. (2.28) that best fit experimental data can be

used to construct an analytical distribution of relaxation times (ρ(τ)) according to

the following expressions:

ρ τð Þ ¼ 1

π

τ=τHNð Þαβ sin βθð Þ
τ=τHNð Þ2α þ 2 τ=τHNð Þα cos απð Þ þ 1

h iβ=2 ; ð2:52aÞ

where θ is

θ ¼ arctan
sin απð Þ

τ=τHNð Þα þ cos απð Þ
���� ����: ð2:52bÞ

According to Eq. (2.36) we can relate the dielectric modulus to the Havriliak-

Negami function F�
HN(ω) through :

1�M* ωð Þ=M1 ¼ F*
HN ωð Þ ¼ � _Φ * _ωð Þ: ð2:53Þ

And from the distribution of relaxation times obtained from the fitting to a HN

function and using Eq. (2.52), the frequency dependence of the Fourier transform of

the time derivative of the decay function can be expressed as a superposition of

Debye-like processes of the form:

� _Φ * ωð Þ ¼
ð1
0

ρ τð Þ
1þ jωτ

dτ: ð2:54Þ

So that in the time domain the following expression holds,

Φ tð Þ ¼
ð1
0

ρ τð Þe�t=τdτ; ð2:55Þ

which allows determining the time decay function from ρ(τ) by numerical integra-

tion. In order to evaluate numerically the integral in Eq. (2.55) it is better to use lnτ
as integration variable instead of τ, because of the smoother dependence of the

integrand on lnτ. Note also that since the contribution due to small and large values

of τ compared to τHN is negligible, the infinite range of integration do not pose a

problem, and it is enough to perform the numerical integration at a finite interval

around τHN to obtain a good approximation to the time decay function Φ(t).
Finally, once the time decay function Φ(t) has been obtained from experimental

electric modulus data using the procedure explained above, it is possible to verify

whether or not this function is well approximated by assuming a KWW dependence

(see Eq. (2.49)), and eventually obtain the parameters τ* and n which describes the

relaxation process in the time domain. The time decay functions and their fittings to

stretched exponential functions with a KWW behavior are presented in Fig. 2.6 at

different temperatures for the three systems analyzed. The insets of the figures show
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the corresponding linear log[-ln(Φ(t))] versus log t plots from which parameters τ*
and n were obtained by a linear least-squares fitting.

Although an analytical relationship does not exist between the HN function in

the frequency domain and the KWW in the time domain because they are not

exactly Fourier transforms of each other, a connection among the parameters of

both descriptions has been proposed in the past for dielectric relaxation in poly-

meric systems [57]. It has been shown that the empirical relation α β¼ (1�n)1.23

that approximately holds in those systems is also valid naturally in the case of ionic

conducting materials, at least for a limited range of values of the parameter n in the
KWW function [56]. The relaxation time τHN, on the other hand, is thermally

activated with the same activation energy than τ* and the dc conductivity.
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Fig. 2.6 Time decay functions Φ(t) obtained for (a) single-crystal YSZ at 480, 514, 532, 560,

587, 615 and 639 (from right to left), (b) Li0.5La0.5TiO3, at 179, 193, 206, 221 and 245 K (from

right to left) and (c) Li0.5Na0.5La(CrO4)3, at 262, 275, 296, 317 and 336 K (from right to left). The
solid curves are fits to KWW functions. The insets show log (-ln [Φ(t)]) against log t plots, and the
solid lines are linear fits. Reproduced from [56] with permission
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Once we have obtained the parameters τ* and n that best fit the conductivity

relaxation to a KWW function in the time function, an average relaxation time hτi
can be defined in terms of the integrated area of the KWW function as

τh i ¼
ð1
0

Φ tð Þdt ¼ Γ 1= 1� nð Þð Þ
1� n

τ*; ð2:56Þ

where Γ refers to the Euler’s gamma function [58]. This average relaxation time hτi
is related to the dc conductivity through the following expression:

τh i ¼ ε0ε1=σ0: ð2:57Þ

The relaxation time hτi results to be temperature dependent according to the

expression

τh i ¼ τ1exp E=kTð Þ ð2:58Þ

so the dc conductivity is also temperature activated and can be expressed as

σ0 ¼ ε0ε1
τ1

exp �E=kTð Þ ð2:59Þ

since the high frequency permittivity ε0ε1 usually shows weak temperature

dependence. The temperature dependence of the dc conductivity thus obtained is

presented in Fig. 2.7 in an Arrhenius plot (open symbols), where the thermally

activated behavior results in an apparent linear behavior with slopes determined by

the activation energy E. Figure 2.7 also shows the values of the dc conductivity

Fig. 2.7 Arrhenius plot

of dc conductivities

of YSZ (open squares),
Li0.5La0.5TiO3 (open
triangles) and Li0.5Na0.5La

(CrO4), (open circles),
obtained assuming a KWW

behaviour for the time

decay functions. The solid
lines are fits according
to Eq. (2.59). Dc

conductivities obtained

from complex impedance

plots are also displayed as

solid symbols. Reproduced
from [56] with permission
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obtained at each temperature from the fitting of the frequency dependent ac

conductivity to Eq. (2.47) (solid symbols). A very good agreement can be observed

between these results and those deduced from the time decay functions assuming a

KWW dependence, which may be considered as an additional evidence for the

KWW behavior of the conductivity relaxation in the time domain and the validity of

Eq. (2.57).

2.3.4 Ion Diffusion Mechanisms

In crystalline ionic conductors, ion diffusion takes place by the hopping of mobile

ions from site to site in the lattice. This explains the temperature dependence of the

dc conductivity due to long range ion transport, which, with few exceptions, is

found to be thermally activated. The thermal activation results from the energy

barrier that ions need to overcome in order to jump to an available neighbouring site

in the structure. The existence of different types of structural defects gives rise to

several possible diffusion mechanisms for the ions [59]. For example, the diffusion

is said to take place by the vacancy mechanism if ions jump into an adjacent

unoccupied lattice site (vacancy). These vacancies can be point defects, or struc-

tural vacancies, that can be created in large amounts for example by doping of CeO2

or ZrO2 by substituting Ce and Zr for aliovalent cations as Gd, Sm, Y. . ., resulting
in a large concentration of oxygen vacancies that are responsible of the ionic

conductivity in these fluorite structures. Note that vacancies move in the direction

opposite the oxide ions. The vacancy mechanism is most often found in fast ionic

conductors but there are other different mechanisms that can give rise to high ionic

conductivity, like the interstitial mechanism that occurs when an ion occupying an

interstitial site moves to one of the neighbouring interstitial sites (see Fig. 2.8). In

order such a jump to happen between interstitial sites, a large distortion of the lattice

is usually required, so its probability is higher the smaller the size of the mobile

interstitial ions compare to the ions in lattice sites.

La2NiO4þδ is an example of an ionic conductor showing oxide ion diffusion by

an interstitial mechanism. In this and other materials with the perovskite related

structure of the K2NiF4 type, excess oxide ions can be easily accommodated in

interstitial sites, giving rise to high oxide ion conductivity. Materials where ion

diffusion takes place by interstitial mechanism have the advantage that mobility is

not limited by the vacancy-dopant association that usually occurs in materials

showing the vacancy mechanism. However, interstitial occupancy usually gives

rise to changes in the oxidation state of ions in the lattice and thus to an additional

electronic conductivity. In fact, all materials known up to date showing ion con-

ductivity by interstitial mechanism are not pure ionic conductors but they show also

electronic conductivity.

Other mechanisms for ion diffusion in solids have been proposed. In the case that

interstitial diffusion would require a lattice distortion too large, this mechanism

becomes improbable and interstitial ions may move by pushing one of its nearest
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neighbours on a lattice site into another interstitial position and itself occupies the

lattice site of the displaced atom. This is known as the interstitialcy mechanism.
Note that it is necessary for an ion to move that there is an interstitial atom on a

neighbouring site, and consequently the diffusion coefficient is proportional to the

concentration of interstitial ions. A variation of the interstitialcy mechanism is the

so called crowdion, where an ion is assumed to be crowded into a line of other ions,

causing them to move along the line from their equilibrium sites.

In the last years, the combination of experimental data and computer modelling

techniques have led to deeper understanding of the relationships between ion

transport mechanisms and the local structure and defect types of ionically

conducting materials, allowing materials optimisation for specific applications

[60–63].

For the special case of proton diffusion in solids, two different mechanisms have

been proposed: the free transport mechanism and the vehicle mechanism. The free

transport, also known as Grotthuss mechanism, is usually the way protons diffuse in

oxides. For a review see Ref. [64]. The protons jump from one oxygen ion to a

neighbouring one, and after each jump the proton in the hydroxide rotates such that

the proton reorients in the electron cloud and becomes aligned for the next jump.

The rotation and reorientation may involve small activation energy, but it is

Fig. 2.8 (Top) Sketch of the vacancy mechanism for ion diffusion, where the diffusion takes place

if ions are able to jump into adjacent unoccupied lattice sites (vacancies). The line represents

the potential energy barrier that ions must overcome in order to jump. (Bottom) Sketch of

the interstitial mechanism for ion diffusion, where an ion occupying an interstitial site moves to

one of the neighbouring interstitial sites. A large distortion of the lattice is usually required in order

such a jump to happen between interstitial sites
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believed that the jump itself accounts for most of the activation energy required in

the diffusion process. In the vehicle mechanism the proton moves as a passenger on

an oxide ion, and thus it actually consists of transport of hydroxide ions. These

hydroxide ions may diffuse by an oxygen vacancy mechanism or as an interstitial

hydroxide ion. It is worthwhile to remark that the hydroxide ion has a smaller radius

and charge than the oxide ion and it is thus expected to have smaller activation

energy for diffusion than the oxide ion. Other species such as hydronium ions, H3O
þ

, or water molecules may serve as vehicles for proton diffusion, particularly in open

structures [59, 65].

The mechanisms described above are for ion diffusion in crystals. But micro-

structure in crystals can play a major role in ion diffusion. For example, lower

activation energy for ion diffusion is often found along certain dislocations and

along the grain boundaries in polycrystalline materials compare to bulk values. In

general, surface diffusion occurs much faster than grain boundary diffusion, and

grain boundary diffusion occurs much faster than lattice diffusion. Thus, in poly-

crystalline materials an effective diffusion coefficient is introduced which is a

combination of the diffusion coefficients along the different regions. This is par-

ticularly relevant in the case of nanocrystalline materials, where the grain bound-

aries may be a significant fraction of the material, and thus result in an enhancement

of ion diffusion (see Chap. 5). Finally, amorphous, glassy or liquid ionic conductors

are often described as disordered lattices with a landscape of energy barriers for ion

hopping, and where pathways for enhanced ion transport may exist compared to the

crystalline structure with same chemical composition.

2.3.5 Temperature Dependence of Ion Diffusion

Independently of which is the mechanism involved in ion diffusion through the

material, the mobile ions have to overcome a potential (energy) barrier of height

ΔHm in order to jump from site to site in the structure. This is schematically shown

in Fig. 2.9. At a given temperature, ions are vibrating within their cages and have a

finite probability of jumping outside the cage which is proportional to

exp �ΔHm=kBTð Þ. The diffusion will be thermally activated and the energy barrier

ΔHm represents the activation energy for ion hopping. If one considers the equilib-

rium state for the ion, the energy minimum and its activated state at the maximum

energy between equilibrium sites, it can be shown that the transition rate between

equilibrium sites is given by [66]:

Γ ¼ ν0e
�ΔGm=kBT ¼ ν0e

�ΔSm=kBe�ΔHm=kBT ð2:60Þ

where ν0 represents the vibration or “attempt” frequency of the mobile ion within

the potential cage, of the order of ν0 � 1013 Hz, and ΔGm, ΔSm, and ΔHm represent

the Gibbs free energy, entropy and enthalpy change respectively, characterizing the
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ion displacement from its equilibrium state to its activated state at the top of the

potential barrier. Assuming the vibration of the ion can be described as a harmonic

oscillator, the attempt frequency can be estimated to be of the order of

ν0 �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔHm=M
	q
=x0, with x0 the jump distance and M the reduced mass of the

oscillator. Therefore, it is expected that the smaller the value of the enthalpy change

ΔHm, the lower the value of the preexponential factor in the diffusion coefficient in

Eq. (2.42–2.45). This behaviour gives rise to a compensation effect that is in fact

observed in experimental data and that it is known as the Meyer-Neldel rule.

However, it is often found experimentally that a decrease in ΔHm results in a

value of the preexponential factor much lower than predicted by this simple effect

of the Meyer-Neldel rule [67].

Another factor determining the temperature dependence of the diffusion coeffi-

cient is the concentration of available sites where the mobile ions can jump

to. However, for the sake of simplicity we will consider here that this concentration

is temperature independent, which is often the case for fast ionic conductors in the

experimental temperature range of interest.

2.3.6 One Dimensional Random-Hopping Model
for Ionic Conductivity

Figure 2.9 illustrates a simple one dimensional model for jump diffusion in an ionic

conductor [59]. In the absence of an applied electric field, the probability of the ion

of jumping in either forward or backward direction is the same. The activation

energy for ion hopping is always ΔHm and the transition rate (jump frequency) for

Fig. 2.9 One dimensional model for jump diffusion in an ionic conductor. In the absence of an

applied electric field, the probability of the ion of jumping in either forward or backward direction

is the same. The activation energy for ion hopping is always ΔHm and the transition rate (jump

frequency) for forward and backward jumps will be the same. When an electric field of magnitude

E is applied, the jump frequency in the forward direction is increased, while the jump frequency in

the backward direction is decreased. Figure adapted from reference [59]
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forward and backward jumps will be the same. Therefore, in a given time interval,

the number of jumps in both directions will be the same. If the material is

homogeneous, we can conclude that there will be no net transport of ions in the

material. When an electric field of magnitude E is applied, the jump frequency in

the forward direction is increased since the activation energy is decreased by an

energy qdE/2 (see Fig. 2.9),

Γf ¼ ν0e
ΔSm
kB e

� ΔHm�qdE=2
kBT


 �
; ð2:61aÞ

with q the electric charge of the hopping ion andd ¼ x0 the jump distance. Similarly

the jump frequency is decreased in the backward or reverse direction since the

activation energy is increased by an energy qdE/2,

Γr ¼ ν0e
ΔSm
kB e

� ΔHmþqdE=2
kBT


 �
: ð2:61bÞ

We can calculate the current density from the difference of the forward and reverse

directions,

j ¼ 1

2
nqd Γf � Γr

� 	
; ð2:62aÞ

where n is the concentration of hopping ions. Therefore, by using Eq. (2.61) we can
write

j ¼ 1

2
nqdν0 exp

ΔSm
kB

� 
exp

�ΔHm

kBT

� 
exp

qdE

2kBT

� 
� exp

�qdE

2kBT

� � �
: ð2:62bÞ

If, as it is usually the case, the electrostatic term is much lower than the thermal

energy of the ion, qdE << kBT, we can use the approximation ex � e�x � 2x
for x<<1, and get

j ¼ 1

2
nqdν0 exp

ΔSm
kB

� 
exp

�ΔHm

kBT

� 
qdE

kT
: ð2:63aÞ

j ¼ nq2d2Γ

2kT
E: ð2:63bÞ

The factor 1/2 in our one dimensional model becomes 1/6 for a three dimensional

diffusion in a cubic structure.

j ¼ nq2d2Γ

ZkT
E ¼ nq2d2Γ

6kT
E: ð2:63cÞ
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The factor Z may be different in materials with other structures where ion diffusion

is favoured in some particular directions.

The expressions for the electrical conductivity and for the diffusion coefficient in

a 3D cubic structure are finally given by

σ0 ¼ nq2d2Γ

6kT
¼ nq2D0

kT
; ð2:64aÞ

D0 ¼ d2Γ

6
: ð2:64bÞ

Note that this simple random-hopping model for ion diffusion results in the Nernst-

Einstein equation introduced above (see Eq. (2.42–2.45)), and it also explains the

thermally activated behaviour of the diffusion coefficient in ionic conductors.

Before ending this section, we discuss the case when the electric field that the

ions feel is so large that the approximation qdE << kBT does not hold. At room

temperature, for ions with charge q ¼ 	e, and for typical jump distances of a few

angstroms, it involves that the electric field must be larger than �108 V/m which is

extremely high. In fact, the opposite condition qdE >> kBT can sometimes be

fulfilled, and Eq. (2.63) can then be approximated by

j ¼ 1

2
nqdν0 exp

ΔSm
kB

� 
exp

� ΔHm � qdE=2ð Þ
kBT

� 
: ð2:65Þ

These large electric fields, of the order of ~108 V/m or larger, may easily exist in

nanostructured materials (see Chap. 5). If a voltage difference of just a few volts is

applied for example to a thin film of an ionic conducting material with a thickness

of just a few nanometers, the term qdE/2 can be as large as hundreds of

millielectron-volts and then, not only it is larger than the thermal energy, but

even comparable to ΔHm in Eq. (2.65). In this case, non-linear ion diffusion occurs,

even at low temperatures, since the effective activation energy can be very small

under the application of such large electric fields.

2.4 Non-Gaussianity of Dynamics

The intermediate scattering function, Fs(k,t), obtained by neutron scattering and/or

molecular dynamics simulations (see Sect. 8.3.3.2) also shows stretched exponen-

tial decay and this is known to be a common character of the slow dynamics

observed in many glass forming materials. The functional form is closely related

to the Non-Gaussianity of the diffusive motion. In this subsection the relationship

between non-Debye relaxation and non-Gaussianity of the dynamics in the real

space is discussed.

The intermediate scattering function, Fs(k,t) is connected to the self-part of the

van Hove function (see Sect. 8.3.3.1) by the Fourier transform [68]
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Fs k; tð Þ ¼
ð
4πr2Gs r; tð Þ sin k • rð Þ

k • r
dr: ð2:66Þ

When the van Hove function spreads to a distance rc, the mean squared displace-

ment (MSD) < ri tð Þ2> is represented by

<ri tð Þ2>¼
ðrc
0

r2 • 4πr2Gs r; tð Þdr ð2:67Þ

Therefore, the functional form of the stretched exponential is connected how

the mean squared displacement of particle changes with an elapse of time

(see Sects. 9.4 and 11.3).

The function Fs(k,t) can be approximated by the following equations [69].

Fs k; tð Þ � exp � k2

2d
< ri

2 tð Þ> þ k4

2

ri
2 tð Þ
2d

� 2

α2 tð Þ
" #

; ð2:68Þ

where α2 is the non-Gaussian parameter and d is the spatial dimension. The value α2
becomes 0, when the Dynamics has a Gaussian form and therefore, the parameter

represent the deviation from the Gaussian form. On the other hand, k2 dependence
of the Fs(k,t) mean the Debye type decay of the function. Therefore, Non-Debye

functional form is closely related to the non-Gaussianity of the dynamics in the real

space. That is, to examine the origin of the power law dependence found in MSD is

equivalent to examine the origin of stretched exponential decay.

Non-Gaussianity of the dynamics is thus observed by using deviation from the

Gaussian function of self-part of the van-Hove functions, wave number dependence

of Fs(k,t), and non-Gaussian parameters. In the self-part of the van Hove function,

obviously the tail part with inverse-power law (with exponential truncation) exists

and it means the existence of the longer length scale of the motion, related to the

Lévy distribution of wider sense [see A.2.2]. This feature is commonly appeared in

ionic systems and in other glass formingmaterials. Therefore, themotion of particles

has the distribution of distances, which is different from the Gaussian dynamics.

Thus the non-Gaussianity is also a signature of the cooperative dynamics.

2.4.1 Relation Between Jump Rate and Relaxation Rate
in the Stretched Exponential Decay: From
the Modeling by the Molecular Dynamics Simulations

It is noteworthy to mention that the time scale of the elementary ion jump motion is

not the same as that of the diffusive motion as will be shown in the several

characteristic time regions in the mean square displacement (MSD) of ions in

glassy ionic conductors (see Sects. 9.4.1, 9.4.4 and 11.3). For example, the first
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successful jump motion of ion at 700 K of the lithium metasilicate (Li2SiO3) system

in the glassy state is found at around 10–20 ps region, while the diffusive region

starts at around 500 ps. This situation is made clear in this subsection by the result

of MD simulations. It also means that the activation energy of each jump motion is

different from those for diffusive and/or conduction. Similar discussion also holds

for several relaxation functions such as Fs(k,t). Namely, the distribution of jump

rates is different from the relaxation rate of the stretched exponential functions.

Waiting time distribution assumed in some theories are also observed in the MD

simulations of ionic systems, and this distribution partially explain the various

events found at the different time scales. However, the difference of time scales

is coming from not only by the wide distribution of jump rates but also by the

geometrical correlation among successive jumps, where both the back and forward

correlated motions of ions contribute.

Frequency dependent behavior of the conductivity [see Sect. 8.3.2.2] can also be

connected to the MSD in the real space by the following relation [70, 71]:

σ∗ðωÞ ¼ �ω2 Nq2

6HRkT

ð1
0

< r2ðtÞ > e�iωtdt, ð2:69Þ

where N is the number density of mobile ions, q the ion charge, k the Boltzmann

constant, HR the Haven ratio and T the temperature.

Each of the variety of ionic motions is not simple as shown in the following

examples. In Fig. 2.10, examples of two dimensional projections of trajectories

of one Li ion observed by MD for glassy Li2SiO3 at 700 K during 500 ps run

(This time scale corresponds to the beginning of the diffusive regime (¼tdif,
see Sect. 9.4.2)) are shown for three cases. In the upper panel, trajectory is projected

on XY plane, while in the lower panel, it is projected on YZ plane. Several kinds of

jump motions are found in MD of ionic systems including strong localized motion

within the neighboring sites and forward correlated jumps which are highly

cooperative.

In Fig. 2.11 a three dimensional plot of the same trajectories is shown. The

complexity of the motion is clear when you compared it with the simple three

dimensional random walk shown in the lower panel. The dense part of the trajectory

means that the ion is caged by the surrounding particles for a long time at the so

called ion site. This situation is consistent with the existence of clear peaks in the

pair correlation functions, g(r) for Li-Li pair. The site represented by the localiza-

tion of the trajectory shows a variety in size, shape and density, indicating the

existence of multifractality. One can see the both long ranged motion and localized

motion, and the mixing of them.

During this period, some ions tend to be localized for long times, while some

other ions continued many back correlated jumps and a limited number of ions

tends to show an accelerated dynamics and such motions are accompanied of

cooperative jumps of several ions. Among these different type of motions, contri-

bution of the fast (accelerated) ions to MSD is large, because the displacement is
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squared in calculation of it. An example of cooperative motions is shown in

Fig. 2.12. The ion tends to show further successive jumps.

Similar situation is also found for the system with lower diffusivity. Another

example for the motions of Li ions and atoms for a slice of MD cell in lithium

disilicate (Li2Si2O5) glass at lower temperature of 600 K for longer scale 8 ns runs

is shown in Fig. 2.13. Heterogeneous dynamics of Li ions and partial formation of

ion channels, which are formed dynamically by cooperative jumps along the

networks formed by SiO4 units, are observed. For the calculation of mean square

displacement (MSD), one needs to use many numbers of ions and many initial times

to average it [see Sect. 8.5].

Thus ionic motion of ions itself is highly heterogeneous and one needs to

consider effect of heterogeneity caused by cooperativity of motions. We will

discuss the characteristics of several theories and models here with the aid of MD

Fig. 2.10 Examples of trajectory of Liþ ion in Li2SiO3 system at 700 K during 500 ps obtained by

MD simulations. This time scale corresponds to the beginning of the diffusive regime, tdif. Upper
panel is for XY projections and lower panel is for ZY projections. In the left panel (red curves),
starting position of the motion is (X¼ 29.8, Y¼ 17.4, Z¼ 6.2), while ending position is (X¼ 26.2,

Y¼ 17.2, Z¼ 9.3) (in Å). In the middle panel (blue curves), starting position of the motion is

(X¼ 13.2, Y¼ 17.0, Z¼ 30.4), while ending position is (X¼ 15.4, Y¼ 18.3, Z¼ 32.6) (in Å). In
the right panel (green curves) starting position of the motion is (X¼ 1.1, Y¼ 28.4, Z¼ 4.0), while

ending position is (X¼ 1.1, Y¼ 29.1, Z¼ 4.2) (in Å). Squared displacement, ri
2 at the end

positions of left, middle, and right examples are, 23.7, 11.0 and 0.5 Å2, respectively. The

contribution of accelerated dynamics is large. The dynamics are extremely heterogeneous. Accel-

erated jumps, localized jumps and long time localization and mixing of such motions are found as

discussed in Chaps. 9 and 11. That is, the time scale of the power law dependence of MSD

(or stretched exponential decay) is not for a single jump process. Note that the motions are just

examples. Note that if the observation time was short, only localized motion might be found
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simulations. These complex behaviors of ions can be well characterized by con-

sidering the fractal nature of the motion represented by both temporal (related to the

distributions of jump rate or waiting time) and spatial terms (related to the corre-

lation among successive motions and distribution of length scale).

2.4.2 Relation Between Power Law Exponent of MSD
and Characteristics of Jump Motions

In this subsection, we consider the cause of power law behavior of MSD based on

the characteristics of jump motions. As already shown in Sect. 2.3.4, non-Debye

character of the relaxation of the ionic motion are often explained by the temporal

Fig. 2.11 (Upper panel) Three dimensional plot of the trajectories of Li ions shown in Fig. 2.10.

Ionic motion is a complex one with mixing of strong back correlated motions, waiting time

distribution and existence of accelerated motion. (Lower panel) Three dimensional plot of an

example of 3D random walk (1000 steps). One can see the ionic motion in the glassy state is quite

different from the random walk
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Fig. 2.12 Example of cooperative jumps of Li ions in the Li2SiO3 glass at 700 K projected on X-Y

plane. Initial positions of three Li ions are 1, 2 and 3 (marked by yellow circles), while the last

position of the ions after 16 ps run is 1’, 2’ and 3’. The last position of the first ion is marked by a

pale blue square. The first ion shows a long jump (~twice of the typical distance among ion sites)

without a clear trapping. The second ion is found to be located between two sites for a while, until

the vacant site is available. Thus availability of the vacancy is closely related to the cooperative

jumps

Fig. 2.13 Trajectories of ions and atoms represented for 10Å in a slice in thickness of MD cell for

Lithium disilicate at 600 K, during 8 ns run. Green: Li ions, Blue: Si atoms, Red: O atoms. Motion

of Si and O atoms are essentially localized. The dynamics of Li ions is heterogeneous. Formation

of a part of the ion channels is observed, while many ions are showing localized motions. In this

case, tdif is longer than 15 ns
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and/or spatial terms of jump motions and therefore, this is also related to the

non-Gaussian character of the diffusive dynamics. In real space, the relation

between jump motions and behavior of the MSD is connected by the theory of

fractal and/or percolations, and the power law dependence of MSD is argued to be

related to the fractal dimension of walks or jumps and their paths contributing to the

MSD. Therefore the concept of fractal [72] is useful to consider the relationship

between characteristics of jump motions and the functional forms of the MSD. In

the following, we discuss the approaches that are related to the characteristics of

jump motions in ionic system and related materials. (See Sect. 2.3.4 for related

mechanisms suggested for crystals and see also Sect. 9.10 for the comparison of

crystal and glass by MD simulations.)

Elliott has discussed [73] the two possible mechanisms of the AC conduction,

which corresponds to the power law behavior of MSD (see Sect. 9.4.2) of ions. In

the parallel conduction, ion jumps independently with the distribution of the

relaxation rate, while in the series conduction, the site causes a relaxation coupled

with other sites.

AC hopping conductivity of the one dimensional bond percolation was discussed

by Odagaki and Lax [74] based on the distribution of the random interruptions.

Odagaki [75] also discussed the stochastic trapping transport assuming the waiting

time distribution of jump motions with the use of the generalized coherent medium

approximation.

Strong localization in the solid state can be also explained by the fractal

dimension of the motion and paths. Alexander and Orbach discussed the vibrational

excitation by “fracton” [see Appendix A.2.1 for details], determined by fractal

dimension of walks and that of their paths. The mode is discussed as an origin of the

“boson peak” [76], which is one of the characteristics commonly found in glasses.

On the basis of the relaxation mode theory, Ishii [77] has discussed the hopping on

the fractal lattice and found the “fracton” of the hopping version. The approach was

expanded to the many particle problem of weak coupling case [78] and the

appearance of the both diffusive and non-diffusive mode was discussed.

Bunde et al. [79] have examined the localized excitation on the incipient infinite

percolation cluster and discussed the relation to the multifractality.

2.4.3 Relation Between the Theory of Fractal
and the Characteristics of Jumps

These theories mentioned in the above explain well some parts of findings by

experiments and/or simulations. However, the mechanisms assumed therein are

not necessarily the same. Here we introduce some fractal dimensions (exponents) to

characterize the dynamics of ions by the fractal nature of the jump motions, where

waiting time distribution, distribution of length scale, fractal dimensions of paths

and/or their combinations are taken into account. Then we consider how we can

distinguish these contributions by MD simulations.
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Readers may not be familiar with technical terms such as fractal, fracton,

multifractal, Lévy flight and Lévy distribution (and its truncation) used in the

following subsections. Details of such terms are explained separately in the Appen-

dix. By using the CDF files included in ESM, the readers also can manipulate the

parameters of Lévy distribution and examine the example of the analysis of such

motions. [See Sect. 12.2 for the explanation of Example 2 in ESM.]

If one fractal dimension governs the system, the exponent of the power law

behavior of the MSD, θ is connected to the fractal dimension of the random walks,

dw, as a first approximation [72] by,

r2 tð Þ� � � tθ, θ ¼ 2=dw ð2:70Þ

For regular diffusion, dw¼ 2 is expected. However, if the dynamics are beyond

random walks, dw does not equal 2. Specifically, if the motions of the ions involve

localized motions, the trajectory becomes more complex and the exponent

θ becomes smaller. On the contrary, when ion shows forward correlated jumps

with the trajectory becoming linear like, this resulted in the decrease of dw and

increase of θ. The former situation retards the time scale for the start the diffusive

regime, while the latter situation causes an opposite case. The exponent dw of the

trajectory of ions can be determined byMD simulations [see Sects. 9.5.4, 11.5.2 and

Appendix A.1 for more details] and this can be a direct measure of the power law

behavior in MSD of the ionic motion. Although the relation between the complexity

of the trajectory and the power law exponent is clear from Eq. (2.70), result of MD

simulations reveals that the motion is extremely heterogeneous and not mono-

fractal. In the case of coexistence of fast and slow ions, two length scale regions

are found in MD. Therefore, the expansion of the situation to the multifractal walks

[80], where two length scales are concerned, is necessary. The large scale motion is

found to be caused by cooperative jumps of several ions and successive motions.

Therefore, even for the single particle motion, the dynamic heterogeneity affects

the exponent connecting different time scale motions. In the collective mode

such as conductivity, this relation is further modified by the Haven ratio as shown

in Eq. (2.69).

2.4.4 Distribution of Length Scales and Lévy Distribution

Another factor related to the jump motions is concerned with the distribution of the

length scales. Lévy distribution and related Lévy flight dynamics is experimentally

known to exist in several physical phenomena such as turbulent [81] and Josephson

junction [82]. By MD simulation of lithium silicates and in an ionic liquid, we have

found that in the power law region of MSD, the dynamics is well represented by the

Lévy distribution [83] or Lévy flight [84] (with a Lévy index α< 2) related to this

distribution, as shown in the inverse-power law tail of the self-part of the van Hove
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functions. (See Sects. 9.5, 11.2, 11.5.3 and 11.12.2, see also files in ESM and 12.2

for examples of motions and manipulation of parameters of distributions. See also

Appendix A.2–A.4)

2.4.5 Heterogeneity and Multifractal Mixing of Different
Length Scales

The observed Lévy distribution by MD is accompanied with an exponential trun-

cation and strong back-correlated motion, and occurrence of the infinite variance of

the distribution is avoided by these mechanisms. The Lévy distribution combined

with the exponential truncation [see Sect. 11.5.3] shows a multifractal character in a

long time region. This view is consistent to the existence of multifractal density

profile of ions (see Appendix A.3) formed by such motions.

2.4.6 Separation of Exponents Having Different Origins

As observed in the trajectories of Li ions obtained by MD, both temporal (waiting

time distribution) and spatial character (distribution of length scale and back and

forward correlated motions) contribute to the dynamics. When the exponent α
concerned with distribution of length scale and the exponent γ characterizing the

waiting time distribution are coexisting, the relevant question is how the dynamics

are modified.

Blumen and coworkers [85] considered the situation where the both temporal

and spatial terms contribute to the diffusive motion and obtained the following

relation.

D tð Þ � d r2 tð Þ� �
=dt � tαγ�1 , 0 < αγ < 1 ð2:71Þ

Similar argument holds for the exponent of the stretched exponential relaxations.

They pointed out that the combination of the exponents giving the same behaviors

of the stretched exponential (and time dependence of MSD) is infinitive and it is

difficult to separate them if it is overlapped in the time region. They also suggested

that the separation of temporal and spatial terms might be possible when the long

time behavior is governed by the temporal term. However, this condition of the long

time might be difficult to fulfill and to judge within the limited time scale of the

observation in the case of MD simulations.

Habasaki and coworkers [86] tried to distinguish temporal and spatial contribu-

tion of the dynamics using MD simulations (see Sect. 9.5 for more details, where

the same analysis was done with better statistics) by another method. That is, MSD

is separated into two plots. In the first plot, the accumulated jump numbers is plotted
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against time and in the second plot, MSD was plotted against the accumulated

number of jumps. By this analysis, it was clarified that the cause of the power law

dependence of MSD is due to the spatial term (geometrical correlation among

successive jumps), although waiting time distribution exists and contribute to the

slow dynamics through a mean jump rate. (See Sect. 9.5.5 for different view for the

contribution of the temporal and spatial terms and cause of the difference.) Even for

the motion of a tracer ion (single particle motion), the geometrical correlation found

there is affected one by the cooperative motions of surrounding ions (collective

motions).

This kind of analysis is useful to clarify the effect of interactions among ions at

the same time. This is because, if there was no interaction with surrounding

particles, we can expect only the random single jumps. Of course, direct analysis

of cooperative motions is also informative as well as fractal dimension analysis of

the trajectories.

The method used to separate the terms is applicable to other systems and will be

useful to understand the role of temporal and spatial factors. As shown in the

present section, the short time behavior of the system is connected by the exponent

(fractal dimension) to the long time behavior. We note that this connection is

represented well by the Coupling Model by one of the authors, but is not necessarily

clearly included in other theories or models. For further details of heterogeneous

dynamics observed by MD, see Chaps. 9–11.

2.5 Models of Ion Dynamics

In the following we present a brief discussion of some of the more relevant

theoretical models of ion dynamics. Among all the existing models proposed

in the literature we have tried to choose those most highly cited. In Chap. 4 we

present a further discussion of the models where we have tried to bring out, when

possible, their relations with experimental data as well as the extent of their

predictions and applications, in order to emphasize the relevant ideas behind the

models and also their possible deficiencies. This is relevant since, as Karl Popper

said [87], any theory can claim it is correct by choosing its own list of experiments

to verify.

2.5.1 Random Barrier Model

As in the simple one dimensional model sketched in Fig. 2.9, other hopping models

[88–91] are defined by specifying the allowed transitions and their transition rates

for the hopping particles (ions in the case considered here). In order to simplify the

models it is usually assumed that the allowed sites for the ions define a regular

lattice and that interactions among ions can be neglected, so that it is enough to
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consider the motion of just one ion. The random barrier model starts by assuming

the particles can take positions only on a simple cubic lattice in d dimensions. The

basic quantity characterizing such an ensemble of particles is the probability Ps to

be at site s. If Γ s ! s0ð Þ is the probability per unit time for jumps from site s to site

s0, the “equation of motion” is the well known master equation [90, 92]

dPs

dt
¼

X
s0

Γ s0 ! sð ÞPs0 � Γ s ! s0ð ÞPs½ �: ð2:72Þ

Equation (2.72) determines the equilibrium dynamics, and from equilibrium fluc-

tuations the velocity autocorrelation function may be calculated where v is the

projection of the velocity in a fixed direction. This quantity determines the

frequency dependence of the diffusion coefficient D*(ω) and the electrical conduc-
tivity σ*(ω) (see Eqs. (2.41–2.42)). In the following, for simplicity of the expres-

sions derived from the model, a unit system is chosen so that σ* ωð Þ ¼ D* ωð Þ and
where moreover both quantities are normalized such that on a lattice with uniform

jump frequency Γ one has σ* ωð Þ ¼ D* ωð Þ ¼ Γ (note that for a uniform jump

frequency the conductivity is frequency independent and given by Eq. (2.64)).

It is also useful to define a dimensionless frequency-dependent conductivity byfσ∗ ðωÞ ¼ σ∗ðωÞ=σð0Þ.
The random barrier model (RBM) is defined by a special case of Eq. (2.72)

where all sites have equal energy [93]. Figure 2.14 illustrates the random energy

landscape of this microscopic model in one dimension. Whenever site energies are

equal, by the principle of detailed balance (a consequence of time-reversal invari-

ance) the jump rates are symmetric, i.e. Γ s0 ! sð Þ ¼ Γ s ! s0ð Þ. This is why the

random barrier model is also referred to as symmetric hopping model. It is assumed

that, if the energy barrier height is E, the jump rates are given by the attempt

frequency times e�βE (Γ ¼ ν0e�βE
	
, with β ¼ 1=kBT. The model is then completely

defined in terms of the energy barrier probability distribution, p(E). In the so called

Fig. 2.14 Sketch of a typical potential for a system described by the random barrier model in one

dimension. The arrows indicate the two possible jumps for the charge carrier shown. At low

temperatures most time is spent close to energy minima but, occasionally, a charge carrier by

chance acquires enough energy from the surrounding heat bath to jump into a neighboring site. If

the barrier height is E, the probability per unit time for a jump is given by Γ ¼ ν0e�E=kBT . At low

temperatures the charge carrier almost always chooses the lowest barrier. This implies that after

one jump the next jump most likely goes back again. Reproduced from [94] with permission
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extreme disorder limit, β ! 1, the jump rates vary many orders of magnitude and

the random barrier model describes a highly inhomogeneous (heterogeneous)

situation.

Because of the broad range of barrier energies that are involved in long range dc

transport, a priori one would not expect any particular temperature dependence of

the dc conductivity σdc ¼ σ 0ð Þ. However, for strong enough disorder, percolation

determines dc conductivity and results in its Arrhenius (thermally activated) tem-

perature dependence [95], which is often observed experimentally. If one considers

all the lattice links with barriers below a certain energy, for low energy values, these

links form small separated clusters. As the energy value is increased, eventually, for

an energy Ec, a fraction of links pc (the percolation threshold) is reached and an

infinite cluster forms, allowing dc conduction. Thus, the activation energy for dc

conductivity is the largest barrier on the percolation cluster, Ec, which determines

the bottleneck for long range transport and is given by [94].

ðEc

0

p Eð ÞdE ¼ pc: ð2:73Þ

The frequency dependence of the ac conductivity can be obtained by solving the

master equation in Eq. (2.72) using numerical methods [33]. Figure 2.15 shows

computer simulations for different barrier distributions p(E) at large values of the β
parameter. These results show that, according to the RBM, the frequency depen-

dence of the ac conductivity is expected to show universal behavior in the extreme

disorder limit, i.e. it is independent of the details of the distribution of energy

barriers in the material. The best available analytical approximation to this univer-

sal ac conductivity response is the diffusion cluster approximation (DCA) [96],

which reads

ln~σ ¼ jω

~σ

� d0=2

, ð2:74Þ

where the exponent d0¼ 1.35 fits the results from computer simulations of diffusion

in three dimensions (see solid line in Fig. 2.15). It is important, however, to note

that DCA does not give the same frequency dependence than computer simulations

for the imaginary part of the conductivity at low frequencies. Figure 2.15 shows

also the prediction of the effective medium approximation (EMA) [33], as given by

the expression ln~σ ¼ ðjω=~σ Þ, (dashed line), which gives a qualitatively reasonable

good fit to computer simulation results, but worse than the diffusion cluster

approximation.

The RBM is based on the existence of disorder at a microscopic scale, which

seems to be the case for ionic conducting glasses and liquids, although there is no

guarantee of whether the disorder is actually relevant for ionic dynamics and

conductivity. A macroscopic model has been proposed [33] for systems that are
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characterized by disorder only at a macroscopic scale, which might apply for

crystalline ionic conductors. In this case, both the diffusion cluster approximation

and the effective medium approximation results in the same expression,

ln~σ ¼ ðjω=~σ Þ, for the frequency dependence of the ac conductivity.

The random barrier model accounts for a universal frequency dependence of the

ac conductivity in the extreme disorder limit, but no rigorous proof of this behavior

exist. In fact, the RBM scaling function is close to, but rarely identical to those of

experiments. Experimental data often show deviations for the claimed ac

universality that are not addressed by the model [43, 48]. Even assuming ac

universality, there remain also other important problems not able to address by

the model: [33, 94]

– In the diffusion cluster approximation, it is necessary to characterize more

precisely the diffusion cluster and its dimension, either by independent simula-

tions or by using analytical arguments.

– It is necessary to determine how realistic is the approximation made by linear-

izing a hopping model with random site energies and Fermi statistics.

– Is ac universality also obtained, at least in some particular cases, by solving the

master equation in Eq. (2.72) without assuming the condition of symmetric

hopping?

– The RBM does not deal with the well-known mixed alkali-effect, as well as the

observed changes in activation energies when changing the concentration of

mobile ions in glasses (see Chap. 4 for a description of these experimental facts).

The simplest models accounting for these effects are hopping systems with site

Fig. 2.15 Frequency dependence of the real part of the ac conductivity obtained from computer

simulations of the random barrier model for several energy barrier probability distributions at large

β, showing ac universality in a scaled frequency representation. The diffusion cluster approxima-

tion (DCA) and the effective medium approximation (EMA), solid and dashed lines respectively,
are also shown. Dots mark a line with slope unity, i.e. a linear frequency dependence, as the

limiting behaviour at high frequencies. Reproduced from [94] with permission
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exclusion [97], i.e. where there can be at most one ion at each site, but a

conclusive picture of the scaling properties of this type of models remains to

be established.

– It is important to clarify how the scaling function and time-temperature super-

position are affected by including Coulomb interactions in hopping models [98].

– The RBM predicts characteristic length-scales in ionic glasses to be larger than

the values of order 1Å that have been determined from experimental data [99]. It

has been proposed that the reason for this discrepancy is that ion diffusion in

glasses takes place by a vacancy mechanism [100], but further studies are needed

to clarify this issue.

2.5.2 The MIGRATION Concept

The so called MIGRATION concept (MC) [41] is an evolution of the previously

developed “Jump Relaxation Model” (JRM) [37] and “Concept of Mismatch and

Relaxation” (CMR) [101] by Klaus Funke. The acronym stands for MIsmatch

Generated Relaxation for the Accommodation and Transport of IONs. As men-

tioned in previous section, the dynamics of mobile ions can be expressed in terms of

time correlation functions such as the velocity autocorrelation function, hv(0)v(t)i.
Its normalised integral, W(t), which is often called the time-dependent correlation

factor, represents the probability for the ion to be (still or again) at its new position

after a hop (see Fig. 2.16). Note that, while W(0) is unity by definition, its limiting

value at long times, W 1ð Þ, is just the fraction of “successful” hops.

Under the assumption that the cross terms in the velocity correlation function of

the hopping ions,
P

i, jvi 0ð Þvj tð Þ
D E

, may be neglected, i.e.P
i, jvi 0ð Þvj tð Þ

D E
¼ N v 0ð Þv tð Þh i, then σ�hop(ω) becomes proportional to the Fourier

transform of the time derivative of W(t) (see Eqs. (2.40–2.43)), denoted by _W tð Þ.
Introducing Ws(t)¼W(t)/W 1ð Þ, Eq. (2.40) can be written as [41]

Fig. 2.16 Sketch of the time dependence of the mean square displacement, correlation factor in

the MIGRATION concept, and the velocity autocorrelation function of hopping ions, showing the

relationships between them. Figure adapted from reference [102]
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σ*hop ωð Þ=σ 0ð Þ ¼ 1þ jω

ð1
0

Ws tð Þ � 1½ �e�jωtdt: ð2:75Þ

In the physical picture conveyed by the MIGRATION concept, it is emphasized the

mismatch introduced by any hop of an ion, the resulting relaxation (rearrangement)

of the neighbourhood and, as a consequence of the relaxation, the accommodation

(stabilisation) of the ion at its new position. Once accommodation at the new site is

achieved, an elementary step of macroscopic transport is completed by the ion. In

this model treatment, a simple set of rules is introduced in order to describe the

essence of the ion dynamics in terms of a physical picture of the most relevant

elementary processes. The rules are expressed in terms of three coupled rate

equations, which form the basis for deriving frequency-dependent model conduc-

tivities as well as mean square displacements. The set of rules that constitute the

MIGRATION concept are:

�
_W tð Þ
W tð Þ ¼ �B _g tð Þ; ð2:76Þ

� _g tð Þ
g tð Þ ¼ Γ0W tð ÞN tð Þ; ð2:77Þ

N tð Þ ¼ N 1ð Þ þ Bg tð Þ½ �λ; ð2:78Þ

In these equations, g(t) represents a normalised mismatch function, taking values

g(0)¼ 1 and g 1ð Þ ¼ 0. This mismatch function describes the decay of the

(normalised) distance between the (new) position of the “central” ion and the

position where its neighbours expect it to be. The mismatch created by the hop of

the “central” ion is experienced by an effective number of neighbours, N(t), a
function that may depend on time. Γ0 is the elementary hopping rate, while B and

λ are parameters. In Eq. (2.76), the rates of relaxation along the single-particle

route, with the ion hopping backwards, and on the many-particle route, with the

other ions rearranging, are both proportional to the same driving force, g(t), and
hence proportional to each other (see Fig. 2.17). According to Eq. (2.77), the rate of

decay of g(t), is proportional to the driving force g(t), to the elementary hopping

rate, Γ0, and to the number function, N(t). It is also proportional to W(t), since the
mobile neighbours perform correlated forward–backward jumps in the same fash-

ion as the “central” ion does.

Model conductivity spectra can be obtained from Eqs. (2.76–2.78) and com-

pared with experimental ones [104]. The shape of the conductivity spectra depends

on the value of the parameters B and λ, but it is not clear what their physical

significance is. Figure 2.18 shows frequency-dependent conductivities of the

supercooled glass-forming melt 0.4Ca(NO3)2–0.6KNO3 (CKN) at 393 K and

353 K, respectively, above and below the coupled-to-decoupled transition

2.5 Models of Ion Dynamics 51



temperature reported at 378 K [105]. It can be observed that both conductivity

isotherms are well reproduced by the equations of the MIGRATION concept, but

different values are found for the parameter λ. At the higher temperature, in the fluid

melt, a ‘successful’ displacement of an individual ion only seems to require suitable

movements of its immediate neighbours, and hence there is no need to consider any

significant time dependence of their number. At the lower temperature, in the

viscous melt, a solid-like conduction mechanism seems to prevail. The system is

now decoupled, with mobile ions moving from site to site in a comparatively

immobile structure. In such a scenario, long-range Coulomb forces between the

Fig. 2.17 Sketch of the MIGRATION concept. The backward hop of the ion implies the possible

relaxation on the single-particle route, while the shift of the caged potential indicates the possible

relaxation along the many-particle route. The solid line represents the effective potential experi-

enced by the hopping ion. Reproduced from [103] by permission

Fig. 2.18 Real part of the conductivity vs frequency of a supercooled melt of CKN (a) above and
(b) below the coupled-to-decoupled transition temperature. In the model curves, the value of the

parameter λ is found to change from 0.2 to 1.0. Reproduced from [104] by permission
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ions become important, the mismatch of a “central” ion exerting dipole forces on its

mobile neighbours, thus inducing their rearrangement by suitable hops and thereby

reducing the mismatch [41]. More discussion of the MC and relation to experimen-

tal data are given in Chap. 4.

2.5.3 The Coupling Model

The Coupling Model (CM) was proposed in 1979 with the purpose of providing a

general theoretical treatment of relaxation and diffusion in systems where the

relaxing or diffusing units are interacting with each other, i.e. the many-body

problem of irreversible processes in classical statistical mechanics. Exploring the

effect that interaction between the relaxing or diffusing units has on the dynamics

ranging from microscopic to macroscopic times and the transport coefficients is the

objective of the CM. Surprisingly no such theory or model exists at least before

1979 despite the fact that most condensed matter including glass-forming liquids,

glasses and ionic conductors are interacting systems, and relaxation and diffusion

are the major properties of interest.

The first version of the Coupling Model (CM) [34, 106–108] on relaxation of

interacting systems was published in 1979. In retrospect, this model is based on

semiclassical quantization of nonlinear Hamiltonian mechanics, i.e. classical chaos

[109–113]. The interacting system is semiclassically quantized and the energy

levels distribution is described by Wigner’s statistical theory [114–116]. This

theory of Wigner originated from his idea that the complex Hamiltonians of

many-body interacting systems (in the original case considered by Wigner, it is

that of heavy atom nuclei such as uranium) could be approximated by a random

Hamiltonian representing the probability distribution of individual Hamiltonians

for the purpose of finding the energy levels. This idea was then further developed

with advances in random matrix theory and statistics [117]. For systems invariant

under time reversal, it is given by the Gaussian Orthogonal Ensemble (GOE) in

random matrix theory. It makes sense to use GOE because it has been shown to

apply to a variety of atomic, molecular, nuclear systems. [113–117] In GOE,

the distribution of level spacings E is given by the expression,

p E=Dð Þ ¼ π=2ð Þ E=Dð Þexp � π=4ð Þ E=Dð Þ2
h i

, and D is the average spacing. In the

absence of interactions, the level spacings follow the Poisson distribution, drastic

different from the GOE (see Fig. 2.19). GOE has the characteristic linear depen-

dence of p(E/D) / E/D which originates from energy level repulsions, and this

dependence holds up to a cut-off high energy, Ec. When considering relaxation and

diffusion, frequency ω or time t varies over many orders of magnitude, and logω or

logt is the appropriate variable. Since energy E correspond to ω or time 1/t, we
replot p(E/D) vs. log(E/D) in Fig. 2.20, and put log(ω/ωc) or log(t/tc) under log(E/
D), as label of the abscissa, to indicate the corresponding variables when consid-

ering relaxation. Like D, the magnitudes of ωc ¼ Ec=h, where h is the Planck’s
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constant, and tc depends on the interaction strength determined by the potential of

interaction, and it is insensitive to temperature or pressure. Stronger is the interac-

tion strength, larger is D and ωc and shorter is tc.
The results given above brings out the physics that interactions has no effect on

relaxation and diffusion at frequencies higher than ωc or at times shorter than tc.
This is because the linear dependence of the level spacing distribution on E no

longer holds for E>Ec, which corresponds to times shorter than tc
 (ωc)
�1. So, if

ion-ion interaction is the cause of the non-exponential time correlation function of

many-body conductivity relaxation such as that given by the Kohlrausch function

of Eq. (2.49), it is ineffective at times shorter than tc, and the normalized correlation

function is simply the one-body exponential function,Φ(t)¼ exp(-t/τ0), of Debye in
relaxation and of Einstein in Brownian diffusion.

Therefore, in the CM, at times shorter than tc
 (ωc)
�1 the relaxation is a

primitive or one-body (single ion) relaxation with constant rate W0
 (τ0)
�1, and

the correlation function is given by exp(-t/τ0). Due to interactions and the onset of

1.0

0.5

0 1

1

x=E/D

p(
x)

2 3

Energy level spacing
distribution

Poisson p(x)dx = exp(–x)dx

p(x) = (π/2)x exp (–(/4)x2)

GOE

Fig. 2.19 A Wigner

distribution fitted to the

spacing distribution of

932 s-wave resonances in

the interaction 238Uþ n at

energies up to 20 keV. The

Poisson distribution is

shown for contrast

Fig. 2.20 Replotting the

GOE in Fig. 2.19 as log

vs. log
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the linear level spacings distribution or correlations between the ions, the many-

body relaxation takes over after crossing tc. It is the response of the GOE energy

level structure to the primitive relaxation that is used to account for the many-body

relaxation which necessarily slows down its primitive relaxation rate W0 [106–

108]. Calculated by perturbation theory, the response coming from p(E) with the

linear dependence on E slows down the relaxation rate W0 to have the time

dependent form of

W tð Þ ¼ W0 wctð Þ�n
, t > tc; ð2:79Þ

and the correlation function to have the Kohlrausch form given by Eq. (2.49), for

times longer than tc. The power, n, called the coupling parameter, is a fraction of

unity which increases with the strength of interaction. Thus, the relaxation rate of

interacting many-body systems is time dependent. It is the primitive relaxation rate,

W(t)¼W0 for t< tc, and the many-body relaxation rate, W(t)¼W0(ωct)
�n, when

t> tc. This crossover from the primitive to the many-body relaxation rate does not

occur necessarily sharply at tc but rather smoothly in a neighborhood of tc, so that

the correlation function and its derivatives are continuous across tc. The factor,

exp � π=4ð Þ E=Dð Þ2
h i

, in p(E) effects the transition between the two rates. Its width

parameter D suggests that the width of the neighborhood is of the order of tc itself,
and hence narrow, if there is no other factor like polydispersity of relaxation units

entering into the problem. Some of the experimental data to be introduced later

show that the crossover is quite sharp. In view of this and in the absence of reliable

way to account quantitatively for the narrow crossover, the sharp crossover of the

two relaxation rates at tc is used to generate predictions. The correlation function in
Eq. (2.32), ϕ(t) obtained from the CM rate equation, ∂ϕ tð Þ=∂t ¼ �W tð Þϕ tð Þ, by
integration with τ0
 1/W0 is given by

ϕ tð Þ ¼ exp �t=τ0ð Þ, t < tc; ð2:80Þ

ϕ tð Þ ¼ A exp � t=τ∗ð Þ1�n
h i

, t > tc; ð2:81Þ

and continuity of ϕ(t) at tc leads to the relation,

τ∗ T,P,Q,m,U, � ��ð Þ ¼ 1� nð Þ tcð Þ�nτ0 T,P,Q,m,U, � ��ð Þ½ � 1
1�n; ð2:82Þ

and

A ¼ exp n= 1� nð Þ½ � tc=τ0ð Þf g: ð2:83Þ

In Eq. (2.82) the dependences of τ* and τ0 on temperature T, pressure P, isotope
mass m, neutron scattering vector Q, and any other variable U are written out

explicitly to show how the two are related.
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When τ0 is much longer than tc, A! 1, and

ϕ tð Þ ¼ exp � t=τ∗ð Þ1�n
h i

, t > tc; ð2:84Þ

τ∗ T,P,Q,m,U, � ��ð Þ ¼ tcð Þ�nτ0 T,P,Q,m,U, � ��ð Þ½ � 1
1�n ð2:85Þ

There is no difference between Eqs. (2.82) and (2.85) when the CM is used merely

to predict the relation between the dependence of the many-body relaxation time τ*
with that of the primitive τ0 on some variable U. For example if τ0 has Arrhenius
T-dependence with activation energy Ea, then both equations predict that the

activation energy of τ is given by Ea/(1�n). From the Q�2-dependence of τ0,
Eq. (2.85) predicts that the τ* has the Q�2/(1�n)-dependence. Thus the CM

Eq. (2.85) spawns many predictions to compare with experiments. Quantitatively

for the relation between τ0 and τ*, the two expressions make some difference

particularly when n becomes larger. In that case, Eq. (2.82) should be used when

τ0 is not much longer than tc for the sake of accuracy, as demonstrated in comparing

prediction [118] with molecular dynamics simulation data [119] where n has

unusually large value. When using the prediction to deduce quantitatively τ0 from
the experimentally observed τ* with known values of n and tc, Eqs. (2.82) and

(2.85) leads respectively to τ0 ¼ tcð Þn τ∗ð Þ1�n
= 1� nð Þ and

τ0 ¼ tcð Þn τ∗ð Þ1�n
: ð2:86Þ

The difference between the two expressions for τ0 is not large, only a factor 2 for

n¼ 0.5, and lesser for smaller values of n. For this reason, Eq. (2.86) is often used.

The significance of the CM equation Eqs. (2.82) and (2.85) is that it makes a

connection between the many-body relaxation time τ* usually endowed with

anomalous properties and the primitive one-body relaxation time τ0, the properties
of which are normal and known. Thus, the connection provides falsifiable expla-

nations/predictions of the anomalous properties of τ from the known or familiar

properties of τ0. The connection is made via the Kohlrausch exponent n, and the

crossover time tc. These two parameters of the many-body relaxation naturally are

ultimately determined by the interaction potential and its strength.

The Eqs. (2.82) and (2.85) coupled with the Kohlrausch function of the CM

spawns many predictions that can be tested by experiments and used to explain

anomalous properties. Many such tests and applications are given in Chap. 4. Since

it was derived for complex Hamiltonians in general, the predictions form these

equations should apply to relaxation and diffusion in interacting many-body sys-

tems of many kinds, and the dynamics of ionic conductors is only a special case.

Thus, ever since the inception of the CM in 1979, the expected existence of

universal relaxation and diffusion properties of interacting many-body systems

has led to concurrent explorations of several fields using the two coupled equations

(2.84) and (2.85) as the tool [18]. It must be borne in mind that these equations hold

strictly for systems in which all relaxation/diffusing units are identical and
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monodisperse, and heterogeneity is not introduced by boundaries, randomness,

mixing, and etc. If extrinsic heterogeneity is present, these equations have to be

modified by incorporating extraneous factors, and the test of applicability of the

CM become less precise and direct, but nevertheless can be done. Moreover, the two

coupled equations (2.84) and (2.85) strictly apply to the terminal many-body

relaxation leading to steady state transport coefficients. Before reaching the terminal

relaxation, the dynamics of ions have passed through several stages. The first stage is

the dissipation of ions mutually confined in cages through the interionic potential,

manifesting as the nearly constant loss (NCL) in ε00(ω) and σ0(ω) (see Chap. 4). The
caged ion dynamics has no characteristic time and continues with time indefinitely

until the onset of the primitive ion relaxation corresponding to ion hop out of the

cage singly or independently, which is the second stage. Thereafter, increasing

number of ions cooperatively relax continuously with time (this is the third stage),

until the maximum number (or length-scale L) of the heterogeneous ion dynamics is

reached. The latter is the terminal or primary many-ions relaxation with time

correlation function and relaxation time governed by Eqs. (2.84) and (2.85).

The CM does not provide description of the motion of ions in space at the third

and the final stage. Notwithstanding, the CM had anticipated that these processes in

interacting many-body systems is dynamically heterogeneous by pointing out [120]

the analogy of the CM to the heterogeneous process in the solution of the ‘Dining
Philosophers Problem’ in computer science [121], 1 year before the first experi-

mental evidence of dynamic heterogeneity of structural α-relaxation was published

[16]. In the CM, dynamic heterogeneity and Kohlrausch non-exponentiality,

Eq. (2.84), are regarded as parallel consequences of the cooperative many-body

molecular dynamics, but the former is not emphasized in the applications of the

CM. Description of the motions as a function of time is best obtained by special

experiment techniques like confocal microscopy for colloidal suspensions [17, 122]

or by molecular dynamics simulations of ions [123] and especially designed

computer simulation method for molecular liquids such as the Dynamic Lattice

Liquid Model [124, 125]. Such description is worthwhile as well as pleasing to

acquire, but being able to describe motions as a function of time does not neces-

sarily mean that it can explain the anomalous properties of the terminal many-ion

relaxation time, τ, while the CM equation can do just that via Eq. (2.85). Ever since

it was first derived in 1979, this problem-solving capability of the CM continues to

apply in the field of ionic conductivity relaxation and other areas, particularly the

dynamics of glass-forming materials and systems [18]. Plenty of examples from

ionic conductivity relaxation will be given in Chaps. 4–7.
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Chapter 3

Experimental Probes for Ion Dynamics

Impedance Spectroscopy (IS) is by far the most commonly used technique to

investigate experimentally the dynamic response of mobile ions in ionic conduc-

tors. Although other techniques, like NMR, light scattering, and neutron scattering,

are also used to gain some insights into the ion diffusion process, they are mainly

useful to probe high frequency dynamics since their spectral range is much more

limited than in the case of IS. Due to its unparalleled broad frequency ν (or time t)
range, IS is an ideal tool to study the dynamics of species with electric charge

(mobile or bound) in materials [1]. It is based on the interaction of the electric

charge of the species inside the sample with an applied electric field, and essentially

consists of measuring the magnitude of this interaction and its characteristic

frequency or time scale. Nowadays, by combining different experimental tech-

niques, the total frequency range spans from a few nHz (τ ~ 1 year) to above 1 THz
(τ ~ 10�1 ps) [2–7]. Thus, we will focus here on the use of IS and pay particular

attention to its applications to measurements of the electrical response of ionically

conducting materials.

3.1 Impedance Spectroscopy

3.1.1 Description of the Technique

Although Impedance Spectroscopy (IS) is not a new technique, and it has been used

to characterize the electrical properties of materials for many years [8–10], signif-

icant improvements have been introduced in the last decades mainly due to the

advent of microelectronics that had extended and generalized its applications. The

most common experimental setup allows determining the impedance of a test

sample by the application of a sinusoidal (ac) voltage (current) signal with known

amplitude and frequency, and the measured phase shift and amplitude of the
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resulting current (voltage). Assuming the response is linear, which we will discuss

below in more detail, if a sinusoidal time dependent voltage, V(t)¼V0sin (ωt), is
applied, the current will be a sinusoidal signal with the same frequency but shifted

in phase, I(t)¼ I0sin (ωt�ϕ) (see Fig. 3.1). The angular frequency ω (measured in

rad/s) is related to the frequency f (in Hz) by ω¼ 2πf.
The analysis of the response to a periodic voltage or current excitation is usually

very complex in the time domain, requiring in general the solution of differential

equations. In the case of sinusoidal excitations, the use of Fourier Transforms of the

signals to the frequency domain allows simplifying the problem since the differen-

tial equations are converted to simple algebraic equations. By using the relation-

ship, eiωt ¼ cos ωtþ i sinωt, it is possible to express the impedance as a complex

function of frequency. The voltage is the real part of the complex function,

V ¼ V0e
iωt, and similarly, the current is the real part of I ¼ I0e

i ωt�δð Þ. The imped-

ance is defined as the complex function Z ¼ V
I ¼ Z0e

iδ ¼ Z0cosδþ iZ0sinδ. It is
worthwhile to remark that Fourier transformation only reduces differential equa-

tions to simple algebraic equations under conditions of linearity, causality, and

stationarity of the system, and therefore impedance is properly defined only for

systems satisfying these conditions [9]. We can represent the impedance,

Z ¼ Z
0 þ iZ

00
, as a vector in the complex plane (see Fig. 3.2), with rectangular

coordinates Z
0 ¼ Z0cosδ and Z

00 ¼ Z0sinδ as its real and imaginary parts. The polar

coordinates of the impedance can be expressed as its phase

δ ¼ tan �1 Z
00

Z
0

� �
; ð3:1aÞ

and its modulus

Zj j ¼ Z0 ¼ Z
0

� �2

þ Z
00

� �2
� �1=2

ð3:1bÞ

Fig. 3.1 Current response

to a sinusoidal voltage

excitation in a linear system
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As shown above, the impedance is in general a function of frequency, Z¼ Z(ω),
and IS consists of the determination of the frequency dependence of Z(ω) by

measuring its value for different frequencies in a given experimental frequency

range. It is from this frequency dependence of the impedance that we would be able

to characterize the physical (or chemical) properties of a material or a material-

electrode interface. Today, commercial instruments allow varying the frequency of

the applied signal in a broad frequency range, typically from 10�5 Hz up to 109 Hz,

and even lower frequencies (below 10�8 Hz) by using time-domain measurements

of the electric modulus [3, 11], or higher frequencies (above 1012 Hz) by using

microwave and infra-red techniques [12, 13]. This experimental frequency range

spanning more than 20 decades in frequency allows the characterization of electri-

cal properties of materials for many different applications and also helps under-

standing the underlying physics behind each particular electrical response [1]. In IS

measurements, besides the frequency range, the most important parameters in order

to evaluate the performance of an instrument are the impedance (|Z|) range and the

phase accuracy or tan(δ). Currently it is possible to cover an impedance range from

10�2 to 1014 Ω, or even broader, by using just one single instrument, and with an

accuracy in the determination of the impedance phase of tan(δ)> 10�4.

The experimental setup to perform time-domain measurements of the electric

modulus is based on polarizing the sample under “constant charge” condition [14],

instead of the more common electric polarization under “constant voltage” condi-

tion used in the time domain experiments with a lower limiting frequencies of about

10�6 Hz [15–17]. On the other hand, network analyzers are used to measure

transmission and reflection coefficients in the frequency domain and thus allow

determining the impedance of a sample at microwave frequencies above 109 Hz,

usually filling a coaxial cable segment or with the sample in contact with the inner

and outer conductors of the cable at its end. In the frequency domain, impedance

analyzers or LCR meters based on ac auto balancing bridge circuits are commonly

Fig. 3.2 Representation of

impedance Z in the complex

plane
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used to measure impedance in the range 10 Hz–107 Hz. This technique, which is

most often used to study the dynamics of mobile ions in ionic conductors, will be

discussed below in more detail. For these materials which usually show low

frequency dependence, impedance analyzers based on current-voltage (I-V) method

can be used. They directly measure the voltage applied to the sample and the current

through the sample, and allow extending the low frequency range down to the order

of 10�3 Hz. Typical impedance analyzers are able to measure an impedance range

10�2–108 Ω, and with phase accuracy tan(δ)> 10�3, which is often enough to

measure impedance spectroscopy of ionic conductors without major problems, at

least in a temperature range useful for applications.

Although nowadays the instruments are able to generate and apply a sinusoidal

signal with almost any frequency value within the available range, measuring the

impedance at a few selected frequencies, typically between 5 and 10 logarithmi-

cally spaced values per frequency decade, is often enough to obtain the relevant

data to characterize the electrical response of the material. The use of logarithmi-

cally spaced frequency values allows the determination of the impedance in a

broad dynamic range of several decades in a reasonable time. However, impedance

measurements at very low frequencies, usually below a value of 10�2–10�3 Hz, are

very rarely performed since they are time consuming and do not usually result in an

additional relevant information. Note that the measurement of the impedance

requires at least a full sinusoidal cycle of the applied signal. If, for any reason,

one needs to determine the impedance at such low frequencies, it is more conve-

nient to use a different experimental setup to measure in the time domain the

transient current in response to the application of a step function in the applied

voltage (V(t)¼ 0 for t< 0 and V(t)¼V0 for t> 0) [14, 16, 18]. A Fourier or Laplace

Transform algorithm is required to determine the impedance in the frequency

domain. While the need to perform the numerical integration might be a disadvan-

tage, the whole impedance spectra is obtained in an amount of time similar than

that required for measuring the impedance in the frequency domain just at a single

frequency (the lowest frequency). This becomes an increasingly important advan-

tage of the Impedance Spectroscopy (IS) in the time domain when extending the

measurements to lower frequency values. On the other hand, extending the imped-

ance measurements at frequencies above a few MHz is also cumbersome, requiring

careful calibration and correction procedures to remove any contributions to the

impedance arising from cables and measurement cell and not from the sample

itself. In the microwave (GHz) frequency range, it is usually necessary to use

coaxial lines filled with the material under test as the dielectric between the internal

and external conductors. In the case of liquid samples one has to avoid the presence

of bubbles and impurities, and it is even more difficult to fill the coaxial line with a

solid ceramic sample. It may require sintering the sample after filling the coaxial

line, since using a ceramic powder usually result in measuring an impedance

dominated by the grain boundary response instead of that from the bulk. In

addition, measuring the impedance in the microwave range requires the use of

specific instrumentation which is much more uncommon in the research and

industrial laboratories worldwide than that used to measure impedance at lower
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frequencies. For all these reasons, most of the impedance measurements reported

in the literature are in the frequency range from about 10 mHz to 1 MHz. This is

not a severe limitation since, as discussed below, the impedance spectra usually

shifts to lower (higher) frequencies when decreasing (increasing) temperature,

following the shifts of the temperature dependent (usually thermally activated)

electric responses of the conductor. Thus, one can access experimentally to several

dynamical processes contributing to the electrical response of the system not only

by increasing the measurement frequency range but also by increasing the exper-

imental temperature range.

Impedance Spectroscopy (IS) allows measuring the complex impedance Z of

our sample, as well as any other immittance function such as the complex

admittance Y¼ Z�1, or the complex capacitance C*¼ Y/iω, and from them, by

using a geometrical factor C0, one can determine the dielectric permittivity

ε*¼C*/C0, the complex conductivity σ*¼ iωε*, or the electric modulus

M*¼ 1/ε*¼ iωC0Z, of the material under test. The relations of these equally

valid representations of the measured electrical response are discussed in details

in Chap. 4. The advantage of some representation in bringing out the characteristic

of the ion dynamics can be found in this chapter. Note that since the instrument

measures the phase shift and amplitudes ratio between voltage and current sine

waves, it is straightforward to obtain the value of any immittance function.

Table 3.1 summarizes the relationships between some of these immittance func-

tions that are often used in the analysis and description of experimental data,

particularly for the case of ionically conducting materials. The geometrical factor

C0 is known as the capacity of the empty cell, and it is especially easy to

determine when measuring a sample in a parallel-plate capacitor geometry. In

this case it is obtained that C0¼ ε0 (A/d), with A is the area of the electrodes,

d the distance separating the (parallel) electrodes, (A/d2)� 1, and ε0¼ 8.85� 10�12

Fm�1 the dielectric permittivity of a vacuum. To fulfill this parallel-plate capacitor

geometry requirement, the sample to be measured is usually shaped as a cylindrical

pellet with a thickness as lower as possible (typically d< 1 mm) and large top and

bottom areas with metal electrodes painted or evaporated on them (typically

A> 10 mm2).

Table 3.1 Relationships between several immittance functions

Z Y σ* ε* M*

Z ¼ – Y�1 (C0σ*)
�1 (iωC0ε*)

�1 M*/iωC0

Y ¼ Z�1 – C0σ* iωC0ε* iωC0/M*

σ* ¼ Z�1/C0 Y/C0 – iωε* iω/M*

ε* ¼ Z�1/iωC0 Y/iωC0 σ*/iω – (M*)�1

M* ¼ iωC0Z iωC0/Y iω/σ* (ε*)�1 –

C0 refers to the capacity of the empty cell (see text)
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3.1.2 IS Data Analysis

As previously stated, different formalisms are used in the analysis of the electrical

response of ionically conducting materials, and there is no consensus from

researchers in the field on which is the best one. While those interested mainly in

the bulk response of materials for applications as solid electrolytes use the conduc-

tivity or the electric modulus formalisms, those studying the electrode-electrolyte

interfacial response rather use the impedance representation in the so called Nyquist

or Argand plots. Of course, no matter of the formalism chosen to analyze the

experimental data, one must know that these are just different representations of

the same data. A detailed discussion on the advantages and disadvantages of using

different formalisms is given in Chap. 4. Many graphical methods have been

proposed for the analysis of impedance or dielectric data [19–22]. Here we will

describe briefly the use of the impedance plots to obtain information on the ion

diffusion process. We will also describe the use of electric circuits to model the

response of ionic conductors measured by the Impedance Spectroscopy techniques.

Since ionic conduction is a thermally activated process, we can think of an ideal

ionically conducting material at enough low temperature as an insulator or dielec-

tric material with no dielectric losses. Its response can be represented by a pure

capacitor characterized by a real capacitance C, whose value would be proportional

to the dielectric permittivity of the material. At higher temperatures, as ionic

conduction increases, it eventually becomes measurable. This conduction mecha-

nism can be ideally represented by just an ideal resistor of resistance R. Since the

conduction process is independent of the dielectric response, the total electrical

response of the material at a given temperature could be represented (see inset to

Fig. 3.3) by a parallel combination of these two circuit elements (a resistor R and a

capacitor C). The admittance of such a parallel circuit will be given by

Fig. 3.3 Nyquist plot of the impedance for a parallel RC circuit representing the electrical

response of an “ideal” ionic conductor. The values R¼ 10 MΩ and C¼ 10 pF are used in the

plot. Each point represents the impedance at a single frequency from 10�2 to 106 Hz, increasing

frequency from right to left in the plot. Note that the frequency dependence of the impedance gives

rise to a semicircle in this representation (see Eq. (3.3) in the text)
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Y ¼ Y
0 þ iY

00 ¼ 1=Rþ iωC; ð3:2Þ

and consequently, the impedance by

Z ¼ Z
0 þ iZ

00 ¼ Y�1 ¼ Y
0 � iY

00
� �

= Y
0

� �2

þ Y
00

� �2

; ð3:3aÞ

with

Z0 ¼ 1=Rð Þ= 1=Rð Þ2 þ ωCð Þ2
h i

; ð3:3bÞ

Z00 ¼ �ωCð Þ= 1=Rð Þ2 þ ωCð Þ2
h i

: ð3:3cÞ

Impedance is thus a complex quantity with both the real and imaginary parts

frequency dependent. If the (negative) imaginary part of the impedance, �Z00, is
plotted on the Y-axis of a chart against the real part, Z0, plotted on the X-axis, we get
the so called Nyquist plot, sometimes simply referred as impedance plot

(see Fig. 3.3). Note that each point in this plot is the impedance at one frequency.

The low frequency data are on the right side of the plot (Z!R) and high frequency
data (Z! 0) are on the left.

From simple inspection of the experimental impedance spectra of an ideal ionic

conductor in the Nyquist plot we can obtain the resistance R from the intersection

with the X-axis at low frequencies, and thus obtain the resistivity, and the conduc-

tivity σ0 of the material if the geometrical factor C0 is known. As shown in the

figure, and easily derived from Eqs. (3.3a–3.3c), the impedance data of an RC

circuit are represented in a Nyquist plot by a semicircle, with a maximum value of

Z00 at the characteristic frequency ω¼ 1/RC, when Z00 ¼ Z0 ¼R/2. Note that in the

time domain, if a step function voltage V0 is applied to this circuit, the current will

decreases exponentially towards a value I¼V0/R at long enough times with a

relaxation time τ¼RC. The impedance spectra is characterized by an ideal

Debye behavior with Z0 and Z00 varying with frequency as represented in Fig. 3.4,

and characterized by the relaxation time constant τ¼RC. Since the dielectric

permittivity, and therefore the capacitance C, usually shows weak temperature

dependence, the characteristic relaxation time will be thermally activated with the

same activation energy as the value of the resistance R, or the activation energy of

the ionic conduction process. By increasing temperature, the characteristic relaxa-

tion time (frequency) will decrease (increase). Thus, by changing temperature, one

can “tune” the characteristic relaxation frequency to be inside the available exper-

imental frequency window, particularly if it is not very broad.

However, the electrical response of a “real” ionically conducting material shows

deviations from this ideal Debye behavior. As already discussed in Chap. 2, the

electrical conductivity relaxation is usually well described by a Kohlrausch-

Williams-Watts (KWW) function in the time domain, giving rise to an apparent

power law dependence in the conductivity. This is emphasized by some researchers
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by calling it the “universal response” in accordance with the Jonscher’s expression
for the real part of the conductivity, σ0(ω)¼ σ +Aωn, where n is a fractional

exponent [23, 24]. However, Moynihan [25] showed that the Jonscher’s expression
is unphysical or pathological because its imaginary part [24] rewritten as the real

part of ε0(ω) is given by ε0 ωð Þ ¼ ε1 þ A=E0 cot nπ=2ð Þ½ �ωn�1, which diverge at low

frequencies rather than level off to a constant value for the bulk material.

Nevertheless, this power law dependence in the conductivity is usually described

in electrical circuit models by using a so called universal capacitor (Q) instead of

the pure capacitor (C). The circuit element known as universal capacitor is charac-

terized by a complex admittance given by YQ¼Q(iω)n, where n is a fractional

exponent. Since both the real and imaginary parts of the admittance YQ of a

universal capacitor are proportional to ωn, the phase angle of its admittance,

θ ¼ tan �1 Y
00
=Y

0� 	 ¼ nπ=2, is independent of frequency. In fact, the universal

capacitor is often referred to as constant-phase element (CPE) in equivalent circuit

models. The real part of this admittance YQ accounts for the power law frequency

dependence of the conductivity at high frequencies that is usually observed exper-

imentally for ionic conductors. The use of this circuit element to fit the experimen-

tal data is rather extended in the literature, particularly in Impedance Spectroscopy

studies in the electrochemistry field. However, although it may be useful for a

phenomenological analysis of the electrical response in ionic conductors, it is

worthwhile to note that its validity has been criticized in the past [25–28].

Figure 3.5 shows Nyquist plots at several temperatures of a single crystal yttria

stabilized zirconia (YSZ), which is an emblematic oxide-ion conductor. At the

lowest temperatures, the Nyquist plots are well described by depressed semicircles,

and the experimental data can be reasonably fit to an electrical circuit model

Fig. 3.4 Representation of the frequency dependence of the real and imaginary parts of the

impedance Z for a parallel RC circuit representing the electrical response of an “ideal” ionic

conductor. The values R¼ 10 MΩ and C¼ 10 pF are used in the plot. The impedance shows an

ideal Debye spectra characterized by a relaxation time τ¼RC
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including a universal capacitor Q in parallel with a resistor R and a capacitor C (see

inset to Fig. 3.5a). On the other hand, Fig. 3.5b shows that at higher temperatures,

the presence of an additional semicircle becomes evident at low frequency (right

side). This is due to the onset of ion blocking effects at the sample-electrode

interface. At sufficiently low frequencies (i.e. long times) the diffusing (oxygen)

ions under the applied electric field eventually arrive at the sample-electrode

interface and accumulate there if the electrode is not as good ion conductor as the

bulk sample, which is usually the case for silver, gold or platinum electrodes that

are often used in Impedance Spectroscopy experiments with ionic conductors. The

blocking of ions at the electrodes leads to a decrease of the electric field inside the

sample and thus to an apparent decrease of the bulk conductivity.

The total electrical response can be modeled by including an additional RC
circuit in series with the bulk response, to account for the electrode effects, as

shown in the inset to Fig. 3.5b. However, note that the bulk resistance, and therefore

the bulk ionic conductivity, can be obtained from the intersection of the bulk

semicircle with the X-axis at the right side. Sometimes the semicircle due to the

bulk response is not well defined at low frequencies due to the presence of the

additional semicircle arising from blocking effects, and then it is not possible to

obtain a bulk resistance value from the extrapolation towards the real axis in the

Nyquist plot. Then it is useful to fit the experimental data to electric circuit models

to determine the physical quantities like the bulk resistance or capacitance. Solid

lines in the plots of Fig. 3.5 are fits of the experimental data to the electrical circuit

models shown as insets in each case. There are different software programs to

perform these fits by means of complex non-linear least-squares (CNLS) fitting

algorithms, like ZVIEW® from Scribner Associates, LEVM developed by J. Ross
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Fig. 3.5 Nyquist plots at several temperatures, and for frequencies ranging between 20 Hz and

1 MHz, for a single crystal yttria stabilized zirconia (YSZ) sample (0.09 Y2O3 : 0.91 ZrO2). (a) It
can be observed that semicircular arcs appear depressed due to the existence of dispersive,

i.e. frequency dependent, conductivity. (b) At enough high temperature, an additional arc or

semicircle is visible at the lowest frequencies due to the onset of ion blocking effects at the

sample-electrode interface. Solid lines in both figures are fits of the experimental data to the

electrical circuit models shown as insets in each case
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Macdonald, or EQIVCT developed by Bernard Boukamp [29–33]. Again, although

the use of fitting software may be useful in a particular case, it is often found that

several different circuit models can be used to describe the experimental data, and it

is not always straightforward to assign a physical meaning to the circuit elements in

the model used. It is then important to use the least possible number of parameters

in the fits and a model with a clear physical meaning in order to interpret the fit

results to the experimental data.

In the case of polycrystalline samples of ionically conducting materials, ion

blocking effects at the grain boundaries contribute also to the electrical response

and therefore these effects are evident in the experimental data from the

corresponding impedance plots. Grain boundaries usually act as blocking interfaces

for the transport of ions between the different grains (or bulk) regions in the sample,

giving rise to charge accumulation as in the case of electrodes and consequently to

an apparent decrease of the conductivity when decreasing the frequency (increasing

the diffusing time for the ions), as the accumulated ions at the boundary create an

electric field within the grains with opposite direction to that of the applied electric

field. Thus, the impedance associated to the grain boundaries can be thought as “in

series”, in terms of an electrical circuit model, to the bulk response, and results in an

additional semicircle in the Nyquist plot, between the bulk semicircle at higher

frequencies and the electrode arc or spike at lower frequencies (see Figs. 3.6

and 3.7). Figure 3.6 shows complex impedance (Nyquist) plots of Z00 vs Z0 at
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Fig. 3.6 Nyquist plots at several temperatures, and for frequencies ranging between 20 Hz and

1 MHz, for a polycrystalline ceramic yttria stabilized zirconia (YSZ) sample (0.09 Y2O3: 0.91

ZrO2). At each temperature, the presence of an additional semicircle is evident at intermediate

frequencies, which is related to the electrical response of the grain boundaries (GB), between the

bulk (B) response at high frequencies (left) and the electrode (E) response at lower frequencies

(right). Solid lines in the figure are fits of the experimental data to the electrical circuit model

shown as an inset
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several temperatures where the electrical response of the bulk, grain boundary and

electrodes can be separated due to their different relaxation times and are observed

at the highest, intermediate and lowest frequencies respectively (from left to right in

the plots). In order to obtain the dc bulk (Rb) and grain boundary (Rgb) resistances at

each temperature, it is possible to fit the experimental impedance data to an

equivalent circuit where bulk, grain boundary, and electrode contributions to the

total impedance Z* are in series:

Z* ¼ Z*
b þ Z*

gb þ Z*
e : ð3:4Þ

Each separate contribution (i¼ b for bulk, i¼ gb for grain boundary, and i¼ e for
electrode) can be modelled using a complex equivalent circuit component based on

a parallel resistor-capacitor-universal capacitor combination [9, 10]:

1

Z*
i

¼ 1

Ri
þ Qi iωð Þni þ iωCi: ð3:5Þ

The results from the fits to Eqs. (3.4) and (3.5) are shown as solid lines in Fig. 3.6.

The equivalent electrical circuit model is shown as an inset in the same figure.

Note that the data at the lowest frequencies, affected by electrode blocking effects,

do not show a full semicircle but an arc or spike, and therefore a parallel RC circuit

is usually enough to fit the electrode response and Qe is taken as zero.
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Fig. 3.7 Nyquist plots for single crystal and polycrystalline ceramic YSZ samples (0.09 Y2O3:

0.91 ZrO2) measured at a similar temperature. The comparison evidences the presence of an

additional semicircle at intermediate frequencies due to the electrical response of the grain

boundary. For a better comparison, experimental data have been normalized to account for the

different geometrical factors of each sample
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Although one is mainly interested in determining the bulk ionic conductivity

values of a material, the presence of grain boundaries may be unavoidable when

using the material in a practical device, and therefore it is the total dc conductivity

which is relevant in that case. The total dc conductivity is obtained as the inverse of

the total resistivity, which is the sum of the bulk resistivity and the grain boundary

resistivity. It can be determined by using fitting software to electrical circuits or

directly from inspection of the Nyquist plots, from the value of the real part of the

impedance at the intersection of the grain boundary semicircle with the X-axis at

the right side.

From a structural point of view, a grain boundary is a crystallographic mismatch

zone in the material with a high density of defects, what gives rise to an increase of

the free energy compared to the bulk region. It has been shown that impurity atoms

are preferentially accommodated at grain boundaries in ordered defect structures in

order to reduce its free energy [34, 35], leading to profound changes in electrical

properties [36, 37]. In the case of ionic conductors there is a large compositional

flexibility due to a high density of mobile ions, which offers additional degrees of

freedom to reduce the free energy of the grain boundary through the stabilization of

correlated composition changes in its neighbourhood. The interplay between elastic

(strain) and chemical free energies gives rise to a redistribution of atoms at the grain

boundary, and this may result in the formation of a space charge region to restore

electrochemical equilibrium [37, 38]. The nature of the space charge depends on the

formation free energies of point defects and the effective charge of the dopants

and/or impurities that accumulate in the space charge region [39].

It is well established that the accumulation of defects and impurities at the grain

boundaries gives rise to a barrier for ionic diffusion through the material, and the

ionic transport across the grain boundaries takes place through the grain-to-grain

contacts, while the impurity phase at the grain-boundary results in a blocking effect

by decreasing the width of the ion conduction path. It has been also proposed that

the formation of a space charge layer adjacent to the grain boundary core would

also result in a barrier for charge transport as in the case of Mott-Schottky junctions

in semiconductors [40]. The contribution of a space-charge layer to the electrical

properties of the grain boundary can be described by assuming a conduction

mechanism similar to that of the bulk but introducing an effective charge carrier

(mobile ions) concentration and an effective width for the space-charge layer

[41]. Guo and Maier have proposed a Schottky barrier model to explain the ion

transport across grain boundaries in acceptor-doped ZrO2 and CeO2 [42, 43]. As

discussed in details in Chap. 6, Frechero et al. [44] have shown that this might not

always be the case.

A usual model to describe the electrical response of polycrystalline ionic

conductors is the brick layer model (BLM) proposed by Van Dijk and Burggraaf

[45]. It is assumed in this model that ceramic samples consist of grains with a high

conductivity, separated by relatively thin, uniform grain boundaries (see Fig. 3.8).

The grain boundary consists of a homogeneous layer and the conduction along the

grain boundaries is negligible. The BLM model assumes that the permittivity

value at the grain boundary is similar to the bulk one, εgb¼ εb, a reasonable
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approximation since in most ionic conductors the dielectric constant does not

change significantly with the concentration of mobile ions. Assuming cubic grains

of the same size dg, the average grain-boundary thickness δgb can be estimated

from the brick layer model in terms of the ratio of bulk and grain boundary

capacitances, δgb¼Cb/Cgbdg. The BLM approximates the thickness of the SCL

in polycrystalline ceramics to half the width of the grain boundary region since it

is shared by the two neighbouring grains at the boundary [40], and thus the

thickness of the space charge layer λ* is estimated as λ* � δgb=2. A value for

the specific grain boundary conductivity can be also estimated by σsgb¼ σgb (δgb/
dg)¼ σgb (Cb/Cgb) from the measured bulk and grain boundary capacitance and

conductivity values.

3.1.3 Experimental Considerations

As in any other experimental technique, a relevant issue in Impedance Spectros-

copy measurements is to check that the experimental data obtained are valid,

consistent, and free of experimental artifacts. One possibility is the use of CNLS

fitting of impedance data to a linear response or circuit model. If a model is found

that describes appropriately and simultaneously the experimental data for the real

and imaginary parts of the impedance, one can be reasonably sure of the validity of

the data. However, when dealing with experimental data a suitable model is not

always known, i.e., no analytical expressions nor equivalent electrical circuits can

be used to obtain a good description of the complex impedance data. In this case, an

alternative method is the use of Kramers-Kronig (KK) transforms [24, 46–49]. Real

and imaginary components of any susceptibility function χ*(ω) are related by the

following expressions:

Fig. 3.8 Brick Layer

Model representation of a

polycrystalline sample with

an average grain size dg and
an average thickness of the

grain boundary δgb
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which are known as the Kramers–Kronig relations, and that allows to obtain the

imaginary part of the susceptibility from the frequency dependence of the real part,

and vice versa. It is important to note that the Kramers–Kronig relations are derived

as a pure mathematical result, provided the following four general requirements are

fulfilled: (1) causality: the response of the system must be only due to the applied

perturbation; (2) linearity: the response of the system must be described by a set of

linear differential laws, and consequently independent of the magnitude of the

perturbation; (3) stability: system must return to its original state after the pertur-

bation is removed; and (4) continuity: susceptibility must be continuous and finite

valued for all frequencies and finite valued at the limits ω! 0 and ω!1 .

If the experimental data are correct, they must obey the K-K relations. One can

use for example the dielectric susceptibility χ*(ω)¼ (ε*(ω)�ε0)/ε0 in order to

perform the test. Expressions for the KK relations involving other immittance

functions can be also used [9, 24, 50, 51]. Therefore, by comparing the real part

of the susceptibility spectrum with the transform of the imaginary part by using

Eq. (3.6a), and vice versa by using Eq. (3.6b), the validity and consistency of the

experimental data can be checked. If there is any discrepancy between the actual

and transformed values (within the range of experimental error) then the data must

be considered invalid and affected by experimental artifacts that need to be solved

[51]. Note also that numerical integration of any of the KK relations requires the

knowledge of the susceptibility function in the whole frequency spectrum but the

measured data are obtained as a discrete and finite set. This problem is however

approximately solved by using appropriate algorithms [29, 51, 52].

In order to avoid experimental artifacts affecting the Impedance Spectroscopy

measurement, as well as to improve the accuracy of the measurements, it is

important to take into account two main issues. First, the instrument must be

correctly calibrated. It is important to perform regularly a calibration of the

instrument according to the manufacturer’s procedures. It is also convenient to

check if the calibration is correct before measuring each sample. Moreover, any

contribution to the measured impedance not due to the sample but to the cables

used, the sample holder or measurement cell should be considered and removed.

How to deal with this second issue is described in more detail in the following

paragraphs.

As it was previously described in this chapter, determining the impedance of a

sample requires applying a known current (voltage) signal through the sample and

an independent voltage (current) measurement. Commercial impedance analyzers

usually have the possibility to use four different connections to the sample cell: the
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counter electrode to provide current to the sample and the working electrode to

determine the current through the sample; and two reference electrodes to measure

voltage. It is possible then to use 2, 3 or 4-terminal configuration tests of the

impedance of the sample cell [9, 10]. In the case of samples of ionic conductors

used as electrolytes, their impedance is usually much higher than that of the cables

used for the measurement, at least at low frequencies, and it is possible then to use

2-terminal test connections to the sample without introducing significant errors to

the measurement due to not considering the (small) voltage drops in the cables. The

4-terminal configuration, with separate contacts for the reference electrodes to the

sample cell, avoids these problems, and must be used to measure the impedance of

batteries and fuel cell devices since they have low impedance values (see Fig. 3.9).

By using the 4-terminal configuration the voltage drop measured between the

reference electrodes is not influenced by any voltage drop in the counter electrode

or working electrode connections due to bad electrode-sample contacts. If the

differential voltage between the references electrodes is measured by an instrument

with high (ideally infinite) input impedance, a negligible current will flow through

the voltage electrodes and the current through the sample will be that measured at

the working electrode. Due to the almost zero current, the voltage drop due to the

contacts or cables used will be also negligible in the measured voltage.

The 3-terminal configuration can be used to determine the impedance of the

electrode/electrolyte interface (see Fig. 3.10). The counter electrode provides

current to the cell, the working electrode allows measuring this current, and a

reference electrode close to the working electrode measures the voltage drop due

to any electrochemical activity or to the accumulation of ions (double layer

capacity) at the working electrode interface. While this configuration is useful to

characterize the electrode/electrolyte interface and thus the performance of

Fig. 3.9 Sketch of the set-up of a 4-terminal configuration for impedance measurements of

materials. The four electrodes are the counter electrode (CE) to inject the current to the sample,

the working electrode (WE) to measure the current through the sample, and the two reference

electrodes (RE) to measure the voltage difference between them
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different materials used as electrodes in batteries, fuel cells or other electrochemical

devices, the 2- or 4-terminal configurations are used to characterize ionically

conducting materials as electrolytes by impedance spectroscopy techniques. In

this case, electrodes are just used to provide good electrical contact to the material,

and inert metals must be used not only for the counter electrode but also for the

working electrode, in order to prevent chemical reactions at the electrode/electro-

lyte interfaces that would affect the impedance measurement. It is important also to

have an inert gas environment in this case, usually achieved by a nitrogen gas flow

that helps also in thermal stabilization of the sample. Inert electrodes are usually

made by depositing a thin layer of platinum, gold, or even silver by sputtering or

thermal evaporation. Platinum and silver paints are also much often used as

electrodes for impedance spectroscopy of ionic conductors. It is worthwhile to

remark here that platinum and gold electrodes are generally preferred since silver

electrodes might result in non-negligible electrochemical activity and even silver

ion diffusion for some ionic conductors, especially at elevated temperatures [10].

When using the 2-terminal or even the 4-terminal configurations for an imped-

ance spectroscopy measurement, there might be important contributions to the

measured impedance arising from undesired voltage drops or leakage currents

due to the series or shunt resistances, residual inductance and stray capacitance

arising from the test cables and the sample holder used. All these parasitics or

spurious contributions can be largely eliminated from the measured experimental

data by performing the so called “open-short” correction to the data. Most com-

mercial instruments allow performing automatically this correction to the experi-

mental data. The “open” correction helps to eliminate the stray admittance in

“parallel” due to the sample holder and connections. It is especially important

when measuring samples with high impedance values. It requires the measurement

of the impedance spectra in an open circuit condition, that is, without the sample

connected to the instrument but otherwise using the same cables and sample holder

configuration that will be used to measure the impedance spectra of the sample. In

Fig. 3.10 Sketch of the set-up of a 3-terminal configuration for impedance measurements of

electrochemical cells. The three electrodes are the counter electrode (CE) to inject the current to

the sample, the working electrode (WE) to measure the current through the sample, and the

reference electrode (RE) placed close to the working electrode for the voltage measurement
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this way, the leakage currents are determined as a function of frequency, and they

can be subtracted afterwards from the measured current with the sample connected.

The “short” correction helps to eliminate the residual “series” impedance due to the

cables and connections to the sample. It is on the contrary especially relevant when

measuring samples with low values of impedance. It requires the measurement of

the impedance spectra in a short circuit condition, that is electrically connecting the

test leads that will be used later to contact the sample, and also using the same

cables and sample holder that will be used to measure the impedance spectra of the

sample. In this way, the voltage drops arising from other sources different from the

sample are obtained as a function of frequency, and they can be subtracted after-

wards from the measured voltage with the sample connected. The open-short

correction consists of applying both corrections to the measured data, and largely

improves the accuracy in the determination of the true impedance spectra of a given

sample. The open and short measurements should be performed immediately before

connecting the sample to the test leads for its measurement. Most commercial

instruments allow performing an additional “load” correction that consists of

measuring the impedance spectra of a calibrated reference sample with known

impedance (and whose value is similar to that of the sample). This allows

referencing the impedance measurements to a standard. However, since ionic

diffusion is a thermally activated process, impedance values change by orders of

magnitude when changing temperature for samples of ionically conducting mate-

rials, and the load correction is not very useful in this case. Note that open, short and

load impedance spectra measurements should be ideally performed by using the

same frequency values that will be used later for the impedance spectra measure-

ment of the sample. Otherwise, the instrument will interpolate and extrapolate the

measured data for the impedance at open, short and load conditions in order to

calculate the values of the impedance for each of these conditions at the

corresponding frequencies used in the measurement of the sample, which might

introduce errors in the correction procedure if the impedance in open, short or load

conditions is not a smooth function of frequency or the spectra has been measured

in a narrower frequency range than that used for the measurement of the sample.

One should consider also that parasitics to the measured impedance are not

completely removed by performing the open-short correction, since additional

contributions arise just by connecting the sample. In order to minimize these

additional undesired effects on the measurements, such as fringing and stray

capacitance, it is important to consider the design of the sample holder, with a

guarding electrode and shielded cables as close to the sample as possible, and a

Faraday cage to prevent interferences in the measured signal from the outside [9].

Another relevant issue to consider in an IS measurement is the amplitude of the

input signal. Although the electrical response of ionically conducting materials is

usually linear, this is not true for the case of the interface between the sample and

electrodes, or even for the response of the grain boundaries, which are “in series”

with the bulk response. For nonlinear systems like most real “electrode/ionic

conductor” systems, IS measurements are useful and meaningful only for small-

signal stimuli of magnitude such that the overall electrode–material system to
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ensure that the overall response is electrically linear. Therefore, it is important to

check for the linearity of the total response of our system before performing an IS

experiment. This requires that the response to the sum of two given signals applied

simultaneously be the sum of the responses of the signals applied separately. A

consequence of this requirement is that if a monochromatic input signal is applied,

it results in negligible generation of harmonics in the output signal. In practice,

linearity can be assessed by checking that there is no significant changes in the

immittance spectra by increasing the magnitude of the applied input voltage

(or current) signal. It can be shown that as far as the amplitude of the applied

voltage is less than the thermal voltage Vth¼ kT/e, with k the Boltzmann’s constant,
T the absolute temperature, and e the magnitude of the electron charge (Vth is about

25 mV at 20 �C), the differential equations describing the response of the system

become linear to an excellent approximation [9]. However, in order to increase the

signal-to-noise ratio and thus the accuracy in the measurement of the impedance

data, it is desirable to apply an input signal with amplitude as large as possible. A

good practice is to start the impedance spectroscopy measurement of a given

sample by taking several impedance spectra at a limited set of frequencies, at

room temperature (or at a different temperature in the temperature range of inter-

est), but at different, increasing, amplitudes of the input voltage (or current) until

any change in the spectra can be detected due to the onset of nonlinear effects in the

measurement. In this way it is possible then to use a large enough amplitude value

for the input signal but keeping the linear response of the system.

3.2 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is another powerful, reliable, and widely used

technique to study ion diffusion dynamics in ionic conductors. Since the pioneering

work by Bloembergen, Purcell and Pound (BPP) [53], it is well established that ion

motion in a material has a significant influence on its measured NMR properties,

and consequently NMR becomes an experimental tool in order to study the dynam-

ics of mobile ions in these materials [54–57]. An important difference between

NMR and Impedance Spectroscopy techniques is that while IS measures a macro-

scopic electrical response due to mobile ions, NMR is a local probe that allows

studying the microscopic dynamics of mobile ions. The use of NMR spectroscopy

to study ion mobility in ionic conductors is based on the existence of a non-zero

spin of the nuclei of the mobile ions. Almost every element in the periodic table has

an isotope with a non-zero nuclear spin, but NMR requires that the natural abun-

dance of these isotopes is high enough to be detected. When a group of spins is

placed in a static magnetic field, each spin aligns in one of the two possible

orientations. According to Boltzmann statistics, the number of spins in the

lower energy level, N+, is related to the number in the upper level, N�, by a simple

ratio N�/N+¼ e�Δ/kT where Δ is the energy difference between the spin states; k is
Boltzmann’s constant, and T is the absolute temperature. At high temperatures the
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ratio is close to 1, and as the temperature decreases, so does the ratio N�/N+. The

measured signal in NMR spectroscopy results from the difference between the

energy absorbed by the spins making a transition from the lower energy state to the

higher energy state, and the energy radiated by the spins making a transition from

the higher energy state to the lower energy state. The signal is thus proportional to

the population difference between both states, and NMR is capable of detecting

very small population differences. It is the resonance, or exchange of energy

between the spins and the spectrometer, that occurs when a radio frequency field

is applied at a specific frequency determined by the intensity of the static magnetic

field, which gives NMR its sensitivity (http://www.cis.rit.edu/htbooks/nmr/bnmr.

htm). In a microscopic view, each nuclei actually experiences a slightly different

magnetic field strength. We can think of spin packets formed by groups of spins

experiencing the same magnetic field strength. Each spin packet can be represented

by a magnetization vector whose magnitude is proportional to (N+�N�), and the

net magnetization will be the sum of the magnetization vectors of every spin packet.

At equilibrium, the net magnetization vector is parallel to the external magnetic

field. It is customarily assumed that the external magnetic field B0 and the net

magnetization vector M0 at equilibrium are both along the z-axis (Mz¼M0,
Mx¼My¼ 0 at equilibrium).

There are several NMR techniques that can be applied to study ion dynamics,

and they can be divided into two generic classes: wideline and transient studies

[58]. In wideline or continuous wave studies, a static magnetic field is applied to the

sample and the absorption of a small radio frequency field simultaneously applied is

measured. The interaction of the nuclei with the microscopic local environment

determines the position, width and shape of the absorption spectra at resonance. In

basic transient studies, a brief and intense pulse of radio frequency radiation is

applied to the sample under a static magnetic field. The pulse results in an energy

transferred to the nuclei and a phase correlation that decay with relaxation times T1
and T2 respectively. The spin-lattice relaxation (SLR) time T1 and the spin-spin

relaxation (SSR) time T2 are determined from the decay of the longitudinal and

transverse components of the magnetization (parallel and perpendicular to the static

magnetic field) respectively [59, 60]. Note that the energy transferred to the nuclei

results in an excess magnetic moment in the direction of the static magnetic field,

and its decay is possible due to the thermal bath of the lattice. The magnetic

moment gained in the perpendicular direction results in no additional magnetic

energy but in a correlated phase in the precession motion around the magnetic field.

By adjusting the duration of the pulse, it is possible for example to place the net

magnetization in the xy-plane, and then the equation that describes the return of the

net magnetization to equilibrium is

Mz tð Þ ¼ M0 1 � e�t=T1

� �
: ð3:7Þ

Simultaneously, once the net magnetization is placed in the xy-plane, it precesses

about the z-axis at the Larmor frequency determined by the static magnetic field
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(equal to the resonance frequency of the photons which would cause a transition

between the two energy levels of the spin). Since each spin packet experiences a

slightly different magnetic field and thus rotates at its own Larmor frequency, in

addition to precession the net magnetization starts to dephase. Assuming the net

magnetization vector is initially along the y-axis, the equation that describes the

return to equilibrium of the transverse magnetization, Mxy, is

Mxy tð Þ ¼ Mxy 0ð Þ e�t=T2 : ð3:8Þ

Besides of these basic transient studies of the T1 and T2 processes, there are other

more complex experimental procedures in NMRmeasurements, like the spin-lattice

relaxation time in the rotating frame T1ρ [61], or the use of pulse field gradients

[62]. Moreover, it has been recently shown that the use of NMR multi-time

correlation functions enables new insights into the understanding of the dynamics

of mobile ions in solid ion conductors [63].

Figure 3.11a shows a schematic view of the basic idea behind an NMR-SLR

measurement. Under an applied constant magnetic field B0 along the z direction, the
magnetization along the field direction will reach an equilibrium value Mz¼Meq.

By using a series of radio frequency magnetic field (π/2)x’ pulses along the

x direction (a so called saturation comb) the initial magnetization along the

z direction can be fully destroyed (the prime 0 axes are those in the rotating frame

of reference, rotating with the Larmor frequency along the magnetic field B0

direction (z axis)). After that, the magnetization will tend to recover again its

value at thermal equilibrium, and this relaxation usually follows exponential time

dependence with a relaxation rate 1/T1, which is a measure of the transition

probability of the spins between distinct Zeeman levels. Resonant fluctuations of

spin interactions due to ion motion result in induced Zeeman transitions, and the

Fig. 3.11 (a) Simplified view of an NMR T1 measurement: under an applied dc magnetic field in

the z direction, a series of n closely spaced magnetic field rf-pulses (π/2)x’ (n� 10) are applied to

destroy any longitudinal equilibrium magnetization so that Mz¼ 0 at t¼ 0. The recovery of Mz(t)
towards equilibrium is then probed with a single π/2-pulse which is applied after a variable

relaxation delay t¼ tvar. In most cases, Mz (tvar) can be approximated by using an exponential

function with a characteristic relaxation time T1. (b) Simplified picture of a T1ρ measurement:

After a π/2-pulse the magnetizationM-y is locked by a B1-field. Compared to the preparation pulse,

the corresponding locking pulse is phase-shifted by �π/2. The decay of M�y is then probed as a

function of the locking pulse length tlock. Reproduced from [60] by permission
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transition probability (and thus the rate 1/T1) will be maximum when the correlation

time τc for the motional process is of the order of the inverse of the Larmor

frequency ωL characterizing the Zeeman splitting of the energy levels under the

application of the magnetic field B0. The Larmor frequency is related to the

magnetic field through the expression, ωL ¼ γB0, with γ the gyromagnetic ratio.

At magnetic fields lower than 1 Tesla, the signal to noise ratio is usually not enough

for reliable measurements, and therefore NMR 1/T1 is most useful to characterize

fast ion motions, with characteristic correlation time of the order of nanoseconds,

corresponding to apply magnetic fields of several Tesla. Slower ion motions can be

studied by using the spin-locking technique in the rotating frame of reference

[60, 61]. The basic idea behind a T1ρ measurement is shown in Fig. 3.11b. First,

the magnetization is aligned parallel to the y0-axis by using a (π/2)x0 pulse along the
x0 direction. Following this pulse a locking magnetic field B1 is applied along the y

0

direction, typically of a few mT, so that the corresponding Zeeman splitting in this

rotating frame of reference is much smaller than that in the laboratory frame. While

this locking magnetic field B1 is applied, the magnetization along the y0-axis relaxes
towards equilibrium with a characteristic rate 1/T1ρ. Therefore, this rate can be

determined by varying the length, tlock, of the locking magnetic field pulse, and

measuring afterwards the residual magnetization along the y0-axis. Note that a

maximum in the temperature dependence of 1/T1ρ is expected when τ�1
c � γB1.

Thus, by using this technique, much slower diffusion processes with correlation

times τc of the order of 10
�5 s can be explored.

The ion diffusion process in an ionic conductor is due to the hopping of mobile

ions, and this thermally activated ion hopping, with a characteristic time τ at a given
temperature, results in the averaging of the dipolar interactions between the nuclei

and also of the quadrupolar interactions of the nuclei with their environment when

1/τ is comparable to the interaction strength. In wide-line NMR studies, this

averaging due to the motion of ions reduces the width of the resonance line in the

absorption spectra, and it is known as “motional narrowing effect”. A hopping rate

can be estimated from these measurements of the linewidth as a function of

temperature. However, it is important to note that the observation of a line

narrowing does not always guarantee that the material is an ionic conductor,

since the hopping of ions may be restricted to a local environment and thus may

not result in a long range diffusion process and a dc ionic conductivity. Ion hopping

has also an important effect on the relaxation times T1, T1ρ and T2, and more

importantly, these transient NMR measurements allow exploring a much broader

range of the hopping rate 1/τ and its quantitative determination as a function of

temperature. Fluctuating interactions result in different shifts values Δω of the

Larmor frequencies of the interacting spin. Since these interactions depend on the

position of the spin(s), they are altered by possible ion hopping processes, resulting

in changes of Δω. The relaxation times T1, T1ρ and T2 depend on spectral density

functions J*(ω) that are proportional to the Fourier transforms of the autocorrela-

tion function of the fluctuating magnetic dipole interactions,
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G tð Þ ¼< Δω 0ð Þ � Δω tð Þ >¼ G 0ð Þg tð Þ: ð3:9Þ

The brackets in this expression denote an ensemble average of the fluctuations in

the sample, G(0) is a measure of the interaction strength of the spins with the local

magnetic field, or electric field gradient, and g(t) represents a normalized decay

function from 1 to 0, whose shape or exact time dependence is determined by the

relevant spin interactions in each case, as well as by the ion diffusion mechanism.

As mentioned above, the spectral density function J*(ω) is readily obtained from

Fourier transformation of the correlation function g(t),

J* ωð Þ ¼
ð1

�1
g tð Þe�iωtdt: ð3:10Þ

It is important to remark that the NMR correlation function is in general different

from the electrical conductivity correlation function [64, 65]. The angular depen-

dencies of the interactions have an effect on the function g(t) which may be

relevant, particularly in the case of anisotropic diffusion, and it is then useful to

interpret the experimental data in terms of the predictions of appropriate models

that take into account the geometric properties of the diffusion. In the BPP model

developed by Bloembergen, Purcell and Pound [53] for three dimensional isotropic

random diffusion, the autocorrelation function of the microscopic fluctuations

causing the relaxation is assumed to be proportional to an exponential decay

g tð Þ ¼ e�t/τc, where τ
c
is called the correlation time. This results in a Lorentzian

shaped spectral density J*(ω). By using this theory for magnetic dipolar relaxation,

one can write the following expressions relating the correlation time τ
c
, the Larmor

frequencies ωL ¼ γB0 and ω1 ¼ γB1, and the relaxation times T
1
, T

1ρ and T
2
:
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Figure 3.12 shows a simulation of this temperature dependence for the relaxation

times T1, T1ρ and T2 assuming as in BPP theory an ideal exponential decay of

the autocorrelation function with a thermally activated correlation time

τc¼ τc,0exp(�EA/kT). The relaxation rate 1/T2 behaves as the linewidth in the

continuous wave experiments due to the motional narrowing effect. It is constant

at low temperatures and starts to fall as the correlation time decreases and

approaches the inverse of the Larmor frequency. At enough high temperature, the

relaxation rate 1/T2 becomes equal to the relaxation rate 1/T1. It can be also

observed from Fig. 3.12 that the relaxation time T2 is always shorter or equal to

the relaxation time T1. The relaxation rate 1/T1 shows a maximum when the

correlation time is close to the inverse of the Larmor frequency (τc� 10�9 s).

This allows a quantification of the correlation time with considerable precision.

Furthermore, the activation energy EA for the ion hopping process can be obtained

from the slope of 1/T1 in this Arrhenius plot. The SLR rate 1/T1ρ in a rotating frame

of reference shows a maximum when the correlation time is close to the inverse of

the applied locking frequency (τc� 10�5 s). Finally, NMR-SSR rates allow probing

even slower ion diffusion processes. Therefore, in order to obtain as much quanti-

tative information as possible from NMR-SLR experiments, it is desirable to cover

a wide enough temperature range to resolve the peaks maximum and slopes with

good accuracy.

Despite the usefulness of the BPP model in explaining the qualitative tempera-

ture and frequency dependence of the NMR-SLR rates, it is often found that

experimental data deviate from those expected according to a single exponential

decay for the NMR correlation function. These deviations can often be satisfacto-

rily described by using a stretched exponential of the Kohlrausch-Williams-Watts

(KWW) form for the decay function, g(t) ¼ e(�t/τc)
β
, with the KWW exponent β

between 0 and 1. When the KWW exponent is different from 1, the Arrhenius plots

of the SLR rates are asymmetric peaks, where the slope at the high temperature side

(ωLτc	 1) is still given by EA but the slope at the low temperature side (ωLτc� 1)

is lower and given by the product βEA (see Fig. 3.12). In a separate chapter on NMR

we shall fully explore the results obtained on realistic ionic conductors by the

techniques, and bring out the microscopic information on the dynamics of ions

different from that provided by Impedance Spectroscopy. The difference turns out

to be another critical test of validity of any theoretical account of ion dynamics.

Thus, the combined consideration of IS and NMR experimental data confers the

bonus of a deeper and microscopically theoretical understanding.

As an example, we show in Fig. 3.13 the temperature dependence of the 7Li

NMR spectra in the lithium ionic conducting Li0.18La0.61TiO3. Samples were

pressed as pellets, heated at 1623 K during 6 h, and then quenched into liquid

nitrogen to favor A-site (and vacancy) disorder in the perovskite structure. Below

160 K, the spectra display a Gaussian shape with constant linewidth (rigid lattice).

At increasing temperatures, the linewidth is motionally narrowed and the line shape

becomes Lorentzian. Note the existence of a plateau in 1/T2 curves between 230 and
350 K, which has been ascribed to an intermediate stage in which only a partial
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Fig. 3.12 (a) Calculated relaxation rates R1¼ 1/T1, R1ρ¼ 1/T1ρ, and R2¼ 1/T2, for homonuclear

dipolar relaxation and isotropic 3D diffusion. Parameters used in the simulation

are ω0/2π¼ 77.7 MHz, ω1/2π¼ 80 kHz and an Arrhenius temperature dependence of the correla-

tion time τc¼ τc,0 exp(�EA/kT), with τc,0¼ 2.1013 s and activation energy EA¼ 0.5 eV. The rate

R2 in the rigid lattice was chosen R2,0¼ 2.104 s�1. Solid lines represent BPP behaviour (α¼ 1),

and dashed lines show the case of a stretched exponential time dependence, exp[�(t/τc)
α], for

the correlation function with α¼ 0.5. (b) Arrhenius plot of the correlation times showing how

they can be determined from NMR relaxation rates. Reproduced from [60] by permission
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cancellation of dipolar Li-Li interactions is achieved [66], since similar observa-

tions have been reported in NMR studies of slowly cooled samples of the same

composition, where vacancy ordering occurs in alternated planes along the c-axis
[67]. In fact, the observation of this plateau in 1/T2 curves has been interpreted as

due to the existence of two-dimensional local motions of lithium in the ab-plane,
that would take place also in the case of quenched Li0.18La0.61TiO3 samples.

Figure 3.14 shows the temperature dependence of SLR 1/T1ρ and 1/T1 rates for
the same sample. It can be observed that 1/T1 values remain almost constant below

125 K, decreasing when the resonance Larmor frequency is increased. This behav-

ior observed at low temperatures, when lithium ions can hardly jump to neighboring

sites, would be related to the nearly constant loss (NCL) regime observed in the

electrical response of ionic conductors [65, 66, 68], and amply discussed in Chap. 4.

Increasing temperature, when lithium diffusion starts to contribute significantly to

spin-lattice relaxation, 1/T1 values increase with temperature, reaching a maximum

and finally decreasing. The position of the maximum shifts towards higher temper-

atures and the intensity decreases when the Larmor frequency is increased. Note

that 1/T1 data taken at different frequencies in the high temperature range where

ωLτc	 1 (long range motions) do not collapse and show a monotonous frequency

dependence. This is also an indication of the highly anisotropic lithium ion diffu-

sion in these samples, which would take place preferentially along two-dimensional

ab-planes in the perovskite structure. It is known that the dimensionality of the long

range ion diffusion process can be detected frommeasurements of the SLR 1/T1 rate
at high temperatures and several frequencies, since ion motion along 1D, 2D or 3D

structures give rise to different frequency dependence of the spectral density

function, and therefore of the 1/T1 values, when ωLτc	 1 [56, 69–71]. While

translational diffusion in three-dimensional systems results in a frequency

Fig. 3.13 (a) Normalized NMR spectra of Li0.18La0.61TiO3 at temperatures 133, 143, 155, 167,

175, 191, and 200 K from back to front. Above 160 K, the line narrowing indicates the onset of

hopping diffusion processes. (b) Temperature dependence of 7Li NMR linewidths of static spectra

in Li0.18La0.61TiO3 at Larmor frequencies of 11 and 30 MHz (circles and squares, respectively).
Samples were heated at 1623 K during 6 h and then quenched into liquid nitrogen. Data reported

on slowly cooled sample (open triangles) are included as reference (see text). Reproduced from

[66] by permission
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independent spectral density function (J0(ω) / τc) at low frequencies or high

temperatures, in two-dimensional systems it is expected a logarithmic dependence

on frequency (J0(ω) / τcln ωLτc½ ��1
), and a square root frequency dependence in

one dimensional systems (J0(ω) / τc ωLτc½ ��1=2
).
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Chapter 4

Electrical Response of Ionic Conductors

4.1 Electrical Conductivity Relaxation in Glassy,
Crystalline and Molten Ionic Conductors

In spite of the vast amount of studies devoted during the past decades to understand

the dynamics of ions in ionically conducting materials, it is still unsettled to remain

an open and challenging problem [1–4]. Since the charge transport in these materials

is mainly due to the mobile ions, the measurement, analysis, and theoretical inter-

pretation of their response to an applied electric field constitute the method as well as

the key to gain insights into the dynamics of the mobile ions [1–6], which ultimately

determines the conductivity. Most remarkable is the fact that, overall, the electrical

response in all molten, glassy, liquid, or even crystalline ionically conducting

materials, shows similar properties and universal features [3, 7, 8]. Though at the

present time there is not a generally accepted theory for the description of the

microscopic motion of ions, it is generally agreed that a disordered structure and

Coulomb interactions among ions play an essential role in determining the dynamics

of mobile ions and its complex properties and behaviour [1, 9–11]. Note that even in

the case of crystalline ionic conductors the mobile ions experience a disordered

potential landscape since there are significantly fewer ions than available sites with

similar energies for them to occupy, and the mobile ions are usually randomly

distributed in the structure, like in an ionic glass or molten salt [1]. This is true at

least for fast ionic conductors with a high density ofmobile ions and vacant available

unoccupied sites.

Since the mobile ions have to overcome an energy barrier to jump to neighboring

unoccupied sites, their transport and consequently the measured values of the dc

conductivity are thermally activated, and show either an Arrhenius behaviour or a

super-Arrhenius dependence over wide temperature ranges [4, 8, 12]. The influence

of Coulomb interactions between ions may also enhance the effective activation

energy for the ions to successfully jump in a cooperative manner [13, 14]. Enhanced

values of these activation energies determined by experiment are in the range
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0.5–1 eV, although lower and higher values are also observed. Therefore a huge

range of dc conductivities are usually accessible for a given material by varying the

temperature in typical experimental range between 100 and 1000 K.

The temperature dependence of the d.c. conductivities, σ, of archetypal ionically
conducting materials are shown in Fig. 4.1 in the form of Arrhenius plots of logσ
vs. 1/T to illustrate the tremendous variation of σ with temperature and materials.

Shown on the right are three “superionic” glasses which have very high conduc-

tivities below the ambient temperature and reach large values, ~10�2 Scm�1, at the

glass transition temperature, Tg (indicated by vertical arrows for a few ionic glasses

in Fig. 4.1). In the case of 0.48(AgI)2-0.52Ag2SeO4, some data for the melt above

Tg are also shown [7]. For most ionic glasses the temperature dependence of σ
remains strictly Arrhenius in the glassy state, i.e. σ ¼ σ∗1exp �Eσ=kTð Þ, where Eσ is

Fig. 4.1 The temperature dependence of the d.c. conductivities, σ, of several ionically conducting
materials shown in the form of Arrhenius plots of logσ vs. 1/T(K) to illustrate the tremendous

variation of σ with temperature and materials
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the activation energy. Exceptions to this sub-Tg Arrhenius behavior exist, such as

that exhibited by 0.4AgI�0.6[0.525Ag2S�0.475(0.5B2S3 + 0.5SiS2)] [15]. The data

for another superionic conductor that does not contain silver ions,

0.56Li2S�0.44SiS2 [16], are also shown. In the middle of Fig. 4.1 is the data for

the glass-forming molten salt, 0.4Ca(NO3)�0.6KNO3 (CKN) [17], which has a very

low conductivity at Tg. High above Tg, σ for the CKN melt shows non-Arrhenius

behavior, but returns to Arrhenius behavior well before Tg is reached. At and below
Tg, a weaker Arrhenius temperature dependence prevails. Na2O�3SiO2 [18, 19], a

typical alkali oxide glass, has a much higher Tg, but again σ shows non-Arrhenius

behavior in the melt and Arrhenius behavior in the glassy state. An oxide glass

containing very few ions, Vycor glass (0.00044Na2O�0.04B2O3-0.96SiO2) [20]

has the lowest conductivity and the highest activation energy, Eσ. Included are

conductivity data of two room temperature ionic liquids, BMIM-PF6 and

BMIM-BMSF [21], which are non-Arrhenius at all temperatures above Tg, and
Arrhenius below it.

Finally we have included in Fig. 4.1 data for three crystalline ionic conductors,

yttria-stabilized zirconia (YSZ) [For references, see 22] in which the vacancies at

oxide sites are responsible for oxide ion conductivity, LixLa1�xTiO3 (LLTO) [23],

and Na β-alumina [24]. There is no structural phase transition and certainly no glass

transition in these crystalline materials but nevertheless their conductivity temper-

ature dependencies become non-Arrhenius at temperatures where σ exceeds ~10�2

S cm�1. At still higher temperatures where σ approaches 1 S cm�1, the conductivity

seems to return to Arrhenius behavior, σ¼ σ1exp(-Ea/kT), indicated by the dashed
lines. As evidenced by the intercept of the dashed lines at infinite temperature

(1/T¼ 0), the prefactors σ1 for the high temperature Arrhenius equation all have

approximately the same value, ~10 S cm�1, independent of whether the material is

an ionic crystal or a molten ionic glass-former. The electric field Maxwell relaxa-

tion time, τσ, defined by the relation [3–6, 25]

σ ¼ εoε1=τσ; ð4:1Þ

where εo is the permittivity of free space, ε1 is the high frequency dielectric

constant typically having order of magnitude of 10, one finds that σ1 corresponds

to a relaxation time τσ1 of about 1� 10�13 s and a corresponding frequency

(¼1/2πτσ1) of about 2� 1012 Hz. The latter value is close to vibrational frequen-

cies of mobile ions in glasses.

Since the prefactor σ1 is usually close to 10 S/cm [4, 13], lower activation

energies give rise to higher dc conductivity values at room temperature, which is a

technological objective. The high temperature limit of the dc conductivity is related

to the vibrational modes associated with the mobile ions and thus with electrical

relaxation. In fact, the temperature dependence of the dc conductivity is related to

the absorption of energy from the oscillating ac electric field, and this absorption

shows its maximum at frequencies characteristic of the quasi-lattice vibrations in

the far-infrared region of the electromagnetic spectrum [4]. Figure 4.2 shows such a

relation between vibrational and relaxational modes under an applied ac electric
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field for the fast ion conducting glass 0.6AgI � 0.4(Ag2O � 2B2O3). It can be

observed that the dc conductivity, and consequently the low frequency absorption

coefficient, increases with temperature towards a limit set by the absorption due to

the vibrating ions in the THz regime.

4.1.1 Frequency Dependence of Ionic Conductivity
Relaxation

The most commonly used experimental technique to study the dynamics of ions in

ionically conducting materials is electrical relaxation. A thin plate or a disc-shaped

specimen with thin film metal electrodes deposited on its two parallel faces is

prepared. An admittance bridge is used to measure the conductance, G, and

capacitance, C, of the specimen as a function of frequency, f. or angular frequency
ω(¼2πf). Alternatively, the sample impedance jZj and the phase angle δ between

the input and output signals are measured by an impedance spectrometer. Results

from these direct measurements are referred to as ionic conductivity relaxation

data. The real part of the complex conductivity, σ0, and the real part of the complex

permittivity, ε0, are obtained from the measurements by the expressions σ0(ω)¼G
(L/A)¼ Lsinδ/AωjZj and ε0(ω)¼ (C/εo)(L/A) or ε0 ¼ Lcosδ/A εoωjZj, where L is the

thickness, A the cross-sectional area of the sample and εo is the permittivity of a

vacuum. These measurements give immediately the imaginary part

Fig. 4.2 (Left panel) Double logarithmic representation of the frequency dependence of electrical

conductivity at different temperatures for the fast ion conducting glass 0.6AgI � 0.4
(Ag2O � 2B2O3). (Right panel) Arrhenius plot showing the temperature dependence of the absorp-

tion coefficient α for the same glass. Reproduced from [4] by permission
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ε} ωð Þ ¼ σ0 ωð Þ=ωεo ð4:2Þ

of the complex permittivity,

ε* ωð Þ ¼ ε0 εð Þ � iε} εð Þ; ð4:3Þ

and the complex conductivity,

σ* ωð Þ ¼ σ0 ωð Þ þ iσ} ωð Þ ¼ iωεoε
* ωð Þ: ð4:4Þ

The complex electric modulusM*(ω) is related to the more familiar ε*(ω) and σ*(ω)
by [25]

ε∗ ωð Þ ¼ 1=M∗ ωð Þ and σ∗ ωð Þ ¼ iωεo=M
∗ ωð Þ ð4:5Þ

The dc conductivity, σdc, due to long range displacement of mobile ions is defined

byσdc ¼ lim
ω!0

σ0(ω), if there is no contribution from the electrode polarization caused

by layers of surface charge to be discussed later.

A plot of log[σ0( f )] vs. log f is matched point by point by log[M00( f )] or log
[ε00( f )] vs. logf and log[M0( f )] or log[ε0( f )] vs. logf plots. There is nothing special

about σ*( f ) in comparison with M*( f ) or ε*( f ). They are just different represen-

tations of the same macroscopically measured quantities, G( f ) and C( f ). The
electric modulus in the time domain, M(t), has also been measured directly [26]

and is not an artificial construct. Let us now introduce some examples of experi-

mental data of ionic conductors to elucidate the points to be made in the following

sections. We chose the classic study of the molten salt, 0.4Ca(NO3)2-0.6KNO3

(CKN) by Howell et al. [17]. This historically important publication in 1974

demonstrated the benefit in understanding the dynamics of ions by considering

the conductivity relaxation data in all three representations without bias. Advance

in experimental technique has made possible measurements over a wider frequency

range. This is brought out by combining the σ0( f ) data of Howell et al. (black closed
symbols) and those of Lunkenheimer et al. [27, 28] taken at much higher frequen-

cies (open color symbols) in Fig. 4.3. The σ0( f ) at high frequencies have very

different temperature dependences than σdc, indicating different ionic dynamic

processes are present at higher frequencies before the dc conductivity is reached.

The data of for 0.4Ca(NO3)2-0.6KNO3 from Howell et al. represented byM*( f )
are shown by the imaginary part, M00( f ), in Fig. 4.4. The data from Lunkenheimer

et al. are shown in Fig. 4.5. The same data of Howell et al. are represented by ε0

plotted against frequency f in Fig. 4.6.

One representation of the measurements can be more advantageous over the

other ones in revealing some features of the ion dynamics. Different representations

of the same experimental data provide additional, rather than subtractive or

contradictive insights into the difficult problem of understanding ionic conductivity

in melts, glasses and crystals. Insistence of using one representation and either
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ignoring or totally dismissing the others has no justification. A theoretical idea or

interpretation of the data proposed can appear to be reasonable and acceptable in

one particular representation, but becomes questionable or even unacceptable in

another representation. For the sake of preserving their own point of view, some

proponents of the theoretical idea/interpretation chose to attack the verity of another

Fig. 4.3 Conductivity

vs. frequency for 0.4Ca

(NO3)2�0.6KNO3 melt

above the glass transition

temperature

Fig. 4.4 The imaginary and real part of ε*(ω) from Howell et al
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representation not supporting it. The attack is not justified and does nothing but

impeding progress [29–32]. This unfortunate situation happened before, and exam-

ples will be given later. On the other hand, the positive and correct outlook for any

proposed interpretation of the data is to require that it is consistent with any of the

equivalent representations. If not, the interpretation is either outright wrong or at

least questionable.

Fig. 4.5 Plot of logε00

versus logf of CKN at

different temperatures.

From top to bottom:

468, 417, 393, 379, 361, 342

and 326 K. Data from

Lunkenheimer and

coworkers

Fig. 4.6 The data points are measured ε0 plotted against frequency f for 0.4Ca(NO3)2�0.6KNO3

from left to right at nine different temperatures T¼ 35.3, 54.3, 60.1, 65.3, 71.4, 74.6, 80.7, 86.8,

and 93.2 C. Experimental data after Howell et al. to be discussed in a later section, the curves

through the data points at each temperature are ε0( f ) calculated from the fit toM*(ω) by the stretch
exponential functions, previously obtained by Howell et al.
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Naturally one representation gives more direct information of some specific

quantity than the other. For example, if one is interested only in the value of the

d.c. conductivity and nothing else, then it suffices to have the data represented by

σ0( f ). However if the purpose is to understand the mechanism of ionic conduction

and diffusion, and how it determines the magnitude of σdc, it is advantageous and in
many cases necessary to consider the frequency dependence of not only σ0( f ). but
also M*( f ) or ε*( f ).

These differences in the quality and richness of information conveyed differ-

ently byM*(ω), ε*(ω), and σ0(ω) are brought out by the conductivity relaxation data
of a room temperature ionic liquid, 1-methyl-3-trimethylsilylmethylimidazolium

tetrafluoroborate, ([Si-MIm][BF4]), in Figs. 4.7 and 4.8 [33]. The data represented

by M*(ω) has M00(ω) showing not only the primary α-loss peak at low frequencies

related to dc conductivity but also a secondary β-loss peak at higher frequencies.

The data expressed as ε*(ω) also has in the ε00(ω) representation a corresponding

secondary loss peak with approximately the same peak frequency of M00(ω) at the
same temperature. The low frequency response from the mobile ions shown in ε0(ω)

10-2 100 102 104 106
10-3

10-2

10-1
Isobar at 0.1 MPa

frequency [Hz]

M
''

n=0.43

logfo

N N
Si

+

[Si-MIm]+ cation

Fig. 4.7 M00( f ) of [Si-MIm]+[BF4]
� versus frequency at ambient pressure and constant temper-

ature with temperature in the range 243 to 173 K, spanning across Tg. The spectra were measured

at intervals of 5 K each. The data represented by symbols range from 243 to 213 K. Data from

208 to 173 K are not shown by symbols, otherwise they overlap and the features cannot be clearly

discerned. To avoid this undesirable situation, the data are interpolated by black lines to show the

shift of the secondary β-conductivity relaxation on decreasing temperature. The red lines are fits to
the slower primary α-conductivity relaxation loss peak at two temperatures by the Fourier

transform of the Kohlrausch function. The secondary β-conductivity relaxation are resolved

above and below Tg. The arrows indicate the locations of the logarithm of the primitive conduc-

tivity relaxation frequencies, log f0, which are in agreement with the most probable β-conductivity
relaxation frequencies within a factor of about 2
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Fig. 4.8 Spectra in

different representations of

the same measurements of

[Si-MIm]+[BF4]
� at

ambient pressure in various

temperature ranges as

indicated in the figures.

From top to bottom: ε0, ε00,
M0, M00, and σ0
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is obscured by the presence of the electrode polarization [29, 32], while M0(ω)
decreases towards zero value as low frequencies [32]. The σ0(ω) show the usual

monotonic increase with frequency and provide no evidence of the secondary

conductivity relaxation process (see Fig. 4.8). The lack of any indication of a new

process at higher frequencies in σ0(ω) is a clear warning to those insisting that σ0(ω)
is the only right choice and sufficient to understand the dynamics of ions. Since the

secondary loss peak appears in M00(ω) and ε00(ω), the presence of the secondary

conductive relaxation is real and cannot be dismissed by antagonists of the electric

modulus representation as an artifact.

Another example is procainamide HCl, a pharmaceutical, but nevertheless a

typical ionic conductor [34]. ItsM00(ω) in Fig. 4.9 show the primary loss peak and a

secondary loss peak at higher frequencies, but the latter does not appears in

Fig. 4.10 when the same data are presented as σ0(ω). This problem of σ0(ω) shows
one of its shortcomings in representing data.

The temperature dependences of the relaxation times of the primary α-loss
and secondary β-loss peaks, τα and τβ, determined for of [Si-MIm]+[BF4]� and

procainamideHCLare plotted against 1000/T in Fig. 4.11 (left) and (right) respectively.

4.1.2 Dissection into Contributions from Different Time/
Frequency Regimes

By inspection of Figs. 4.3, 4.4, and 4.5 for CKN and Figs. 4.7, 4.8, 4.9, and 4.10 for

the ionic liquid ([Si-MIm][BF4] and procainamide HCl, it can be seen that the data

at higher frequencies have properties different from the primary conductivity

Fig. 4.9 Isothermal electric loss modulus spectra of procainamide HCl at ambient pressure in

temperature range indicated in the figures. Each arrow with the same color as the spectrum

indicates the logarithm of the primitive ion conductivity relaxation frequency, logf0, calculated
by the CM equation
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Fig. 4.11 (left) Temperature dependences of the α- and β-conductivity relaxation times in

[Si-MIm]+[BF4]� obtained at ambient pressure. Predictions for the JG relaxation times above Tg
according to Coupling Model (to be discussed in a later section) are plotted as the solid grey
circles. The solid lines are fits to the Vogel-Fulcher dependence of τα, and the Arrhenius law for τβ.
(right) Relaxation map of procainamide hydrochloride. Closed blue circles denote conductivity

relaxation times, τα, open green squares represent the β-conductivity relaxation times, τβ. The
stars are the structural relaxation times, τs, determined from TMDSC measurements. Solid line is
Vogel-Fulcher fit to the data of τα. The closed black triangles are the primitive conductivity

relaxation times, τ0, calculated from the CM equation
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relaxation at lower frequencies responsible for dc conductivity, including the

temperature and frequency dependences. The contribution from vibration of ion

and molecule is obviously different, but it is not what we are concerned in here. The

dielectric loss ε00( f ) in Figs. 4.5 and 4.8 at high frequencies/low temperatures

decreases very slowly with frequency to become a nearly constant loss (NCL)

ε} fð Þ ¼ Af�c, c << 1 ð4:6Þ

This in turn gives rise to a frequency dependence of ε 0 related to ε00( f ) by the

approximate expression [35], ε} fð Þ ¼ � π=2ð Þdε0 fð Þ=d ln f . The temperature depen-

dence of the intensity A of the NCL at a fixed frequency is very weak in comparison

with dc conductivity. The NCL in ε00( f ) is another NCL inM00( f ) as can be seen in
Fig. 4.8. However, in σ0(ω) it corresponds to

σ0 fð Þ ¼ A=2πε0ð Þf 1�c, c << 1 ð4:7Þ

which is evident from Fig. 4.3 in the range 7< logf<9 for CKN, and from Figs. 4.8

and 4.10 at lower frequency range for the ionic liquid and procainamide HCl

because these data were taken at lower temperatures.

In the case of fast ionic conductors, glassy or crystalline, the NCL is a well-

known and well-observed contribution to the dielectric loss that goes back to 1946

[36–38]. It is discussed in the 1976 book by Wong and Angell [35], extended to a

gigahertz range for the first time by Robert Cole and coworkers in 1989, and is the

subject of many other studies [39–48]. Nowick et al. [40] were the first to draw

attention that this linear frequency dependence of the real part of the conductivity is

a general feature of ion dynamics in ionic conductors. Since then, in ionic conduc-

tors it is referred to by some workers [49] as “second universality”. The NCL of

Eq. (4.6) associated with Eq. (4.7) is also generally found in non-ionic glasses and

non-conducting materials [39, 50, 51], and hence it is more general than the

presence in ionic conductors.

The NCL in ε00( f ) and M00( f ) or the f1�c-dependence of σ0(ω) extends to lower

frequencies as temperature is decreased, and this trend continues on indefinitely. It

has no characteristic time constant and hence the NCL is not a normal relaxation

process. This feature of σ0( f ) is general and found in most ionic glasses, in melts

such as CKN [17, 28, 52, 53] and in ionically conducting crystals including Na

β-alumina [54] and YSZ [55] and LLTO [56]. There are a number of indications

that the nearly Af1.0 dependence of σ0( f ) at high frequencies is distinctly different in
physical origin from the a.c. conductivity frequency dependence at lower frequen-

cies due to the long-range motions of mobile ions [57]. For example, the temper-

ature dependence of the A parameter is extremely weak compared to the

temperature dependence of the d.c. conductivity σ and of the frequency where

σ0( f ) first begins to rise above σdc [41, 57–59]. Likewise, as discussed in Sect. 4.8

below, changes in the alkali oxide mole fraction x in glasses have a much weaker

effect on the value of A than they do on the d.c. conductivity and the low frequency

relaxation. The same is true for substitution of one alkali for another (the mixed
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alkali) [57]. Finally, changes in the thermal history of the same glass which change

the d.c. conductivity σdc by nearly half an order of magnitude have no effect on the

value of A [57; C.T. Moynihan, K.L. Ngai, unpublished results].

NCL is found by dielectric and mechanical relaxation spectroscopy at high

frequencies/low temperatures of non-ionic glass-formers without any trace of

conductivity [53, 60–63]. Thus the NCL is a general feature of relaxation and

diffusion of interacting systems, and ionic conductors are just a particular case. The

origin of the NCL is traced to caged ion or caged molecules dynamics [53, 60–63]

to be elaborated after the Coupling Model [60–63] of ion dynamics has been

introduced. Molecular dynamics simulations [45, 64–66] of Li silicate glasses

have also found the NCL from the mean square displacements of the ions at

times much shorter than the long range diffusion of the ions, and explicitly showed

the anharmonic motions of the ions within anisotropic and fluctuating cages. The

results will be shown in details in chapters to follow.

The secondaryM00( f ) loss peaks in Figs. 4.7 and 4.9 evidently shift less to lower
frequencies on decreasing temperature and also with increasing pressure [33] than

the primaryM00( f ) loss peak, and hence it has weaker temperature dependence. The

intensity of the NCL also has weak temperature dependence either as power law of

T or some other functional form [65]. Thus, any serious attempt to understand the

ion dynamics must make clear distinctions of the three processes; namely the NCL,

the secondary ion relaxation, and the primary ion relaxation/dc conductivity.

In the Chap. 9 on molecular dynamics simulations, details of motions of ions in

the NCL regime of glassy xLi2O-(1-x)SiO2 with x¼ 0.5 are presented. Here we give

the essential of the results that ions in the NCL region are undergoing anharmonic

motions in anisotropic cages. The density distribution of Li ions in each cage (i.e.,

the shape of the cage) tends to have strong anisotropy, and the cage is not static but

fluctuating.

4.2 Comparison of Methods for Analysis of Data

4.2.1 The Electric Modulus

The simplest ion dynamics is the case when G and C are constants independent of

frequency. The specimen can be treated as a parallel resistance-capacitance (RC)
circuit, where C¼ ε1Co, Co¼ εoA/l, R¼Gl/A, and σ0 is the dc conductivity σdc.
The time constant of a simple RC circuit element, τ, is given by the product RC,
which may be expressed as

τ ¼ ε1εo=σdc ð4:8Þ

The complex permittivity is given by

ε∗ ωð Þ ¼ C=εo � iG=ωεo � ε1 � iσdc=ωεo ¼ ε1 1� i=ωτ½ � ð4:9Þ
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The corresponding M*(ω) from Eq. 4.5 is

M* ωð Þ ¼ 1

ε1
iωτ= 1þ iωτð Þ½ � ¼ 1

ε1
1�

ð1
0

e�iωt � dexp �t=τð Þ
dt

� �
dt

� �
ð4:10Þ

A plot of M00 vs logω will be a Debye peak at ωτ¼ 1.

However, the experimental data of most ionic conductors except at very low ion

concentrations rarely agree with this description, thus suggesting that the specimen

cannot be treated as a parallel resistance-capacitance circuit with an exponential

decay exp(-t/τ) with a single time constant τ. A nonexponential decay function Φ(t)
has to replace exp(-t/τ) in Eq. (4.10) which can always be formally written in terms

of distribution of time constants as

Φ tð Þ ¼
ð1
0

g τð Þexp �t=τð Þdτ; ð4:11Þ

where g(τ) is the normalized probability function for τ. In this manner, Macedo,

Moynihan and coworkers [5, 6, 17, 25, 30] have generalized the electric modulus

representation of experimental data by

M* ωð Þ ¼ 1

ε1
1�

ð1
0

e�iωt � dΦ

dt

� �
dt

� �
ð4:12Þ

The mean relaxation time <τ> is related to σdc by

<τ>¼
ð1
0

g τð Þτdτ ¼ εoε1=σdc ð4:13Þ

and

εs � limω!0ε
0 ¼ ε1 <τ2> = <τ>2 ð4:14Þ

Of all the well behaved one parameter distributions of relaxation times, the one

which gives good fit to typical data is that corresponding to the stretched exponen-

tial function, Eq. (4.15), proposed by Kohlrausch [67] in 1854 in fitting his own

experimental data of decay of static electricity stored between two electrodes on the

inside and outside of a glass Leyden jar. His data were published in the same year in

Ref. [68]

Φ tð Þ ¼ exp � t=τ*ð Þβ
h i

: ð4:15Þ

It is remarkable that R. Kohlrausch not only studied ion conductivity relaxation

in the glass but also characterized the time decay function by his stretched expo-

nential function, which accurately account for his own data, a large volume of data

up to the present time, and several properties to be presented below.
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From the M∗
β ωð Þ calculated by Eq. (4.12) with this Kohlrausch relaxation

function, it can be shown by straightforward mathematics that the quantities in

Eqs. (4.13) and (4.14) are given by

<τ>¼ Γ 1=βð Þ=β½ �τ*; ð4:16Þ

σdc ¼ εoε1= <τ>¼ εoε1= Γ 1=βð Þ=β½ �τ* ð4:17Þ

and

εs � limω!0ε
0 ¼ β

Γ 2=βð Þ
Γ 1=βð Þ½ �2 ε1; ð4:18Þ

where Γ is the gamma function.

It is worthwhile to emphasize the result from Eqs. (4.14) or (4.18) that the ratio

εs/ε1 is determined solely by the distribution of relaxation times g(τ) or the

fractional exponent β of the stretched exponential function From Eq. (4.18), the

permittivity change Δε caused by the relaxation of mobile ions is given by

Δε ¼ τ2
� �

= τh i2 � 1
h i

ε1 ¼ β
Γ 2=βð Þ
Γ 1=βð Þ½ �2 � 1

" #
ε1; ð4:19Þ

Thus the value of εs/ε1 that can be calculated by the right-hand-side of Eq. 4.18 is

a sensitive test of both the M*(ω) formalism and the Kohlrausch function fit to

it [32, 69].

4.2.1.1 Accurately Calculating ε0(ω) from Kohlrausch Fit to M*(ω)

In the literature, usually shown are fits to the frequency dependence of σ0 and M*

data. The fit to the latter is by theM∗
β ωð Þ calculated according to Eq. (4.12) with the

Kohlrausch stretched exponential function (Eq. 4.15) as the decay function Φ(t).
For example, Howell et al. [17] have given the fits to suchM* data of 0.4Ca(NO3)2-

0.6KNO3 (CKN) at different temperatures shown before in Fig. 4.4. Seldom shown

are the corresponding fits to ε0(ω). In Fig. 4.6, we show the Kohlrausch function fits,

ε;β(ω), to the ε0(ω) data of CKN for nine temperatures, 35.3, 54.3, 60.1, 65.3, 71.4,

74.6, 80.7, 86.8, and 93.2 �C, below and above Tg¼ 60 �C. The ε
0
β(ω) are calculated

directly from the relation, ε∗β ωð Þ ¼ 1=M∗
β , using exactly the same parameters, ε1, β

and τ*, as given by Howell et al. [17]. The values of β decreases monotonically with

temperature, and the values for the nine temperatures in the same order as given

above are 0.74, 0.74, 0.72, 0.69, 0.64, 0.61, 0.58, 0.53, and 0.52.

Starting from the high frequency end and on decreasing frequency, the ε0 data in
Fig. 4.6 monotonically increase from ε1 and show tendency of leveling off to
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plateau, before the appearance of a final rapid rise. The calculated ε;β(ω) shown by

lines [32] fit well the data up to the plateau with the value exactly given by

Eq. (4.19).

The continued and rapid rise of ε0(ω) above the plateau at lower frequencies is

contributed by the electrode surface polarization capacitance which is much larger

than the sample capacitance. As a result, the time constant of electrode polarization

can be much larger than the conductivity relaxation time<τ> and allows us in some

cases to separate the two contributions.

The plateau level εs, together with the decrease of ε0(ω) at higher frequencies
down to ε1, come from the contribution of electrical relaxation in the bulk sample.

On the whole, the frequency dependence of ε0(ω) is reproduced at all temperatures,

although the fits tends to overestimate the high frequency limits of ε0. These
deviations are inherited from the fits by Howell et al. to the same M* data, which

invariably show the well-known deviations at high frequencies. It has been pro-

posed that these deviations are due to the presence of a nearly constant loss

contribution that dominates the ion hopping contribution to the dielectric response

at high frequencies [1, 8, 32, 43, 44, 53, 57]. Based on experimental facts, it is

generally believed that this nearly constant loss (NCL) contribution originates from

a process that is unrelated to the hopping relaxation of ions. It is possible in Fig. 4.6

that the calculated ε0(ω) may slightly underestimate the plateau level. However, any

conclusion cannot be made until the electrode polarization contribution has been

removed from the data. On increasing temperature, the increase of the plateau level

is explained quantitatively by εs calculated from Eq. (4.18) with the corresponding

decreasing β values required to fit the broadening dispersion of theM*(ω) data (see
Fig. 4.4). The origin of this temperature dependence of β has been explained by the

increasing coupling of ionic conductivity relaxation to structural relaxation with

increasing temperature in CKN [70–72]. This is a general property found in other

ionic conductors, and will be elaborated in other places of this treatise.

The success of the electric modulus in accounting for ε0(ω) is general the case for
all ionic conductors. The generality is demonstrated by the conductivity relaxation

data of some glassy ionic conductors with large difference of ion concentrations.

One example is the Vycor glass (0.00044Na2O-0.04B2O3-0.96SiO2) with low

concentration of Na ions [20], showing M*(ω) having narrow dispersion and

β¼ 0.95 in the Kohlrausch fit M∗
β . The ε0(ω) data at 358 �C are presented in

Fig. 4.12. The development of a plateau is observed at low frequencies but the

contribution of electrode polarization is not present within the experimental fre-

quency window. The entire dispersion observed can be associated with the ionic

hopping contribution, except for a small correction to ε0(ω) due to the nearly

constant loss Δε00. The ε;β(ω) calculated from M∗
β are in good agreement with the

data [32]. The ratio εs/ε1 calculated from Eq. (4.18) for β¼ 0.95 is equal to 1.2, in

approximate agreement with the small permittivity change Δε observed in this

alkali ion glass with low ion concentration. The ε0(ω) data at 350 �C of the sodium

germanate glass containing 0.0079 mol% Na2O measured by Cordaro and

Tomozawa [73] are shown also in Fig. 4.12. These authors have determined
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ε1¼ 5.5, εs¼ 5.7 and a small value of Δε equal to 0.2. Compared with ε1, this

small value of Δε implies that ε0 is nearly dispersionless. Their M00(ω) data have a
half-width at half-maximum nearly equal to the Debye value of 1.144 decades and

hence corresponds to β¼ 1.0. The ε0(ω) calculated from this fit has no dispersion

and is shown by the solid curve through the data points. It describes well the small

permittivity change observed.

Data of ε0(ω) of several other oxide glasses with higher alkali concentrations are
also shown in Fig. 4.12. All these data sets exhibit a pseudo-plateau before the

electrode polarization starts to take over at lower frequencies, and are chosen for

Fig. 4.12 The data points are the measured ε0(ω) plotted against frequency ν¼ω/2π for five alkali
oxide glasses. Sodium germanate glass containing 0.0079 mol% Na2O measured by Cordaro and

Tomozawa [73], Vycor glass (0.00044Na2O-0.04B2O3-0.96SiO2) measured by Simmons

et al. [20], two lithium aluminosilicate glasses measured by Saad [N. Saad, Ph.D. Thesis, Catholic

University of America, Washington, DC (1974).] and a sodium trisilicate glass [1, 18]. The solid
curves through the data points are ε;β(ω) calculated from M∗

β . The measurement temperature and

the stretch exponent β for each case are indicated
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consideration here because the ionic hopping contribution therein can be identified

approximately. Also the fits to the complete data in the M*(ω) representation by

M∗
β have been made previously. The parameters, ε1, β and τ*, that give these good

fits to the M*(ω) data are taken from the published works and used to calculate

ε0(ω). The calculated results shown as solid curves in Fig. 4.12 fit the ε0(ω) data
including the plateau level well. The values of β for these glasses with large

concentration of alkali ions are considerably smaller than unity. Consequently,

the ratios εs/ε1 calculated from Eq. (4.18) are much larger than for glasses

containing few ions and have β� 1.0.

Good agreement between the ε0(ω) data and ε;β(ω) calculated from M∗
β , the

fit to M*(ω), were obtained in non-oxide glasses. Three examples are shown

in Fig. 4.14, which are 0.10AgI + 0.90[0.525Ag2S + 0.475(0.5B2S3 + 0.5SiS2)],

0.35Li2S-0.65GeS2, and 0.48(AgI)2-0.52Ag2SeO4.

Finally, in Fig. 4.14 we summarize all the values of εs/ε1 obtained from the fits

to the data shown in Figs. 4.6, 4.12, and 4.13 by plotting them against (1-β), where
β is the stretch exponent previously determined from the fits of the Kohlrausch

functions to the conductivity relaxation data in the electric modulus representa-

tion. Naturally, these values lie exactly on the solid line defined by Eq. 4.19.

Although we have made no attempt to determine the experimental εs by

subtracting off the electrode polarization contribution in any of the data shown

in Figs. 4.6, 4.12, and 4.13, it is clear by inspection of the quality of the fits that

they cannot be far from the theoretical values. In addition, we show the value of

εs/ε1 of 0.30 mol% Na2O-GeO2 (open diamond) determined by Sidebottom [74]

after subtracting off the electrode polarization contribution, the values of εs/ε1 of

the Vycor glass at 358 �C (open triangle) and the 0.0079 mol% Na2O-GeO2 glass

at 350 �C (filled triangle) both determined directly from the experimental data of

Simmons et al. [20] and Cordaro et al. [73] respectively. These independently

determined experimental values of εs/ε1 do not exactly lie on the theoretical

curve but close to it. For the 0.0079 mol% Na2O-GeO2 at 350
�C (filled triangle)

the difference is so small that it cannot be seen by eye. One purpose of Fig. 4.14 is

to show the large range of variation of εs/ε1, 1	 εs/ε1< 10, in the ionic glasses

considered in this work and its dependence only on β but not on chemical structure

and composition.

The monotonic decrease of n¼ (1-β) with falling temperature found for the

molten salt CKN in transit from the liquid to the glassy state is due to decoupling

of the conductivity relaxation from the structural relaxation [34, 70]. This property

of n¼ (1-β) due to decoupling is general and found in other ionic conductors

including CdF2–LiF–AlF3–PbF2 melt and glass, and the pharmaceuticals procaine

HCl and procainamide HCl [70]. Accompanying this unusual T-dependence of

n¼ (1-β) is the corresponding decrease of εs/ε1. In contrast, in the case of glassy

ionic conductors at temperatures far below Tg, such as those shown in Figs. 4.12

and 4.13 [75], the value of n¼ (1-β) increases slightly with decrease in temperature,

and the ratio εs/ε1 also increases, opposite to the trend shown by CKN. Thus εs/ε1
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is a sensitive test for validation of both the M*(ω) formalism and the Kohlrausch

function.

From Eq. (4.14), it is clear that the ratio εs/ε1 is a direct reflection of the breadth

of conductivity relaxation times and vice versa [29, 72]. Thus, if εs/ε1 changes on

varying temperature of an ionic conductor, or on varying the concentration of ions

in the same ionic conductor, then by fiat the breadth of conductivity relaxation times

has to change as well as the frequency dispersion of the data in any representation

σ*(ω), ε*(ω), or M*(ω).

Fig. 4.13 Non-oxide glasses. 0.35Li2S-0.65GeS2, 0.48(AgI)2-0.52Ag2SeO4, and 0.10AgI + 0.90

[0.525Ag2S + 0.475(0.5B2S3 + 0.5SiS2)]. The data points are the measured ε0(ω) plotted against

frequency ν¼ω/2π. The data of the third set have been shifted uniformly by one decade to the left.

The solid curves through the data points are ε;β(ω) calculated from M∗
β . The measurement

temperature and the stretch exponent β for each case are indicated
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4.2.1.2 Unwarranted Fixation with Scaling of log[σ0(f)/σdc]
to a Master Curve

In the past years, there are various suggestions that data of logσ’( f ) vs. log f of
diverse glassy ionic conductors, or the same glassy ionic conductor with different

ion concentrations, and at various temperatures can be scaled to form approxi-

mately a master curve. Although the scaling results are still empirical, if true it

implies some physics behind it, and this is the reason why we consider it here.

However, the same data represented in term of logM*( f ) vs. log f of the ionic

conductors cannot be scaled to form a master curve, and this conundrum left the

proponents of scaling data logσ’( f ) vs. log f no choice but to attack the electric

modulus representation of data [76–80]. This attack needs to be answered and is

refuted in this section later on when electric modulus is further discussed in detail.

In all these scaling schemes, data of σ0( f ) from different samples and at different

temperatures are scaled by σdc, and frequency f is scaled by a factor f0, which a

function of the parameters of the sample. Success of scaling means that a single

master function F( f/f0) can fit all data sets in the form σ0 fð Þ=σdc ¼ F f=f 0ð Þ, and it

implies that the frequency dispersion of σ0 is the same despite significant changes in

ion concentration (accompanied by changes of the chemical and physical struc-

tures) and temperature. Roling [76] and Roling et al. [77] showed that scaling holds

Fig. 4.14 The ratio εs/ε1 calculated by using the value of the stretch exponent β obtained from the

fit to the electric modulus data is plotted against (1-β) for 0.4Ca(NO3)2-0.6KNO3 at different

temperatures ( filled circles); lithium aluminosilicate glasses ( filled diamond); sodium trisilicate

glass (open inverted triangle); 0.35Li2S-0.65GeS2 (times), 0.48(AgI)2-0.52Ag2SeO4 (open
square); and 0.10AgI + 0.90[0.525Ag2S + 0.475(0.5B2S3 + 0.5SiS2)] ( filled square). For the

sodium germanate glass containing 0.0079 mol% Na2O ( filled triangle), 0.30 mol% Na2O-

GeO2 (open diamond) and 0.00044Na2O-0.04B2O3-0.96SiO2 Vycor glass (open triangle), these
three data points are obtained from the experimental data (see text). The solid curve is the

theoretical value of εs/ε1 calculated from Eqs. (4.14) and (4.18) as a function of β
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over the range, 0	 logσ’( f )	 2.5, in a series of alkali borate glasses

(Na2O)x(B2O3)1�x, with x¼ 0.10, 0.15, 0.20, 0.25, and 0.30, by the choice of

f0¼ σdcT/x. Roling [76] did not show the data of ε0( f ), and instead gave a plot of

TΔε, but the values of T in f0¼ σdcT/x to scale data were not specified. However,

σ0( f ) data of sample with smaller x were taken at higher temperatures because of

lower ion mobility. Hence we expect larger value of T in the product TΔε was used
for samples with lower ion concentration x. Taking this consideration into account,

we can deduce that Δε increases with x even more than shown by TΔε in Fig. 4.4 of
Ref. [76]. The value of ε1 was not given by Roling, but it is reasonable to assume

the change of ε1 with x is minor compared with that of Δε. Thus the ratio Δε/ε1
increases with x, and from Eq. (4.19) the breadth of the conductivity relaxation

times has to increase. This result derived from ε0( f ) contradicts the invariance

of the breadth of the conductivity relaxation times concluded from the success of

obtaining a master curve by horizontal shifts of the σ0( f ) data of samples with

different x.
Data plotted as logσ0( f ) vs. logf are often fitted by the Jonscher’s expression

[39], σ0 fð Þ ¼ σdc þ Af n ¼ σdc 1þ f=f 2ð Þn½ �, where f2 is a characteristic ion hopping
frequency. It emphasizes the importance of the frequency dispersion of σ0( f ) at
frequencies of the order of f2 at which σ0( f2) is equal to 2σdc. The slope of logσ0( f )
increases monotonically with f and departs from the power law with exponent n. If
performed, fits of the logσ0( f ) data in Fig. 4.4 of Ref. [77] by the Jonscher’s
expression will give values of n that increases with x, which is indication of

different breadths of conductivity relaxation times. Notwithstanding, shifting

σ0( f ) data of different x by scaling f according to f0¼ σdcT/x for some T, Roling
et al. did get reasonably satisfactory superpositioning and a master curve. This feat

is made possible by the monotonically increasing slope of logσ0( f ) with log f
continuing to frequencies higher than f2. Data of logσ0( f ) of sample with smaller

x and n can be made to approximately superpose with data with larger x and

n simply by shifting the former more to lower frequencies to use the data at higher

frequencies than f2 to compensate for the less rapid rise of the Jonscher fit. This

procedure can hide the differences in frequency dispersion from the Jonscher fits of

the samples with different n values. On close inspection of the master curve in

Fig. 4.5 of Ref. [77], the data do not superpose that well in the region of log(σ0/σdc)
where the Jonscher expression fits the data well. This is evidenced by the conspic-

uously thicker master curve formed by the data from different samples, and this is

because the frequency dispersions in the important Jonscher fits region are

different.

The same comment applies to the σ0( f ) data of CKN of Howell et al. [17], as can

be seen by comparing the data above Tg in their Fig. 4.2 and the data below Tg in
Fig. 4.4. The best Jonscher fits of data in Fig. 4.2 will yield a larger n than in

Fig. 4.4. Actually in demonstrating invariant scaling of σ0( f ) of CKN, the σ0( f )
data was fitted with the Jonscher expression by Sidebottom et al. [81]. They scaled

σ0( f ) by σdc and frequency f by f2 for data taken at nine temperatures. The results

shown in Fig. 4.1b of their paper are used by them to claim that they have

demonstrated temperature invariant scaling of σ0( f ) (with n¼ 0.61) both above
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and below Tg. If one examines their Fig. 4.1b, it is evident that the scaled data at

319, 325 and 330 K below Tg fail to superpose at the most important region of σ0/σdc
with values near 1 and slightly above it. The frequency f2 in the Jonscher expression
is near the peak frequency fmax of theM

00( f ). From their Fig. 4.1a, it can be seen that

the M00( f/f2) peaks at 319, 325 and 330 K are narrower on both sides of fmax. The
difference of frequency dispersion at frequencies in the neighborhood of f2
 fmax
appears less important in the log-log plot of log[σ0/σdc] vs. log( f/f2) because the data
extend to about 3 decades above log[σ0/σdc]. In this plot, deviations from superpo-

sition in the neighborhood of f2
 fmax look insignificant. Had the superposition of

data were presented in a semi-log plot of σ0/σdc vs. log( f/f2), the deviations will

become more alarming. Therefore the lack of superposition of the σ0/σdc data at

frequencies below f2
 fmax is a reflection of narrower M00( f/f2) peaks at lower

temperatures. There is no temperature invariant scaling of σ0( f ) (with n¼ 0.61)

both above and below Tg as claimed.

Sidebottom et al. [78] examined the Roling et al. [77] scaling with f0¼ σdcT/x for
another glass system, (Na2O)x(GeO2)1�x over a much wider range of Na ion

concentration (0.003< x< 0.1) and found it fails to collapse their σ0( f ) data sets

to a master curve. He [74] had proposed another scaling of f with the choice of

f0¼ σdc/e0Δε. The new scaling parameter f0 scales the log[σ0( f )/σdc] data sets of the
glassy systems (Na2O)x(GeO2)1�x, for x from 0.003 to 0.1, and (K2S)x(B2S3)1�x for

x from 0.0005 to 0.05, as well as the molten salt 0.4Ca(NO3)2-0.6KNO3 (CKN)

[79, 80] at temperatures in the same range as we considered before in Fig. 4.6.

To rationalize the scaling, σ0( f )/σdc¼F( f/f0), with Δε appearing in

f0¼ σdc/e0Δε, Sidebottom [74] suggested an analogy of the hop of the cation

between anionic sites to the rotation of a permanent dipole. The assumed analogy

led him to propose the permittivity change Δε caused by the relaxation of mobile

ions is given by Δε ¼ n qdð Þ2=3εokT, where n is the mobile ion concentration, q is

the charge of the mobile ions, d is the jump length, and the product qd is the

effective dipole of the hopping ion. A similar expression for Δε has been suggested
by Roling [76].

In 2001, León et al. [82] used electrical relaxation data of a crystalline ionic

conductor [83], yttria stabilized zirconia (YSZ), in which the mobile ion density

n and the ionic hopping distance d are known, to perform a critical test of the

validity of Δε ¼ n qdð Þ2=3εokT. It was found that the magnitude of Δε is nearly

independent of temperature and also of the ion mobile density, which is at odds with

a large change predicted by Δε ¼ n qdð Þ2=3εokT in the temperature range of

500–780 K, where the value of εs can be determined from the experimental data.

This result from León et al. clearly dismisses the relation Δε ¼ n qdð Þ2=3εokT
assumed by Sidebottom, and should be sufficient to stop using it. Inexplicably,

the disproof is ignored and its usage was continued in the 2009 review [79].

Like the previous results of CKN in scaling f by f2, the ion hopping frequency in
the Jonscher fit [81], the superpositions of data are far from perfect. Noticeable is

the deviations of log[σ0( f )/σdc] data taken at lower temperatures in the important

region σdc< σ0( f )< 2σdc. Sidebottom ignored the T-dependence of the breadth of
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the conductivity relaxation times that follows directly from Eq. (4.14) and the

experimental fact that εs/ε1 changes on varying temperature (see Fig. 4.6). Instead

the change is hidden by considering the ratio, (ε0-ε1)/Δε, and the data at different

temperatures are superposed by scaling f by f0
0 ¼ σdc/2πe0Δε, which is an ansatz

rationalized but had not been justified. As discussed before and validated in

Fig. 4.6, the T-dependence of εs/ε1 implies that the frequency dispersion of σ*
( f ), ε*( f ), or M*( f ) changes with temperature. This is clearly supported by the

narrowing of theM00( f ) loss peak on cooling from the melt found by Howell et al. in

CKN. There is obvious contradiction of T-dependence of εs/ε1 and width ofM00( f )
to his universal scaled frequency dependence of log[σ0( f )/σdc]. The contradiction

led Sidebottom to suggest that M*( f ) is defined in such a way as to include the

nonionic high-frequency permittivity, in addition to the ionic contributions, and

thus M*( f ) cannot be expected to obey time-temperature superpositioning. Hodge

et al. [29] have answered this attack on the electric modulus. It is also clear from the

fact that the mean relaxation time< τ> calculated from M*( f ) by Eq. 4.13 or by

Eq. 4.17 with β from the Kohlrausch fit accounts for σdc quantitatively very well.

Patel and Martin [84, 85] published ionic conductivity relaxation of sodium

thioborate glasses, (Na2S)x(B2S3)1�x, with the concentration of ions varying over an

extremely wide range from x¼ 0.001 to 0.15. For some reason, Sidebottom [79, 80]

did not analyse these published data and instead considered that of a similar series

of potassium thioborate glasses, (K2S)x(B2S3)1�x, purported in the thesis of Patel

[86]. He show the scaling of log[σ0( f )/σdc] and (ε0-ε1)/Δεwith f0¼ σdc/e0Δε can be
obtained for the series of (K2S)x(B2S3)1�x, ranging from x¼ 0.0005 to 0.05 mole

fraction. The data obtained for all compositions and taken at different temperatures

superimpose to produce a single master curve. This impressive scaling result is

touted by him as clearly demonstrating the shape of the curve (i.e., the nature of the

correlated ion motion) is not influenced by even two orders of magnitude change in

the ion density. He went on to claim that ‘this finding proves conclusively that the

correlated motion is not a consequence of any interaction between mobile ions’.
However, the same data represented by M00( f ), show the breadth of dispersion

increases or the Kohlrausch exponent β decreases with increase of ion concentra-

tion x. Moreover, Δε increases monotonically with x and its value for x¼ 0.05 is a

factor of about 6 larger than that for x¼ 0.0005 (see Fig. 4 of Ref. [80]). These other

experimental facts give the opposite conclusion that the breadth of the conductivity

relaxation time by Eq. (4.14) is changing. Also the σdc as well as ε0( f ) is expected to
be well described by Eqs. (4.17) and (4.18) with the β values from fits to M00( f ),
although Sidebottom did not check this out. Without resolving these contradictory

experimental facts from the other side, it is premature to accept or reject the

conclusion made by him based on σ0( f )/σdc.
We do not understand why Sidebottom did not consider the data of sodium

thioborate glasses, (Na2S)x(B2S3)1�x, with x ranging from 0.001 to 0.15 published

in the open literature in great details [84, 85]. The raw data are presented in both

σ0( f ) and M*( f ), analysed and discussed by Patel and Martin (PM). On the other

hand, the raw σ0( f ) data of (K2S)x(B2S3)1�x were not shown by him except the

final scaled master curve. In the following, we recapture some of data of
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(Na2S)x(B2S3)1�x and the discussions by PM to show the log[σ0( f )/σdc] data for

different x cannot be scaled to a master curve, and actually the difference in

frequency dispersions are consistent with that shown by M00( f ).
TheM00( f ) data of several glasses from PM are reproduced in Fig. 4.15 here. The

temperature for each glass was chosen such that the peak relaxation frequency is

about the same at ~1 kHz. The shape of M00( f ) of each glass does not change with

temperature. As pointed out by PM, we see the dramatic narrowing of M00( f ) with
decreasing x or the average Na-Na separation distance, suggesting diminishing

ion-ion correlations is the cause. The fits of the frequency dependence of M00( f )
by the Fourier transforms of the Kohlrausch function yield the parameter β� (1–n)
for each glass. For the x ¼0.001 glass, the value of β is 0.93, corresponding to a

nearly single exponential relaxation. The width ofM00( f ) increases and β decreases

with x. For x¼ 0.0025, the value of βx is 0.86; for x¼ 0.005, βx¼ 0.82; for x¼ 0.01,

βx¼ 0.71; for x¼ 0.02, βx¼ 0.65; and for x¼ 0.05, βx¼ 0.35.

In Fig. 4.16 we reproduced the raw data of log[σ0( f )/σdc] for x¼ 0.001, 0.0025,

0.005, 0.01, and 0.03 presented by PM in their Fig. 4.5. Like in previous figure, the

temperatures were chosen such that each glass has approximately the same peak

relaxation frequency ~1 kHz ofM00( f ). In this way, each curve covers about the same

data region above and below the peak frequency fmax ofM
00( f ). In Fig. 4.16 we use

solid magenta lines to estimate the slope of increase of log[σ0( f )/σdc] at its lower
values, and the dashed red lines the slopes at the higher values of log[σ0( f )/σdc].
The dashed lines have different slopes. Sidebottom’s scaling merely shifts the data

of log[σ0( f )/σdc] horizontally by normalizing f by f0. Since the slopes of the increase
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Fig. 4.15 The imaginary part of the electrical modulus plotted against normalized frequency for a

few selected glasses in the series x(Na2S) + (1�x)B2S3
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of log[σ0( f )/σdc] over the same range of values are different for the glasses in

Fig. 4.16, it is impossible to obtain a well defined master curve by him using his

f0¼ σdc/e0Δε, or by anyone else using a different f0. Thus, the fully published

log[σ0( f )/σdc] data of the (Na2S)x(B2S3)1�x glasses of different compositions show

different frequency dependences and cannot be scaled, just like the same data

expressed in terms of M00( f ) in Fig. 4.15.
The slopes of the magenta solid lines, nx, in Fig. 4.16 can be taken as approx-

imately the value of the exponent n in the Jonscher expression, σ0 fð Þ ¼
σdc 1þ f=f 2ð Þn½ � had it been used to fit the data of the (Na2S)x(B2S3)1�x glasses.

From the lines drawn in Fig. 4.16, values of the slopes are: nx¼ 0.10 for x¼ 0.0010;

nx¼ 0.17 for x¼ 0.0025; nx¼ 0.27 for x¼ 0.005; nx¼ 0.30 for x¼ 0.01; and

nx¼ 0.50 for x¼ 0.03. The large differences between these approximate values

for n of the Jonscher fits are direct evidence of the sensitive dependence of the

frequency dispersion on x. Moynihan [72] compared the fit to logσ0( f ) data by

the Jonscher expression and the fit to the same data derived from the fit to M*( f )
by the Kohlrausch function with fractional exponent β. The values of n and (1�β)
are comparable, with n being slightly larger. This relation leads us to compare nx
with (1�βx) in Table 4.1, where we find good correspondence between these two

parameters. These results indicate consistency of the conclusion of change of

frequency dispersion of ion dynamics with composition based on either M*( f ) or
σ0( f )/σdc representation.

PM noted that in Fig. 4.16 for x¼ 0.001 and x¼ 0.0025 glass, there is a range of

frequencies above f/fmax� 1 where the conductivity remains nearly frequency

independent. These weak frequency dependences for small x glasses correspond
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Fig. 4.16 Conductivity for a series of x(Na2S) + (1-x)B2S3 glasses from Patel and Martin
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to the small exponents n of the fits by the Jonscher expressions and are approxi-

mately given by nx¼ 0.10. for x¼ 0.001, and nx¼ 0.17 for x¼ 0.0025. Such weak

frequency dependence of log[σ0( f )/σdc] found in (Na2S)x(B2S3)1�x glasses with

very low ion concentrations were observed in other glasses. One example is the

Vycor glass (0.00044Na2O-0.04B2O3-0.96SiO2) measured by Simmons

et al. [20]. We have considered the frequency dependence of its ε0( f ) and the

small value of Δε (see Fig. 4.12). This property of ε0( f ) is corroborated by the

narrow width of M00( f ) with β¼ 0.95 via Eq. (4.19), and are in stark contrast to

those of the sodium trisilicate glass, 0.25Na2O-0.75SiO2. Figure 4.17 shows the

difference in the width ofM00( f ) between the Na2O-3SiO2 glass at �0.5 �C and the

Vycor glass at 313 �C, and their Kohlrausch β parameter. The value of β¼ 0.95 and

β¼ 0.47 respectively of the Vycor glass and the trisilicate glass is nearly the same as

β¼ 0.93 and β¼ 0.55 respectively of (Na2S)x(B2S3)1�x with x¼ 0.0010 and

x¼ 0.030. Figure 4.18 is a plot of log[σ0( f )/σdc] against f/fmax, where fmax is the
M00( f ) peak frequency of the two sodium silicate glasses. The data of Vycor glass

and the trisilicate glass resembles respectively the (Na2S)x(B2S3)1�xwith x¼ 0.0010

and x¼ 0.030. The dashed lines having different slopes of log[σ0( f )/σdc]

Table 4.1 Comparison of nx
with (1�βx) for several
(Na2S)x(B2S3)1�x glasses

x βx nx (1�βx)

0.0010 0.93 0.10 0.07

0.0025 0.87 0.17 0.13

0.0050 0.82 0.26 0.18

0.010 0.71 0.30 0.29

0.03 0.55a 0.48 0.45
aEstimated by linear interpolation between the values of

βx given by PM for x¼ 0.02 and x¼ 0.05
bLine not shown in Fig. 4.16 to avoid crowding

Fig. 4.17 Log-log plots of

the imaginary part of the

electric modulus M00( f ) of
the two glasses in Fig. 4.2.

For details see text
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indicate that the data of the two Na silicate glasses cannot be scaled to form a master

curve. The inset of Fig. 4.17 shows the results of scaling f by f0¼ σdcT/x suggested by
Roling [76]. The different scaled frequency dependence clearly show a master curve

cannot be obtained no matter what additional horizontal shift is applied. The failure

of obtaining a master curve by scaling frequency happens also for σ0( f )/σdc instead
of log[σ0( f )/σdc], although the results are not shown here.

The distinctly different frequency dependences of either log[σ0( f )/σdc] orM00( f )
between glasses containing very low and high concentrations of mobile ions are

general and are found in other glasses [73, 87, 88]. A similar situation was found in

the comparison of the dependence of log[σ’( f )/σdc] on f/f0 from two xK2O-(1-x)
GeO2 glasses with x¼ 0.20 and 0.0023 by Jain et al. [88] (see Fig. 6 in this reference

and note the similarity to Fig. 4.18 in here). The difference in the slope of increase

of log[σ’( f )/σdc] above the 0 value between the x¼ 0.20 and 0.0023 glasses dashes

any hope of obtaining a master curve by any horizontal shift of data. Surprisingly,

this result published in 1998 was not cited in the 2000 paper of Sidebottom and

Zhang (SZ) [80], and in the 2008 review by Sidebottom [79].

Changes of M*( f ) and Δε with composition were shown by SZ in

(K2S)x(B2S3)1�x and by PM in (Na2S)x(B2S3)1�x glasses, indicating changes of

breadth of ionic conductivity relaxation times with composition. Consistently, we

find the frequency dispersion of log[σ0( f )/σdc] also changes with composition in the

(Na2S)x(B2S3)1�x glasses. Therefore it is a mystery that SZ [80] can produce a

nearly perfect master curve from the data of (K2S)x(B2S3)1�x for x in a similar range

from 0.0005 to 0.05. The mystery cannot be solved until SZ show the raw log[σ0( f )/
σdc] data separately they took from Patel’s thesis to construct the master curve.

Fig. 4.18 Isothermal electrical relaxation data shown as plots of log[σ0( f )] vs. log f for a

Na2O-3SiO2 glass at �0.5 �C, and for a Vycor glass xNa2O-(1-x)[0.04B2O3-0.96SiO2] at 313
�C

with x¼ 0.00044. For details see text. The inset shows the scaling of frequency by f0¼ σdcT/x fails
to obtain a master curve, or by any additional horizontal shift of either data set
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Better if they compare them under the same condition as done by PM in Fig. 4.16

here. It is important to know whether all data of (K2S)x(B2S3)1�x in Patel’s thesis
had been considered to obtain the scaling. The assertion of Sidebottom based on

scaling of (K2S)x(B2S3)1�x that “This finding proves conclusively that the corre-

lated motion is not a consequence of any interaction between mobile ions.” is at

odds with Monte Carlo computer simulations of electrical relaxation in a disordered

Coulomb lattice gas of ions, when analyzed in the modulus representation, repro-

duce just such an decrease in width of dispersion with decreasing strength of

ion–ion interactions [89–91]. Similar conclusions were drawn from Monte Carlo

simulation of the spin lattice relaxation time of another disordered Coulomb lattice

gas [92, 93], where again it was found that a decrease of Coulomb interaction

strength is accompanied by an decrease in width of dispersion.

4.2.1.3 Reaching a Dead End After Scaling

In the previous section we have shown, except for the glasses (K2S)x(B2S3)1�x with

x ranging from 0.0005 to 0.05 that Sidebottom took from the thesis of Patel, no

other case support that a genuine master curve can be obtained for log[σ0( f )/σdc]
data from glasses with orders of magnitude difference in ion concentration. Also in

all cases including (K2S)x(B2S3)1�x, the change of M*( f ) and ε0( f ) with composi-

tion contradicts perfect scaling of log[σ0( f )/σdc]. Changes of M*( f ) and ε0( f ) can
be seen in plotting these quantities linearly vs. logf. Success in scaling of log[σ0( f )/
σdc] is not complete until success in scaling σ0( f )/σdc is also demonstrated at least

for some range of σ0( f )/σdc from 1 and up to a few tens times larger. In general the

physical and chemical structure of the glasses as well as the ion-ion separation

change a lot with orders of magnitude change of ion concentration. If indeed the

shape of the frequency dispersion of log[σ0( f )/σdc] were independent of the enor-

mous change in ion density, then this finding is spectacular, and deserve theoretical

explanation. Disappointingly, none of the scaling proponents or anyone else has

given explanation to this spectacular ‘finding’, or even just a physical reasoning.

For CKN, the change of frequency dispersion ofM*( f ) and Δε with temperature is

companying the decoupling of ion dynamics from structural relaxation [17] and

also with glass transition, and there is an explanation given [34, 70]. By scaling log

[σ0( f )/σdc] data of CKN at different temperatures to obtain a master curve,

Sidebottom not only denies the physics involved with decoupling [17], but also

leads to no further application, except the assertion that somehow his scaling works.

From all papers published to demonstrate the purported scaling, we have not seen

any theoretical explanation, connection with any other property or established

phenomenon of ion dynamics, or any applications. Therefore, the scaling studies

leads to a dead end, serving no purpose except adding distraction to retard real

progress of the field.
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4.2.1.4 Accurately Calculated σdc from the Kohlrausch Fit to M*(ω)

The stretched exponential fit to the M*(ω) data deviates only at high frequencies.

Since high frequency corresponds to short τ which makes negligible contributions

to<τ> and<τ2>, the results calculated by Eqs. (4.17) and (4.18) are excellent

approximations to σdc and εs respectively. The value of σdc calculated from

Eq. (4.17) with β, in the Kohlrausch function used in conjunction with Eq. (4.12)

to fit the experimental data of M*(ω), agrees with the measured dc conductivity to

within a few percent for a wide variety of materials [17, 18, 25, 30]. It has also been

shown for an ionic glass that the KWW function accounts for over 80% of the

conductivity relaxation strength [5, 6].

In actual experiments, often there is an additional capacitive contribution to

ε0(ω) from the layers of surface charge referred to as the electrode surface polari-

zation. This unwanted contribution complicates the ε0(ω) data, and makes the

analysis of the measurements in the ε*(ω) representation uninviting and the inter-

pretation ambiguous. Besides, ε00(ω) data show monotonic decrease with increasing

frequency and it is not clear how to deduce a characteristic τ or average<τ> of the

mobile ions. This comment applies also to the σ0(ω) data. Although σdc can be

obtained from σ0(ω) at sufficiently low frequencies, on further increase of frequency

σ0(ω) increases monotonically. Some model has to be used to fit the frequency

dependence of σ0(ω) in order to deduce τ or average<τ>. Moreover, the imaginary

part of complex conductivity, σ00(ω), has received no attention by those workers

who consider exclusively data in the form of σ0(ω). In contrast, measurements

represented by M*(ω) provides, via the peak frequency ωp of M
00(ω), a character-

istic conductivity relaxation time, τ ¼1/ωp, without the need of any fit. Alterna-

tively, τ* can be obtained from the fit toM*(f) by the Fourier transform (Eq. 4.10) of

the Kohlrausch function (Eq. 4.15), and<τ> from Eq. 4.16.

To be demonstrated by the results from many experimental studies throughout

this chapter and chapters to follow, the value of τ* and its properties are correlated

or determined by the value of (1�β)� n, or alternatively the full-width at half-

maximum (FWHM) of the M00(ω) loss peak. These relations between n and prop-

erties of τ* lead to deeper insight into the microscopic dynamics of the ions, and are

in agreement with predictions of a theoretical model emphasizing the importance of

ion-ion correlation through their interaction.

4.2.1.5 Making Easier for Anyone to Fit M*(ω) and Determine β

A relation exists between n and W, ratio the full widths at half-maximum of the

observed loss peak to that of an ideal Debye loss peak (¼1.144). It is given by

n � 1� βð Þ ¼ 1:047 1�W�1
� 	 ð4:20Þ
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from Dixon [94]. Thus, without actually fitting M00(ω) by the Fourier transform

of the Kohlrausch function, the value of n or β can be determined from W. There

is a relation between τ* and the peak frequency ωmax of M00(ω) given by

log10(ωmaxτ*)¼�0.263(1-β)] [95; D. Lellinger et al., 1994, unpublished]. Since
β of most ionic conductors is larger then 0.40, ωmax is practically equal to 1/τ*.

One problem faced by others in fitting their data expressed as M*(ω) by the

Fourier transforms of the Kohlrausch functions is that the latter are not readily

available. This problem is alleviated by providing the Fourier transforms of the time

derivative of the Kohlrausch functions with different values of the exponent

n¼ (1�β). These can be downloaded from Additional Material of this book from

http://extras.springer.com. In this way, anyone can easily fit the experimental M*

(ω) data to Eqs. (4.12) and (4.15) and determine the exponent. We also provide in

the Additional Material a method of how to perform Fast Fourier Transforms. The

interested reader can use the method to generate the Fourier transforms of the

Kohlrausch functions themselves.

In fitting these transforms to data of M*(ω), emphasis should be placed in

obtaining good fit at lower frequencies. This is because low frequency data dom-

inates the contribution to the dc conductivity as can be understood from Eqs. (4.13)

or (4.16) and (4.17), and certainly the parameters, β and τ*, from such fits will give

by Eq. (4.17) a value of σdc close to the one measured experimentally. Moreover the

deviations at high frequencies from such fits are natural, and actually are coming

from faster processes including the secondary ion dynamics (resolved or

unresolved) included in M00(ω) and the NCL from caged ion dynamics.

We have seen from the discussions in the above that data in the M*(ω) repre-
sentation reveals more features of ion dynamics, not possible if the same data are

represented by σ0(ω) or ε*(ω). There is yet another advantage of data presented as

M*(ω). It turns out there is the Coupling Model (CM) of relaxation and diffusion of

complex interacting systems [12, 31, 53, 60, 62, 63, 70, 87, 96–104] which predicts

the primary ion relaxation showing up in the M*(ω) representation of data is given

by Eq. (4.12) with the decay function Φ(t) assuming the Kohlrausch stretched

exponential time dependence in Eq. (4.15). Furthermore, in the CM, the parameters,

β and τ*, are consequences of the correlation between ions in conductivity/diffusion
due to ion-ion interaction. The narrowing of width of M00(ω) or increase of β with

decreasing ion concentrations discussed before is clear indication that ion-ion

interactions, and is the basis of the CM. Interactions and correlations determine

ion dynamics and properties in ionic glasses, melts and crystals containing higher

concentration of mobile ions. Since τ* is determined by many-ion dynamics, its

properties are often found to be anomalous. The CM has a time honored result for

the many-ion dynamics that relates τ* to the microscopic single ion (primitive)

relaxation time τ0 by the CM equation involving β. The relation spawns many

applications to explain a multitude of properties of ionic conductivity and diffusion to

be discussed later, many of which are anomalous and difficult to explain. The

successes have provided insight of the many-ion conductivity relaxation originating

from ion-ion interaction, which is the crux of the CM and supported by molecular

dynamics simulations where all model potentials used has the ion-ion interaction term

118 4 Electrical Response of Ionic Conductors

http://extras.springer.com


[45, 64–66, 105, 106], and Monte Carlo simulations of a disordered Coulomb lattice

gas model of the ionic conductor [89–93]. The CM is general and applicable to

relaxation and diffusion in other interacting systems, one of which is the glass-

forming liquids and glasses [53, 60]. Successes in explaining the properties of these

other interacting systems by the predictions of the CM are worth noticing by readers

who are interested mainly in the conductivity of ionic systems.

The anomalous properties of ionically conducting systems and the explanations

given by the CM will be presented later in this chapter and in other chapters. We

hasten to point this out in order to justify the attention and preference we give to the

electric modulus and the CM. As we shall see in the next section on the σ0(ω)
representation of data, results from model analysis of σ0(ω) have made little or no

headway in explaining the same anomalous properties.

4.2.2 Jonscher Expression and Augmented Jonscher
Expression to Fit σ0(f)

Other expressions to fit the frequency dependences of σ0 and ε0 were proposed by

Jonscher [39, 107]:

σ0 ωð Þ ¼ σdc þ Aωn ¼ σdc 1þ ω=ω2ð Þn½ � ð4:21Þ

ε0 ωð Þ ¼ ε1 þ A=ε0 cot nπ=2ð Þ½ �ωn�1 ð4:22Þ

In Eq. (4.21), the parameter ω2 is the frequency at which σ0(ω2) is equal to 2σdc,
and it has no deeper physical meaning other than that. If the consideration is

restricted to the σ0(ω), the Jonscher expression given by Eq. (4.21) is easy to use.

However, as pointed out by Moynihan [72], Eq. (4.22) predicts that ε0 diverges as
ωn�1 with decreasing frequency. This diverging ε0 is associated with the ion

dynamics, and should not be confused with the electrode surface polarization

mentioned before. Hence the Jonscher’s expression is unphysical, and certainly it

cannot predict εs and Δε.
As evident from the log-log plot of σ0( f ) vs. f in Figs. 4.3, 4.8, 4.10 and 4.11, the

slope increases monotonically with increasing f. The Jonscher expression,

Eq. (4.21) with a constant fractional exponent n fails to account of the σ0( f ) data
at high frequencies and/or low temperatures. Furthermore, at sufficiently high

frequencies and/or low temperatures, σ0( f ) tends to assume the f1�c frequency

dependence with c a positive number and value close to zero. This behavior was

seen in alkali silicate glasses for the first time in the GHz range by Robert Cole and

coworkers in 1989 [108]. Noticing this behavior in their study, Nowick and

coworkers [42] were led to suggest an augmented form of the Jonscher expression,

σ0 ωð Þ ¼ σdc þ Aωn þ A0ω ð4:23Þ
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to fit the data. The term Aωn fits the lower frequencies part of the data, while the A0ω
term accounts for the high frequency part. The ε0(ω) accompanying the augmented

σ0(ω) has not been given. By inspection of Fig. 4.3, it is clear that experimentally

A is highly temperature dependent, but A0 is weakly temperature dependent. The

Jonscher expression as well as the augmented Jonscher expression are specifically

proposed to fit only σ0(ω). The imaginary part σ00(ω) accompanying the real part of

the augmented Jonscher σ0(ω) has not been given, and hence the functional forms of

ε*(ω) and M*(ω) related to the augmented Jonscher σ*(ω) by Eqs. (4.4) and (4.5)

are unknown. This is a drawback of the augmented Jonscher expression. In a special

section on the nearly linear dependence of σ0(ω) on ω to be presented much later,

we shall show by experimental data that the term A0ω representing the caged

dynamics is not an additive contribution as proposed in Eq. (4.23) by the augmented

Jonscher expression. Thus Eq. (4.23) is fundamentally incorrect, although it is

commonly used to fit data.

We have seen from Figs. 4.8 and 4.10 in the case of the ionic liquid and

procainamide HCl that the plots of logσ0( f ) vs. logf totally miss the secondary

ionic relaxation found in M*( f ) and ε*( f ). Therefore, fitting conductivity relaxa-

tion data in terms of σ0( f ) by the Jonscher expression or the augmented Jonscher

expression runs the risk of missing an important process of the ion dynamics found

in M00( f ) and ε00( f ).
At the end of the previous section on electric modulus, mention is made on the

scanty use of the parameters A or ω2 and A0 in the expressions (4.21) and (4.23) to

explain properties. This weak link will become clear when we come to examine

those remarkable properties later. Before that, we can see this deficiency from the

contents of a recent review of ionics [2] by authors (except P. Maass) who are

advocates of representation of conductivity relaxation data by σ0( f ). Despite in this
review the ionic conductivity data are given exclusively in terms of logσ0( f )
vs. logf, these authors are fair in showing the limitations. For example they pointed

out the problem of using Eq. (4.21) to obtain the density of mobile ions N by others

in the literature. The crossover frequency f2¼ω2/2π in Eq. (4.21) was identified

with a ‘hopping rate’ in the Nernst-Einstein relation, which gives a formal expres-

sion, N ¼ 6kBT=q
2a2ð Þ σdc=f 2ð Þ, to determine N, where a is the jump length

assumed to be constant. The authors of the review pointed out that even if one

accepts that the Jonscher expression Eq. (4.21) fits well σ0( f ) in the low-frequency

regime, it generally fails at higher frequencies. From this they concluded that the

estimate of an effective number density of ‘mobile ions’ based on the equation

above is questionable.

In the review [2], the authors discuss electrode polarization effects, which is

extraneous to the dynamics and mechanism of ion conduction/diffusion and the

core problem. They discuss the mixed alkali effect which is germane, but hardly the

experimental facts considered have specific relation to σ0( f ). In contrast the electric
modulus representation of the data in conjunction with the change of ion-ion

correlation in mixed alkali glasses had been used to give an explanation of the

mixed alkali effect [109], and confirmed by molecular dynamics simulations
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(see Chap. 10). The importance of ion–ion correlation/interaction in considering the

MA effect was also pointed out by Maass [110].

They discuss time-temperature superposition (TTS) of σ0( f, T ) data taken at

different temperatures. TTS means σ0( f,T ) for all T can be written as

σ0 ω; Tð Þ ¼ σdc Tð Þf ω=ω* Tð Þ½ �, where f(u) is the so called scaling function

[74, 77–79]. If the Jonscher expression given by Eq. (4.21) is applicable to describe

σ0(ω,T ), then ω*(T) is to be identified with ω2(T). In demonstrating the TTS, not

included are data of σ0( f,T) at higher frequencies and lower temperatures where the

σ0( f,T ) assumes the dependence given by Eq. (4.7), corresponding to the NCL of

Eq. (4.6). This is because the temperature dependence of the NCL are so different

from ω*(T ) as can be seen in Figs. 4.3, 4.5 and 4.10. If TTS holds for data in σ0( f,T),
it will hold also for data presented in M00( f,T) and ε00( f,T) because they represent

the same measurements. So this property, if it holds, is not uniquely possessed by

σ0( f,T ). In glassy ionic conductors and if the range of temperature considered is far

below Tg, change of the structure of the glassy matrix is insignificant. Therefore TTS

is expected to hold if the many-ion dynamics due to ion-ion interaction is the

principal cause of the frequency dependence of σ0( f,T ), and thus TTS is unsurprising
or a trivial property. However TTS can be surprising as well as a problem to those

believing that the frequency dependence of σ0( f,T ) originates simply from a distri-

bution of energy barriers because it can change with temperature. Actually more

interesting and challenging are the case where TTS does not work such as CKN [17]

and CdF2–LiF–AlF3–PbF2 (CLAP) [111] above Tg and the crystalline lithium ionic

conductor Li0.18La0.61TiO3 (LLTO) [112, 113]. There must be new physics behind

the breakdown of TTS in these ionic conductors, like that found in polymer visco-

elasticity [60, 114, 115]. Exploring the physics that cause the failure of TTS is more

constructive and meaningful [34, 113] an endeavor than just providing a plausibility

to rationalize the failure [2].

The authors of the review [2] also put emphasis on a relation between the

parameters ω2 and σdc that came out from the use of the Jonscher expression

(4.21) to fit data. Referred to in the literature as the Barton-Nakajima-Namikawa

(BNN) relation [116–118], it is given by

ω* ¼ σdc= pε0Δε½ � ð4:24Þ

where p is a constant of order of unity, Δε¼ (εs�ε1) is the dielectric strength, and

ω* is a frequency the definition of which varies from authors to authors. The

importance of the BNN relation is overblown because we can trace its origin to

the basic Maxwell relation, σdc¼ ε0ε1/<τ>. The latter can be rewritten in the form

σdc ¼ εoε1= <τ>¼ εoΔε= ω*ð Þ�1
h i

1=ω* <τ>ð Þ ε1=Δεð Þ. Comparing this with

the BNN relation rewritten as σdc ¼ pεoΔε= ω*ð Þ�1
, it follows that we have the

relation, p ¼ 1=ω* < τ >ð Þ ε1=Δεð Þ. The first factor, 1=ω* <τ>ð Þ, of p has value

of order 1 because ω* is the reciprocal of a conductivity relaxation time whatever is

its definition. Demonstrated before in Fig. 4.6 is the accurate account of Δε by the

expression in Eq. (4.19) where β and τ* are the parameters of the Kohlrausch
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function that fits the data represented by M00(ω). The second factor of p, ε1=Δεð Þ,
from Eq. (4.19) is given by ε1=Δε ¼ 1= βΓ 2=βð Þ= Γ 1=βð Þ½ �2 � 1

n o
, and its values

have been calculated as a function of (1�β) and shown in Fig. 4.19. The range of

(1�β) is restricted from 0.30 to 0.60 because the ionic glasses considered for the

BNN relation in Refs [116–118]. have β values within this range. The values of

ε1=Δεð Þ is of order 1. Thus p, as the product of the two factors, is also of order 1.

The purpose of discussing the contents of the recent review [2], which exclu-

sively consider conductivity relaxation data in σ0( f ), is to show as an example the

parameters deduced from σ0( f ) have not been used to tackle any significant and

anomalous properties of ion dynamics to be presented and discussed in the remain-

der of this chapter. There is no theory or model based on σ0( f ) we know of that can

explain many of the properties. On the other hand, there is the Coupling Model

which can explain the anomalies by utilizing the parameters of the data in the M*

(ω) representation. For these reasons, if the purpose of the reader is fundamental

understanding of the ion dynamics through the anomalous properties, then conduc-

tivity relaxation data must be considered primarily in the M*(ω) representation.

4.3 Relevance of Theories and Models to Experimental
Findings

Brief reviews of theories and models of ionic conductivity, diffusion, and relaxation

have been given in a previous chapter. Here we critique them in terms of their range

of applicability and validity to established phenomena and important experimental

findings that we know of today. Theories and models proposed a long time ago

naturally cannot address many new experimental facts discovered since then.

However we separate them into two classes. In one class are those that have not

Fig. 4.19 The ratio ε1/Δε
calculated as a function

of n¼ (1�β)
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been developed any further since they were proposed years ago, have limited

applications, and hence need not be taken into detailed consideration in this chapter.

In the other class are those maintained by their proponents to be still viable for

understanding ion dynamics up to the present time. More attention is paid to

theories and models that continue to be applied to address experimental results.

Although molecular dynamics and Monte Carlo simulations are computer experi-

ments performed to explore and observe some specific property and are not theory,

the results are of interest because the relevance depends on the either the potentials

or the model Hamiltonian chosen in molecular dynamics simulations and/or in

Monte Carlo simulations. Therefore we also mention the results of some simula-

tions as well.

Among theories belonging to the first class, one is based on random walk

diffusion, yielding the following result of the dc conductivity [119],

σdc ¼ Ne2a2=kT
� 	

γc 1� cð Þωh: ð4:25Þ

Here N is the number of equivalent sites, γ a geometrical factor, c the concentra-
tion ofmobile ions, a the jump distance, andωh is the jump rate. Obviously this theory

does not address the dynamics of ions. To account for the frequency dispersion of the

dynamics, others have modified the theory by assuming a distribution of jump rates.

Another notable theory of conductivity in glass is by Anderson and Stuart [120]. The

theory proposes that the energy barrier opposing motion between sites consist of an

electrostatic work term, and a short range repulsion term. The number of sites is fixed

and the mobile ion concentration is temperature independent as in the so-called

‘strong electrolyte’ view of electrical conduction. There is the ‘weak electrolyte’
view which postulates the existence of two types of sites, and conduction is domi-

nated by the ions thermally activated to the higher energy sites. All these models are

principally concerned with dc conductivity and have no predictions on dynamics of

ions. In the present days, advances in molecular dynamics can calculate the energy

barrier of ion conduction [121], and the interatomic potential chosen in computation

basically replace the postulates of Anderson and Stuart.

In the second class of theories and models, surprisingly there are only a few

that are still maintained by the proponents to be relevant, or are applied continu-

ously to new research results of the present time. They have been introduced before

in Chap. 2.

4.3.1 Random Barrier Models

The random barrier model (RBM) [9, 122–125] considers jumping of a single

particle to neighboring sites on a lattice with identical site energies, but the energy

barriers for jumps are randomly drawn from a smooth probability distribution that is

static in time. Long range motion leading to dc conductivity is accomplished by

percolation [126, 127]. Thus the RBM and its generalizations are all single-particle
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dynamics models without considering ion-ion interactions. The RBM can generate

the frequency dependence of σ0( f ) to resemble the experimental data, consistent

with the BNN relation, and in scaled units becomes independent of both tempera-

ture and activation energy probability distribution, as shown by computer simula-

tions [124, 125]. The results and predictions of the RBM are limited to these few

items. Moreover, the constructs (or assumptions) of the RBM, i.e. barrier energy

distribution and the critical percolation energy barrier, have not been validated for

any realistic ionic conductor. Even if the constructs were valid for a particular ionic

conductor, these constructs are not known quantitatively and hence the results from

the RBM cannot be compared with experimental data. This limitation of the RBM

is honestly admitted by the proponent with the statement “The RBM scaling

function is close to, but rarely identical to those of experiments” when comparing

with experiment in Fig. 4.6a in Ref. [2]. The Fig. 4.6a of Ref. [2] shows the RBM

function not fitting the frequency dependence of σ0( f ) with values less than a factor
of 2 above σdc of the lithium phosphate glass. Despite its long history, the RBM has

no serious applications beyond the ability to generate the frequency dependence of

σ0( f ) resembling the experimental ones. Even so, the RBM is academic because its

constructs and assumptions have not been verified microscopically for any specific

ionic conductor, and the fit have not been used to address additional property in any

realistic ionic conductor.

4.3.2 Jump Relaxation Models and the MIGRATION
Concept

The Jump Relaxation Models was proposed by Funke [128, 129] and coworkers

[130, 131]. In the collection of Jump Relaxation Models, the most recent version is

called the MIGRATION concept (MC) [14, 131–135]. The physical picture of the

series of jump relaxation models by Funke et al. is related to the Debye–

Falkenhagen-type arguments for dilute and strong liquid electrolytes [136], but

the effect is more pronounced due to the high number density of mobile charge

carriers in ionic conductors and stronger Coulomb interactions between them. The

consideration starts from a hop of the ion to neighboring site at time zero. The hop

creates a mismatch in the sense that its momentary position and the minimum of its

cage-effect potential no longer coincide. The mismatch causes the system to

respond. There are two competing processes to reduce the mismatch. One is the

single-particle route, with the ion hopping backwards. The other is the many

particle route, with the neighbouring ions rearranging, thus stabilising the ion at

its new position. When this is achieved, an elementary step of macroscopic trans-

port has been completed by the ion. As stated by Funke in a review [137]: “. . .. the
high number density of mobile charge carriers implies that the Coulomb interac-

tions between them can no longer be ignored”, the frequency dispersion of σ*(ω)
predicted by his different versions of jump relaxation models in ion conductor with

very low concentrations of ions will be different from that with high concentration.
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Funke gave a historical perspective of the development of the science and

technology of solid state ionic in an article [137] with the title “Solid State Ionics:

from Michael Faraday to green energy—the European dimension”. Surprisingly,

there is no mention of the study of ionic conductivity relaxation in a Leyden glass

jar by R. Kohlrausch in 1854 published in Ref. [67], where the stretched exponen-

tial function (now known by his name) was proposed to fit the experimental data.

In the latest version of Funke’s models, MC [14, 134], three coupled rate

equations were formulated to describe the ion dynamics based on the time-

dependent correlation factor, W(t). They are given by:

�
_W tð Þ
W tð Þ ¼ �B _g tð Þ; � _g tð Þ

g tð Þ ¼ Γ0W tð ÞN tð Þ; N tð Þ ¼ N 1ð Þ þ Bg tð Þ½ �K ð4:26Þ

where Γ0 is the elementary hopping rate while B and K are parameters. N(t) is the
effective number of mobile neighbors that, in spite of ongoing shielding, still notice

the dipole at time t. For the decay of N(t) described by the last one in (4.26), an

empirical function has been chosen that yields excellent agreement with experi-

mental conductivities and permittivities. N(1) is the effective number of nearest

neighbors, i.e., of those ions that never get shielded. This number determines the

low-frequency limiting value of the permittivity.

Once W(t) is obtained by solving the three equations in (4.26), the complex

conductivity σ*(ω) scaled by σdc (another parameter of the model) is obtained via

σ∗ ωð Þ=σdc ¼ 1þ
ð1
0

W tð Þ=W 1ð Þ � 1½ �exp �iωtð Þdt ð4:27Þ

where

W 1ð Þ ¼ σdc=σHF ¼ exp �Bð Þ ð4:28Þ

and σHF is the high frrequency limiting conductivity.

The value of the parameter K has an effect on the shape of the conductivity

spectra close to the onset of the dispersion above σ0(ω)/σdc¼ 1. There is an

additional result for ε0(ω) from the MIGRATION concept given by

ε0
�
ωs

	 ¼ ð1
0

W tsð Þ=W 1ð Þ � 1½ � cos ωstsð Þdts ð4:29Þ

where ωs¼ω/ω0 and ts¼ tω0, and ω0 marks the onset of the conductivity dispersion

of σ*(ω) obtained from Eq. (4.29) on the ω-scale. However, results of ε0(ω) are
seldom given together with σ*(ω)/σdc.

Value of K that is smaller or larger has to be chosen in order to fit the

experimental data of log[σ0(ω)/σdc] having an onset of the dispersion which is

less or more gradual respectively. Different values of K is needed to fit data of

various ionic conductors. For example, CKN at 393 K requires K¼ 0.2, and

K¼ 1 at 353 K, and 0.3Na2O-0.7B2O3 needs K¼ 1 [134]. For the 0.45 LiBr-0.56
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Li2O �B2O3 glass, the fit requires K¼ 2 [131]. The value of K¼ 2.3 was used to fit

the data of Ag2S-GeS2 at 273 and 183 K, albeit poorly [131]. For the γ-RbAg4I5 at
113 K, the fit requires K¼ 2.6. Fit to the conductivity spectra of the ionic liquid,

BMIm-BF4, requires K¼ 1.9 [14]. Conductivity isotherms of powdered 0.78

AgI � 0.165 Ag2O � 0.055 B2O3 glass, taken at �110 �C, �130 �C and �155 �C,
were fitted with MIGRATION concept (MC) model spectra obtained with the

values of the shape parameter K are 2.4, 2.7 and 3.0, respectively [138]. The

parameter K is equal to 1 to fit data of a salt-in-polymer electrolyte, i.e., of

1 mole NaPF6 dissolved into a crosslinked PEO-PPO random copolymer [139].

Hence the parameter K is a critical but adjustable fitting parameter in determining

the shape of dispersion in the important range of the rise of σ0(ω) above σdc of ion
dynamics, as discussed in connection with the Jonscher expression and the ion

hopping frequency ω2 in Eq. 4.21. In the fits to experimental data, the other

parameters Γ0 and B have to be chosen in addition to K.
At low temperatures, the conductivity spectra over a broad frequency range is

composed of the dynamics of mobile ions described by MC at lower frequencies

and the nearly constant loss (NCL) at higher frequencies. On further decrease in

temperature, the mobile ion dynamics can be moved out of the experimental

frequency window, and observed is entirely the NCL. An example is taken from

the isothermal logσ0(ω) vs logω spectra of 0.3Na2O-0.7B2O3 shown in Fig. 28 of

Ref. [14]. Figure 4b in Ref. [134] or Figure 9 in Ref. [140] shows a master curve of

log[σ0(ω)/σdc] vs. log(ω/ω0) after shifting data at different temperatures in the

scaling of ω by ω0, as done in the same manner as by Roling et al. [77] In the

master curve [134, 140], the authors did not distinguish for the reader the data

obtained at different temperatures, and the superposed data rises about 8.5 decades

above the base line, log[σ0(ω)/σdc]¼ 0. For such a large range in values of log

[σ0(ω)/σdc], the scaled data are composed of the mobile ion dynamics contribution

at lower scaled frequency and the NCL at higher scaled frequencies. One can

appreciate this point by examining the raw isothermal data of σ0(ω) to see that the

data at 210 and 230 K in Fig. 28 of Ref. [14] had been used by Funke et al. to

construct the master curve. The isothermal data at these two temperatures no doubt

involves the NCL over broad range of frequencies. Notwithstanding, Funke and

Banhatti has a solid line in the figure going through all the scaled data of σ0(ω)/σdc
increasing by 8.5 decades. They stated [140] that the line comes from the “stan-

dard” model spectrum obtained from the MIGRATION concept. This is impossible

because the results from the MC model is exclusively for mobile ion dynamics and

long range ion conduction and diffusion, and cannot account for the NCL. The fact

that the MC model can fit data not intended for raises doubt on the meaning of the

fitting parameters, K, Γ0 and B.
The same doubt arises in the excellent fit of the theory to the master curve of

log[σ0(ω)/σdc] with σdc increasing by 9 decades above σdc in 0.45LiBr � 0.56
Li2O �B2O3 glass, shown in Fig. 13 in Ref. [131] or Fig. 1b in Ref. [141]. One

can find the raw isothermal data at 148, 173, and 448 K in Fig. 1a used to construct

the master curve in Fig. 1b of Ref. [141]. Obviously the σ0(ω) data at 148 K in some

range of higher frequencies originate from the NCL. Furthermore, the NCL has
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weak temperature dependence (compare data from 123 to 223 K at 106 Hz in Fig. 1a

of Ref. [141]). On the other hand, the σ0(ω) spectra derived from the MIGRATION

concept is thermally activated for all ω. This is because both σdc and the high

frequency conductivity σHF of MC are Arrhenius activated, and hence also σ0(ω) for
all intermediate frequencies. This large difference in temperature dependence

means that if the spectrum from the MIGRATION concept can fit the σ0(ω) data
including the NCL at one temperatures (i.e., σ0(ω) data at 148 K included into the

master curve in Fig. 1b of Ref. [141]), then it should fail to fit the NCL data at

another temperature higher than 148 K.

Keen examination of the fits of the MC model to some data published by Funke

et al. reveals that the quality of the fits in the important range, 1	 σ0(ω)/σdc	 3, is

not satisfactory. Examples are the fits with K¼ 2.3 to data of Ag2S-GeS2 at

273 and 183 K in Fig. 3b in Ref. [134], or Fig. 11 in Ref. [140] reproduced here

as Fig. 4.20, where the large size symbols used to represent the data cannot hide

the lack of good fits. The solid lines are model spectra derived from the

MIGRATION concept with K¼ 2.3. The fit of the 183 K σ0(ω) data covers 4.5

decades of increase from the σdc level. The high frequency part has slope 0.89

and is the NCL.

Other examples are the fits to the data of CKN at 393 and 353 K shown in Fig. 7

of Ref. [134]. Since fitting dispersion of log[σ0(ω)/σdc] is the main goal of MC, the

lack of good agreement in the most important range makes one wonders what is the

use of the MC model.

Fig. 4.20 Conductivity spectra of glassy 0.5Ag2S–0.5GeS2. The solid lines are model

spectra from MC [134]. The red line indicate the slope is 0.89, and should be considered as

the NCL or the “second universality” and distinguished from the “first universality”. Surprisingly

the MC fits both

4.3 Relevance of Theories and Models to Experimental Findings 127



4.3.2.1 Limitations of MC

From the description of the structure of the MC by the equations in (4.26) and

(4.27), it becomes clear that the results from MC are limited to fitting the frequency

dependence of log[σ0(ω)/σdc]. This limitation is obvious because in all the papers on

MC cited here and in the reviews of Funke [137] and coworkers [14], the main

application is just that. Furthermore, the values of the three fitting parameters, K,
Γ0 and B have to be adjusted to fit experimental data. K, which critically determine

the shape of the frequency dispersion, has no fundamental significance given. The

dc conductivity σdc is left as yet an another parameter, unrelated to the calculated

frequency dispersion of log[σ0(ω)/σdc] or any of the parameters K, Γ0 and B used in

fitting the data. Except for the fact that MIGRATION concept is based on a

theoretical idea, the scope of its predictions and applications to ionic conductivity

relaxation is very limited despite the model had been developed continuously over

the last two decades.

In the open literature, so far the use of the MC model spectra to fit data has

been exclusively done by Funke and his coworkers. This is understandable

because of the nontrivial procedure to obtain a model spectrum to fit data. The

steps involve solving the three coupled equations in (4.26) to obtain W(t),
performing the Fourier transform in (4.27) to calculate σ0(ω)/σdc, while adjusting
the parameters K, Γ0 and B, to fit the data. Moreover, even after one has carried

out these multiple steps to obtain a fit, the results do not go any further. The

best one can say is that the MC can account for the conductivity frequency

dispersion of the ionic conductor. Objectively speaking, the MC is impracticable

for others to use for fitting the dispersion. Even if used to fit data, the parameters

obtained in the fit do not lead to any further prediction or explanation of other

properties.

4.3.3 Comparison of MC with CM

In the 2010 review of the MC and Jump Relaxation Models by Funke et al. [14],

they mention other concepts, models and computer simulations published over

the years, and stated that ‘all of them aiming at a description and/or modelling of

broadband conductivity spectra’. Those considered by Funke are the Jonscher’s
power law, Ngai’s Coupling Model (CM), Monte-Carlo simulations by Maass

et al. [89, 142, 143], Dieterich’s Counter-Ion Model [144–146] and the Random
Barrier/Random Energy Models of Dyre [122]. The characterization of the other

studies by Funke et al. [14] as ‘all of them aiming at a description and/or

modelling of broadband conductivity spectra.’ is incorrect. Although the papers

by Maass et al. and Dieterich and coworkers are based on Monte-Carlo simula-

tions, the results addressed also properties other than conductivity spectra,

including the nuclear spin relaxation and Haven’ ratio. When putting the
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Coupling Model (CM) into the same category, Funke et al. reference only three

papers published in 1980 and 1981 [70]. It is true that these published 35 years ago

at the birth of the CM are concerned principally with the conductivity relaxation

spectra. However the continued development of the CM in the intervening years

and up to the present time have contributed advances in many different aspects of

ionic dynamics in different classes of materials in the vast field of ionic conduc-

tivity relaxation. The accomplishments up to 2010 in ionics alone was summarized

in a book [60] covering other fields. The theoretical structure of the CM for ion

dynamics has been expanded to include caged ion dynamics, manifested as the

nearly constant loss, and it is terminated by the onset of the primitive relaxation

[46, 48, 53, 64–66], and the same for glass-forming liquids [61, 147–152]. Hundred

or so papers on various applications to various aspects of ion dynamics by the CM

have been published in the period of 1982–2016. These advances will be brought

out later in this chapter after the theoretical basis and prediction have been

presented, and also in Chap. 5 on NMR, Chap. 6 on nanoionics, and Chap. 7 on

ionic liquids. Hence, it is hard to understand why Funke et al. cite only these

35 years old papers when they characterize the CM in their 2010 review [14] and

elsewhere [153].

Even harder to comprehend is the Sect. 4.3.3 entitled ‘Mutual Mapping of MC

and CM’ in the review [153] where Funke et al. compare their recent and up-to-

date MC model with the not-yet-fully-developed 1980 and 1981 version of the

CM for ionic conductivity relaxation. As will be presented in detail, the fully

developed CM long before the year 2007 of Ref. [153] has the caged dynamics

(NCL) and primitive conductivity relaxation/secondary conductive relaxation.

These processes precede the terminal primary ion conductivity relaxation with

its correlation function given by the Kohlrausch stretched exponential function.

The NCL is terminated by the onset of the primitive conductivity relaxation, and

in turn the primitive conductivity relaxation time is related to the primary con-

ductivity relaxation time by the CM relation [60]. The experimental data shown

before in Figs. 4.7, 4.8, and 4.9 as well as those in Refs [46, 48, 53, 60, 64–66].

support the results of the fully developed CM. Therefore, it is hard to understand

why Funke et al. compare the MC with the CM using for the latter its 35 years old

version and neglecting the later developments.

A factual comparison between MC and the CM was given by us in Ref. [154]. In

this paper we give credit to Funke for also recognizing the importance of ion-ion

interaction. One can see some examples of the broad applications of the CM in this

paper but that cannot be matched by the MC, and these are just part of the total

number of CM applications over the years. The predictions of the CM are not only

successful in ionic conductivity relaxation, but also in dynamics of glass-forming

materials and systems in the glass transition problem, and polymer viscoelasticity

[60]. The reason why the predictions of the CM are applicable to different

interacting systems is because it is based on a fundamental physical principle

discussed later.
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4.3.4 Monte Carlo and Molecular Dynamics Simulations

The Monte Carlo simulation of ion dynamics [89, 142, 143], and the Dieterich’s
Counter-Ion Model [144–146] are computer experiments performed to bring out the

effects of ion-ion interactions in ionic conductivity relaxation. The results from the

simulations all indicate that ion-ion interaction is the origin of the frequency

dispersion of conductivity, and lend support to theories of ion dynamics based on

ion-ion interaction, which include the MC and the CM but not the random barrier

models with or without percolation. Although instructive, Monte-Carlo simulations

are not theory in the sense that they have no well-defined quantitative predictions,

and cannot be used for treatment of experimental data to extract values of mean-

ingful parameters. Nevertheless we give credit to these simulations for their con-

tributions to the advance in the research on ion dynamics, particularly on the

importance of ion-ion interaction.

Molecular dynamics simulations of glassy [65, 66, 106, 155–164] and crystal-

line [165] ionic conductors, a molten salt [151, 166, 167], and ionic liquids

[162, 168–177] are an important part of this book. The methodology, applications,

and results will be the subjects of Chaps. 8–11. Success of molecular dynamics

simulations to reproduce ion dynamics of real material depends on the choice of the

potential. In conductors where ion concentration is large, inevitably ion-ion inter-

action potential term has to be included in order for the simulations to be successful,

and also in the case of theory.

4.4 The Coupling Model (CM)

Before 1978, the research activity of one of us (KLN) was totally in electron

physics. In that year he was first exposed to some experimental results in relaxation

and diffusion of non-electronic materials and systems [50]. The materials and

systems are mostly condensed matter composing of densely packed and interacting

ionic, atomic, and molecular units or particles in general. Although lacking any

background and experience in the research areas, he immediately recognized that

this is a many-body problem in irreversible statistical mechanics, and the impor-

tance of considering interactions between the basic units, without which a funda-

mental understanding of the dynamics of relaxation and diffusion and the properties

of the transport coefficients cannot be attained. He was surprised by not finding any

theory or model specifically consider ion-ion interaction in conductivity relaxation

and diffusion of ionic conductors, or unit-unit interactions in relaxation and diffu-

sion in other fields including glass transition of glass-formers with widely different

physical and chemical structures. The vacuum confers the opportunity for him to

explore ways to incorporate interaction into relaxation and diffusion. Interactions in

most complex materials, such as liquid, glassy, and crystalline ionic conductors,

van der Waals glass-forming liquids, polymers, inorganic and metallic
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glass-formers, and dense colloidal particles, involve potentials (e.g., Coulombic,

dipolar, Lennard–Jones, and hard sphere, and etc.) that are anharmonic. In classical

mechanics, such anharmonic interactions cause non-linear Hamiltonian dynamics

(i.e. chaos) in the phase space of the system. Since chaos is fundamental and

universal property [178, 179], it is logical to investigate the effect of interaction

on ion dynamics based on classical chaos. This was his choice in 1979, but in the

first try the semiclassical quantization of classical chaos was used, resulting in four

publications in the same year [50, 180–182]. Since then a number of studies based

on classical chaos [183–189] and other considerations [190–195] have appeared,

but the original results of the CM on the many-body and cooperative relaxation and

diffusion remains unchanged till the present times. The papers cited have been

reviewed in great details in the book “Relaxation and Diffusion in Complex

Systems” published in 2011 [60], and only the essentials will be given here. The

first paper dedicated to ionic conductivity relaxation was published in 1981 [70].

The CM is clearly the pioneer in incorporating many-body effects in relaxation and

diffusion of interacting systems, proposed earlier than other models, Monte Carlo

and molecular dynamics simulations.

Starting in 1998, the CM has been extended to cover the processes that transpire

before the many-body and cooperative relaxation [45, 46, 48, 53, 147, 150, 151].

The extension has expanded the predictions of the CM to cover the caged dynamics

(NCL in susceptibility), the secondary relaxation, and the primary many-body and

cooperative relaxation, and the relations between them.

We believe a physical description of the theoretical basis of the CM with some

qualitative justifications, and a presentation of its predictions are more suitable in

this book than a replication of the formal mathematical physics used before to

derive the predictions and given already in publications and the 2011 book [60].

Besides we expect the majority of readers of this book are mainly interested in ionic

conductivity relaxation, and they may be more interested in the predictions and

results of the CM rather than the details.

4.4.1 The CM Based on Universal Statistics of Energy Levels

The first version of the Coupling Model (CM) [50, 180–182] on relaxation of

interacting systems was published in 1979. In retrospect, this model is based on

semiclassical quantization of nonlinear Hamiltonian mechanics, i.e. classical chaos

[179, 196–200]. The interacting system is semiclassically quantized and the energy

levels distribution is described by Wigner’s statistical theory [201–203]. This

theory of Wigner originated from his idea that the complex Hamiltonians of

many-body interacting systems (in the original case considered by Wigner, it is

that of heavy atom nuclei such as uranium) could be approximated by a random

Hamiltonian representing the probability distribution of individual Hamiltonians

for the purpose of finding the energy levels. This idea was then further developed

with advances in random matrix theory and statistics. For systems invariant under
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time reversal, it is given by the Gaussian Orthogonal Ensemble (GOE) in random

matrix theory. It makes sense to use GOE because it has been shown to apply to a

variety of atomic, molecular, nuclear systems [200–203] [A collection of original

papers by E.P. Wigner and others on random matrices and applications can be

found in refs. [204, 205]. In GOE, the distribution of level spacings E is given by the

expression, p E=Dð Þ ¼ π=2ð Þ E=Dð Þexp � π=4ð Þ E=Dð Þ2
h i

, of Wigner, where D is the

average spacing (see Fig. 4.21). In the absence of interactions, the level spacings

follow the Poisson distribution, drastic different from the GOE (see Fig. 4.21). GOE

has the characteristic linear dependence of p(E/D) / E/D which originates from

energy level repulsions, and this dependence holds up to a cut-off high energy, Ec.

When considering relaxation and diffusion, frequency ω or time t varies over many

orders of magnitude, and logω or logt is the appropriate variable. Since energy

E correspond to ω or time 1/t, we replot p(E/D) vs. log(E/D) in Fig. 4.22, and put log
(ω/ωc) or log(t/tc) under log(E/D), as label of the abscissa, to indicate the

corresponding variables when considering relaxation. Like D, the magnitudes of
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Fig. 4.21 A Wigner
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spacing distribution of
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shown for contrast
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ωc ¼ Ec=h, where h is the Planck’s constant, and tc depends on the interaction

strength determined by the potential of interaction, and it is insensitive to

temperature or pressure. Stronger is the interaction strength, larger is D and ωc

and shorter is tc.
The results given above brings out the physics that interactions has no effect on

relaxation and diffusion at frequencies higher than ωc or at times shorter than tc.
This is because the linear dependence of the level spacing distribution on E no

longer holds for E>Ec, which corresponds to times shorter than tc� (ωc)
�1. So, if

ion-ion interaction is the cause of the non-exponential time correlation function of

many-body conductivity relaxation such as that given by the Kohlrausch function

of Eq. (4.15), it is ineffective at times shorter than tc, and the normalized correlation

function is simply the one-body exponential function, Φ(t)¼ exp(�t/τ0), of Debye
in relaxation and of Einstein in Brownian diffusion.

Therefore, in the CM, at times shorter than tc� (ωc)
�1 the relaxation is a

primitive or one-body (single ion) relaxation with constant rate W0� (τ0)
�1, and

the correlation function is given by exp(�t/τ0). Due to interactions and the onset of
the linear level spacings distribution or correlations between the ions, the many-

body relaxation governed by chaos takes over after crossing tc. It is the response of
the GOE energy level structure to the primitive relaxation that is used to account for

the many-body relaxation which necessarily slows down its primitive relaxation

rate W0 [180–182]. Calculated by perturbation theory, the response coming from p
(E) with the linear dependence on E slows down the relaxation rate W0 to have the

time dependent form of

W tð Þ ¼ W0 ωctð Þ�n
, t > tc; ð4:30Þ

and the correlation function to have the Kohlrausch form given by Eq. (4.15), for

times longer than tc. The power, n, called the coupling parameter, is a fraction of

unity which increases with the strength of interaction. Thus, the relaxation rate of

interacting many-body systems is time dependent. It is the primitive relaxation rate,

W(t)¼W0 for t< tc, and the many-body relaxation rate, W(t)¼W0(ωct)
�n, when

t> tc. This crossover from the primitive to the many-body relaxation rate does not

occur necessarily sharply at tc but rather smoothly in a neighborhood of tc, so that

the correlation function and its derivatives are continuous across tc. The factor, exp
[�(π/4)(E/D)2], in p(E) effects the transition between the two rates. Its width

parameter D suggests that the width of the neighborhood is of the order of tc itself,
and hence narrow, if there is no other factor like polydispersity of relaxation units

entering into the problem. Some of the experimental data to be introduced later

show that the crossover is quite sharp. In view of this and in the absence of reliable

way to account quantitatively for the narrow crossover, the sharp crossover of the

two relaxation rates at tc is used to generate predictions. The correlation function

ϕ(t) obtained from the CM rate equation, ∂φ tð Þ=∂t ¼ �W tð Þφ tð Þ, by integration

with τ0� 1/W0 is given by
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ϕ tð Þ ¼ exp �t=t0ð Þ, t < tc; ð4:31Þ

ϕ tð Þ ¼ A exp � t=τ∗ð Þ1�n
h i

, t < tc; ð4:32Þ

and continuity of ϕ(t) at tc leads to the relation,

τ∗ ¼ 1� nð Þ tcð Þ�nτ0½ � 1
1�n ð4:33Þ

and

A ¼ exp n= 1� nð Þ½ � tc=τ0ð Þf g: ð4:34Þ

When τ0 is much longer than tc, A! 1, and

ϕ tð Þ ¼ exp � t=τ∗ð Þ1�n
h i

, t > tc; ð4:35Þ

τ∗ ¼ tcð Þ�nτ0½ � 1
1�n ð4:36Þ

There is no difference between Eqs. (4.33) and (4.36) when the CM is used merely

to predict the relation between the dependence of the many-body relaxation time τ*
with that of the primitive τ0 on some variable U. For example if τ0 has Arrhenius
T-dependence with activation energy Ea, then both equations predict that the

activation energy of τ* is given by Ea/(1-n). Quantitatively for the relation between
τ0 and τ*, the two expressions make some difference particularly when n becomes

larger. In that case, Eq. (4.33) should be used when τ0 is not much longer than tc for
the sake of accuracy, as demonstrated in comparing prediction [206] with molecular

dynamics simulation data [207, 208] where n has unusually large value. When

using the prediction to deduce quantitatively τ0 from the experimentally observed

τ* with known values of n and tc, Eqs. (4.33) and (4.36) leads respectively to τ0
¼ tcð Þn τ∗ð Þ1�n

= 1� nð Þ and

τ0 ¼ tcð Þn τ∗ð Þ1�n
: ð4:37Þ

The difference between the two expressions for τ0 is not large, only a factor 2 for

n¼ 0.5, and lesser for smaller values of n. For this reason, Eq. (4.37) is often used.

The significance of the CM equation (4.33) or (4.36) is that it makes a connec-

tion between the many-body relaxation time τ* usually endowed with anomalous

properties and the primitive one-body relaxation time τ0, the properties of which are
normal and known. Thus, the connection provides falsifiable explanations/predic-

tions of the anomalous properties of τ* from the known or familiar properties of τ0.
The connection is made via the Kohlrausch exponent n, and the crossover time tc.
These two parameters of the many-body relaxation naturally are ultimately deter-

mined by the interaction potential and its strength.
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The equation (4.36) coupled with the Kohlrausch function (4.35) of the CM

spawns many predictions that can be tested by experiments and used to explain

anomalous properties. Many such tests and applications are given in the sections to

follow. Since it was derived for complex Hamiltonians in general, the predictions

form these equations should apply to relaxation and diffusion in interacting many-

body systems of various kinds, and the dynamics of ionic conductors is only a

special case. Thus, ever since the inception of the CM in 1979, the expected

existence of universal relaxation and diffusion properties of interacting many-

body systems has led to concurrent explorations of several fields using the two

coupled equations (4.35), (4.36) as the tool [60]. It must be borne in mind that these

equations hold strictly for systems in which all relaxation/diffusing units are

identical and monodisperse, and heterogeneity is not introduced by boundaries,

randomness, mixing, and etc. If extrinsic heterogeneity is present, these equations

have to be modified by incorporating extraneous factors, and the test of applicabil-

ity of the CM become less precise and direct, but nevertheless can be done.

Moreover, the two coupled equations (4.35) and (4.36) strictly applies to the

terminal many-body relaxation leading to steady state transport coefficients. Before

reaching the terminal relaxation, the dynamics of ions have passed through several

stages. The first stage is the dissipation of ions mutually confined in cages through

the interionic potential, manifesting as the nearly constant loss (NCL) in ε00(ω) in
Eq. (4.6), and σ0(ω) in Eq. (4.7). The caged ion dynamics have no characteristic

time and continues with time indefinitely until the onset of the primitive ion

relaxation corresponding to ion hop out of the cage singly or independently,

which is the second stage. Thereafter, increasing number of ions cooperatively

relax continuously with time (this is the third stage), until the maximum number

(or length-scale L ) of the heterogeneous ion dynamics is reached. The latter is the

terminal or primary many-ions relaxation with time correlation function and relax-

ation time governed by Eqs. (4.35) and (4.36) [60].

The CM does not provide description of the motion of ions in space at the third

and the final stage Notwithstanding, the CM had anticipated that these processes in

interacting many-body systems is dynamically heterogeneous by pointing out [209]

the analogy of the CM to the heterogeneous process in the solution of the ‘Dining
Philosophers Problem’ in computer science [210], one year before the first

experimental evidence of dynamic heterogeneity of structural α-relaxation was

published [211].

In the CM, dynamic heterogeneity and Kohlrausch non-exponentiality,

Eq. (4.35), are regarded as parallel consequences of the cooperative many-body

molecular dynamics, but the former is not emphasized in the applications of the

CM. Description of the motions as a function of time is best obtained by special

experiment techniques like confocal microscopy for colloidal suspensions

[212, 213] or by molecular dynamics simulations of ions [66] and especially

designed computer simulation method for molecular liquids such as the Dynamic

Lattice Liquid Model [214, 215]. Such description is worthwhile as well as pleasing

to acquire, but being able to describe motions as a function of time does not

necessarily mean that it can explain the anomalous properties of the terminal
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many-ion relaxation time, τ, while the CM equation can do just that via Eq. (4.36).

Ever since it was first derived in 1979, this problem-solving capability of the CM

continues to apply in the field of ionic conductivity relaxation and other areas,

particularly the dynamics of glass-forming materials and systems [60].

4.4.2 Tracing the Key Result of the CM, W(t)¼W0(ωct)
�n,

Back to R. Kohlrausch

One of crucial results of the CM in the 1979 paper [180, 181], is the time dependent

relaxation rate, W(t)¼W0(t/tc)
�n. Nowadays, to many workers in the field of

relaxation, R. Kohlrausch [67, 68] and his son and F. Kohlrausch [216, 217] are

known for their introduction and use of the stretched exponential function to

describe electrical and mechanical relaxations of materials. Not noticed or pointed

out by others is that in the 1854 paper by R. Kohlrausch, on page 198 he actually

started with the time dependent rate equation, d(pQt � rt)/dt¼ �btm(pQt � rt),
duplicated faithfully here. For the notations he used, m is a negative fraction of

unity, b is a constant, and (pQt � rt) is the relaxing quantity he considered. By

integration of the differential equation from t¼ 0 to t¼ t and with Qt(t¼ 0)¼Q0

and rt(t¼ 0)¼ 0, he then arrived at log[(pQt � rt)/pQ0]¼ -[b/(m + 1)]tm+1. This is
just the same as (pQt� rt)/pQ0¼ exp(�Btm+1), where B¼ b/(m + 1). In other words,

R. Kohlrausch derived the stretched exponential function from the time dependent

relaxation rate btm, with �1 < m < 0. Using his own data, he deduced

m¼�0.5744, and b¼ 0.4289. F. Kohlrausch [216, 217] wrote down a similar

equation, dx/dt¼�g�x/tn, before getting the stretched exponential function. Now

it becomes clear that the primary result of the CM, W(t)¼W0(t/tc)
�n, is exactly the

same as time dependent relaxation rate, btm, of R. Kohlrausch after putting m¼�n,
and b¼W0(tc)

n. Notwithstanding, in the CM, from the rate equation, dϕ/dt¼�W
(t)ϕ, and W(t) given by W0� (τ0)

�1 for t< tc, and W(t)¼W0(t/tc)
�n for t> tc, not

only one can obtain the Kohlrausch function, exp[�(t/τ)1�n], but also the 2nd

relation τ¼ [(1�n)(tc)
�nτ0]

1/(1�n), where τ0� 1/W0. This 2nd relation introduces

new physics and immensely enhances the applications of the Kohlrausch function

beyond an empirical function to fit data. In the CM, n is indicator of the slowing

down and stretching to longer times of the many-body relaxation. As will be shown

in many sections to follow, the 2nd relation can explain the experimentally observed

anomalous and universal properties of τ of ion dynamics from the normal properties

of the primitive ionic relaxation time τ0 as well as the corresponding quantities of

the dynamics in other interacting systems [60].

These important advances cannot be achieved without using the time

dependent relaxation rate, W(t)¼W0(t/tc)
�n, originally proposed in terms of btm

with �1 < m < 0 by R. Kohlrausch phenomenologically. Therefore, when paying

homage to Kohlrausch, I propose that it is more appropriate to cite Kohlrausch’s
fractional-power time dependent relaxation rate, btm with �1 < m < 0, instead of
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his widely known stretched exponential function, or at least together with it. The

function follows as a consequence of the rate, btm, but not vice versa. Moreover,

there can be different interpretations of the stretched exponential function, such as

the more trivial one of distribution of linear exponentials due to randomness, while

the interpretation of the rate, btm orW0(t/tc)
�n, is more restrictive and its origin has

to be derived from some fundamental physics. This was done in the CM from

quantum chaology [196], and the variety of consequences and predictions coming

out from Eq. (4.36) have gone far beyond the Kohlrausch function alone.

Based on random-matrix behavior in the statistics of energy levels, the first

version of the CM is a development under the field called quantum chaology by

Berry [196, 197], who gave the following definition: “Quantum chaology is the

study of semiclassical, but nonclassical, phenomena characteristic of systems

whose classical counterparts exhibit chaos.” From this definition of quantum

chaology and the relation to the first version of the CM, it is clear that the results

of the CM can be derived in model systems exhibiting classical chaos without

resorting to random matix of quantum chaology as originally done in 1979. The

next section briefly mention some examples of the derivations.

4.4.3 Coupling Model from Classical Chaos

In classical mechanics, it is well known systems with anharmonic interactions

universally exhibit classical nonlinear dynamics (chaotic classical motion)

[178, 179, 218]. In the 1980s, many publications show classically chaotic systems

when quantized have quantum energy spectra characterized by the universal statis-

tics of random matrix eigenvalue ensembles [179, 198, 199, 219, 220] [This subject

is still actively being pursued at recent times, see 221]. Overwhelming experimental

and numerical evidence supports this connection for systems as diverse as atomic

nuclei, Rydberg atoms [204] and quantum billiards [222]. The relation between

classical nonlinear dynamics and quantum energy spectra is natural because, in the

macroscopic size regime, laws of classical mechanics are expected to emerge in the

semiclassical limit, h ! 0. It suggests that the many-body relaxation stems from

classical nonlinear mechanics, and from which one can find another way to derive

the CM equations applicable to relaxation/diffusion in systems exhibiting classical

chaos. The first attempt in this direction involves the use of the characteristic of

classical chaos, which is the emergence of complexity on infinitely fine scales in

classical phase space. The structure of the infinitely fine phase space was used as

basis of qualitative models to generate the Kohlrausch correlation function

[184, 193]. Some residual order in phase space in terms of quasiperiodic motions

(vague tori) was found to exist on a short time scale even in the chaotic regions of

phase space for a large class of systems [223, 224]. The quasiperiodic motions are

attributed to remnants of destroyed invariant tori in phase space This property

ensures the relaxation/diffusion at short times is normal and its correlation function

is given by the linear exponential of Eq. (4.31).
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Starting from simple nonintegrable Hamiltonian models that exhibit classical

chaos, the results of the CM have been reproduced [184–189, 225]. The crux of the

CM is the existence of a rather sharp crossover of the relaxation function from

linear exponential to the Kohlrausch stretched exponential, and this has been found

from the numerical solutions of the simple models. Moreover, stretching (or n)
increases with increase in nonlinearity (anhamonicity) or interaction strength of the

Hamiltonian, consistent with the same expected heuristically from the CM on

increasing the strength of coupling or constraints in glassforming substances,

ionic conductors, and other interacting systems. In the following we reproduce

one example.

4.4.4 Relaxation of Interacting Arrays of Phase-Coupled
Oscillators

Consider an array of N oscillators, where the phase φi(t) of the ith oscillator,

1	 i	N, is coupled nonlinearly by a sine function to the phases of the other

oscillators and obey the equation of motion [186, 189, 226],

d

dt
φi ¼ �K

N

XN
j¼1

sin φj � φi

� 	 ð4:38Þ

with uniform interaction K/N. We are interested in the decay of the phase coher-

ence, r, which is the absolute value of the order parameter, rexp(iψ), defined by

r ¼ 

reiψ 

 ¼ 

1
N
Σje

iφj


 ð4:39Þ

It has been shown that the decay of r for an array of phase-coupled oscillators is

exponential [226], like the primitive relaxation of an isolated molecule in a solvent

such as described by the Debye model [227]. As an analogue of many-body systems

interacting with anharmonic potential, we consider now a number M (larger than

one) of such arrays and couple these arrays nonlinearly together, again by the sine

function,

K0

MN
ΣM
β¼1,β 6¼αΣ

N
j¼1sin φjβ � φiα

� 	 ð4:40Þ

where K0/MN is the inter-array interaction strength. The new equation of motion of

the phase of the ith oscillator in the αth array, 1	 α	M, is now given by

φ0
iα ¼ φiα �

K

N
Σ N
j¼1sin φjα � φiα

� 	þ K0

MN
ΣM
β¼1,β 6¼αΣ

N
j¼1sin φjβ � φiα

� 	
: ð4:41Þ
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The problem is simplified to a map by picking the appropriate time steps and

rescaling the time, so that time t is now discrete and incremented by 1 after each

iteration of the map. The effect of the interactions between theM arrays on r of each
array is studied by considering the new map. The interacting arrays mimic an

assembly of interacting molecules in a molecule liquid. In the absence of inter-

array interaction (i.e., K0 ¼ 0), r of the non-interacting arrays of coupled oscillators

decays exponentially to an incoherent state, i.e. r¼ 0, for K> 0, in analogy to the

primitive Debye relaxation of isolated molecules in dilute solution. However, since

the interacting arrays do not model translational or rotational motion, they cannot

be identified exactly with the structural relaxation in a glass-forming liquid. A

nonlinear Hamiltonian that resembles more closely interacting ions in a ionic

conductor or interacting molecules in a glass-forming liquid has to be much more

complicated than the interacting arrays, and likely its dynamics cannot be solved

exactly. In spite of its limitations, the interacting arrays of oscillators model has the

advantage that its dynamics can be obtained readily, as shown below, and is a

prototype of the relaxation of interacting many-body systems.

With arrays of random initial oscillator phases, we iterate the map in Eq. (4.41)

to obtain the evolutions of the coupled arrays numerically. The evolutions of three

(i.e., M¼ 3) interacting arrays, each of N¼ 32 oscillators initially with random

phases, are obtained by iteration of the map defined by Eq. (4.41). From the results

we calculate the decay of the phase coherence r(t) for each array. First for a fixed

K we calculate r(t) for four values of K0 ¼ 0, 0.6, 0.8, 1.0 and 1.2. The results are

shown in Fig. 4.23 (left). The figure shows with increasing inter-array coupling

strength K0, the decay of r(t) becomes slower and its time dependence more

non-exponential. The accompanying Fig. 4.23 (right) is replotting the same results

as log10{-loge[r(t)]} versus log10t. At short times the slope is exactly 1, indicating

that initially r(t) is an exponential function of time, exp(-t/τ0), in analogy to the

primitive relaxation of the CM, Eq. (4.31). However, the linear exponential decay

does not hold at longer times. There exists a cross-over time tc after which the slope
becomes less than 1, and r(t) departs from the exp(-t/τ0) time dependence. Actually,

for t> tc, the slope varies slightly with time but the result is still reasonably well

approximated by a straight line having a constant slope equal to β � 1� nð Þ 	 1,

indicating r(t) has crossed over to assume the stretched exponential time depen-

dence, Eq. (4.35), of the CM. Naturally, Eq. (4.36) of the CM is satisfied. The

systematic decrease of the long time slope β (see insert in Fig. 4.23 right) with

increase of K0/K supports the intuitively reasonable surmise that n, the coupling

parameter in the CM, increases with the mutual interaction strength of the relaxing

units in real materials. We observe that there is a slight increase of tc with decrease

in the interaction strength, which is also consistent with real materials.

In addition to the interacting arrays of oscillators, we have studied relaxation in

other models of nonlinear Hamiltonian dynamics [184–189, 225] which reproduce

the same results. All of them are systems exhibiting classical chaos governed by the

nonlinear (anharmonic) Hamiltonian. We expect the crossover property found in

these idealized models to be general and carried over to other Hamiltonians that

describe more realistically the nonlinear interaction potentials in ionic conductors
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or molecular liquids as done in molecular dynamics simulations. Thus, the results

from the idealized model systems can be considered as justification of the physical

principle behind the CM when applied to many-body relaxation process in the ionic

and molecular systems.

4.5 Experimental Verifications of the CM

Before we compare the results of the CM from the idealized models, either from

semiclassical quantization of classical chaos or directly from classical chaos, with

experimental data of conductivity relaxation in ionic conductor or structural relax-

ation in molecular systems, the following point has to be borne in mind. In real

materials, the terminal or primary many-body relaxation or diffusion, which deter-

mines the transport coefficients, is preceded in time and in order by vibrations,

caged dynamics (NCL in susceptibility), the primitive relaxation of the CM, and the

secondary relaxation. In conductivity relaxation these faster processes appear at

Fig. 4.23 (left) Decay of r(t) calculated forM¼ 3, K¼�0.03 and K0/K¼ 0, 0.6, 0.8, 1.0 and 1.2.

The inset shows τ0 (O) and τ (�) as a function of K0/K. (right) Plot of log10{�loge[r(t)]} versus

log10t obtained numerically forM¼ 3, K¼�0.03 and K0/K ¼0, 0.6, 0.8 and 1.0. The dashed lines
are the exponential fits and the solid lines are the stretched exponential fits. Curves for K0/K ¼0.0,

0.6 and 0.8 are shifted vertically by multiples of 0.5 to avoid overlapping of results in the figure.

The crossover time tc is indicated by the vertical arrows. The calculated r(t) conforms well to exp

(�t/τ0) for t< tc and to exp[(�t/τ)β] for t> tc. The inset shows that the stretch exponent β decreases
with increasing inter-array interaction strength
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times shorter than the correlation time of the Kohlrausch function. Although

Eqs. (4.31), (4.35) and (4.36) remain applicable to the terminal many-body relax-

ation with the Kohlrausch correlation function, and are useful to explain its prop-

erties, the faster processes must be taken into account when considering

experimental data in toto. Such comprehensive consideration of the dynamics of

all times was called at one time the extended Coupling Model [53]. Since then it is

the version of the CM used whenever applied to real materials, and the word

‘extended’ was dropped. The attention paid to the faster processes confer a bonus.

The appearance of the secondary β-relaxation in the spectrum makes it possible to

show its relaxation time τβ is in agreement with the primitive relaxation time

τ0 (calculated by Eq. 4.36) in order of magnitude, which says that the primitive

relaxation is the precursor of the secondary relaxation [7, 33, 34, 53, 60, 62, 63, 65,

148–152]. The secondary β-relaxation is composed of increasing number of units

participating in relaxation with increasing time before the terminal many-body

α-relaxation is reached. Moreover, the caged dynamics is terminated by the onset

of the primitive relaxation and secondary relaxation. All these properties found

from the processes transpired before the terminal many-body relaxation show

connectivity of the processes in the evolution of the dynamics with time. Experi-

mental data demonstrating these properties will be presented later in this chapter.

4.5.1 Direct Crossover

Caged dynamics do not exist at high temperatures where the primitive relaxation

time τ0 is comparable in order of magnitude to tc. Observed processes are entirely

relaxational because the ions or molecules are never caged. Under this condition,

the correlation function directly crosses over at tc from exp(�t/τ0) of the primitive

relaxation to exp[�(t/τ*)1�n] of the many-body relaxation, exactly as found in the

idealized models. The crossover time tc originate from the onset of chaos, which is

governed by the interaction. Hence the magnitude of tc is temperature insensitive

and is determined by the strength of the interaction. In the following we show some

examples of the direct crossover from exp(�t/τ0) to exp[�(t/τ*)1�n] in ionic

conductors and molecular glass-formers found by experiments. It should be men-

tioned that this property was first pointed out as one of the predictions of the

Coupling Model (CM) [180–182] on relaxation of interacting systems, long before

the experimental observations by others [228–232], and simulations for ortho-

terphenyl (OTP) [233], polyisoprene [234], and polyisobutylene [235]. These

experimental confirmations were obtained from quasielastic neutron scattering

(QENS) studies of polymers. The magnitude of tc found is about 1–2 ps for all

these polymers. The dynamic incoherent structure factor, S(Q,ω), measured at

scattering vector Q was transformed to time domain to obtain the incoherent

intermediate scattering function (i.e., the self-correlation function) associated

with local segmental relaxation, I(Q,t). Here we show as an example the data of

poly(ethylene oxide) (hPEO) in mixtures with poly(methylmethacrylate) in which
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all hydrogen atoms are replaced by deuteron atoms (dPMMA) [231, 232]. The

dynamics observed by neutron scattering comes from the local segmental relaxation

of the hPEO. The I(Q,t) measured at six different Q values and extended time range

by use of two spectrometers DCS and HFBS are reproduced from the figure in Ref.

[231] and shown in Fig. 4.24. A change of time dependence of I(Q,t) from exp(�t/τ0)
to exp[�(t/τ*)1�n] at tc¼ 1 ps is evident. The relaxation time τ0 is found to haveQ

�2

-dependence of normal diffusion, indicating the relaxation is an independent or

one-body in nature consistent with the so called primitive relaxation of the CM.

Triolo et al. [236] performed QENS measurements of the room temperature

ionic liquid, 1-n-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6],
and obtain the corresponding I(Q,t) data. In Fig. 4.25, we reproduce the time

dependence of the I(Q,t) at a fixed value of Q¼ 2.0 Å�1 at several temperatures.

Two relaxations occur over the experimental time range. The faster one with time

dependence proportional to exp(�t/τ0) occurs on a time scale of the order of

picosecond, and a slower process follows at longer times, thus [bmim][PF6] exhibit
the crossover as found in the structural relaxation in glass-formers [228–232].

Shown in Fig. 4.25 are not only the experimental data (symbols) but also the fits

(solid lines) by Triolo et al. In fitting the data, they assume the time dependence of

I(Q,t) is the sum, Aexp(�t/τ0) + (1�A) exp[�(t/τ)1�n]. This function is not exactly

the same as the crossover from exp(�t/τ0) to exp[�(t/τ*)1�n] predicted by the

CM. Nevertheless, the data at the high temperature of 320 K, as well as the fit is

consistent with the crossover at tc slightly less than 2 ps.

Fig. 4.24 Combined DCS and HFBS scattering decay curves for hPEO in dPMMA at 308 K for

sixQ values inÅ�1 (from top to bottom) given in the figure. The values ofQ are approximately the

same for the two spectrometers. Lines represent a KWW fit with parameters falling within the

error bars determined using the DCS data alone. The disk chopper time-of-flight spectrometer

(DCS) was operated at an incident wavelength of 4.2 Å and an energy resolution of 81.6 μeV. A
dynamic range of �20 μeV was used for the high flux backscattering spectrometer (HFBS), with

an energy resolution of 0.87 μeV. Data from Ref. [231] and redrawn
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At lower temperatures, there is no direct crossover from exp(�t/τ0) to

exp[�(t/τ*)1�n]. The caged dynamics and the secondary or β-relaxation
intervene and appear before the many-body relaxation with time dependence of

exp[�(t/τ*)1�n]. This is evidenced by the very slow decrease of I(Q,t) with time

after tc at 250 K in Fig. 4.25. If I(Q,t) is Fourier transformed to frequency domain,

this slow decrease becomes the nearly constant loss (NCL) in susceptibility. In

some cases, a β-loss peak is resolved at frequencies in between the NCL and the

terminal α-relaxation as shown before in Figs. 4.7, 4.8, and 4.9. If the Gaussian

approximation holds and the incoherent elastic intensity I(Q,t) can be expressed in

terms of the mean square displacement, <u2>, by I Q; tð Þ ¼ I0exp � u2
� �

Q2=3
� 	

,

the caged dynamics responsible for the very slow decrease of I(Q,t) at lower

temperatures correspond to a very slow increase of <u2> with logt. This will be
amply shown in molecular dynamic simulations of ions in glassy ionic conductors

[161, 163] to be presented later.

4.5.2 Q-Dependence of τ* and τ0

We have mentioned that the CM has many predictions besides the Kohlrausch

correlation function, exp[�(t/τ*)1�n], which provides good description of the time

correlation function of the terminal many-body ionic or molecular relaxation. Here

is one example from the relation of the Q-dependence of τ* to that of τ0 obtained
from I(Q,t) in neutron scattering experiments, where Q is the scattering vector. The

Q-dependence of τ0 is proportional to Q�2 because τ0 is the relaxation time of the

primitive relaxation. This is supported by the findings of neutron scattering exper-

iments [228, 237–239] at t< tc that the intermediate scattering function is Gaussian

and corresponds to a normal diffusion process, and the Q-dependence of the

relaxation time τ0(Q,T) is proportional to Q�2. Writing out explicitly the Q- and

Fig. 4.25 Temperature

dependence of I(Q,t) for

[bmim][PF6] atQ¼ 2.0Å�1.

The symbols represent the
experimental data, while

the lines represent the fit
in terms of the model

mentioned in the text
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T-dependence of τ0(Q,T) as the product τ0(Q,T)¼Q�2ζ0(T ), the Q- and

T-dependence of τ*(Q,T) is given via that of τ0(Q,T) by the CM Eq. 4.36

τ∗ Q; Tð Þ ¼ tcð Þ�nτ0 Q; Tð Þ½ � 1
1�n ¼ Q�2= 1�nð Þ t�n

c ζ0 Tð Þ� �1= 1�nð Þ
: ð4:42Þ

If the temperature dependence of τ0(Q,T) is Arrhenius with activation energy Ea

and prefactor τ01 such that τ0(Q,T)/τ01exp(Ea/RT), the T-dependence of τ*(Q,T)
is also Arrhenius but with a larger activation energy,

E*
a ¼ Ea= 1� nð Þ: ð4:43Þ

The CM has two predictions for τ*(Q,T), one is the Q�2/(1�n) dependence, and

the other is the stronger T-dependence, [ζ0(T )]
1//(1�n), than ζ0(T ) of τ0(Q,T), or

larger activation energy Ea* than that of τ0(Q,T). Both predictions can be tested

quantitatively by using the value of the fractional exponent, (1�n), of the

Kohlrausch function obtained from the fit to I(Q,t) at times t> tc.
The Q�2/(1�n)-dependence of the segmental α-relaxation time, τ*(Q,T), in the

range, Q	Qmax, where Qmax is the value at which the static structure factor S(Q)
shows its first maximum, was first discovered by neutron scattering in the polymer,

polyvinylchloride (PVC), by Colmenero and coworkers [230, 237] as early as in

1992. In the same year, the Q�2/(1�n) dependence was explained by the CM

Eq. (4.42) [238] not only for PVC but also for polyisobutylene (PIB), poly(vinyl

methyl ether) (PVME), poly(dimethyl siloxane) (PDMS) from data in the literature,

and new data for poly(bisphenol A, 2-hydroxypropylether). The T-dependence of

τ*(Q,T) of these polymers, [ζ0(T )]
1//(1�n), was shown to correlate with n, as

predicted by Eq. (4.42). The property was found also in ortho-terphenyl, a small

molecule van der Waals glass-former, and explained [239].

The CM explanation of the Q�2/(1�n)-dependence of τ*(Q,T) is the only one

given by any theory despite its first observation since 1992. Justification of this

claim will become clear from the discussion in the next paragraph. This is an

important point because it shows the usefulness of the CM unrivaled by other

theories. Since then more refined studies by neutron scattering [240–242] and

simulations [234, 235] have confirmed the Q�2/(1�n)-dependence of the segmental

α-relaxation time of polymers. An example from polyisobutylene (PIB) is shown in

Fig. 4.26a taken from Ref. [242], in which the fit to I(Q,t) determined β¼ (1�n)¼
0.55. These papers and more [241, 243, 244] also tried to rationalize this depen-

dence by arguments, which we show immediately below is not an explanation on a

theoretical basis, and instead is consistent with other observed properties including

Kohlrausch time dependence and return to Gaussian form of both, the self-part of

the van Hove correlation function Gs(r,t) and its Fourier transform Sself(Q,t). This is
necessary because there is misconception in the literature that the Q�2/(1�n)-depen-

dence has been explained theoretically by these papers, and the true theoretical

explanation by the CM is ignored. Moreover this is relevant for ionics because the

Q�2/(1�n)-dependence was found in neutron scattering of ionic liquids [236], and

the accompanying prediction by Eq. (4.43) is valid for a fast glassy ionic conductor

all to be discussed later.
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In all papers by others [240, 241, 243–245] the crux of the arguments to

rationalize the Q�2/β-dependence of τ*(Q,T) or τw(Q,T) is by combining two

points. Point (1) is to take from experiment the empirical fact that Sinc(Q,t) can be

described by a KWW function Sinc Q; tð Þ ¼ A Q; Tð Þexp � t=τw Q; Tð Þð Þβ
h i

. Point

(2) is to assume that the van Hove function Gs(r,t) and its Fourier transform, Sinc

Q; tð Þ ¼
ð
G ~r; tð Þ exp �i~Q �~r

 �
d~r, are Gaussian functions, i.e.

G r; tð Þ ¼ α tð Þ=π½ �3=2exp �α tð Þr2½ �, and Sinc Q; tð Þ ¼ A Q; Tð Þexp � r2 tð Þ� �
Q2=6

� �
.

By equating the two expressions for Sinc(Q,t) from points (1) and (2), Sinc Q; tð Þ ¼ A

Q; Tð Þexp � r2 tð Þ� �
Q2=6

� � ¼ Sinc Q; tð Þ ¼ A Q; Tð Þexp � t=τw Q; Tð Þð Þβ
h i

; the Q�2/β-

dependence of τw is deduced. Not made explicitly clear in Refs [240, 241, 243–

245]. is that τw(Q,T) becomes very long for the small Q values in the Q-range where
its Q�2/β-dependence is found experimentally at fixed temperature. The deviations

of Gs(r,t) from the Gaussian form, quantified by the second-order non-Gaussian

parameter, α2 tð Þ ¼ 3=5ð Þ r4 tð Þ� �
= r2 tð Þ� �� 1, exhibits a peak with maximum at aQ-

independent time t*(T), and α2 becomes vanishingly small at long times. Therefore,

the Gaussian forms are valid because τw(Q,T) is much longer than t*(T ) forQ in the

range where theQ�2/β-dependence of τw(Q,T) holds. In the experiments, it turns out

the condition is satisfied forQ belowQmax (at which the static structure factor shows

its first maximum), where the assumption in point (2) is justified. By these steps we

have shown that the observed Q�2/β-dependence of τw is a necessary consequence

of consistency with the other properties. Alternatively one [244] can take the

empirical observation of the Q�2/β-dependence of τw(Q,T) and substitute it into

the empirical Sinc Q; tð Þ ¼ A Q; Tð Þexp � t=τw Q; Tð Þð Þβ
h i

of point (1). The result is

Sinc(Q,t) having the Gaussian form, and hence also Gs(r,t) in the Gaussian form.

However, since point (1), i.e. Sinc Q; tð Þ ¼ A Q; Tð Þexp � t=τw Q; Tð Þð Þβ
h i

, is

empirical, the best one can conclude from this approach is that the Q�2/β-depen-

dence of τw is consistent with other experimental properties, but is not derived from

a theory. This approach does not have bearing on the temperature dependence of the

relaxation time. On the other hand, not only the Q�2/β-dependence is derived from

the CM Eq. (4.42) but also is the accompanying temperature dependence given by

Eqs. (4.42) and (4.43), which has been applied for polymers in Ref. [238]. Later on

we discuss another application of Eq. (4.43) to quasielastic neutron scattering

measurements of ionic diffusion coefficient in several superionic glasses as a

function of temperature at short times (in the picosecond and sub picoseconds

range) [8, 101, 246–249].

In Fig. 4.25 we have shown I(Q,t) of [bmim][PF6] at Q¼ 2.0 Å�1, exhibiting the

cross over from exp(�t/τ0) to exp[�(t/τ*)1�n] at tc ~ 2 ps [236]. The inset of

Fig. 4.26b gives the values of the Kohlrausch exponent, β¼ (1-n), as a function

of Q at T¼ 300 K. The main figure presents in a log-log plot of the average
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relaxation time, <τ>¼ [Γ(1/β)/β]τ*, vs. Q at the same temperature. The slope ν is
about 2.5. The predicted Q�ν-dependence from Eq. (4.42) has ν¼ 2/(1�n). Taking
the value of β¼ (1�n) ~ 0.7, Triolo et al. gave the value ν ~ 2.85, close to 2.5.

The lack of Q-dependence of the fast relaxation time in Fig. 4.26b is the conse-

quence of the assumed sum, Aexp(�t/τ0) + (1�A) exp[�(t/τ)1�n] for the time

dependence of I(Q,t) in fitting the data in Ref. [236].

The observed Q�2/(1�n)-dependence of the α-relaxation time of glassforming

liquids is also found in other systems by dynamic light scattering including sus-

pensions of colloidal particles [250], semidilute polymer solutions [251–254],

associating polymer solutions [255, 256], and polymer cluster solutions

[252, 257]. This rather universal dependence of relaxation time on the scattering

vector is the exemplification of many-body relaxations that are common to these

systems all having mutual interaction between the basic relaxation units. The

anomalous Q�2/(1�n)-dependence of τα is derivable from the CM Eq. (4.42) simply

by substituting the known Q�2-dependence of τ0 into it. Again in these other

interacting systems, the CM not only predicts correctly the Q�2/(1�n)-dependence

but also other properties. For example, the concentration and molecular weight

dependences of polymer dynamics in solution are predicted together with the

scattering vector Q�2/(1�n)-dependence of the light scattering field correlation

function g(1)(t), and all are verified in experiments [251, 252, 257].
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Fig. 4.26 (a) PIB (upper part): Momentum transfer dependence of the characteristic time of the

KWW functions describing the self-correlation function at 335 (circles), 365 (squares), and 390 K
(triangles). Lower part: Scaling representation: 335 and 390 K data have been shifted to the

reference temperature 365 K applying a shift factor corresponding to an activation energy of

0.43 eV. Full symbols correspond to results from measurements performed with incoming

wavelength λ¼ 6 Å and empty symbols to λ¼ 10 Å. Solid (dotted) lines through the points

represent Q�2/0.55 (Q�2) power laws. (b) [bmim][PF6]: Momentum transfer dependence of the

characteristic times of the fast (τβ) and slow (<τ>) relaxations for T¼ 300 K. In the inset the Q-
dependence of the stretching parameter β is reported for the same temperature
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4.5.3 Evidence of Crossover from Other Experiments
in Ionic Conductors

Like glassformers and other interacting systems, there are experimental evidences

in various ionically conducting materials supporting the crossover of the ionic

conductivity correlation function from exp(�t/τ0) to exp[�(t/τ)1�n] in a neighbor-

hood of a temperature insensitive time tc.

4.5.3.1 Fast Glassy Ionic Conductors

There are many fast glassy ionic conductors where the mobility of the ions are so

high that the conductivity relaxation time τσ can become very short and comparable

to tc by raising temperature but still staying within the glassy state. These are

examples of relaxation of interacting systems which remain in the glassy state

because T here is always significantly below Tg. At lower temperatures where τσ is
longer than tc, but if the difference is not large, there is a chance to see the direct

crossover of the correlation function of the ion conductivity relaxation from

exp(�t/τ0) to exp[�(t/τσ)
1�n] via σ(ω). The σ(ω) corresponding to exp(�t/τ0) for

t< tc from Eq. (4.8) is σ0 a constant given by

σ0 ¼ ε1εo=τ0: ð4:44Þ

The σn(ω) corresponding to the M*(ω) obtained with exp[�(t/τσ)
1�n] has the

d.c. conductivity σdc in the low frequency limit when ωτσ�1 given via

Eqs. (4.13) and (4.16) by

σdc ¼ ε1εo= τσh i ¼ ε1εo= Γ 1=βð Þ=β½ �τσ ð4:45Þ

and increases with the ωn-dependence at higher frequencies when ωτσ 1. Direct

crossover occurs at sufficiently high temperatures if σn(ω) increases with the same

ωn-dependence all the way and reaches σ0 at ωc� (tc)
�1. If temperature is too low,

the caged ion dynamics intervene between σdc and σ0, changing the ω
n-dependence

of the observed σ(ω) from σn(ω) to a stronger ω
1�c-dependence with c<<1 before

reaching σ0. The ω1�c-dependence of σ(ω) corresponds to the NCL of caged ion

dynamics with ε 00(ω) / ω�c.

One example showing the direct crossover from σdc to σ0 is chosen from the

work of Belin et al. on the fast glassy ionic conductors, 0.5Ag2S-0.5GeS2 [258]. In

inorganic glasses, the vibrational contribution σvib(ω) to σ(ω) extends from high

frequencies down to low frequencies with an ω2-dependence [259, 260], found also

in this glassy ionic conductors as shown in Fig. 4.27. The Ag ion conductivity

contribution σion(ω) is obtained after the tail of the vibrational contribution with a

ω2-dependence has been subtracted off. This is demonstrated in Fig. 4.27 for the

data at 437 K, where the ion contribution, σion(ν)¼ [σ(ν) � σvib(ν)] at 473 K
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exhibits a crossover from primitive ion conductivity relaxation with σion(ν)¼ σo to
σn(ν) at νc ~ 10

10.7 Hz on decreasing frequency. The green line with slope equal to

nearly one in the logσ-logν plot is drawn to show the low temperature 153 and

123 K data of σ(ν) at high frequencies have nearly such dependence, ν1�c-depen-

dence with c¼ 0.05� 1, and originate from caged ion dynamics with the NCL for

ε00(ν). The weak temperature dependence of σ(ν) in this caged dynamics regime is

evident from the proximity of the two sets of data. The location of the independent

ion-hopping frequency, ν0� 1/(2πτ0), at 153 K is indicated by the longer down-

ward arrow. The other arrows and labels νx1 and νx2 for 153 K will be explained

much later when discussing the transitions of ion dynamics from NCL to the many-

ion dynamics and dc conductivity.

Another example is taken from the σ(ν) data of 0.44LiBr-0.56Li20-B2O3 [261] in

Fig. 4.28 at the high temperature of 573 K, where ionic conductivity contribution

σion(ω) to σ(ν) is deduced after subtracting the approximately ν2-dependence of

σvib(ω) from the measured σ(ν). Like in the previous example, the ion contribution,

σion(ν)¼ [σ(ν) � σvib(ν)] at 573 K exhibits a crossover from primitive ion conduc-

tivity relaxation with σion(ν)¼ σo to σn(ν) at νc ~ 10
11 Hz. The leveling off of σion( f )

to a plateau value σo at frequencies higher than νc is expected by both the

MIGRATION concept of Funke and the CM. Because we are in the glassy state,

σdc (or τσ) and the plateau value σo (or τ0) at frequencies higher than νc both have
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Fig. 4.27 Frequency-dependent conductivity, σ(ν), of 0.5Ag2S-0.5GeS2 glass, from the work of

Berlin et al. The ion contribution, σion(ν) at 473 K crosses over from primitive ion conductivity

relaxation with σion(ν)¼ σo to σn(ν) at νc¼ 1010.7 Hz. The solid line with slope 0.95 indicates the

NCL for T¼ 153 K and as well for 123 K. The line with slope 0.45 is the high frequency

dependence of log10σ0(ν) corresponding to the Kohlrausch fit to the electric modulus data

(not shown) with n¼ 0.45. The location of the independent relaxation frequency of the CM,

νo� 1/2πτo, at 153 K is indicated by one of the arrows. Reproduced from Ref. [258] by

permission
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Arrhenius temperature dependence with activation energies Edc and E0 respec-

tively. At high temperatures it was reported [261] that σo has an Arrhenius temper-

ature dependence with an activation energy Ea of about 0.22 eV which is equivalent

to 2553 K. On the other hand, the activation energy Edc of σdc has the larger value of
0.49 eV or 5670 K. Actually this is the activation enthalpy of the product σdcT; the
activation enthalpy for σdc would be slightly lower. The value of βσ has not been
determined by a fit to the electric modulus representation of the data using the

Kohlrausch function. A fit to the Jonscher expression by Funke and coworkers has

yielded s¼ 0.6. From an example of the comparison between the two methods of

fitting the conductivity relaxation data [5, 6, 30] by Moynihan, βσ determined from

the electric modulus is larger than 1�s. Thus, we can expect that βσ> 0.40.

Conductivity relaxation measurements on a similar glass, (LiCl)0.6(Li2O)0.7(B2O3),

have yielded Edc¼ 5500 K of σdc and βσ¼ 0.50 [262]. The actual value of βσ for
Funke’s sample will likely lie within the bounds: 0.40< βσ< 0.50. The correlation

between βσ and βσEσ established for many families of glassy ionics [87, 104] would

also place βσffi 0.48 (from Fig. 8a of Ref. [12]) if we identify Ea¼ 0.22 eV with the

product βσEσ. With βσ¼ (1-n) estimated within the range 0:40 < 1� nð Þ < 0:48,
we can test the other CM prediction given by Eq. (4.43) and rewritten as

E0 ¼ 1� nð ÞEdc ð4:46Þ

The product on right side of this equation lies within the bounds,

2268 K < 1� nð ÞEdc < 2721 K, and is consistent with the experimental value

of E0¼ 2553 K.
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Fig. 4.28 Frequency-dependent conductivity, σ(ν), of 0.44LiBr-0.56Li20-B2O3 glass at 573 K

from the work of Cramer et al. [261] by permission. The ion contribution, σion(ν)¼ [σ(ν)� σvib(ν)]
at 473 K exhibits a crossover from primitive ion conductivity relaxation with σion(ν)¼ σo (+) to
σn(ν) at νc ~ 10

11 Hz (dashed line)
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4.5.3.2 Fast Crystalline Ionic Conductors

Many-body relaxation dynamics require the effect of interaction between the units

necesarily to be included. Although randomness and disorder foster interaction, by

no means they are essential to observe the vestige of many-body relaxation dynam-

ics. Thus, we can expect to see the crossover to primitive conductivity relaxation in

fast crystalline ionic conductors. In fact there are experimental evidences for the

crossover in crystalline Na β-alumina [54, 101, 102], Na-β00-alumina [128, 263],

and RbAg4I5 [101, 264]. The crossover of conductivity of Na β-alumina at νc� 1010

Hz and RbAg4I5 at about 10
11 Hz can be seen by inspection of the data presented

respectively in the left and right panels of Fig. 4.29. For Na β-alumina, the

activation energy E0 of σ(ν) for ν> νc in the range, 200< T< 300 K, is� 810 K.

On the other hand, the activation energy of d.c. conductivity, Edc, is� 1600 K at

300 K and� 1700 K at 200 K [54]. The coupling parameter n is� 0.50 at 300 K

and� 0.53 at 200 K [54]. From these values, one can verify that the relation,

E0 ¼ 1� nð ÞEdc, of Eq. (4.47) is satisfied.

4.5.3.3 The Molten Salt CKN

The crossover behavior of the dynamics of ions in fast ionic conductors in the

glassy or crystalline state at νc also was observed in the molten salt, 0.4Ca(NO3)2-

0.6KNO3 (CKN), by high frequency dielectric relaxation [265]. The data shown in

Fig. 4.30 taken at highest temperature of 478 K is close to directly observing the

direct crossover from primitive ion conductivity relaxation with σion(ν)¼ σo to

σn(ν) at νc ~ 10
11.7 Hz (see inset). However, at lower temperature the caged ion
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Fig. 4.29 (Left) Frequency dependence of σ(ν) of Na β-alumina at three temperatures showing

crossover after 1010 Hz. Reproduced from Ref. [54] by permission. (Right) The product σ(ν)T of

RbAg4I5 crystals at four different temperatures. The crossover is seen for 166 and 129 K.

Reproduced from Ref. [264] by permission
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dynamics intervene, particularly clear at 383 K by the appearance of the NCL in the

main figure.

4.5.4 Quasielastic Neutron Scattering Studies of Glassy Ionic
Conductors

Quasielastic neutron scattering (time of flight) is a technique for measurements

at short times (in the picosecond range) of the ionic diffusion coefficient as a

function of temperature in superionic glasses. The fast ion glasses AgI-AgPO3

and Ag2S-GeS2 with and without AgI have been studied by this techniques by

two groups [246, 247, 266, 267]. The glass. Ag2S-GeS2, is the same as that

studied by high frequency conductivity relaxation shown before in Fig. 4.27. It

was found that the activation enthalpy of the short-time diffusion coefficient, E0,

is smaller than that of the d.c. conductivity, and approximately equal to the

product βEdc as predicted by Eq. (4.46) of the CM [45, 101, 102]. Here β¼ (1�-

n) is the Kohlrausch exponent and Edc is the d.c. conductivity activation energy

observed at much lower temperatures and frequencies. These neutron scattering

experiments measure the ion diffusion with correlation times of the order of ps,

and correspond to the high frequency plateau of σion(ν)¼ σo with activation

energy E0 in the glassy, crystalline and molten ionic conductors discussed

Fig. 4.30 Frequency dependence of the dielectric loss in CKN at high frequencies and several

temperatures. The vertical dashed line indicates the crossover frequency νc ~ 10
11.7 Hz. The inset

is the log-log plot of the frequency dependence of the contribution by ionic motions to the

a.c. conductivity in CKN. Circles (478 K); triangles (453 K); squares (423 K)
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before. The E0 from neutron scattering are compared with the calculated βEdc in

Table 4.2. The good agreement between the two validates observation of the

crossover of dynamics at tc near 1 ps of the CM.

4.5.5 Change of Temperature Dependence of σdc at High
Temperatures

Another way to see the crossover to primitive relaxation of ion dynamics in fast

glassy or crystalline ionic conductors is by the change in T-dependence of σdc from
its Arrhenius dependence at lower temperatures to a weaker Arrhenius dependence

of σo by raising temperature till when the conductivity relaxation time τσ becomes

comparable to or shorter than tc. The Maxwell relation, σdc¼ Eoε1/<τσ>,

determines<τσ(T )>, and hence τσ(T ), from σdc(T ). Here εo¼ 8.854� 10�14

F/cm is the permittivity of free space, ε1 the high frequency dielectric constant,

and<τσ> is the mean relaxation time. If ε1¼ 10, <τσ>will reach ~1 ps when

σdc ~ 1 S/cm. At lower temperatures where τσ<<tc and the correlation function is

exp[�(t/τσ)
1�n], τσ has the Arrhenius T-dependence

τσ Tð Þ ¼ τ∗1exp E∗
a =kT

� 	
; ð4:47Þ

and <τσ>¼ [Γ(1/β)/β]τσ. The activation energy Ea* and the prefactor τ1* are

usually anomalous because they originate from nontrivial many-ion relaxation due

to ion-ion interactions. The temperature dependence of τσ is Arrhenius with a

constant activation energy Ea* provided that n does not change with temperature.

If n decreases with increasing temperature, the Arrhenius T-dependence no longer

holds as seen in the crystalline ionic conductors, Na β-alumina [54] and LLTO

[154], and in some very fast glassy ionic conductor such as 0.525Ag2S + 0.475

(B2S3:SiS2) at all temperatures below Tg [15, 103].

Table 4.2 Activation energies, E0, of 0.5AgI-0.5AgPO3 [246, 247] and Ag2S-GeS2 [266, 267]

from short time ionic diffusion obtained by neutron time of flight measurements

Glass Edc β � 1� n β Edc E0 (QENS)

AgI-AgPO3 21 kJ/mol 0.44 9.2 kJ/mol 8.7 kJ/mol

Ag2S-GeS2 0.34 eV 0.45 0.153 eV 0.15 eV

The Kohlrausch exponent, β� (1-n), and the activation enthalpies, Edc, of conductivity relaxation

observed in the same glasses at lower temperatures and frequencies in the many-particles hopping

region are also included. The near equality between E0 and βEdc is found as predicted, consistent

with the change to independent relaxation at times shorter than tc� 2 ps and probed by quasielastic

neutron scattering (QENS)
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On raising temperature, τσ becomes shorter and when it is of the order of

picoseconds or shorter, tc is crossed and primitive motion of ions takes over with

correlation function given by exp(�t/τ0) with

τ0 Tð Þ ¼ τ1exp Ea=kTð Þ; ð4:48Þ

and now <τσ>¼τσ. We use Ea and E0, as well as τσ and τ* interchangeably in this

chapter. The primitive activation energy Ea that can be identified with a realistic

energy barrier of an independent ion hop, and the reciprocal of its prefactor τ1 is

the attempt angular frequency, which should correspond to some peak frequency of

the infrared or Raman spectrum. Inserting the Arrhenius T-dependences of τσ and
τ0 in Eqs. (4.47) and (4.48) into the CM Eq. (4.36), it follows that

Ea ¼ 1� nð ÞE∗
a , τ1 ¼ tcð Þn τ∗1

� 	1�n
, E∗

a ¼ Ea= 1� nð Þ τ∗1 ¼ tcð Þ�nτ1½ �1= 1�nð Þ
:

ð4:49Þ

The temperature dependence of conductivity relaxation time is mirrored by that

of the measured σdc. Therefore, on increasing T, the T-dependence of σdc will

eventually cross over to the Arrhenius T-dependence having the same activation

energy Ea of τ0, albeit may be slightly modified at the higher temperatures when

1/τ0 approaches the vibration frequencies. These properties associated with the

expected crossover of σdc at high temperatures have been found in many ionic

conductors [13], including the molten salt, CKN, fast glassy ionic conductors such

as 0.48(AgI)2-0.52Ag2SeO4 [268], and 0.525Ag2S + 0.475(B2S3:SiS2) [15, 103],

and crystalline ionic conductors such as yttria stabilized zirconia, (ZrO2)1�x(Y2O3)x
[22, 82, 83, 269, 270].

As an example, σdc data of yttria stabilized zirconia (YSZ) are shown in

Fig. 4.31 [For references, see 22]. The high oxygen conductivity of yttria stabi-

lized zirconia (1-x ZrO2 : x Y2O3) at elevated temperatures has been known since

1899 [275]. It takes values of about 0.1 Scm�1 at 1000 �C. Doping with Y2O3

stabilizes the cubic fluorite structure of ZrO2 at room temperature due to the

presence of oxygen vacancies, and these oxygen vacancies are also responsible for

the ionic conduction in the material (see for example the review by Etsell and

Flengas [276] and references therein). Because of its applications as electrolyte

material in solid oxide fuel-cells and oxygen sensing devices, yttria stabilized

zirconia, usually referred to as YSZ, is probably the most extensively studied fast

oxide-ion conductor [82, 83, 270–274, 277–282]. These studies have provided us

with a deep knowledge of many properties of the dynamics of oxygen ions in

YSZ. In particular, the long range or dc conductivity is known to depend on the

yttrium content, having a maximum at around x¼ 0.08–0.10, i.e. an 8–10% mol

yttria content and decreasing strongly for higher doping [276]. The exact position

of this maximum depends on the temperature value chosen for the comparison,

since the activation energy for the dc conductivity is found to increase by

increasing the yttria content.
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The measurements of σdc(T ) in YSZ shown in Fig. 4.31 were made by different

groups [For references, see 22, 82, 83, 270–274, 277–282]. In the lower temperature

regime where σdc has the Arrhenius T-dependence, σdc(T)¼ σ1*exp(�1.16 eV/kT)
Ω�1cm�1, from the experimentally measured frequency dispersion, the oxygen ion

hopping correlation function was found to have the Kohlrausch function form with

n¼ 0.56 [22, 82]. As temperature increases σdc(T) becomes non-Arrhenius, but at

the highest temperatures on approaching 1 Ω�1cm�1, it returns to another Arrhe-

nius dependence described by σdc(T )¼ 103.6� exp(�0.49 eV/kT)Ω�1cm�1
. Such

behavior is evidence of crossover from many-ion conductivity relaxation to

primitive conductivity relaxation because at the high conductivity levels

approaching 1 Ω�1cm�1, the conductivity relaxation times are likely to be com-

parable with tc� 1 to 2 ps. For YSZ, the value of ε1 is 28 [82], and hence from the

Maxwell equation, σdc¼ Eoε1/<τσ>, σdc¼ 1 Ω�1cm�1 corresponds

to<τσ>¼ 2.5� 10�12 s. Oxygen-oxygen ions interaction slows down the con-

ductivity at lower temperatures when τσ>> tc, and its higher activation energy Ea
*¼ 1.16 eV is correctly predicted from the smaller (primitive) activation energy,

Ea¼ 0.49 eV, at high temperatures by Eq. (4.49). This can be verified by the

equation, 0.49 eV¼ 1� nð Þ1.16 eV, being satisfied ifn ¼0.57, which is close to the

value of 0.56 independently determined by fitting the frequency dependence of

the conductivity relaxation data by the Kohlrausch function [22].

Figure 4.32 shows the d.c. conductivity of Na β-alumina also crosses over

to a weaker Arrhenius T-dependence at high temperatures when σdc exceeds

about 0.4 Ω�1cm�1, which corresponds to<τσ>¼ 1.0� 10�11 s because ε1 is

50 [54]. This indicates that tc for Na β-alumina is about 1.0� 10�11 s and
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Fig. 4.31 Temperature dependence of d.c. conductivity data of bulk YSZ. Blue squares strung
together by green line are lower temperature data from León et al. [270] of bulk YSZ with 9.5 mol
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νc¼ 1.6� 1010 Hz. Interestingly, this is nearly the same as the frequency at which

the a.c. conductivity σ(ν) crosses over to the plateau value at higher frequencies (see
the left panel of Fig. 4.29). Thus, there is consistency in determining the crossover

to primitive relaxation from the temperature dependence of σdc and from the

frequency dependence of isothermal σ(ν). Earlier in connection with the left

panel of Fig. 4.29, the relation, E0 ¼ 1� nð ÞEdc, has been verified for Na

β-alumina. Except for the change in notation, this relation is the same as Ea ¼
1� nð ÞE*

a in Eq. (4.49).

The values of Ea calculated by Eq. (4.49) from the values of Ea* and n deduced

from Arrhenius T-dependence of data at lower temperatures of many ionic conduc-

tors, glassy or crystalline, and in the same way as shown in Fig. 4.31, are given in

Table 4.3.

Each of the calculated values of Ea¼ (1�n)Ea* is about the same as, or slightly

larger than (but by no more than 20%) the value of Ea obtained directly from the

Arrhenius T-dependence of the σdc data at high temperatures where the

corresponding values of τσ becomes comparable or shorter than tc as described

above. Furthermore, the reciprocal of the primitive attempt time τ1 calculated by

Eq. (4.49) from the anomalous τ∗1 is also in rough agreement with the value

deduced from the high temperature σdc data after the crossover. It corresponds

well to the peak angular frequency of vibrational spectrum. These good correspon-

dences between the calculated τ1 and Ea from the experimentally determined

parameters τ1*, Ea* and n in the glassy state with their counterparts at high

temperature are expected because both sets of parameters are for independent

diffusion of the ion, and the difference between them is caused only by the

difference in density at lower and higher temperatures respectively. These changes

should not have a large effect on the primitive attempt frequency and the activation

energy of the primitive relaxation or independent hopping over energy barrier of the

Fig. 4.32 σdc data of Na
β-alumina (open circles).
For details of the model

calculation represented by

the line, see Ref. [54].
Reproduced from Ref. [54]

by permission of APS
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ion. There are cases in which n decreases with increasing temperature and

approaches zero value while τσ is still longer than tc. This causes the crossover of
T-dependence of σdc data to occur at temperature for which τσ is still longer than tc,
but the relations in Eq. (4.49) are still valid.

4.5.6 The Non-Arrhenius Intermediate Temperature Region

The reader may have already noticed in Fig. 4.31 of YSZ, and other glassy and

crystalline ionic conductors in Fig. 4.1 that the crossover of σdc(T ) from the low

temperature Arrhenius T-dependence to the high temperature Arrhenius

Table 4.3 Ionic transport and conductivity relaxation parameters

Glass-forming ionic conductors β E�
a βE�

a Ea Eglass
a βE�

a/Ea

LiCl�7H2O 0.46 34 15.6 14.4 1.08

CdF2-LiF-AlF3-PbF2 0.77 109 83.9 68.4 1.23

ZBLAN20 0.68 85 57.8 50 1.16

ZBLAN10 0.66 79 52.1 46 1.13

ZBLA 0.61 72 43.9 36 1.22

(Li2O)�3(B2O3) 0.52 84 43.7 40 1.09

(Na2O)�3(SiO2) 0.55 64 35.2 33.5 1.05

0.56Li2O�0.45LiBr�B2O3 0.44 47.1 20.7 21.1 0.98a

AgPO3 0.66 49.5 32.7 28.5 1.14

(AgI)0.1�(AgPO3)0.9 0.59 43 25.4 22.5 1.13

(AgI)0.2�(AgPO3)0.8 0.57 39.5 22.5 19.8 1.14

(AgI)0.3�(AgPO3)0.7 0.54 32.9 17.8 15.6 1.14

(AgI)0.4�(AgPO3)0.6 0.51 32.0 16.3 13.3 1.23

(AgI)0.5�(AgPO3)0.5 0.48 26.9 12.9 10.1 8.7 1.27

(AgI)0.6�(AgPO3)0.4 0.48 26.9 12.9 7.9 1.29

(AgI)0.7�(Ag2MoO4)0.3 0.44 19.3 8.5 9.0 0.95

0.48 (AgI)2� 0.51 25.1 12.8 13.6 0.94

(Ag2S)0.5(GeS2)0.5 0.45 32.8 14.8 14.5 1.02a

Crystalline conductors

Na β-Al2O3 0.5 13.4b 6.7 6.8c 6.74 0.99

RbAg4I5 0.47d 9.8c 4.6 4.2c 1.09a

(Y2O3)0.095(ZrO2)0.905 0.43 111.9 48.2 48.2 1

For the glass-forming melts β � 1� nð Þ and E∗
a were obtained in the glassy state from conduc-

tivity relaxation measurements, while the activation energies, Ea, were obtained from the high

temperature melt dc conductivity data by Ea¼ [�Rd lnσ/d(1/T )] at σ¼ 1 Ω�1cm�1. For some

glassy ionic conductors, the activation energies Ea
glass were obtained from neutron scattering or

high frequency microwave and far infrared conductivity data at temperatures all within the glassy

state. All activation energies are in units of kJ/mol
aCalculated from the ratio β Eσ/E

glass
a

bAt 300 K
cObtained by plotting log σ against 1/T
dEstimated from log σ versus log f data
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T-dependence is gradual. In fast ion conducting glasses, it was reported for the first
time in 1982 by Ingram et al. [283] that the temperature dependence of the ionic

conductivity becomes non-Arrhenius at enough high temperature. About 15 years

later, trying to push the room temperature conductivity above 10�2 S/cm in

“superionic” glasses of optimized composition and structure, Kincs and Martin

[15] found that the conductivity at room temperature was systematically 1 to

2 orders of magnitude below that predicted from the Arrhenius behaviour of the

conductivities at lower temperatures. One of these glasses is 0.4AgI�0.6
[0.525Ag2S�0.475(0.5B2S3 + 0.5SiS2)] shown in Fig. 4.1. They reported this behav-

ior as ubiquitous in fast ionic conducting glasses and thus as a fundamental

limitation for their use in practical devices. Since then, the non-Arrhenius temper-

ature dependence of the dc conductivity in ionic conductors has been confirmed

experimentally as a characteristic feature arising when the conductivity exceeds a

value of about 10�3 S/cm [13, 112, 284, 285], and several theoretical interpretations

have been proposed to explain it [103, 142, 286].

A quantitative explanation for the non-Arrhenius temperature dependence of the

ionic conductivity in glassy fast ion conductors was provided from the CM [103].

The d.c. conductivity, σdc(T ), is calculated by the expression, σdc(T )¼ Eoε1/

<τσ(T )>where< τσ(T )> is the integral of the correlation function ϕ(t), i.e.

τσh i ¼
ð1
0

ϕ tð Þdt. Although the correlation function ϕ(t) is given in two pieces by

Eqs. (4.31) and (4.35), at lower temperatures where the condition τσ or τ
* tc holds,

the decay of the exponential function of Eq. 4.31 is negligible for t	 tc. The
intervening caged dynamics does not contribute to σdc and can be neglected. The

decay in this time region given by exp�(tc/τo), when rewritten via Eq. 4.36 as

exp�(tc/τ*)
1�n, is clearly small because τ* tc. The decay of ϕ(t) is carried out

effectively from one to zero by the Kohlrausch function of Eq. 4.35 at times t> tc,
and σdc(T) of glassy and crystalline ionic conductors has the Arrhenius T-depen-
dence with activation energy, E∗

a ¼ Ea= 1� nð Þ. However, at high temperatures

when τ* (and also τo) becomes short and approaches tc (�1 to 2 ps) significant decay

of ϕ(t) has occurred by the exponential function (4.31) before tc and< τσ(T )> picks

up some partial contribution from τo(T ). Since τo has a smaller activation energy Ea

than that of Ea
*, this extra contribution is the cause of the non-Arrhenius behavior of

σdc(T ) at the intermediate temperature range exhibited by many ionic conductors

(see Fig. 4.1). In other words, on increasing temperature, the apparent activation

energy of σdc(T) decreases monotonically and assume the value of Ea when σdc(T)
is near Eoε1/tc� 1 Scm�1.

4.5.7 Anomalously Short Prefactor τ∗1

Here in Fig. 4.33, we show the low temperature conductivity relaxation data of

(9.5%)YSZ from León et al. [For references, see 22] [269, 270] in terms of τσ(T).
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Its temperature dependence is Arrhenius as indicated by the straight line through the

data points in the figure, which corresponds to

Fig. 4.33 Closed circles and filled squares are the relaxation times τ obtained from the oxygen ion

conductivity relaxation data (by León et al. [270]) and quasielastic light scattering data

(by Suemoto and Ishigami [279]) of YSZ. The inset shows the hyper-Raman spectrum from

Shin and Ishigami [278]. Open circles are τ deduced from d.c. conductivity data in Fig. 4.31. The

thick solid and thin solid lines through the data points are Arrhenius fits. The thick and thin broken
lines represents respectively the independent relaxation time τ0 calculated from τ of conductivity
relaxation (thick solid line through circles) and from quasielastic light scattering (thin solid line
through closed squares). The intercepts of the broken lines give prefactors τ01 in good agreement

with the frequencies in the narrow band at 690 cm�1 of the hyper-Raman spectra shown in the

inset. Reproduced from Ref. [For references, see 22] by permission
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τσ Tð Þ � τ∗1exp E∗
a =kT

� 	 ¼ 10�16:44exp 1:16 eV=kTð Þ s: ð4:50Þ

The prefactor τ∗1 of the experimentally observed τσ(T ) is very short and its

reciprocal corresponds to an unphysically high attempt frequency of the oxygen

ions. On the other hand, the independent hopping relaxation times, τ0(T ), calculated
from τσ(T ) via Eqs. (4.37) or (4.49) with tc ¼ 2 ps, are given by

τ0 Tð Þ ¼ τ1 exp Ea=kTð Þ ¼ 10�13:74exp 0:50 eV=kTð Þ s; ð4:51Þ

and it is represented by the thicker dashed line in Fig. 4.33. Remarkably, this

calculated τ0(T ) has nearly the same value as well as temperature dependence as

τσ(T) at high temperatures. This is no surprise because τσ(T ) is reaching tc¼ 2 ps at

the high temperatures, and hence it crosses over to τ0(T). The reciprocal of the

prefactor τ1 of the calculated τ0 now has the magnitude of an attempt frequency, as

it should.

The actual attempt frequency of oxygen ions in YSZ was determined experi-

mentally from the hyper-Raman spectrum obtained by Shin and Ishigame

[278]. The vibrational modes shown have displacement of the oxygen ion towards

the vacancy and are candidates for the vibrational frequency. Shin and Ishigame

argued that the highest frequency narrow band located at 690 cm�1, corresponding

to time of (ω1)�1¼ 10�14.1s, contributes most effectively to the hopping of the

oxygen ions and can be identified with their attempt frequency. Having determined

the reciprocal of the true attempt (angular) frequency ω1 of the oxygen ions from

experiment to be 10�14.1 s, comparison of it can be made in Fig. 4.33 with the

prefactors τ∗1 and τ1. The figure has τ01 instead of τ1. The true angular attempt

frequency (τ01)�1 deduced from the CM is only 2.4 times smaller than the

experimentally determined ω1. This small discrepancy between (τ1)�1 and ω1
is well within the uncertainty in determining τ0(T ), from Eq. (4.49) due to exper-

imental errors in determining n and τσ(T). The upper horizontal arrow in Fig. 4.33

indicates the good correspondence between τ1 and (ω1)�1 from the hyper-Raman

spectrum depicted by the inset. On the other hand as mentioned earlier, the angular

frequency 1=τ∗1 ¼1016.4 s�1 is unphysical because its value is more than 200 times

higher than the vibrational frequency ω1.

Quasielastic light scattering (QELS) in YSZ by tandem Fabry-Perot interferom-

etry was measured by Suemoto and Ishigame [279] using the same samples as in the

hyper-Raman scattering experiment. Light scattering is due to fluctuation of the

polarizability caused by ionic motion. They found that the shape of the scattered

light intensity peak as a function of temperature taken at constant frequency, f, in
the range from 1.8 to 24 GHz is non-Lorentzian and in good agreement with that

coming from a correlation function that has the Kohlrausch form. The dependence

of the temperature of the intensity maximum on f is converted to a dependence on

2π fð Þ�1 � τ∗QELS and the data are shown in Fig. 4.33 by closed squares. The thinner

straight line through the data point is the best fit to an Arrhenius temperature

dependence
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τ∗QELS � τ∗QELS,1exp E∗
a,QELS=kT

 �
¼ 10�16:82exp 1:40 eV=kTð Þ ð4:52Þ

The unphysically high apparent attempt frequency τ∗QELS,1 is again evident from

the prefactor. The QELS correlation time τ∗QELS has a slightly larger activation

energy than the conductivity relaxation time τσ(T) obtained León et al. [270]. This

difference arises because the concentration of yttria is higher in the sample studied

by QELS than that by conductivity relaxation (16.5 vs 9.5 mol %) and it is known

from conductivity measurement that E�
a increases with yttria content when above

roughly 8 mol %. The spectral shape is well fitted by an expression proportional to

χ 0 (ω)/ω, where χ 0 (ω) is the imaginary part of the susceptibility function calculated

[278] by a Fourier transform of the time derivative of the Kohlrausch function. In

the process, the coupling parameter nQELSwas determined to have the value of 0.55.

The independent ion hopping correlation time, τQELS, o, calculated from τ∗QELS has

the Arrhenius dependence,

τQELS,o Tð Þ � τQELS,1 exp Ea,QELS=kT
� 	 ¼ 10�14:0exp 0:63 eV=kTð Þ s ð4:53Þ

and is plotted as a function of temperature in Fig. 4.33 (the thinner dashed line).

The situation in QELS is similar to conductivity relaxation in that the experi-

mentally determined attempt frequency, τQELS,1
� 	�1

, is too high to be real.

However, the attempt frequency τQELS,1
� 	�1

of the independent ionic hopping

motion deduced by the CM nearly coincides with the measured frequency of the

vibrational mode (690 cm�1). The near coincidence is indicated by the lower

horizontal arrow located at the intercept of τQELS, o(T ) with the y-axis at

(1000/T )¼ 0. This horizontal arrow points almost at the 690 cm�1 -peak position

of the observed vibrational band. Thus, the QELS data reaffirm the interpretation of

the CM that τQELS, o and τ�QELS are respectively the ion hopping correlation time

without and with the effects of many-body interactions between the ions.

The YSZ data presented and discussed in the above show how the anomalous

activation energy and prefactor of the measured conductivity relaxation time can be

explained by the CM equations (4.50)–(4.51) simultaneously. We mention in

passing that the same equations had explained [97] the anomalous isotope mass

dependence of ionic conductivity in a series of (6Li,7Li)2O – 2.88B2O3 glasses

found experimentally by Jain and coworkers [287, 288]. So far the CM is the only

theory that has explained this observation.

4.5.8 The Meyer-Neldel Rule or Compensation Law

For a wide range of materials and relaxation phenomena, not just ionic conductivity

[289–293], which have the effective relaxation time τ* an Arrhenius temperature

dependence, τ∗ ¼ τ∗1exp E∗
a =kT

� 	
, often found is that the preexponential factor,
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τ∗1, and the activation energy,E∗
a , are linked by an empirical relationship known as

the Meyer-Neldel rule [289] or the Compensation Law which has the form:

logτ∗1 ¼ �aE∗
a þ b ð4:54Þ

where a and b are constants. It is important to note that a is positive so that Eq. 4.54
indicates that logτ∗1 decreases with increasing E∗

a . There is a similar rule for the

transport coefficient such as the conductivity, σ, or diffusivity, D. For example,

written in the form, σ ¼ σo=Tð Þ exp �Eσ=kTð Þ, there is a similar relation between

the preexponential factors, σ0, and the activation energies, Eσ:

log σo ¼ a0Eσ þ b0 ð4:55Þ

where a0 and b0 are constants and a0 is positive. Almond and West [294] pointed out

that the Meyer-Neldel rule applies to conductivity data for a variety of solid

electrolytes including the Ag+ ion conducting AgI-Ag oxysalt glasses and the

polycrystalline Lisicon solid solutions of formula, Li2+2xZn1�xGeO4. Nowick

et al. [295] further examined the Meyer-Neldel rule and concluded that there are

exceptions in the solid electrolytes they considered.

The Meyer-Neldel rule has been rationalized by the CM equations (4.49) [296]

for a family of ionic conductors that have approximately the same primitive energy

barrier Ea and ion attempt frequency 1/τ1, but different coupling parameters n.
Variation in the magnitude of n can arise from different ionic concentrations, values

of ε1 and structure. These factors affect the screened Coulomb interactions

between the diffusing ions and therefore change n from one member of the family

to another as borne out by Monte Carlo simulations [89]. If n is larger, via Eq. 4.49
the many-body effects simultaneously make the prefactor τ∗1 unphysically shorter

and the activation energy E∗
a larger than the true activation energy Ea. The dual

effects when combined leads to the Meyer-Neldel rule or the compensation law.

It makes repeated appearance in other interacting systems.

4.5.9 Anti Meyer-Neldel Rule

The behavior opposite to the Meyer-Neldel rule was found in the family

(AgI)x(AgPO3)1�x [297, 298]. For this family, the coupling parameters n, the
d.c. conductivity activation energy Eσ and the preexponential factor have been

determined for all x by electric modulus analysis of conductivity relaxation mea-

surements [298]. The values of these parameters are given in Table I of Ref. [296].

Although there is some scatter, the trend that the prefactor τ∗1 decreases while Eσ

also decrease is clear and is opposite to Eq. 4.54 or the MN rule.

The origin of this anti Meyer-Neldel behavior has also been rationalized by the

CM [296]. As shown in Table I of Ref. [296], the values of the product (1�n)Eσ,

which is to be identified with Ea, clearly show in the system (AgI)x(AgPO3)1�x that
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the true energy barrier Ea decreases by a large factor of 2.5 when x increases. The
coupling parameter n increases with increasing x due naturally to increased inter-

action between the Ag+ ions with concentration. Although n also increases with x,
the increase is not sufficient to compensate the decrease in Ea and to make the ratio

Ea/(1�n), or Eσ from Eq. 4.49, increases with x. Consequently, Eσ decreases with

increasing x. Far infrared spectra of (AgI)0.5(AgPO3)0.5 has determined τ1 to be

about 10�13.3 s. Since tc is ~2 ps and is longer than τ1, Eq. 4.49 indicates that the

apparent τ∗1 will be shorter than τ1 and it decreases with increasing n (or x). This
trend is in qualitative agreement with the experimental data shown in Table I of Ref.

[296]. Combining the two results of the dependences ofEσ and on x from the CM, we

explain the anti Meyer-Neldel rule observed in the system (AgI)x(AgPO3)1�x.

4.5.10 Computer Simulations of Energy Barrier of YSZ

Apart from the many experimental studies, many groups have published results

from computer simulations on the dynamics of oxide ions in YSZ, thus allowing a

critical test for the predictions and interpretation of the CM described above.

Kinetic Monte Carlo simulation with density functional theory has been used to

calculate the migration energy barriers and the self-diffusion of oxygen at macro-

scopic time-scales [299]. This method assumes that oxygen diffusion is well-

represented by oxygen vacancy hopping through the edges of cation tetrahedra.

The advantage of this method is that it is not restricted to relatively short times like

molecular dynamics simulations. For example, the smallest of all the activation

barriers for oxygen vacancy migration is across the Zr–Zr edges, and it is 0.58 eV.

Activation energy for oxygen self-diffusion, EKa, increases with x, the mol % of

Y2O3, from nearly 0.58 eV for x less than 2.5 to� 0.59 eV for x¼ 8, � 0.60 eV for

x¼ 10, and� 0.61 eV for x¼ 12. It was pointed out [300] that these migration

energy barriers were calculated without including ionic interactions. This may be

the reason why the calculated migration energy barriers EKa are smaller thanE∗
a and

E∗
a,QELS found in conductivity and quasielastic light scattering experiments, say for

8 mol% of Y2O3. It is however interesting that these smaller activation energies EKa

calculated without ion-ion interaction is the actual energy barrier, and hence it can

be identified with the energy barrier for independent oxygen hop, Ea, of the CM. In

fact, the value EKa� 0.59 eV for x¼ 8 mol % lies close and in between the two

values of the energy barrier for independent oxygen hop: Ea� 0.52 eV and Ea,

QELS¼ 0.63 eV deduced from conductivity relaxation and quasielastic light scat-

tering respectively, and supports the prediction of the CM that the true energy

barrier Ea of oxygen ion hopping is in the range 0.52	Ea	 0.63 eV. Recognizing

the importance of accounting for ionic interactions, Lee et al. used a kinetic Monte

Carlo model based on combining density functional theory with the cluster expan-

sion method to calculate ionic conductivity in single-crystal YSZ [300]. An

increase of the activation energy to 0.74 eV at high T and 0.85 eV at low T, as
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compared with EKa� 0.59 eV, was found for the ionic conductivity of YSZ with

8 mol% of Y2O3. This enhancement of the activation energy found by including

ion-ion interaction in the simulations is in fact expected according to the prediction

of the CM, although its magnitude is still smaller than E∗
a ¼1.16 eV found by

conductivity relaxation data at low T.
Tarancón et al. have also published another molecular dynamics simulation in

which the interaction between oxygen ions was included [301]. The potential

energy chosen is a function of the distance between ions, Zr4+, Y3+, and O2�. It is
composed of a Born–Mayer–Buckingham potential for short range interactions, and

Coulomb terms to describe the long-range electrostatic interactions between the

ions of YSZ. These authors obtained the oxygen tracer diffusion coefficient of YSZ

with 8 mol% Y2O3 at high temperatures ranging from 1159 K to 1959 K. From the

Arrhenius temperature dependence, they obtained the activation energy of 0.68 eV,

which is significantly smaller than E∗
a ¼1.16 eV of d.c. conductivity at lower

temperatures. Its apparent activation energy is significantly smaller than 1.16 eV,

but still larger than Ea� 0.52 eV and Ea,QELS¼ 0.63 eV. Therefore, the activation

energy of 0.68 eV found by Tarancón et al. is due to τ* not long compared with

tc� 1 to 2 ps in the temperature range of simulations, consistent with the existence

of the crossover from many-ion relaxation to independent ion hop in the

CM. Similar molecular dynamics simulations of YSZ were carried out by

Devanathan et al. with the same potential [302] and also at high temperatures

from 1125 to 2500 K. The diffusion coefficients of oxygen obtained over this

temperature range have activation energies of 0.59, 0.60, and 0.73 eV for YSZ

with 6, 8, and 10 mol% Y2O3 respectively. Again, τ∗1 is close to tc� 1 to 2 ps in the

measurement temperature range, and the activation energies obtained by

Devanathan et al. are the actual energy barriers opposing oxygen hopping consis-

tent with the values deduced by the CM. Chang et al. [303] have obtained mean

square displacements of oxygen in YSZ over the temperature range,

873	 T	 1473 K, and for times up to 500 ps, in another molecular dynamics

simulation using the same potential. An activation energy of about 0.5 eV is

obtained for the YSZ with 7 mol% Y2O3, and for the same reason as discussed in

the above, the proximity of τ* to tc� 1 to 2 ps in the simulation temperature range

justifies interpreting the deduced activation energy of 0.5 eV as the actual energy

barrier of oxygen vacancy hopping. Lau and Dunlap [304] performed another

similar molecular dynamics simulation up to 2.5 ns and reported d.c. conductivity

of single crystal YSZ with 8 mol% Y2O3 having Arrhenius temperature dependence

over about 15 orders of magnitude in the wide temperature range from 300 to

1400 K, and have activation energy of 0.59� 0.05 eV. This activation energy is

similar to Ea� 0.52 eV and Ea,QELS¼ 0.63 eV and is consistent with the interpre-

tation of actual energy barrier as long as temperature is higher than say 1000 K.

However, the results of Lau and Dunlap at low temperature are at odds with the

much larger activation energy, E∗
a ¼1.16 eV, of d.c. conductivity observed by

experiments of single crystal YSZ with 8 mol% Y2O3.
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Pennycook et al. [305, 306], have reported results of finite-temperature dynam-

ical simulations of the oxygen vacancy dynamics in bulk cubic zirconia where the

oxygen vacancies were generated by applying 7% strain to change the oxygen

sublattice. At high temperatures the oxygen structure becomes disordered. The

mean-square-displacements were calculated up to 6 ps, and hence the diffusion

coefficients of oxygen in the strained structure were obtained from the simulations.

The activation barrier extracted from an Arrhenius plot of the diffusivities is

0.4� 0.1 eV, identical to Ea� 0.50 to 0.52 eV within the error estimate. Since

the simulations were carried out only up to 6 ps and close to tc� 1 to 2 ps, this

activation energy from simulation of strained bulk cubic zirconia can be taken as

another source of information on the actual energy barrier for oxygen diffusion.

4.5.11 Temperature Independence of Δε in YSZ

The measurements of the real part of the permittivity ε0(ω) vs. frequency of YSZ at

different temperatures offer critical test of the prediction from the electric modulus,

M*(ω), representation of the data that the ratio εs/ε1 is given by Eq. (4.14). If the

correlation function is the Kohlrausch function for the electric modulus M∗
β ωð Þ, in

conformity with the CM, εs/ε1 and Δε are given by Eq. (4.18) and Eq. (4.19)

respectively. Moreover, the ε;β(ω) calculated fromM∗
β ωð Þ is in good agreement with

the frequency dispersion of the experimental data of ε0(ω), as shown before in

Figs. 4.6 and 4.12 for various ionic conductors. Despite the demonstrative success

of the electric modulusM∗
β ωð Þ, there are others who ignored it. Instead, by analogy

of the hop of the cation between anionic sites to the rotation of a permanent dipole,

they [74] assumed that the permittivity change Δε caused by the relaxation of

mobile ions is given by Δε ¼ n qdð Þ2=3εokT, where n is the mobile ion concentra-

tion, q is the charge of the mobile ions, d is the jump length, and the product qd is

the effective dipole of the hopping ion. We have discussed this before in

Sect. 4.2.1.2.

León et al. [82] used electrical relaxation data [83] of YSZ, in which the mobile

ion density n and the ionic hopping distance d are known, to perform a critical test

of the validity of Δε ¼ n qdð Þ2=3εokT, and the alternative expression for Δε given
by Eq. (4.19) from the electric modulus. The frequency dependence of the real part

of the permittivity, ε0(ω), is shown in Fig. 4.34 at several temperatures for YSZ

samples with different yttria content. For each composition, data points have been

shifted horizontally by using a normalization frequency for each temperature, fp, in
order to collapse all data in a single curve in the log-log scale. Despite the presence

of strong electrode polarization effects at high temperature and low frequencies, the

low frequency value of εs can be determined, and consequently the permittivity

change from the high frequency permittivity ε1 towards εs. It is found that the

magnitude of Δε is nearly independent of temperature and also of the ion mobile

density, which is at odds with a change of εs by a factor of about 1.6 predicted by
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Δε ¼ n qdð Þ2=3εokT in the temperature range of 500 to 780 K, where the value of εs
can be determined from the experimental data. On the other hand, according to the

electric modulus formalism, and assuming a KWW stretched exponential (Eq. 4.15)

for the relaxation function, Δε is given by Eq. (4.19). It is worthwhile to emphasize

Fig. 4.34 Log-log plots of the real part of the permittivity ε0( f ) vs. frequency for: (a) 8% mol

Y2O3 –YSZ at temperatures between 300 K and 780 K (green symbols); (b) 10% mol Y2O3 – YSZ

at temperatures between 300 K and 775 K (blue symbols); (c) 12% mol Y2O3 – YSZ at

temperatures between 302 K and 774 K (red symbols). Frequency axis has been shifted for each

data set in order to collapse permittivity data at different temperatures into a single curve. The

normalization frequencies fp used for each sample were calculated from the following expressions:

fp¼ 11.75� 4882/T in (a), fp¼ 11.13� 5052/T in (b), and fp¼ 9.81� 5577/T in (c). Dashed lines
represent the real part of the permittivity ε’(ω) calculated from the fits of the electric modulus data

by a KWW function with 1� n¼ 0.52. Horizontal dotted lines represent the limiting values, ε1
and εs, at high and low frequencies respectively. The permittivity change Δε¼ εs� ε1 is found to

be independent of both temperature and mobile ion concentration. Data after León et al. [82]

4.5 Experimental Verifications of the CM 165



that the proportionality relationship between Δε and ε1 in Eq. (4.19) holds regard-

less of the exact time dependence of the relaxation function. Eq. (4.19) is obtained

by the choice of a KWW function to describe the electrical relaxation data, but a

similar expression, and a comparable value of the proportionality factor, would be

obtained for any other choice.

León et al. [82] found that the electrical relaxation data of YSZ samples with

yttria content between 8% and 12% are well described by using a single exponent

(1�n)¼ 0.52, independent of temperature. This finding, together to the fact that ε1
is almost constant, implies that if Eq. (4.19) from the CM is correct, the permittivity

change Δε is also approximately independent of temperature and composition and

its predicted value from the electric modulus analysis is Δε¼ 1.75ε1¼ 49� 2.

This is contrary to that expected from the validity ofΔε ¼ n qdð Þ2=3εokT used in the
scaling analysis, since then the permittivity change Δε should depend on temper-

ature and mobile ion concentration. Dashed lines in Fig. 4.34 represent the real part

of the permittivity ε’(ω) calculated from the fits of the electric modulus data by the

stretched exponential function with 1-n¼ 0.52. From these fits the values of

ε1¼ 28� 1 and εs¼ 77� 2 were obtained at high and low frequencies respec-

tively, and there is good agreement with experimental data, not only in the magni-

tude of the permittivity change, but also in the frequency dependence. This strongly

suggests the validity of Eq. (4.19) from the CM, instead of Δε ¼ n qdð Þ2=3εokT to

account for Δε, supports the use of the electric modulus formalism to describe

electrical relaxation in ionic conductors, and casts doubts on the use of a universal

scaling law to analyse and interpret the ac conductivity spectra of ionic conductors

by Sidebottom [74, 79].

Before we go to discuss other ionic conductor in the next section, it is worth

pointing out the success of the CM in explaining quantitatively the multiple

experimental facts of a single ionic conductor YSZ. To be discussed in Chap. 6

on nano-ionics is the dramatic change of oxygen ion conductivity relaxation in

nanometer thin films of YSZ, which has been explained quantitatively as well by

the CM [307]. YSZ is one example among many ionic conductors, and this feat is

unmatched by any other theory of ionic conductivity relaxation.

4.6 Oxide-Ion Dynamics and Diffusion in RE2Zr2-yTiyO7

Conductors

The success of the CM in quantitative explanation of oxygen ion dynamics in YSZ

is not an isolated incident. The applications of the CM to similar ion dynamic

properties have been equally successful in other glassy and crystalline ionic con-

ductors [154]. Among these cases to be discussed in this section are the oxygen ion

conductors of the pyrochlore structure [308] having compositions, A2Zr2�yTiyO7,

(A¼Y, Dy, and Gd, the rare earths), which are directly related to YSZ with 33 mol

% yttria, Y2Zr2O7 (0.33Y2O3-0.67ZrO2).
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Oxide-ion conductors of pyrochlore structure A2B2O(1)6O(2) have been pro-

posed as alternative electrolytes in solid oxide fuel cell devices [309–312].

The pyrochlore cubic crystal structure might be derived from that of an anion

deficient fluorite by doubling the unit cell, removing one out of every eight anions

and placing cations and anions in four crystallographically non-equivalent sites.

Thus, A (RA� 1 Å) and B (RB� 0.6 Å) cations are respectively found at the 16d
(8-coordinated) and 16c (6-coordinated) sites (origin choice 2 of space group 227)

whereas anions are distributed between two tetrahedrally coordinated positions, 48f
[O(1)] and 8b [O(2)] [313, 314]. There is in addition another tetrahedral site

available for anions in the unit cell, 8a, which is systematically vacant in fully

ordered pyrochlores, and which makes them poor oxygen ion conductors. However,

defect pyrochlores such as Gd2Zr2O7, which are intrinsically disordered and with

the three aforementioned anion positions partially occupied, are good oxygen ion

conductors at high temperatures. Different theoretical calculations have shown that

the most stable intrinsic defect in these compounds is an oxygen Frenkel pair

consisting of a vacant 48f position and an interstitial ion located at the 8a site

[312, 315–317]. Thus, oxygen conductivity in pyrochlores depends essentially on

the energy of formation of this defect. Since cation disorder increases the similarity

between non-equivalent oxygen sites and promotes Frenkel defect formation, this

energy is substantially reduced in defect pyrochlores by the presence of disordering

in the cation sublattice. However, it is found that the most disordered pyrochlores

are not the best oxygen ion conductors, usually showing higher activation energies

Edc for ion migration. Consequently, highest conductivity values are obtained in

partially disordered materials.

Within the family of oxide-ion conductors with pyrochlore structure, rare-earth

titanate-zirconates, and in particular the series Gd2Ti2�yZryO7 is of interest since

the concentration of mobile oxygen vacancies can be largely increased by substi-

tution of Zr for Ti [318, 319]. This is due to the oxygen disorder induced by the

increase of the average ionic radius of the cation at the B site from RB¼ 0.74 Å (for

Ti4+(VIII)) to RB¼ 0.84 Å (for Zr4+(VIII)). Moreover, for y� 1.8 the ionic con-

ductivity is of the same order of magnitude as that of YSZ (10�2 S/cm at 700 �C)
[309]. As already mentioned, previous theoretical calculations [312, 316, 317] have

found that oxygen diffusion in Gd2Ti2�yZryO7 takes place by hopping from 48f site
to 48f sites. This result was in fact confirmed later experimentally by XPS mea-

surements [310]. The occupancy of 48f sites by oxygen ions is very close to 1 for

those compositions with Zr contents up to y¼ 0.6, but decreases progressively as Zr

content is increased further [320]. Similar to the case of YSZ presented in the

previous section, the energy barrier for oxygen hopping from 48f to 48f sites had
been calculated theoretically and found to be much smaller than that observed

experimentally in d.c. conductivity [321].

These facts made the series Gd2Ti2�yZryO7 an ideal system to investigate the

possible existence of cooperative effects in the oxygen ions dynamics and its

influence in determining the activation energy of long-range ionic transport. In

fact, this issue was investigated by using Impedance Spectroscopy, which allows

determination of the complex electrical conductivity, σ*(ω), and thus obtaining

4.6 Oxide-Ion Dynamics and Diffusion in RE2Zr2-yTiyO7 Conductors 167



information on the oxygen dynamics from its frequency dependence [31, 322].

As it is usually found in ionic conductors, the electrical conductivity relaxation is

well described by using a stretched exponential or Kohlrausch function of the form,

Φ tð Þ ¼ exp � t=τσð Þ1�n
 �

, with 0< (1�n)	 1. The characteristic relaxation time τσ

is thermally activated with the activation energy Edc of the dc conductivity. The

Coupling Model (CM) accounts for this time dependence of the relaxation function

as a consequence of ion-ion cooperativity in the ion diffusion process, which results

in the slowing down of the relaxation rate at times longer than tc of the order of

1–2 ps, changing the correlation function from a pure exponential to the Kohlrausch

function (see Eqs. 4.31 and 4.35). For ions vibrating in their cages and hopping to

neighboring sites through barriers of energy Ea, the relaxation time for this inde-

pendent ion hop is τ0 Tð Þ ¼ τ1exp Ea=kTð Þ. The reciprocal of τ1 is the attempt

frequency of ions. It follows from the CM that the activation energy for the

d.c. conductivity or τσ will be larger than the energy barrier and given by

Edc¼Ea/(1�n), i.e. Eq. (4.49). An increase of ion-ion interaction leads to higher

degree of cooperativity in the ion diffusion process, which corresponds to a higher

value of the coupling parameter n and consequently to a higher activation energy

for long-range ionic transport.

The imaginary part of the electric modulus for samples with different Zr

contents, as obtained by Moreno et al. [313], are presented in Fig. 4.35. It shows

how the peak broadens when Zr content is increased, corresponding to higher
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Fig. 4.35 Imaginary part of the electric modulus spectra for Gd2Ti2�yZryO7 samples with y¼ 2,

1.3, 0.9 and 0.5 (from right to left). Experimental data have been horizontally and vertically shifted
for clarity. The inset shows the dependence of the exponent n as a function of Zr content, as

obtained from fits of electrical conductivity relaxation data to a Kohlrausch function in the time

domain
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n values in the Kohlrausch function fit to electric modulus spectra. The inset to

Fig. 4.35 shows there is a systematic and significant rise in the value of n, from
n¼ 0.16 towards n¼ 0.44, as Zr content is increased from y¼ 0.5 to 2.0. As

mentioned above, it is well known that increasing Zr content above y� 0.5 results

in creating vacant 48f sites which are responsible for oxygen hopping motion [320].

On the other hand, XPS results have shown that increasing Zr content leads to higher

disorder in both the cationic and anionic sublattices [310]. It is thus expected that the

higher concentration of mobile oxygen vacancies at 48f sites enhances mutual

interactions and the more disordered structure fosters correlations. The trend of

increase of the coupling parameter n with ion concentration shown in Fig. 4.35 can

be rationalized in terms of the CM as due to the enhancement of ion-ion interactions.

Figure 4.36 is an Arrhenius plot of the dc conductivity for different compositions

in the series Gd2Ti2�yZryO7, showing the activated behavior of the temperature

dependence. The activation energy Edc is in the range 0.70–1.0 eV and increases

systematically with Zr content above y¼ 0.5 (see inset to Fig. 4.36). According to

the Coupling Model, Ea is the activation energy for independent ion hopping or the

microscopic energy barrier for oxygen ions to hop into neighboring vacant sites.

Since both n and Edc have been obtained from experiment, we can use Eq. (4.49) to

get an estimate of the energy barrier for oxygen ions to jump from 48f to 48f sites in
the structure. In Fig. 4.37, the activation energy Edc has been plotted as a function of

(1�n)�1 (see red squares), and a clear linear correlation is found. From the slope of

a linear fit to these data, the microscopic energy barrier can be determined, and a

value of Ea¼ 0.60� 0.03 eV is obtained. Another way to show this result is given

in Fig. 4.38. Interestingly, this value is in excellent agreement with 0.57–0.64 eV

from molecular dynamics simulations [315] and 0.58 eV from static lattice energy

minimization simulations [312] for the energy barrier oxygen ions must overcome

to hop from 48f to 48f sites. Note that the increase in the activation energy Edc

occurs despite increasing cell volume when substituting Zr for Ti (e.g. a¼ 10.185Å
vs. 10.528 Å for Gd2Ti2O7 and Gd2Zr2O7 respectively).
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Fig. 4.36 Arrhenius plot of
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Furthermore, while the dc conductivity activation energy increases systemati-

cally with Zr content, the energy barrier seems to remain constant within experi-

mental error, indicating that the difference between the observed Edc and Ea is due

to the slowing down of the oxygen ion hopping dynamics by the many-ions

cooperative dynamics. Naturally, increasing ion concentration leads to enhanced

cooperativity and larger coupling parameter n in the dynamics of the oxygen ions,

and explains the larger difference between Edc and Ea.
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Fig. 4.37 Activation energy Edc for the dc conductivity as a function of the coupling parameter

obtained from electrical conductivity relaxation measurements: red squares are data from

Gd2Ti2�yZryO7 samples with different Zr content between y¼ 0.5 and y¼ 2, where increasing

activation energy is obtained by increasing the Zr content; and blue stars are from Gd2Ti1.3Zr0.7O7

samples but sintered at different temperatures (800, 1000, 1200 and 1500 �C), where increasing

sintering temperature leads to lower Edc values

Fig. 4.38 Activation

energies Edc (open squares)
and Ea¼ (1� n)Edc (closed
circles) as a function of Zr

content in Gd2Ti2�yZryO7.

Solid line represents the
average value Ea¼ 0.60 eV

obtained for the energy

barrier for oxygen hopping
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4.6.1 Cation Size Effects in Oxygen ion Dynamics

It is worth mentioning that for other lanthanides (Ln) like Y and Dy instead of Gd in

the A sites of the Ln2Ti2�yZryO7 systems, both the exponent n and the activation

energy Edc have also found to increase as the average RB increases (i.e. Zr content

increases) [308, 313]. The increases of n and Edc with RB are shown in Figs. 4.39

and 4.40a respectively. Noticeably, as structural disordering in the Dy and Y

containing series is higher than in the Gd one (both Dy2Zr2O7 (DZT) and

Y2Zr2O7 (YZT), are nominally fluorites at all temperatures whereas Gd2Zr2O7

Fig. 4.39 Dependence of

the exponent n on the

average cations size RB for

samples in the series of

(DZT) Dy2Zr2�yTiyO7,

(YZT) Y2Zr2�yTiyO7, and

(GZT) Gd2Zr2�yTiyO7

Fig. 4.40 Dependences of the values of (a) the dc conductivity activation energy Edc and

(b) microscopic activation energy Ea, on the average cations size RB for samples in the series of

(DZT) Dy2Zr2�yTiyO7, (YZT) Y2Zr2�yTiyO7, and (GZT) Gd2Zr2�yTiyO7. Solid lines are only

shown to emphasize the trends
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(GZT) is pyrochlore below 1550 �C), lower dc activation energies Edc were

obtained for the latter (see Fig. 4.40a). As for the Ea, the energy barrier remains

approximately constant for each series (see Fig. 4.40b), indicating that the differ-

ence between the observed Edc and Ea is indeed primarily due to the increasing

slowing down of the oxygen ion hopping dynamics by the many-ions cooperative

effects. The degree of cooperativity in the dynamics of the mobile oxygen ions is

enhanced by increasing RB (higher Zr content), since the mobile ions concentration

increases by almost two orders of magnitude by increasing Zr content from y¼ 0 to

1.5 [318, 323],and thus naturally it explains the increasing larger difference

between Edc and Ea. It can be observed also in Fig. 4.40b that the average Ea

value decreases as A-site occupancy changes from Y to Gd accompanied by an

increase in RA. We will come back later to this point.

The influence of oxygen order on oxide ion dynamics have also been investigated

by using samples with a fixed Zr content where structural disorder is thermally

induced instead of chemically induced [55]. The composition Gd2Ti1.3Zr0.7O7 was

selected for this study because it lies close to the boundary between the fully-ordered

“ideal” and the “defect” pyrochlore stability fields observed for equilibrium phases

in the Gd2Ti2�yZryO7 solid solution. It has been also shown the feasibility of

preparing metastable anion deficient fluorite-type Gd2Ti1.3Zr0.7O7 samples by

mechanical milling starting from constituent oxides [324]. These facts make this

composition an appropriate system to investigate the possible influence of structural

disorder on the oxygen hopping dynamics and thus on the long-range ionic transport.

Moreno et al. [325] performed post-milling thermal treatments at four selected

temperatures (800, 1000, 1200 and 1500 �C) that allow some ordering to take

place. X-ray diffraction and Raman spectroscopy were used to characterize the

structure of the samples, obtaining transient pyrochlores with a very unusual cation

distribution. They report that both cation and anion substructures order at different

rates: while the anion substructure orders mostly in a narrow temperature range

around 860 �C, the ordering of the cation substructure is sluggish, and very high

temperatures (1500 �C) are needed to complete the process. This has been related to

the extremely slow rate of cation diffusion in fluorite-related stabilized zirconia

based materials, which is well known [98]. Impedance spectroscopic measurements

on these samples have allowed the analysis of electrical conductivity relaxation data

as a function of structural disorder. Experimental data show that the activation

energy for the dc conductivity, Edc, decreases with increasing sintering temperature,

thus leading to higher ionic conductivity values. It is also found in this series of

samples that there is a concomitant decrease of the exponent n in the Kohlrausch

functions characterizing the dynamics of oxygen ions.

Figure 4.41 shows the imaginary part of the electric modulus for Gd2Ti1.3Zr0.7O7

samples with different post-milling thermal treatments at temperatures of

800, 1000, 1200 and 1500 �C, as obtained by Moreno et al. [325] Peak narrowing

corresponds to lower n values in the KWW fit to electric modulus spectra, and the

exponent n decreases systematically from 0.51� 0.01 to 0.18� 0.01 when the

sintering temperature increases from 800 to 1500 �C (see inset to Fig. 4.41).

The characteristic relaxation time is found to be thermally activated with the
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same activation energy as the dc conductivity, whose temperature dependence is

shown in Fig. 4.42.

All samples show a thermally activated behavior of the dc conductivity σdc, and
the activation energy, Edc, is found to decrease from 1.23� 0.04 to 0.78� 0.03 eV

as the sintering temperature increases from 800 to 1500 �C (see Fig. 4.42). The

activation energy Edc obtained for these samples has been also plotted as a function

of (1-n)�1 in Fig. 4.37 (blue stars) where they can be easily compared with samples

presenting a chemically induced disorder. The microscopic energy barrier

Ea¼ 0.64� 0.03 eV was also obtained from a linear fit to Edc¼Ea/(1-n),
i.e. Eq. (4.49). This behavior is also explained as due to the enhancement of

ion-ion interactions. It is interesting to see again that a clear correlation is found,

although in this case the enhancement of ion-ion interactions is related to the higher

structural disorder induced by the lower sintering temperature in the preparation

process instead of due to a higher Zr content as in the previous section.

The effect of increasing the A cation size on the oxide ion dynamics has been

also reported by Dı́az-Guillén and coworkers [308, 326, 327]. A similar analysis of

the electrical relaxation data was performed on several samples: Gd-, Dy- and Y-

zirconates (AZ samples: A2Zr2O7 (A¼Gd, Y, Dy)), and also on Gd-zirconates

where Gd was partially replaced by La (GLZ samples: Gd2�xLaxZr2O7 (x¼ 0.2;

0.3; 0.4; 0.8; 1) [308, 326, 327]. In this way, the average value of the ionic radius of

A cation was changed between RA¼ 1.02 and 1.10 Å.

Fig. 4.41 Spectra of the imaginary part of the electric modulus for Gd2(Ti0.65Zr0.35)2O7

powders sintered at different temperatures. Experimental data have been horizontally and verti-
cally shifted by normalizing to the corresponding peak frequency and peak height values in each

curve. Solid lines are fits according to a Kohlrausch relaxation function. The inset shows the

decrease in the value of the exponent n in the KWW fit as the sintering temperature increases from

800 �C to 1500 �C
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Figure 4.43 shows the evolution of the activation energy Ea with the A-site

average cation size for the samples in the AZ and GLZ zirconate series all with

constant RB (RZr(VIII)¼ 0.84 Å). It is clearly observed from the figure that Ea

systematically decreases when RA increases. This trend was already pointed out

when presenting the data in Fig. 4.40 for GZT, YZT and DZT samples. The

observed lower energy barrier for mobile oxygen ions to hop to neighboring vacant

sites as RA increases might be explained by the increase in cell volume, since cell

volume is to a good approximation linearly dependent on the ionic radius of the

A-type cation [328]. Therefore, on replacing Gd in Gd2Zr2O7 for La, the unit cell

volume will increase (a¼ 10.528 Å vs. 10.805 Å for Gd2Zr2O7 and La2Zr2O7

respectively [314]) and one would expect larger free space available for mobile

charge carriers and, consequently, a lower barrier for oxygen ions to hop into

neighboring vacant sites, consistent with the experimental data shown in

Fig. 4.42. The value of the exponent n obtained from the electric modulus spectra

do not change significantly (n¼ 0.47� 0.03), since structural ordering/disordering

is similar for all these pure zirconate samples, and therefore, the variation of the Edc

with the A-cation size is basically determined by the change in Ea. This is also

shown in Fig. 4.43. It is clear that the trend is similar to that of Ea. Solid symbols in

Fig. 4.43 represent the activation energy values for oxygen migration in Gd2Zr2O7

and Y2Zr2O7 obtained by Pirzada et al. [312] by using atomic scale computer

simulations; i.e. 0.58 and 0.65 eV respectively. The existing structural disordering

was not considered in these calculations by assuming in both cases a fully ordered

Fig. 4.42 Arrhenius plots showing the temperature dependence of the dc conductivity obtained

for various Gd2(Ti0.65Zr0.35)2O7 samples sintered at different temperatures between 800 and

1500 �C. The inset shows the decrease of the activation energy for the dc conductivity as the

sintering temperature increases
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pyrochlore structure. The aforementioned activation energy values from computer

simulations would correspond in fact to the energy barrier, Ea, deduced from

experimental data. As shown, the computer simulation value for Gd2Zr2O7 is

quite similar to the experimental value, while that for Y2Zr2O7 is somewhat

lower than expected from experiment. However, it should be recalled that yttrium

zirconate Y2Zr2O7 does not exist as an ordered pyrochlore as assumed in the

computer simulations but as an anion deficient fluorite, and this might explain the

difference of activation energies from simulation and experiment for Y2Zr2O7.

4.7 Li-Ion Dynamics and Diffusion in Li3xLa2/3�xTiO3

Besides the interest in oxide-ion conducting materials for application as electrolyte

in solid oxide fuel cell devices discussed in the previous sections, there is also

renewed interest in Li+ ion conductors mainly driven by their extensive use in

current solid-state batteries technology. Between the different materials exhibiting

high lithium ion conductivity there are many metal oxides of interest, like Li2SO4

[329], Li4SiO4 [330], Li3N [331], Li- β-alumina [332], Li1+xTi2�xAlx(PO4)3 [333],

and Li3xLa2/3�xTiO3 [334]. In particular, extensive work has been devoted to the

family of Li3xLa2/3�xTiO3 (LLTO), the lithium conducting oxides with perovskite

structure [334–341].
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Fig. 4.43 Activation energies Ea (open symbols) and Edc (solid symbols) for selected A2Zr2O7

samples as a function of the average RA cation radius. AZ and GLZ stand for the (A¼Y, Dy and

Gd) and Gd2�xLaxZr2O7 samples respectively. Lines are guides for the eye to emphasize the drop

in both activation energies as the size of the A-site cation increases. The (diamond) and (square)
symbols represent activation energy values for oxygen migration in Gd2Zr2O7 and Y2Zr2O7

respectively calculated by atomic scale computer simulations (see text)
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Li0.18La0.61TiO3 (LLTO) is a crystalline lithium fast-ion conductor with very

high dc conductivity σdc values of 10
�3 S/cm at room temperature. The first study

on the conducting properties of LLTO was reported by Belous et al. [336], who

ascribe the stabilization of the perovskite structure to the lanthanum ions larger in

ionic size, and interpret the high electrical conductivity measured as due to the

mobility of the lithium ions. However, Inaguma et al. [339, 342] reported for the

first time a bulk lithium ion conductivity of 10�3 S/cm at room temperature, and it is

usually referred to as the first study on the ionic conductivity of LLTO. Since then,

there has been much research work investigating the influence of the composition,

pressure, and sintering conditions on the crystal structure, ion conductivity, and the

mechanism for lithium ion conduction (for detailed information see the compre-

hensive review by Weppner et al. [334]). Figure 4.44 shows an Arrhenius plot for

ionic conductivity of LLTO together with that of other solid Li+ ion conductors

[334]. The reason for the high mobility of Li ions in these oxides was understood as

due to the fact that there are partially occupying equivalent A sites of the ABO3

perovskite structure, and the presence of empty A sites facilitates Li ions to move

easily through them. The perovskite structure can be regarded as a three-

dimensional framework made up of vertex-sharing BO6 octahedra with a large A

cation in each of the 12-coordinated cavities of the framework. In the solid solution

Li3xLa2/3�xTiO3 (0< x< 0.5) Li atoms were thought to replace La atoms at the A

sites, leading to a progressive reduction of vacancies at these positions. The precise

structure determination, and lithium ion location, of these oxides by XRD is

particularly difficult because the superlattice reflections associated with the tilting

Fig. 4.44 Arrhenius plot of the electrical conductivity of several solid lithium ion conductors.

Reproduced from Ref. [334] by permission
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of the TiO6 octahedra arise from the oxygen atoms, which are weak scatterers when

compared with La and Ti. In 2000, Alonso et al. [338] performed neutron powder

diffraction (NPD) measurements of La0.5Li0.5TiO3 and show its structure is consti-

tuted of a network of TiO6 octahedra slightly tilted along the pseudocubic rhom-

bohedral axes in order to optimize La-O distances. For this composition, La

positions are half-occupied, leaving 0.5 vacancies per formula unit, distributed at

random in the structure. The Li ions are fourfold coordinated to oxygen atoms, in

square-planar configuration, and placed at the middle of windows formed by four

TiO6 octahedra. Since there are 0.5 Li atoms per formula unit (i.e., per pseudo-cubic

unit cell), the occupancy factor of Li is only 1/6, and the unoccupied 5/6 equivalent

sites provide the pathway for Li ion diffusion with large mobility through the

structure. This location for the Li ions also explains that the maximum conductivity

value at a given temperature is observed at relatively high Li content (about

3x¼ 0.35) which can not be understood by assuming the Li atoms are located in

the A sites as La atoms (see Fig. 4.45) [342–344]. Moreover, in the latter case, for a

random distribution of Li, La and A vacancies in the A sites, a strong decrease of the

dc conductivity would be predicted for La0.5Li0.5TiO3 (3x¼ 0.5), which is not

found [55, 340]. Figure 4.45 shows that dc conductivity is thermally activated,

but shows a non-Arrhenius behavior. The activation energy, rather independent of

the lithium content, decreases from about Eσ� 0.4 eV at the lowest temperatures
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Fig. 4.45 Arrhenius plot of the bulk lithium ion conductivity of Li3xLa2/3�xTiO3 for samples with

lithium content x¼ 0.025 (red triangles), x¼ 0.042 (green squares), x¼ 0.083 (blue diamonds),
x¼ 0.125 (black circles) and x¼ 0.167 (magenta down triangles). The inset shows the conductiv-
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(160–250 K) to Eσ� 0.3 eV or lower at higher temperatures (250–360 K).

This non-Arrhenius behavior of the ionic conductivity will be discussed in the

next section.

Bulk dc conductivity values in Fig. 4.45 were obtained from impedance spec-

troscopy measurements [340, 344]. Figure 4.46a shows the frequency spectra of the

real part of the conductivity at different temperatures. The rapid decrease of the

conductivity observed at low frequencies and high temperatures is caused by

blocking of ions at grain boundaries, and shifts to lower frequencies when the

temperature is decreased. There is a plateau in the conductivity spectra that can be

ascribed to the bulk dc conductivity and a crossover to a power law frequency

dependence at the highest frequencies, as commonly observed in ionic conductors

[39, 345]. Figure 4.46b shows the spectra of the imaginary part of the electric

modulus for various temperatures, and the solid lines are fits to Fourier transform of

the Kohlrausch correlation function of Eq. (4.15) or the CM Eq. (4.35), following

the method proposed by other authors [18, 25]. The high frequency permittivity

obtained from the fits takes a value of ε1¼ 85� 5 and is rather temperature

independent. The values obtained for the fractional exponent 1-n of the Kohlrausch
function are close to 0.4, showing a slight increase with temperature in this

temperature range. Impedance spectroscopy measurements over a much wider

temperature and frequency ranges also have been performed in LLTO, showing

that the change in the fractional exponent 1-n is related to a non-Arrhenius

temperature dependence of the dc conductivity (see next section). From the fits of

the electric modulus data, shown as solid lines in Fig. 4.46b, the dc conductivity

can be calculated by Eq. (4.13) as [97, 287, 288] σdc(T )¼ Eoε1/<τσ(T)>,

where<τσ> is the mean relaxation time of the decay function obtained by

Fig. 4.46 (a) Frequency dependence of the real part of the conductivity of Li0.5La0.5TiO3 at

several temperatures (221, 211, 202, 193, 186, 179, 171, 164 and 153 K, from top to bottom). (b)
Frequency dependence of the imaginary part of the electric modulus of Li0.5La0.5TiO3 at several

temperatures (179, 193, 206, 221 and 235 K, from left to right). Solid lines are fits to Fourier

transforms of the Kohlrausch function
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Eq. (4.16) as <τσ>¼
ð1
0

Φ tð Þdt ¼ τσ Γ 1
1�n

� 	
= 1� nð Þ, where Γ is the Euler’s

gamma function.

It has been reported that depending on the synthesis conditions and composition,

LLTO crystallizes in simple cubic, tetragonal or orthorhombic perovskite-type

structure. For the same lithium content, samples with a cubic structure exhibits

slightly higher conductivity than the ordered tetragonal structure, which is probably

due to the presence of alternating planes along the c-axis with a different amount of

vacancies. In fact, NMR measurements have shown that two types of lithium ions

with different mobility are present in orthorhombic samples, which would corre-

spond to lithium located in these alternating planes. This is also likely in the case of

tetragonal samples, although quadrupole constants decrease and resolution of two

different sites become more difficult [344]. The ordering of A site vacancies in

alternating planes along the c-axis should favor a 2D motion of Li in orthorhombic

samples. In tetragonal samples, since vacancies turn progressively disordered, a 3D

motion of Li ions is found at enough high temperature, while at temperatures below

200 K lithium ion hops between cages through the bottleneck in the ab plane

(2D motion) have been reported [346, 347]. Although different conduction mech-

anisms have been proposed for LLTO in order to explain its high ionic conductivity

at room temperature, the exact dimensionality (2D or 3D) of the lithium mobility in

these compounds is still controversial [334].

Substitution of different cations for La gives rise to important changes in

conductivity and activation energy, which have been attributed to the shrinking of

lithium hopping due to the tilting and rotating of the TiO6 octahedra [348]. Sr and

Ba substitution for La should lead to a lattice expansion that would enhance the

conductivity. This is in fact observed for the substitution of up to 5% Sr for

La [342]. However, substitution of a higher amount of Sr (>5%) for La, or

substitution of Ba for La, result in a decrease of the lithium ion conductivity,

which has been related to local lattice deformation narrowing the bottleneck size

[334]. Similar findings have been reported for other perovskite-type titanates,

M3xLn2/3�xTiO3 (where Ln¼ rare-earth element and M¼Li, Na, K, Ag)

[349–351]. Inaguma et al. have compared the influence of pressure and the Ln

cation substitution on the ionic conductivity of the LLTO in terms of activation

volume, showing that the effect of lattice expansion is much smaller than that of

lattice deformation [350–352].

Another interesting issue that determines the value of lithium conductivity in

LLTO samples of different lithium content is the existence of site percolation.

Diffusion of lithium ions in LLTO related materials have been shown to be limited

by percolation effects. Since the presence of vacant sites allows the ions to hop from

site to site through the structure, one would expect that ionic conductivity were

proportional to the concentration of mobile ions, nc, and also to their mobility,

which should increase with the amount of vacant equivalent sites nv for lithium

ions. In fact, one of commonly used strategies in the search for novel ionically

conducting materials consists of the optimization of the product ncnv by the partial
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substitution of certain ions by others with different valences in structures with open

conduction pathways. Thus, in the case of LLTO, La3+ ions in A sites of the

perovskite (ABO3) are substituted by Li+ ions, and the number of nominal vacant

A sites is given by (1 � 2x)/3. For a random distribution of vacant A sites, a

maximum value of dc conductivity would be expected for a lithium content of

x¼ 0.25 (maximum ncnv product), while it should vanish at x¼ 0 and x¼ 0.5.

However, as mentioned above and shown in Fig. 4.45, the highest value of dc

conductivity at room temperature is found for a lithium content x¼ 0.31, and

unexpectedly high dc conductivity values have been reported for samples with

x close to 0.5 [344]. Inaguma and Itoh [353] were the first to propose the existence

of a percolation limited motion of lithium ions as the reason for the shift observed in

the maximum of the dc conductivity to higher lithium contents, but a quantitative

explanation seemed elusive. Later on, a neutron diffraction study helped to provide

an explanation for the high dc conductivity values measured in Li-rich LLTO

perovskites. As already mentioned, it was found that lithium ions are not located

at A sites but distributed at unit-cell faces of the perovskite [338]. Therefore, the

amount of vacant A sites in the structure is actually higher than that deduced from

the structural formula. This fact on its own can also explain the shift to higher

lithium contents of the highest dc conductivity value, although the existence of

percolation effects on lithium diffusion could not be discarded. A convincing

evidence of the existence of percolation-limited ionic motion came with a study

of structure and ionic mobility in the crystalline series Li0.5�yNayLa0.5TiO3

(0	 y	 0.5) (LNLTO) combining neutron diffraction, X-Ray diffraction, NMR

and Impedance Spectroscopy [354]. It was already known that Na0.5La0.5TiO3 is

not an ionic conductor but behaves like an insulator [355]. The higher size of

sodium compared to that of lithium results in a better coordination of sodium ions at

A sites. The very different electrical properties of the end members of the solid

solution LNLTO motivated the study. Structural characterization of LNLTO sam-

ples showed that Na and La ions occupy A sites, while Li ions, as in LLTO, are

located at the center of unit cell faces of the perovskite. Thus, substitution of Li by

Na ions reduces the amount of vacant A sites, and the local mobility of Li ions at

room temperature was found to decrease by two orders of magnitude along the

series. At the same time, long-range dc conductivity values show a sharp decrease

at y¼ 0.2 (see Fig. 4.47), from almost 10�3 S/cm to values below 10�10 S/cm,

which was explained in terms of a percolative blocking of the 3D conduction

network. If all A sites were occupied by alkaline cations, dc conductivity values

of LNLTO samples will be always close to zero. However, dc conductivity values

are very high in samples with y> 0.2, suggesting that part of the A sites are not

occupied. This is in agreement with neutron diffraction results. The amount of

vacant A sites is thus higher than that deduced from the structural formula which

could explain the high values of dc conductivity measured in Li-rich perovskites.

On the other hand, LNLTO samples with low lithium contents (y> 0.2) show a

much lower dc conductivity than those obtained in the LLTO series (see Fig. 4.47a).

This can be explained in terms of the amount of vacant A sites, that is considerably

reduced in LNLTO samples when sodium content is increased. The steep decrease
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of the dc conductivity observed in LNLTO samples (Fig. 4.47a) is well described by

considering a percolation model for the lithium diffusion. In this model, A sites

associated with Li ions are vacant and participate in ionic diffusion, but A sites

occupied by La or Na ions do not participate in ionic conduction and block lithium

diffusion. Ionic transport is expected to give rise to a dc conductivity only for

concentrations of vacant A sites above the percolation threshold, np� 0.31, and a

composition dependence of the dc conductivity of the form σdc¼K(n-np)
2,

corresponding to the three-dimensional percolation of Li motion in the cubic

network formed by A sites [356, 357]. Solid line in Fig. 4.47a shows the good

Fig. 4.47 (a) Room-temperature dc conductivity of Li0.5�yNayLa0.5TiO3 versus lithium content

of the samples (blue circles). The solid line is a fit of dc conductivity data to the expression

σdc¼K(n � np)
2, deduced for a percolation limited diffusion of lithium ions in a 3D perovskite

structure. A value of the percolation threshold np¼ 0.30� 0.01 is obtained, in remarkable agree-

ment with that expected from the percolation model in a cubic lattice (np� 0.31). For n< 0.3 the

dc conductivity values are below experimental resolution (10�10 S/cm). Room-temperature dc

conductivity of Li3xLa2/3�xTiO3 samples are also plotted for comparison as a function of lithium

content (red circles). (b) Same data as in (a) but plotted versus the number of vacant A sites per

formula unit. (c–e) represent a schematic illustration of the percolation-limited motion above

(c), at (d), and below (e) the percolation threshold for a two-dimensional square lattice. White
arrows illustrate local mobility of Li in finite clusters
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agreement between the dc-conductivity values and those expected from the perco-

lation model. The dc conductivity is very high when the number of vacant A sites

per unit cell is higher than 0.3 (y< 0.2).

At y¼ 0.2, the amount of vacancies is very close to the percolation threshold,

and the infinite percolation cluster is about to disappear, reducing drastically the

value of the dc conductivity. For higher sodium contents, y> 0.2, all clusters are

expected to be of finite size, and long-range ionic transport does not occur (see

Fig. 4.46c–e). The results suggest that the amount of vacancies available for lithium

diffusion is defined by the sum of nominal vacancies plus the Li content, nv¼ [Li]

+□, and it is nv which rules the percolation threshold. This is shown in Fig. 4.47b,

where room temperature dc-conductivity data for both the LLTO and LNLTO

series are plotted as a function of nv. In this plot, all points are placed in the

curve deduced for a three-dimensional percolation of vacant A sites. Consequently,

the amount of vacancies in LLTO increases with the Li content from 0.33 to 0.5,

values that are always above the percolation threshold (nv¼ 0.31). The decrease of

two orders of magnitude in dc conductivity measured for Li-poor LLTO perovskites

shows the proximity of the percolation threshold, while the composition depen-

dence of the dc conductivity in LNLTO samples evidences the existence of a

percolation process. Since Na ions are located at A sites of perovskites,

they effectively block the pathways for lithium diffusion. NMR T1 relaxation

times of Li+ and Na+ ions are also consistent with this scenario [354]. The residence

time of lithium at square windows is near 10�8 s at room temperature in

Li0.5La0.5TiO3 [55]. Due to the high mobility of lithium, quadrupole interactions

are averaged out in the 7Li NMR spectra. As the Na content increases in LNLTO

samples, the 7Li NMR spectra progressively display quadrupole satellite transitions

of less mobile species, whose intensity increases with the sodium content, and there

is an increase of T1 relaxation time, suggesting a decrease of the average Li

mobility. Changes observed on T1 values from the 23Na signal are similar to

those detected in the 7Li signal, what has been ascribed to the relaxation induced

by mobile Li ions at sites occupied by sodium cations [354].

4.7.1 Unusual Non-Arrhenius dc Conductivity of LLTO

In discussing the temperature dependence of σdc(T ) in YSZ (see Figs. 4.31 and

4.33) and some other glassy and crystalline ionic conductors (see Fig. 4.1 and

Table 4.3), we point out the gradual crossover of σdc(T) from the stronger Arrhenius

dependence at lower temperatures to the weaker Arrhenius dependence at higher

temperatures when σdc(T ) reaches levels of ~ 1 Scm�1. An exception or special

case is the crystalline ionic conductor Li0.18La0.61TiO3 measured by Rivera

et al. [112]. The T-dependence of σdc(T ) is Arrhenius at low temperatures above

120 K with Eσ¼ 0.36 eV, but on increasing temperature σdc(T ) shows a

non-Arrhenius behavior starting at about σdc ~ 10
�4.5 S cm�1, as shown in

Fig. 4.48. The apparent activation energy of σdc, defined by Eσ(T)¼ dlnσdc/d(kT)
�1,

decreases monotonically with increasing temperature after the onset of deviation
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from the low temperature strictly Arrhenius dependence. This behavior of σdc(T)
or τσ(T) is surprising because there is no change of either the crystalline structure

or the number of mobile Li ions.

Time and frequency domain measurements of ion dynamics in the wide fre-

quency range of eleven decades (from 10�5–106 Hz) with data expressed in terms of

the complex electric modulus helped to shed light on this behavior. As shown in

Fig. 4.49, there is a narrowing of the loss modulus peak as temperature is increased,

indicating that the exponent, 1-n(T ), of the Kohlrausch relaxation function fitting

the data increases with increasing temperature (see Fig. 4.50). In the CM, the

decrease of the coupling parameter n(T ) reflects the decrease of many-ion

Fig. 4.48 Arrhenius plot of

the dc conductivity of

Li0.18La0.61TiO3 showing a

non-Arrhenius temperature

dependence

Fig. 4.49 Spectra of the

real (open squares) and
imaginary part (open
circles) of the electric
modulus of Li 0.18La

0.61TiO3 obtained from

120 K, 130 K, 150 K, and

180 K from left to right
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cooperativity with increasing temperature. The primitive activation energy Ea,

identified with the true or microscopic energy barrier, is independent of temperature

since the structure of LLTO remains unchanged. If one uses the CM Eq. 4.50,

Eσ(T )¼Ea/[1�n(T )], in conjunction with the observed decrease of the n(T ), it is
possible to give a quantitative explanation of the concomitant decrease of Eσ(T ).
Similar decrease of n with increasing temperature is found in the structural relax-

ation of many glassforming liquids, and it has effect on the T-dependence of the

structural relaxation time [189, 358, 359]. The observed decrease of Eσ(T) in LLTO
is challenging for any theory to explain. It was used to put the CM to a test.

The primitive activation energy Ea(T ) calculated via Eq. (4.49) by the product

[1�n(T )]Eσ(T ) are shown by the circles in Fig. 4.50. It can be seen that within

errors the values of Ea(T) obtained are independent of temperature as it should be

since it corresponds to the microscopic energy barrier of the crystalline LLTO. This

result is tantamount to verification of the CM explanation of the non-Arrhenius

dependence of the σdc(T ) of LLTO. We do not know any other theory/model that

can explain this property.

Fig. 4.50 Temperature dependence of the dc activation energy Edc (red squares) and of the

Kohlrausch exponent [1-n(T )] (blue squares) describing the dynamic response of ions in

Li0.18La0.61TiO3. Circles represent the microscopic activation energy Ea estimated by using the

Coupling Model, and a constant value of 0.175 eV is obtained (horizontal line). Open squares are
the predicted values of the exponent [1-n(T )] for temperatures higher than 256 K in order that the

same constant value, Ea¼ 0.175 eV, is maintained at the higher temperatures according to the

relation Ea¼ [1-n(T )]Edc
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4.7.2 Accounting for the Non-Arrhenius T-Dependence
of σdc(T) from n(T) by the CM

So far, the published electric modulus data of LLTO give [1-n(T)] for T up to 256 K

(blue filled squares in Fig. 4.50), while sizeable decrease of Eσ(T ) continues up to

385 K. If the CM explanation continues to hold at higher temperatures, Ea(T ) must

still be temperature independent all the way up to 385 K. Assuming this is the case

and taking the temperature independent value of Ea¼ 0.175 eV determined at

temperatures lower than 256 K, [1�n(T )] must have the values shown by open

squares in order that the product [1�n(T )]Eσ(T ) remain constant and equal to

Ea¼ 0.175 eV for all temperatures up to 385 K. This offers an additional critical

test of the CM explanation by extending the measurement of the electric modulus at

higher frequencies up to the GHz region to determine [1�n(T)] directly at temper-

atures higher than 256 K. Measurements of the electric modulus at higher frequen-

cies up to the GHz region are necessary to determine [1�n(T)] directly at

temperatures higher than 256 K. Such measurements have been made by Rivera

et al., but so far unpublished, and the coupling parameter n(T) obtained by fitting the
electric modulus to a Kohlrausch function at temperatures above 256 K and up to

385 K are in agreement with the predicted values of the exponent (see Fig. 4.50).

Using the experimentally obtained values of Edc(T) and n(T), the calculated prod-

ucts [1�n(T)]Edc(T) should be good estimates of the primitive energy barrier Ea. An

approximately constant value of Ea¼ 175� 10 meV is obtained over the whole

temperature range, which is remarkably similar to the value of 170 meV determined

from electrical conductivity relaxation and NMR spin-lattice relaxation for the

microscopic energy barrier [55, 340, 360]. These results strongly support the CM

interpretation of a decrease in ion-ion interactions with increasing temperature as the

origin of the observed decrease in the exponent n, which in turn explains the parallel
decrease of Edc at dc conductivity levels orders of magnitude below 10�2 S cm�1.

4.8 Caged Dynamics and Nearly Constant Loss
in Ionic Conductors

At sufficiently low temperatures, where not only the observed conductivity relax-

ation time, τσ, but also the primitive relaxation time, τ0, of the CM is long, a new

feature of the ion dynamics appears in the real part of the ac conductivity at higher

frequencies having σ0( f ) / f1�c with the exponent c being small but positive. This

nearly linear frequency dependence of the real part of the conductivity σ0(ω) was
given before by Eq. (4.7) and the associated nearly constant loss (NCL) given by

Eq. (4.6) are commonly found at low temperatures/high frequencies in ionic

conductors in general. Examples have been shown in Figs. 4.3, 4.5, 4.8, 4.10,

4.16, 4.18, and 4.20. Since these properties are the focus of the present section,

Eqs. (4.7) and (4.6) are combined and reproduced here for convenience,
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σ0 fð Þ ¼ A=2πe0ð Þf 1�c, ε} fð Þ ¼ Af�c c << 1 ð4:56Þ

The NCL or the nearly linear frequency dependence of σ0(ω) (NLfDσ0) can

extend indefinitely to lower frequencies over as many decades as the experimental

window can reveal on lowering temperature (see Fig. 4.8 for an example). There-

fore, it has no characteristic time, and does not originate from ion hop from site to

site whether local or long range. In the ionic liquids shown in Figs. 4.7, 4.8, 4.9, and

4.10, where a thermally activated secondary ion relaxation is present, the NCL or

the NLfDσ0 is the fastest process after vibrations. The intensity factor of the NCL,

A, increases weakly with increasing temperature in the manner well described by

either Tγ with γ not much larger than unity, or by exp(T/T0) [361]. The NCL is

present whether the ionic conductor is glassy, molten, or crystalline [41, 43–47],

and glass-formers of different physical and chemical composition [53, 60, 61], even

in insulators and semiconductors [39, 50, 51]. NCL is found in crystalline ionic

conductors including Na β-alumina [54], yttria stabilized zirconia (YSZ) [270] and

LLTO [362], and crystalline LiAlSi2O6 [47], indicating that the origin of NCL is

not due to randomness or disorder.

From the connection between fluctuation and dissipation [363], the NCL corre-

sponds to the 1/f noise [51] which is also commonly observed. The derivation of the

1/f noise by the CM in the 1980 paper [51] is tantamount to a first attempt to

understand the origin of the NCL in some materials, although a more intuitively

clear explanation by caged ion dynamics has emerged from the CM [43–45, 53].

The nature of the ubiquitous nearly constant loss is certainly a challenging problem

in ionic conductors, but it has received more attention to understand it only very

recently [1–10, 14, 40–43, 45]. In 1999, most of the experimental data of the

constant loss in ionic conductors measured to that date were collected to extract

its properties [43, 44]. The magnitude and temperature dependence of the NCL in

25 ionic conductors are shown in Fig. 4.51. All are either glassy or crystalline ionic

conductors, except for CKN (#17) the data of which covers both the glassy state

(17 g) and the molten liquid state (17 m) and a prominent increase on crossing

Tg¼ 333 K. The straight line interpolating data points of each glassy and crystalline

ionic conductor show the temperature dependence of NCL increases mildly with

temperature and is proportional to exp(T/T0). Many properties of the NCL have

been reported in Ref. [43, 44], although in reconsideration we recognize

anharmonicity of the inter-ion potential responsible for caged ions is ultimately

the determining factor of the properties of the NCL. This will become clear from the

results presented in Sect. 4.10.

In molecular dynamics simulations the NCL is found in the mean square

displacement of the form, <r2(t)>/ tc, c�1, at times shorter than τ0 [163]. The
molecular dynamics simulation data show by either the van Hove function [45] or

by the motions of all ions at times when< r2(t)>/ tc with c� 0 [66] that no ion or

negligibly few ions have successfully hop to nearest neighbors. In other words,

almost all ions remain caged. The weak T-dependence of A reflects the NCL is due

to loss of ion confined within the anharmonic potential defining the cage. The ions
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are no longer caged at long enough times starting when ions hop to neighboring

sites singly and independently with high probability, which naturally can be

identified with the primitive ion relaxation with relaxation time τ0 of the

CM. Consequently, the NCL no longer persists at times longer than τ0, and it

may undergo some changes at times when approaching τ0. Thus the primitive

relaxation performs another function of terminating the NCL, and τ0 provides the
time when the regime of caged ion dynamics has ended with certainty. More

exactly, the primitive frequency, f0� 1/(2πτ0), is comparable in order of magnitude

to the lower bound of the NCL frequency regime. This relation of the primitive

relaxation to NCL have been demonstrated to be true by isothermal conductivity

relaxation data of many different ionic conductors represented either as σ0( f ),

Fig. 4.51 Magnitudes and temperature dependencies of the NCL for many ionic conductors. Data

sets 1, 2, and 3 are for xK2O.(1-x)GeO2 glasses with x¼ 0.0023, 0.02, and 0.20, respectively. Data

set 4 is for 0.00044Na2O.(0.99956)[0.04B2O3 –0.96SiO2]. Data set 5 is for a quartz crystal with a

few hundred ppm of ions. Data set 6 is for Na2O.3SiO2. Data points 11 and 12 are for xNa2S.(1-x)
B2S3 with x¼ 0.001 and x¼ 0.005, respectively. Others are 0.5Na2O.0.5K2O.3SiO2 (set 7); YSZ

(set 8); LiPO3 (set 9); Li0.5Na0.5PO3 (set 10); Na β–Al2O3 (set 13); 0.48(AgI)2�0.52Ag2SeO4 (set

14); CdF2 –LaF3 –AlF3 –PbF2 (point 15); 0.5Li2S–0.5SiS2 (point 16); CKN glass (set 17); CKN

melt (set 17 m); ZBLAN20 (point 18); LLTO (set 19); 0.30Ag2S�0.70AgPO4

(set 20); 0.03Li2O.0.97Ge2O (point 21); 0.625(0.5Ag2S–0.5GeS2)0.375AgI (point 22);

0.30AgI�0.70AgPO4 (point 23); 0.35Li2S�0.65GeS2 (point 24), and (AgI)0.70
(tetraehyltammonimiodide)0.20 (tetrapropylammonium iodide)0.10 (point 25). Reproduced from

Ref. [43, 44] by permission
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ε00( f ), or M00( f ) [43–45], and also as σ0(T ) at different fixed frequencies [46]. The

examples include LLTO where termination of the NCL is indeed at frequencies

having the same activation energy as Ea of the primitive relaxation time τ0 calcu-
lated from Eσ of the conductivity relaxation time τσ by Eq. (4.49). Moreover, this

relation enables us to derive the weak T-dependence of the NCL intensity,

A [361]. The derivation confers a bonus of another prediction, which is the anti-

correlation between A and the primitive activation energy, Ea. This prediction is

consistent with experimental data [364].

It is important to realize that ion dynamics evolves with time essentially in four

stages. Caged ion dynamics with NCL or nearly linear frequency dependence of σ0

(NLfDσ0) is the first stage. Termination of the caged ion dynamics by the onset of

the primitive relaxation at ~ tx1 less than but comparable in order of magnitude to

the primitive relaxation time τ0 is the second stage. After the onset of the primitive

relaxation, the number of ions cooperatively relax increases continuously with time

(this is the third stage), until reaching the final stage at ~ tx2 in which the maximum

number N of ions (or length-scale L ) is involved in the terminal many-ions

dynamics with the Kohlrausch function, exp[�(t/τσ)
1�n], as the time relaxation

function [43–45, 53]. The dc conductivity is determined by the terminal ion

dynamics. The size of N or L as well as the coupling parameter n of the CM is

governed by the strength of the inter-ion potential. The contributions from the

processes at all four stages are not additive, instead the one before is replaced by the

one that follows. Rivera et al. have shown by their experiment that the NCL or

NLfDσ0 is not an additive contribution to the total ε00( f ) or σ0( f ) [362]. More

experimental data of the NCL or NLfDσ0 to show its properties and its relation to

the other processes will be given by some examples in the sections to follow.

4.8.1 Caged Ion Dynamics, Properties and Termination
by the Primitive Relaxation

From the analysis of the frequency and temperature dependence of the conductivity

data in two different lithium ionic conductors, and at enough low temperature, León

et al. found strong experimental evidence of NLfDσ0 [44, 154], originating from

caged ion dynamics [46, 48, 362]. At the shortest time scale ions are vibrating in

their potential wells of height Ea, with a frequency νvib usually associated with the

attempt frequency of ion in thermally activated hopping. A microscopic residence

time is defined, τo¼ (νvib)�1exp(Ea/kBT ), such that for times t� τo ions are caged
within their sites. At times t> τo, randomly the ions have hopped to the neighboring

site, although statistically some of them return to the same site before τo [66]. Nev-
ertheless, caging effectively disappears after τo [45]. Figure 4.52 shows the tem-

perature dependence of σ0( f ) at several fixed frequencies (300 Hz, 1 kHz, 3 kHz,

10 kHz, 30 kHz and 100 kHz) from measurements on Li0.18La0.61TiO3 by León

et al. [46].
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At the highest temperatures shown and beyond (not shown), experimental data

taken at different frequencies tend to collapse together to form a single curve,

corresponding to the temperature dependent dc ionic conductivity. As the temper-

ature is lowered (in the range 225–275 K) a different contribution to the conduc-

tivity due to the fractional power law frequency dependence of the ac conductivity

is observed, first appearing for the highest frequencies. In this regime, some ions

have already jumped over the potential barriers from their wells but the long range

ionic transport has not been achieved yet. And when the temperature is further

lowered down (below 90–125 K, depending on frequency), the NCL is observed to

be the dominant contribution to the ac conductivity down to the lowest tempera-

tures. Note that, at the low temperature region of Fig. 4.52, experimental iso-

frequency conductivity data sets are spaced according to a linear frequency depen-

dence, which provides a criterion to determine, at each frequency, a crossover

temperature where the NCL becomes the dominant contribution to the ac conduc-

tivity. The inset in Fig. 4.52 shows the criterion used to obtain the crossover

temperature at each frequency. The ratio of the permittivity values at two different

frequencies, ω1 and ω2, is equal to 1 at low temperatures, where the NCL is the

dominant contribution, but decreases as temperature is increased and ion hopping

contributes to ac conductivity. The crossover points, represented by open squares in

Fig. 4.52, were obtained by León et al. from the highest temperature where the

linear frequency dependence was still observed within a 10% accuracy. The

Fig. 4.52 Conductivity vs. temperature plots for Li0.18La0.61TiO3. Conductivity data are shown

for different frequencies (300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz and 100 kHz, from bottom to top).

Solid lines are fits to an exponential temperature dependence of the magnitude of the NCL. Open
squares represent the crossover to the linear frequency dependent conductivity (NCL regime) at

enough low temperature. The inset shows the ratio of the permittivity values at two different

frequencies, ω1 and ω2, which is equal to 1 at low temperatures, where the NCL is the dominant

contribution, but starts to depart from 1 as temperature is increased. Displayed data are for

ω1¼ 3 kHz (sqaure) and 100 kHz (circle), withω2¼ω1/10. Crossover temperatures were obtained

for a departure of a 10% (arrows) and error bars of� 7 K were obtained from 5% and 15%

decays (dotted lines)
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magnitude of the NCL in Fig. 4.52 shows a weak temperature dependence, which is

well described over a wide temperature range by an exponential form exp(T/Ta).
Solid lines in Fig. 4.52 are fits to such an exponential temperature dependence of the

ac conductivity at each frequency. It is readily observed that the exponential fits

account perfectly for the temperature dependence of the ac conductivity at low

temperatures up to the crossover points (open squares), which were calculated

independently by the 10% criterion in the frequency dependence. It is important

to note that the crossover points were defined by using a criterion based on the

frequency dependence of ac conductivity at a fixed temperature, and therefore

without any consideration of the exact temperature dependence of the NCL,

which is unknown “a priori”. It is only “a posteriori” that it is found that the

crossover points also separate two different temperature dependences of the ac

conductivity at a fixed frequency. There is excellent agreement between the tem-

peratures at which ac conductivity starts to deviate from an exponential temperature

dependence and the temperatures at which the crossover points are obtained. This

result gives further support to the existence of a true crossover at these points

between a NCL and a power law regime.

By replotting the ac conductivity data in an Arrhenius manner (see Fig. 4.53),

León et al. realized that the crossover temperatures Tx( f ) as a function of frequency
show a thermally activated behavior with an activation energy Ex¼ 0.17� 0.03 eV,

the same value as was previously obtained from spin-lattice and electrical conduc-

tivity relaxation [55] for the microscopic energy barrier (or the activation energy

of the primitive relaxation in the CM) for single ion hopping, Ea¼ 0.17� 0.01 eV,

i.e., the height of the potential well. The reader may recall that the value of the

primitive activation energy Ea¼ 0.175� 0.01 eV is derived from the product (1-n)
Eσ from Eq. (4.49) and given before in Fig. 4.50 with Eσ¼ 0.36 eV [112]. Exactly

the same results are found in Gd2Zr2O7 [193, 365]. The left and right panels of

Fig. 4.53 Arrhenius plot of the conductivity for Li0.18La0.61TiO3 at several frequencies (300 Hz,

1 kHz, 3 kHz, 10 kHz, 30 kHz and 100 kHz, from bottom to top). Open circles are dc conductivity
data. Open squares represent the crossover to the NCL regime at the lowest temperatures. The

solid line is a fit to an Arrhenius law for the crossover temperature dependence
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Fig. 4.54 are the analogues of Figs. 4.52 and 4.53 respectively, and the same

descriptions apply. In Gd2Zr2O7, Eσ¼ 0.132 eV and n¼ 0.44, and therefore the

primitive energy activation energy Ea calculated by the product (1-n)Eσ is 0.74 eV.

On the other hand, Ex¼ 0.71 eV, which can be considered the same as Ea¼ 0.74 eV

within the uncertainties involved in determining both activation energies.

It has been argued [46, 362, 366] that the solid line in Fig. 4.53 as well as in

Fig. 4.54, obtained from the crossover points to the NCL regime, divides the plot

roughly into two temperature regions. For any given frequency the right side is where

the temperature falls below the crossover temperature and ions remain within their

cages. On the other hand, the left side is the regime when enough thermal energy is

available andmobile ions start to jumpwith a significant probability to adjacent sites,

giving a new contribution that takes over to determine the ac conductivity.

4.8.2 Ruling Out the Augmented Jonscher Expression

A further consequence of the temperature dependence found for the crossover to the

NCL regime is that it is at odds with the usual assumption [367–369] that the total

ac conductivity in ionic conductors can be described by the augmented Jonscher

expression discussed before in Sect. 4.2.2 and presented as Eq. (4.23). For conve-

nience in the discussion here, it is given once again as
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Fig. 4.54 Temperature dependence of the real part of the conductivity at several fixed frequencies

(22 Hz, 48 Hz, 107 Hz, 210 Hz, 522 Hz, 1 kHz, 2 kHz, 5 kHz, 10 kHz, 20 kHz, 55 kHz, 110 kHz,

210 kHz, 525 kHz, and 1 MHz, increasing frequency from bottom to top). Inset: Arrhenius plot of
the conductivity values at the crossover point between hopping conductivity and nearly constant

loss behavior (blue solid triangles) and dc conductivity values (red open circles). Solid lines in
inset and main panel are fits to an Arrhenius law for dc conductivity values (red), and crossover

points between hopping conductivity and nearly constant loss behavior (blue)
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σ0 ωð Þ ¼ σ0 1þ ω=ωoð ÞnJ½ � þ Aω: ð4:57Þ
In Eq. (4.57) the ac hopping ionic conductivity and the NCL contribution Aω are

considered to be additive terms, and therefore, the activation energy of the cross-

over should be close to the dc conductivity activation energy and much higher than

that determined from experimental data. Note that the (Jonscher) fractional expo-

nent nJ accounts for the power law frequency dependence observed in the disper-

sive ac conductivity but its value is in general different to that of the parameter n in
the exponent of a Kohlrausch stretched exponential fitting the same electrical

relaxation data according to the electric modulus formalism [5, 6, 29, 30]. Assuming

the validity of Eq. (4.57), and following the 10% criterion used to define the

crossover, one expects that the crossover frequency ωx at a given temperature

satisfies the expression

σ0 ωxð Þ ¼ σ0 1þ ωx=ωoð ÞnJ½ � þ Aωx ¼ 1:1Aωx: ð4:58Þ

As shown by the experimental data in Fig. 4.53, at the frequency ωx, the dc

conductivity makes a negligible contribution to σ0(ωx), so that the conductivity can

be written as

σ0 ωxð Þ � σ0 ωx=ωoð ÞnJ þ Aωx ¼ 1:1Aωx: ð4:59Þ

Solving Eq. (4.59) for ωx, we get

ωx ¼ σ0 0:1Að Þ�1= 1�nJð Þ σ0=ω0ð ÞnJ= 1�nJð Þ; ð4:60Þ

and inserting Eq. (4.60) back into Eq. (4.59), one gets for the conductivity at the

crossover frequency:

σ0 ωxð Þ ¼ 1:1Aωx ¼ 1:1σ0 0:1ð Þ�1= 1�nJð ÞA�nJ= 1�nJð Þ σ0=ωoð ÞnJ= 1�nJð Þ: ð4:61Þ

Since σ0 and ωo are thermally activated with the dc activation energy Eσ, it can

be shown from Eq. (4.61) that, assuming the weak temperature dependence of the

NCL of the exponential form exp(T/Ta), the activation energy for the crossover

should be

Ex ¼ �kb dlnσ0 ωxð Þ=dT�1
� � ¼ Eσ � nJ= 1� nJð Þð Þkb T2=Ta; ð4:62Þ

which is essentially equal to Eσ provided that T/Ta ~1 and kbT is much smaller than

Eσ which is indeed the case. The last Eq. (4.62), derived from the augmented

Jonscher’s law given by Eq. (4.57), is unphysical because none of the mechanisms

on both sides of the crossover have anything to do with the long-range displacement

of ions or its activation energy Eσ. In fact, the experimental data show that this

crossover is thermally activated, but with a much lower activation energy, Ea, and

its value is close to the microscopic energy barrier for a single ion to hop between
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adjacent wells [46, 362]. This apparent discrepancy is explained because the

augmented Jonscher law cannot actually describe the frequency dependence of

conductivity relaxation of ionic conductors over a wide temperature range. How-

ever, at a given temperature, a simple addition of the NCL term to the Jonscher

expression can give a reasonable description of experimental data. The crossover

from the NCL contribution (at times shorter than the microscopic residence time,

τo, of ions in their wells) to the onset of ionic hopping between adjacent wells

(at times longer than τo) is thus more complicated than a simple sum in the

frequency domain. The experimental conductivity data cannot be described simply

by a sum, as suggested by Eq. (4.57), because the sum implies continued existence

of the NCL (caged ions) at times (frequencies) much longer (lower) than the

residence (primitive relaxation in the CM) time (frequency) of the ions in the

wells, which is not the case. The experimental data suggest a serial or evolution

picture of ion dynamics in which NCL (caged ion dynamics) is automatically

terminated when the ions leave their cages and start hopping to neighboring

wells, and consequently that there is a genuine crossover from NCL to ion hopping

ac conductivity.

4.9 Evidences of Evolution of Ion Dynamics with Time

Understandably, readers interested mainly in conductivity or diffusivity of ionic

conductors may be surprised by the amount of coverage we give to processes

(stages 1 to 3) that have transpired at times before the terminal conductivity

relaxation and dc conductivity (stage 4). The reason for us doing this is the wealth

of experimental evidence showing the terminal conductivity relaxation and dc

conductivity are linked in their properties to those of the earlier processes including

the caged ion dynamics. Therefore, in order to arrive at a fundamental and complete

understanding of conductivity relaxation, these faster processes and the links need

to be addressed. With the understanding of the processes and the links at hand, the

search of ionic conductor with desired property and level of dc conductivity can be

expedited. There is yet another reason for doing this is that these processes and their

links in ionic conductors are found in other interacting systems, indicating at work

is fundamental physics of great interest to explore for condensed matter physicists.

We shall start with colloidal particles suspension by confocal microscopy experi-

mental data. Although the colloidal particles are interacting with hard-spheres

interaction, different from the Coulomb interaction between ions, it is instructive

to see all the processes of ionic conductors appear and are related to each other in

the colloidal system.
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4.9.1 Colloidal Particles Suspension by Confocal
Microscopy Experiment

To support the interpretation of NCL as the manifestation of caged molecular

dynamics and the caged decay and termination of NCL as caused by the onset of

primitive, we show the experimental results obtained on colloidal particles (hard

spheres) suspension by confocal microscopy experiment by Weeks et al. [212], and

by Weeks and Weitz [213]. Here we select the data in the case of volume fraction

ϕ¼ 0.56 and reproduce them in Fig. 4.55. This spectroscopy has the advantage that

motions of all colloidal particles can be observed continuously as a function of

time, and hence the change in dynamics are seen directly. It can be seen in the
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Fig. 4.55 Mean square displacement<Δx 2(Δt)> for volume fractions ϕ¼ 0.56 from Weeks

et al. [212]. The dashed line has slope 0.13 indicates the NCL regime. The first vertical arrow
indicates tx1. The second vertical arrow indicate Δt ¼500 s ~ τ0, the time when a typical particle

shifts position and leaves the cage determined by confocal microscopy experiment. The last
vertical arrow indicates the time tx2 of the onset of the fractional power law (black dashed line)
and is also the time when the non-Gaussian parameter α2(Δt) assumes its maximum as shown in

the inset on the upper-left corner. The red dashed line indicates< x2> ~2DΔt or terminal

diffusion. The inset on the lower-right corner [213] is a plot of the cage correlation function

Ccage(Δt) against Δt for three systems with ϕ¼ 0.56, 0.52, and 0.46 (from top to bottom), and the

vertical arrow indicates Δt ¼500 s ~ τ0. (Upper middle inset) A 2D representation of a typical

trajectory in 3D for 100 min for ϕ¼ 0.56 from Weeks et al. [212] to illustrate that particles spent

most of their time confined in cages formed by their neighbors and moved significant distances

only during quick rare cage rearrangements. The particle shown took ~500 s to shift position.

Reproduced from Ref. [212] by permission
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log-log plot of mean square displacement, <Δx2(Δt)>, against logΔt in Fig. 4.55

that<Δx2(Δt)> ~ (Δt)c with c� 0.13 at times shorter than 200 s (~tx1), during
which effectively the particles are all confined in cages because τc¼ τ0 of 500 s has
not yet been reached. The<Δx2(Δt)> for Δt< 200 s corresponds to susceptibility

with frequency dependence χ00(ν) ~ (ν)�c with c� 0.13, which is the NCL in the

caged regime. This caged particles regime ( first stage) ends at time ~ tx1 indicated
by the first arrow. The upper-middle inset shows the trajectories of particles that

they spent most of their time confined in cages formed by their neighbors and

moved significant distances only during quick and rare cage rearrangements. A

typical particle takes average time τc of 500 s to shift position and leaves the cage.

This time, identifiable with the primitive relaxation time τ0 of the CM is indicated

by the second vertical arrow. Termination of the caged ion dynamics at ~ tx1 by the

onset of the primitive relaxation with relaxation time τ0 is the second stage.
The lower-right inset is a plot of the cage correlation function Ccage(Δt) against

Δt for three systems with ϕ¼ 0.56, 0.52, and 0.46 (from top to bottom), and the

vertical arrow indicates Δt ¼500 s. It can be seen that for ϕ¼ 0.56, Ccage(Δt)
undergoes significant decay starting atΔt¼500 s ~ τ0. After the primitive relaxation

at τ0, the number of ions cooperatively relax increases continuously until ~ tx2 of
about 1000 s (indicated by the third arrow) is reached. This is the third stage. The
non-Gaussian parameter α2(Δt) assumes its maximum at tx2 as shown in the inset on
the upper-left corner. After tx2. <Δx2(Δt)> assumes the fractional power law of Δt
(black dashed line), which indicates the maximum number N of ions (or length-

scale L ) involved is reached and the start of the terminal many-ions heterogeneous

dynamics with the Kohlrausch function, exp[�(t/τσ)
1�n], as the time relaxation

function. The extreme right dashed line indicates< x2> ~2DΔt and the steady state
diffusion is reached thereafter and at longer times. This is the final stage. At volume

fraction ϕ¼ 0.60 and higher, the colloidal particles are in the glassy state, and the

change from ϕ¼ 0.56 to ϕ¼ 0.60 is the analogue of cooling an ionic conductor (see

Figs. 4.8 and 4.10). The caged regime where<Δx2(Δt)> ~ (Δt)c extends to longer
times because the average time τc¼ τ0 of particles leaving the cage is longer. There
is concomitant decrease in the magnitude of<Δx2(Δt)> due to decrease in size of

cage with increase in ϕ, and the exponent c becomes smaller. All these properties

have analogues in the behavior of the NCL of ionic conductors and glassformers [7]

on cooling. In the following section we present molecular dynamics simulations of

lithium metasilicate (Li2SiO3) glass to show this trend and more.

4.9.2 Molecular Dynamics Simulations of Li2SiO3

Molecular dynamics simulations of the structure and dynamics of different kinds of

ionic conductors are the main focus in a separate chapter. Here we take some of the

results to support the evolution of ion dynamics in several stages from caged ion

dynamics to the terminal many-ion dynamics and dc conductivity.

The mean square displacement, <r2(t)>, of lithium metasilicate (Li2SiO3) glass

obtained over a wide range of temperatures down to the very low temperature of
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100 K are shown in Fig. 4.56 [370]. At short times but after the ballistic regime, it is

evident from the plateau that< r2(t)> has the dependence A(T)tc(T ) with c(T )<<1

at temperatures below 700 K. From the approximate relation between< r2(t)> and

complex conductivity,

σ* ωð Þ ¼ �ω2 Nq
2

6kT

ð1
0

< r2 tð Þ > e�iωtdt; ð4:63Þ

where N is the number density of mobile ions, q the ion charge, k the Boltzmann

constant, and T the temperature. For <r2>¼A(T )tc(T ), Eq. (4.63) gives σ0(ω) /
ω1�c and ε00(ω) / ω �c and therefore a NCL if c(T ) is close to zero. As a

limiting case, if the mean square displacement increased logarithmically with

time as < r2>/ logt, the dielectric loss ε00(ω) would be practically flat, and

σ0(ω) / ω1.0. We found that the density distribution of Li ions in each cage tends

to have strong anisotropy and the shape of the cage fluctuates. The details are

given in Ref. [370]. The decrease of A(T ) and c(T ) with decrease of temperature

are the same as in colloidal suspension with the increase of volume fraction ϕ.
We choose the< r2(t)> data at 700 K to illustrate the four stages in Fig. 4.57.

The caged ion dynamics (1st stage) corresponding to< r2(t)>/ t0.1 is terminated

at ~ tx1. The primitive ion relaxation time τ0 had been located within the approxi-

mate range of 15< t< 30 ps from the linear dependence of< r2(t)>/ t1.0 found
over there (see Fig. 3 of Ref. [66]). The 2nd stage occurring at time tx1< t< τ0
witnesses the decay of the cages. The 3rd stage at times from τ0 to tx2 observes the
increasing number of ions cooperatively hop. The maximum number has been

reached at tx2, thereafter the fractional power law, <r2(t)>/ t0.64, becomes

established and continue on until it changes to< r2(t)>¼ 6Dt1.0. This final stage

Fig. 4.56 Mean squared

displacement of Li ions in

Li2SiO3 at 100 K, 300, 500,

600, 700, 800, 900 K (from

bottom to top)
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starting from tx1 is consistent with its correlation function given by the Kohlrausch

stretched exponential function, exp[-(t/τ*)0.64]. The inset of Fig. 4.57 shows the

time dependence of the non-Gaussian parameter calculated to elucidate the ion

dynamics in the NCL regime, the transition zone and the many-particles ion

hopping regime. It peaks at tx2 like that of the colloidal particles in Fig. 4.55. The

van Hove self-correlation function, Gs(r,t), offers more insights into the ion dynam-

ics, but it will be presented in the chapter on simulations.

The confocal microscopy of colloidal particles [212, 213] can follow all particles

at all times to observe directly the kind of ion dynamics specifically in each of the

four stages. So is molecular dynamics simulation of the Li ions in Li2SiO3. Space-

time pictures have been generated to elucidate the motion of Li ions at 700 K at

different times, equivalent to the real time pictures of motion of colloidal particles

provided by confocal microscopy. These pictures of Li ions at progressively longer

times of 4, 8, 16, 24, 48, 200, 400, and 1000 ps give clear information of the motions

of Li ions in the different dynamic regimes separated by tx1, τ0, tx2, and tD as found

from the time dependence of the< r2(t)> in Fig. 4.57.

The Fig. 4.58a–d show the displacements of the Li ions at four chosen times,

t¼ 4 ps, 8 ps, 16 ps and 24 ps respectively at 700 K. The displacements of the Li ions

are indicated by the vectors originating from the positions of the ions at an arbitrary

chosen initial time 0 to the position at time t in three dimensions for a part of the basic

cell of the simulation. The amplitudes of the vectors are coded according to the color

scheme shown. These results are supposed to represent the behavior of the ions

within the time regime bounded approximately by tx1 ~ 2–4 ps< t< τ0 ~ 30 ps. At

4 ps in Fig. 4.58a are within the time regime (4.1) in which the MSD in Fig. 4.57

Fig. 4.57 MSDs of Li+ ions in Li2SiO3 at 700 K. tx1, τ0, tx2 and tD are crossover times that separate

out the four time regimes explained in the text. The inset shows the time dependence of the

non-Gaussian parameter
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increases very slowly like tcwith c� 0.1 up to about 2 ps and with c� 0.25 from 2 ps

to 4 ps. According to the color code of the figure, absolutely no ion makes jump to

nearest neighboring Li sites with distance of about 3 Å or further. The maximum

amplitude of motion is 2.5Å. Thus, motion of all ions are confined within the cages,

substantiating the interpretation of the caged ion dynamics with NCL in ε00( f ). At
8 to 16 ps in Fig. 4.58b, c, some rare jumps with distances larger than 3 Å are found.

The colors of vectors in gold, orange and red represent such jumps with distances of

3.0–3.5 Å, 4.0–4.5 Å and 4.5–5.0 Å respectively. At 24 ps, which becomes compa-

rable to τ0� 30 ps, Fig. 4.58d show more such jumps with distance larger than 3 Å.
These isolated or independent jumps are the primitive relaxation of the CM, and

have been identified by their contribution to the MSD that is linearly proportional to

time within the approximate range, 15< t< 40 ps. Cages decay by the onset of the

primitive relaxation.

Figure 4.59a at 48 ps shows more jumps with distance larger than 3 Å, some of

which are within the same neighborhood, and are no longer isolated events. The

motions of the Li + ions are dynamically heterogeneous. There are fast and slow

Fig. 4.58 Motion of Li ions in Li2SiO3 at 700 K at four different times, (a) 4 ps, (b) 8 ps, (c) 16 ps,
(d) 24 ps. The positions of the Li ions at any of the indicated chosen times are represented by the

vectors from the positions at an initial time in three dimensions for a part of the basic cell of the

simulation. The values of axes are in Å. The colors are used to indicate the lengths of the vectors

(the values shown in the legend are also in Å). In each case, the arrow help to indicate

approximately the rare maximum displacement of the Li ions, and the value is recorded on top.

It is 2.8, 4.8, 4.3, and 4.8 Å for 4, 8, 16, and 24 ps respectively. Note that this result fluctuates

considerably, because of mixing of the back correlated motions and this vector field is just for one

initial time. Many initial times are used for statistical treatment and even a longer length scale

motion is found. Reproduced from Ref. [66] with permission
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ions classified as such by both temporal (waiting time of jumps) and spatial (back

and/or forth correlation) behaviors [371, 372]. Back-correlated jumps return to the

previous positions. Marked by tx2� 40–50 ps in Fig. 4.57, this is the start of the

heterogeneous dynamics regime in which increasingly number of ions coopera-

tively jump with increasing time, and the< r2(t)> has the fractional power law

dependence t0.64 in Fig. 4.57.

This trend is confirmed by Fig. 4.59b at t¼ 200 ps, and Fig. 4.59c at t¼ 400 ps,

where it can be observed that the number of ions jumping cooperatively increases

with time (note that the color code for jump distance is different in Fig. 4.59b–d).

The ions undergoing these large amplitude motions form clusters and the vectors of

their motions tend to be linked together, and the length-scale of the vectors linked

together increase with time. Conversely the ions limited to local motions also form

clusters. The increase with time of the length scale of the mobile ion clusters can be

seen in going in succession from panels (a), (b), (c), and (d) at 48, 200, 400, and

1000 ps respectively. In Fig. 4.59d the ion dynamics at 1000 ps correspond to

Fig. 4.59 Motion of Li ions in Li2SiO3 at 700 K at four times, (a) 48 ps, (b) 200 ps, (c) 400 ps, (d)
1000 ps. The positions of the Li ions at any of the indicated chosen times are represented by the

vectors from the positions at an initial time in three dimensions for a part of the basic cell of the

simulation. The values of axes are in Å. The colors are used to indicate the lengths of the vectors

(the values shown in the legend are also in Å). Note that the code of the color scales for 48 ps and
200 ps, and for 400 ps and 1000 ps are different. In each case, the vertical arrow help to indicate

approximately the maximum displacement of the Li ions, and the value is recorded on top. It is 4.5,

7.8, 9.0, and 11.8 Å for 48, 200, 400, and 1000 ps respectively. Of course most of the displace-

ments have magnitudes smaller than the maximum value; however, contribution of longer length-

scale motion to MSD is larger, because the value is squared. Reproduced from Ref. [66] with

permission
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steady state ion diffusion because the time is past tD� 500–600 ps in Fig. 4.57. As

can be seen from the left panel of Fig. 4.57, at tD the root MSD, (<r2(t)>)0.5, is

about 3 Å, which is the average Li-Li ion sites separation distance, although even

in a diffusive regime dynamics is still heterogeneous.

The reader can find a clip included in Additional material of this book which can

be downloaded from http://extras.springer.com, entitled “0–1 ns vector-lithium

metasilicate at 700 K.wmv” in the Folder Example 3, and can examine how vectors

develop with an elapse of time in a cooperative manners.

The evolution of ion dynamics can be further substantiated by the time depen-

dence of the self-part of the van Hove function for the Li ions defined by

Gs r; tð Þ ¼ 1=Nð Þ
XN
i¼1

δ
�
ri tð Þ � ri 0ð Þ � r

� 	i; ð4:64Þ

where r is the distance traveled by the Li ion in a time t. The results in Fig. 10a–d of
Ref. [45] show the evolution of 4πr2Gs(r,t) with time, which clearly can be

separated into the different time regimes, same as done from< r2(t)> in

Fig. 4.57, and from the vectors in Figs. 4.58a–d and 4.59a–d.

The evolution of ion dynamics with time elucidated by< r2(t)> in Fig. 4.57, and

details of motion in Figs. 4.58a–d and 4.59a–d have exact analogues in the results of

particle dynamics of colloidal suspensions by confocal microscopy [212]. It is also

analogous to< r2(t)> of glass-forming liquids [373].

4.9.3 Experimental Conductivity Relaxation Data

Plenty of experimental data of frequency dependent conductivity relaxation can be

cited to show the evolution of ion dynamics in the four stages separated by three

characteristic times, tx1, τ0, and tx2, as shown by the colloidal particles suspension

and MD simulations of the Li2SiO3 glass. A few examples are given. The best

example is the room temperature ionic liquid [Si-MIm]+[BF4]
�, the data of which

are presented before in Fig. 4.8 for the purpose of contrasting different represen-

tations of the same data. Here the M00( f ) data are used to show the four stages. The

secondary or β-conductivity relaxation is resolved and its peak frequency, fβ, is
roughly in agreement with the primitive relaxation frequency, f0, as predicted by

the CM Eq. (4.37) via the identity f0¼ 1/2πτ0. The agreements are shown also in

the lower panel of Fig. 4.60 (same as Fig. 4.11b). The black (magenta) arrows

pointing at the data with the same color indicate logfx2, and logf0. The value of

fx2¼ 1/2πtx2 is the frequency below which theM00( f ) of [Si-MIm]+[BF4]
� becomes

well fitted by the Fourier transform of the Kohlrausch function with n¼ 0.43 (lines

in Fig. 4.60). The right panel show starting at some frequency ~ fx1¼ 1/2πtx1 is the
NCL regime with M00( f ) / f0.1. The four stages are clearly partitioned by fx1, f0,
and fx2.
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The secondary or β-conductivity relaxation is resolved in M00( f ) data of this

ionic liquid, presented in Fig. 4.60 and another one in Fig. 4.9. Moreover, there is

good agreement of fβ with the primitive relaxation frequency, f0. These two facts

together provide direct validation of the CM.

4.9.3.1 Molten 0.4Ca(NO3)2-0.6KNO3 (CKN)

Electrical relaxation measurements on CKN were made by Lunkenheimer

et al. [27, 28] over unusually broad frequency and temperature ranges. In

Fig. 4.61, we show their ε00 data at 342 K as a function of frequency ν. The data
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Fig. 4.60 (Top left) M00( f ) of [Si-MIm]+[BF4]
� versus frequency at temperature in the range

243–173 K, spanning across Tg. The spectra, measured at every 5 K, show the presence of the

slower structural α-relaxation and the well resolved secondary β-relaxation. (Top right) M00( f ) at
temperatures in the range 163–123 K, way below Tg. The spectra, measured at every 5 K, show the

presence of the slower well resolved secondary β-relaxation to be followed by the nearly constant

loss (NCL) at higher frequencies. (Bottom) Temperature dependences of the α- and β-relaxation
times. The primitive relaxation times τ0 above Tg are plotted as the solid blue circles. The solid
lines are fits to the VFT equation, logτα¼�16.67 + 920/(T-159 K), and the Arrhenius law with

Ea¼ 41 kJ/mol
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indicate the NCL that extends over about three decades and there is a cross over to a

power law ε00(ν)/ν �β at lower frequencies, with β¼ 1-n, and eventually ε00/ν �1 at

even lower frequencies which corresponds to the dc conductivity regime from the

relation, σ0(ω) + iσ00(ω)¼ iωεoε
*(ω), as illustrated in the figure. The line having ν �1

at low frequencies and ν �β at higher frequencies is actually the εβ00(ν) calculated
from the fit to the electric modulus by the Fourier transform of the Kohlrausch

function with exponent β¼ 1�n, i.e. the loss from many-particle hopping of ions.

The departure of the Kohlrausch fit at higher frequencies starting at νx2 is indicated
by an arrow. The primitive relaxation frequency, ν0, calculated by the CM

Eq. (4.37) via the identity ν0¼ 1/2πτ0 is indicated by another arrow. Onset of the

NCL at higher frequencies occurs quite distinctly at νx1. Thus the change in ion

dynamics from the ε00(ν) data occurs in four stages separated by νx1, ν0, and νx2.
The inset of the figure shows the susceptibility χ00(ν) data of polyisobutylene, a

non-ionic polymer, obtained by high frequency dynamic light scattering at temper-

atures below Tg. The presence of the NCL is clear. The primitive relaxation

frequency, ν0, calculated by the CM at 290 K and indicated by the arrow is effective

in terminating the NCL regime.

Fig. 4.61 Dielectric loss as a function of frequency of CKN at 342 K showing the existence of the

NCL over 3 decades in frequency. The horizontal dashed line indicates the NCL. The other dashed
line is the many-particles ion conductivity relaxation calculated from the Kohlrausch fit to the

electric loss modulus, M00, data shown in the inset as the dashed line with β¼ 0.67. The deviation

of the data from the Kohlrausch fit at higher frequencies is marked by one crossover frequency,

νx2. The deviation of the data from the NCL at lower frequencies is marked by the other crossover

frequency, νx1. The location of the independent relaxation frequency of the CM, νo� 1/2πτo, is
also indicated. τo is the independent relaxation time calculated from the CM. Data after Refs

[67, 68]. The inset show the NCL from the light scattering data of PIB at temperatures below Tg
from Ref. [374]
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4.9.3.2 Glassy 0.80LiF-0.20Al(PO3)3

Electrical relaxation data at 293 K of a glassy ionic conductor, 0.80LiF-0.20Al

(PO3)3, was obtained by Kulkarni et al. [375] over unusually broad frequency

range. In Fig. 4.62, we show their data as σ0 as a function of frequency ν. The
existence of the NCL is exemplified by a near linear frequency dependence of the σ0

data over about two decades, which terminates starting at νx1. The inset of the same

figure shows the same data only up to 106 Hz in terms of M00(ν) to isolate the

contribution from many-particles ion hopping. The line is the Kohlrausch fit to

theM00(ν) data with β� (1-n)¼ 0.56 and τK¼ 8.7� 10�5 s. At high frequencies the

Kohlrausch fit to M00 assume the ν�β-dependence and the corresponding σβ0(ν)
assumes the ν1�β-dependence, which is shown by the straight line with slope

0.44. The σ’(ν) data conform to the ν1�β-dependence of σβ0(ν) at frequencies

below νx2. The value of ν0 is calculated by the CM Eq. (4.37) with β� (1-n)¼
0.56. Thus, just like CKN, the σ0(ν) data of 0.80LiF-0.20Al(PO3)3 crossover from

NCL to σβ0(ν) over several dynamics regimes defined by the frequency ranges

separated by νx1, ν0, and νx2.

Fig. 4.62 log10σ’(ν) versus log(frequency/Hz) plot of data at 293 K of 0.80LiF-0.20Al(PO3)3
obtained by Kulkarni et al. [375] to show the near linear frequency dependence of the NCL by the

line with slope equal to 0.99. The line with slope 0.44 is the high frequency dependence of

log10σ’(ν) corresponding to the Kohlrausch fit to the electric modulus data (shown in the inset)
with n¼ 0.44. The dashed line in the main figure is the many-particles ion conductivity relaxation.

The crossover frequencies νx1 and νx2 as well as the independent hopping frequency νo are

determined from the data in the same manner as explained in Fig. 4.61
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4.9.3.3 0.5Ag2S-0.5GeS2

The data of glassy 0.5Ag2S-0.5GeS2 from the work of Belin et al. [258] at many

temperatures have been presented before in Fig. 4.27 for showing the presence of

the NCL and its weak temperature dependence. We revisit Fig. 4.27 to consider the

data taken at 153 K. The NCL over extensive frequency domain is indicated by the

solid green line with ν0.95-dependence. The vertical arrow labeled by νx1 pointing
upwards indicate the location of νx1 for 153 K. The blue dashed line with slope 0.45
is the continuation of the ν1�β-dependence of σβ0(ν) to high frequencies. Here σβ0(ν)
is the correspondent of Mβ*(ν), the Kohlrausch fit to M*(ν) data with exponent

β� (1-n)¼ 0.55 (not shown). The location of the independent relaxation frequency

of the CM, νo� 1/2πτo, at 153 K is indicated by one of the arrows. The NCL regime

is terminated at νx1. The onset of the low frequency many-ion σβ0(ν) is at νx2. The
transition from NCL to many-ion σβ0(ν) occurs by crossing over several dynamics

regimes defined by νx1, ν0, and νx2.

4.10 Properties of Caged Ion Dynamics, Primitive
Relaxation, and Many-Ion σβ0(ω) Are Related

The ample results from molecular dynamics simulations and experimental studies

have shown convincingly the ion dynamics evolve from one regime to another in

the manner described by the CM. Therefore the dynamics in the several regimes are

connected, and their properties are related. In this section we consider some of the

properties of the different regimes and demonstrate the relations. Also from the

connection, property of ion dynamics in one regime can be deduced or inferred

from the property in another regime. The existence of these relations means study

confined to the terminal many-ion σβ0(ν) is incomplete and may even leads to wrong

interpretation.

4.10.1 Derivation of the Weak T-Dependence of the NCL

In the previous section shown is that the NCL exists in the short time (high

frequency) regime, ton< t< tx1 where there is absolutely no thermally activated

independent jumps of the ions out of their cages with the relaxation time τo¼ τ1exp

(Ea/kT). Here ton is the onset time of the NCL. Experimental data extending to very

high frequencies show that the NCL continues to exist up to about 1011 Hz, from

which ton is estimated to be of the order of 10�11 to 10�12 s. The crossover time tx1
has to be much less than τo in order to satisfy the condition for generation of the

NCL that practically there is no successful independent ion jumps out of their cages

throughout the period ton< t< tx1. Therefore exp(�tx1/τo) is still close to unity
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and the probability of an ion to have jumped out of its cage at time tx1, given by

[1�exp(-tx1/τ0)], is small. It has the same value for all temperatures, as required

by the same criterion used to determine that the NCL terminates at the time tx1. Hence
tx1 has the same temperature dependence as τ0, i.e., tx1 Tð Þ ¼ t1exp Ea=kTð Þ, a result
supported by experimental data [46, 376]. From the definition of tx1, the mean square

displacement< r2> NCL corresponding to the NCL increases by the same small

amount in the period, ton < t < tx1 Tð Þ, at all temperatures. However, since tx1 is

thermally activated, this same increase of <r2>NCL is spread over a number of

decades of time given by [log tx1-logton]. Consequently the mean square displacement

is inversely proportional to log(tx1/ton). From this and Eq. (4.63) relating the conduc-

tivity to mean square displacement, it is deduced that the intensity of the NCL,

ε00(ω)¼Aω�c, measured by A is given by the proportionality relation [44, 364],

A / E�1
a 1� T=Toð Þ½ ��1: ð4:65Þ

This expression is well approximated by A / exp T=Toð Þ, at T<<To, with

To � Ea=kloge ton=t1ð Þ ð4:66Þ

To is a positive number because log(ton/t1) is a positive number from the fact tx1< τo
that t1 is even shorter than the prefactor τ1 of τo, which is the reciprocal of a

vibrational attempt frequency. Thus the weak temperature dependence of the NCL is

captured by the relation of the NCL to the primitive relaxation of the CouplingModel.

Fig. 4.63 Temperature dependence of the dielectric loss, ε00(ν), at fixed frequencies for

Li0.18La0.61TiO3. Experimental data are shown for different frequencies (300 Hz (stars), 1 kHz

(diamonds), 3 kHz (down triangles), 10 kHz (up triangles) and 30 kHz (circles)). Below about

100 K, data are almost frequency independent, ε00(ν)�Aν �c with c� 0, showing a NCL behavior.

Solid line is a fit to Eq. (4.65) (see text)
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Figure 4.63 shows the temperature dependence of the almost frequency inde-

pendent dielectric loss, ε00(ν)�Aν�cwith c� 0, for Li0.18La0.61TiO3 at several fixed

frequencies, showing a NCL behavior below approximately 100 K. Also plotted in

the figure is the best fit of the data to Eq. (4.65), and there is very good agreement

down to the lowest temperatures. It is worthwhile to comment that since the

deduced temperature dependence of the NCL comes from a qualitative theory, it

is not expected that it will accurately describe the experimental data, particularly

if considered over an extended temperature range where another source of contri-

bution such as two-level systems or asymmetric double well potentials (ADWP)

[377–379], and a broad ε00(ν) peak at low temperatures such as found in Gd2Zr2O7

[380], which has a large concentration of mobile oxygen vacancies, may come into

play at very low temperatures and high frequencies. These extra contributions have

no bearing on the dynamics of ions leading to dc conductivity, and are not discussed

any further.

4.10.2 Anti-Correlation of NCL with Ea or Eσ

Also from Eq. (4.65) is at constant temperature that the magnitude A of the NCL

should decrease with increasing Ea, had other factors that determine the absolute

value of A be the same for all ionic conductors. If this condition holds for many

ionic conductors, then an approximate anti-correlation between A and Ea may exist

at constant temperature. Figure 4.66 shows the remarkable anti-correlation from

experimental data for a variety of ionic conductors as predicted by the model. The

solid line in the figure represents an exact inversely proportional relation. It is

indeed noteworthy that such a correlation holds since may be there are other factors

which affect the magnitude of the NCL and have not been considered. It has been

argued that the different ion jump distances and the chemical structures of the

different ionically conducting materials might be responsible for the deviations

from a perfect anti-correlation [364]. It has been shown [8, 104] that for different

families of ionic conductors, smaller the activation energy Ea corresponds to

smaller activation energy for the dc conductivity Eσ. This correlation is shown in

the inset of Fig. 4.64 for the ionic conductors plotted in the main panel, and the

values of both magnitudes are shown in Table 4.4.

Therefore, an anti-correlation is also expected between ANCL and Eσ. Figure 4.65

shows that a strong correlation indeed exists between them. The inset to Fig. 4.65

shows a correlation is also observed between ANCL and the logarithm of the dc

conductivity σ0 at room temperature. This finding is consistent with the observation

by Ngai that superionic conductors show highest values of the magnitude of the

NCL [43, 44]. Since σ0(T )¼ σ1exp(�Eσ/kT), and the prefactor σ1 takes not too

different values in all ionic conductors, the rule that higher Eσ means smaller dc

conductivity at room temperature is usually obeyed. Therefore, the correlation

observed between ANCL and the dc conductivities at room temperature can be
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considered simply to follow from the correlation between A and Eσ or between

A and Ea deduced from Eq. (4.65) [364].

In general, the anti-correlation of the decrease of the magnitude of the NCL with

the increase of the activation energy of the dc conductivity can be considered

qualitatively by how tightly bound are the ions by the potential. More tightly

bound ions naturally implies larger activation energies, Ea and Eσ. However, why

NCL becomes smaller in more tightly bound ions is intriguing. We shall show

shortly that the potential confining the ions is more harmonic and deeper in conduc-

tors where the ions are more tightly bound and have smaller mean square displace-

ments in motion. Consequently the magnitude of NCL becomes smaller since it is

determined by the anharmonicity of the potential. The terminology “tight” and

“loose” was first introduced by Angell in glassy ionic conductors [384], but for

different purpose and not in connection with NCL and (1-n) than we did. In the

following we select some examples from Ref. [43, 44] to substantiate the points.

Fig. 4.64 The magnitudes A of the NCL at T¼ 100 K versus the activation energy Ea for a variety

of ionic conductors. Solid line represents an exact inversely proportional relation as derived from

the Coupling Model for the NCL (see text). The references from which the experimental data are

taken are given in Table 4.4. Li2O-3B2O3 (plus), Na2O-3B2O3 (asterisk), K2O-3B2O3 ( filled
diamond), Rb2O-3B2O3 (open inverted triangle), LiPO3 ( filled triangle), 35Li2O-61SiO2-

3Al2O3-P205 (open circle), Li0.18La0.61TiO3 (cross), (ZrO2)0.84(Y2O3)0.16 (left pointing filled
triangle), Na2O-3SiO2 (open square), (AgI)0.3-(AgPO3)0.7 (right pointing open triangle),
(AgI2)0.48-(Ag2SeO4)0.52 (open diamond), Na-βAl2O3 ( filled inverted triangle), (Li2S)0.56-

(SiS2)0.44 (right pointing filled triangle), (Ag2S)0.5-(GeS2)0.5 (open triangle), Ag7GeSe5I ( filled
circle), (LiF)0.8(Al(PO3)3)0.2 ( filled square), xK2O-(1-x)GeO2 (x¼ 0.2) at T¼ 381 K (right
pointing open triangle), xK2O-(1-x)GeO2 (x¼ 0.02) at T¼ 367 K (squared times), xK2O-(1-x)
GeO2 (x¼ 0.0023) at T¼ 374 K (squared plus). The inset shows that the smaller is the value of Ea,

the smaller is the activation energy Eσ for the dc conductivity for the set of ionic conductors shown

in the main panel
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(1) Shown in the first 4 rows of Table 4.4 are data from the family of alkali triborate

glasses especially prepared to have exactly the desired compositions. The alkali

ion ranges from Li, Na, K, to Rb. In Figs. 4.64 and 4.65, the data are shown by

the symbols (red +) Li2O-3B2O3, (asterisk) Na2O-3B2O3, (blue diamond) K2O-

3B2O3, (pale blue inverted triangle) Rb2O-3B2O3, the systematic decrease of

the magnitude of the NCL observed in the family of alkali triborate glasses

when changing the alkali ion from lithium to rubidium was reported as a mass

dependence of the NCL [48]. From the perspective of the predictions from the

Coupling Model, such a decrease in the NCL when increasing the mass of the

alkali ion may just follow as a consequence of the more basic correlation

between A and Ea, and arises from the increase of Ea when increasing the

mass of the alkali ion in the alkali triborate glasses [361, 364].

(2) The last three rows of Table 4.4 are from the conductivity data of several

potassium germanate glasses, xK2O-(1-x)GeO2 (x¼ 0.2, 0.02, 0.0023)

[88, 368], which have NCL decreases with decreasing concentration of mobile

ions, and concomitantly with increasing Ea or Eσ shown in Figs. 4.64 and 4.65,

and increasing (1-n). The same anti-correlations apply to the sodium thioborate

glasses with different concentrations of Na ions [41].

(3) In alkali glasses, when replacing one alkali ion by another alkali ion at the same

temperature, it is observed that there is a reduction of the magnitude of the NCL,

Table 4.4 Activation energies Ea¼ (1-n)Eσ for the ionic conductors shown in Fig. 4.64

Ionic conductor Ea (eV) (1-n) Eσ (eV) Ref.

Li2O-3B2O3 0.49 0.58 0.84 [48, 381]

Na2O-3B2O3 0.56 0.62 0.90 [48, 381]

K2O-3B2O3 0.60 0.66 0.91 [48, 381]

Rb2O-3B2O3 0.70 0.71 0.99 [48, 381]

LiPO3 0.24 0.35 0.68 [270]

35Li2O-61SiO2-3Al2O3-P2O5 0.27 0.45 0.60 [33, 382]

Li0.18La0.61TiO3 0.17 0.45 0.38 [270]

(ZrO2)0.84(Y2O3)0.16 0.63 0.54 1.40 [For references, see 22] [270]

Na2O-3SiO2 0.36 0.55 0.66 [40, 43, 44]

(AgI)0.3-(AgPO3)0.7 0.18 0.54 0.34 [43, 44]

(AgI2)0.48-(Ag2SeO4)0.52 0.15 0.45 0.34 [43, 44]

Na-βAl2O3 0.07 0.5 0.14 [43, 44]

(Li2S)0.56-(SiS2)0.44 0.17 0.48 0.35 [43, 44]

(Ag2S)0.5-(GeS2)0.5 0.15 0.45 0.34 [44]

Ag7GeSe5I 0.12 0.48 0.24 [44, 383]

(LiF)0.8-(Al(PO3)3)0.2 0.26 0.44 0.60 [44]

xK2O-(1-x)GeO2 (x¼ 0.2) 0.43 0.54 0.79 [88, 368]

xK2O-(1-x)GeO2 (x¼ 0.02) 1.19 0.89 1.34 [88, 368]

xK2O-(1-x)GeO2 (x¼ 0.0023) 1.40 0.93 1.50 [88, 368]

Reproduced by permission from Ref. [364]

Eσ and (1-n) were obtained from electrical conductivity measurements at temperatures where ionic

hopping is the dominant contribution to the ac conductivity
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although the change is much smaller than the decrease of the dc conductivity due

to the mixed alkali effect [43, 44, 109, 385]. This is exemplified by the compar-

ison of Na2O.3SiO2 with 0.5Na2O-0.5K2O-3SiO2 [18], and LiPO3 with

Li0.5Na0.5PO3 [386]. In both cases there is again a correlation of the decrease

of the magnitude of the NCL with the increase of Eσ of the dc conductivity, and

narrowing of the electric modulus loss peak and increase of (1-n).
(4) Loosening the binding of the mobile ion by modification of the glass structure

leads to an increase of the magnitude of the NCL, decrease of Ea or Eσ, and

decreasing (1-n). This was observed by halogenation in lithium borate glasses

by addition of LiBr or LiCl [261, 262].

(5) The magnitude of the NCL of the superionic conductors with technological

interest for their application as electrolytes in solid state batteries and fuel cells,

as well as room temperature ionic liquids (see Figs. 4.8, 4.9, and 4.10) is much

higher than in other ion conducting solids [23, 43, 44, 48, 364]. Again, this was

related to the fact that in the former the mobile ions are loosely bound within

more anharmonic potentials, and have larger mean square displacements in

caged motion [43, 44]. They have smaller Ea or Eσ, and (1-n) as well.
(6) At comparable ion densities, the magnitude of the NCL is larger in glasses

where the motion of the ions is more decoupled from the structural relaxation

Fig. 4.65 A clear negative correlation holds between the magnitude ANCL of the NCL at T¼ 100 K

and the activation energy, Eσ, of the dc conductivity. Symbols are the same used in Fig. 4.64.

References from which the experimental data are taken are given in Table 4.4. The inset shows the
same NCL data vs. the dc conductivity at room temperature. Lines are guides for the eye
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[43, 44]. This means ions are more decoupled from the less mobile matrix

atoms, and hence less tightly bound.

Some of examples given in the above NCL not only anti-correlates with Ea or Eσ,

but also with β¼ (1-n). Thus, this result implies that Ea or Eσ correlates with (1-n).
Remarkably, this correlation had been found empirically earlier. The data are

discussed in the next section.

4.10.3 Correlation of Ea or Eσ with (1�n)

The existence of a correlation between β¼ (1�n) and Eσ for a family of ionically

conducting glasses was first pointed out by Angell and Martin [387]. Later on, this

correlation, as well as another correlation between β and Eσ and between β and the

product βEσ, have been established from data of many families of alkali oxide

glasses [104]. This correlation between β and βEσ is reproduced from the
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Fig. 4.66 A plot of the coupling parameter n vs Ea for alkali oxide glasses having total alkali

oxide mole fraction of c¼ 0.05 ( filled square), 0.075 ( filled triangle), 0.10 (asterisks), 0.20 (plus),
0.25 (circle), 0.30 (pentagon), 0.35 (star), 0.40 (inverted triangle), 0.45 (diamond), 0.50 (cross),
0.55 (open triangle), 0.60 (open square), from Table 4.2 and 12 other tables in AIP documents (see

Ref. [104]). Open circles are a collection of data from alkali oxide glasses in Table I of Ref. [104]

that do not have c falling into the above 12 values. Two semicircular points on the x-axis are data

from the very low alkali silicate and germanate glasses. The inset are the data from the family of

the alkali aluminogermanate glasses only. By restricting consideration of glasses from the same

family, the correlation is improved
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Ref. [104]. The source of data and the values of β and Eσ of the oxide glasses in

Fig. 4.66 can be found in this figure caption. There are data from the alkali

germanate glasses [87] which show that the correlation between β and Eσ is not

maintained while the correlation between β and βEσ continues to hold. Between

these two correlations, the one between βσ and βσEσ appears to be most robust.

Also, a more obvious correlation between βσ and d, the ion-ion separation

distance, has been proposed [387, 388]. Notwithstanding, from their data of the

fast ionic conductors x(Na2S) + (1�x)B2S3, Patel and Martin [85] found the corre-

lation between β and d(Na+�Na+) breaks down, as shown in Fig. 4.67 here. On the

other hand, the correlation between β and βEσ continues to hold (see Fig. 4.67).

4.10.4 Origin of Correlation of Ea with (1�n),
and Anti-Correlation with NCL

Before we address these correlations in the case of the ionic conductors, it is

instructive to consider the findings from molecular dynamics simulations of binary

Lennard-Jones particles by Bordat et al. [389–390]. As we shall see, the results of

these simulations exhibit analogs of correlations found in ionic conductors. Fur-

thermore, the anharmonicity of the potential is the origin of the characteristics of all

the quantities and their correlations.

Molecular dynamics (MD) simulations were performed by Bordat et al. on

binary Lennard-Jones (LJ) particles systems with three different interaction poten-

tials [389, 390]

V rð Þ ¼ Λ0= q� pð Þ½ � p r0=rð Þq � q r0=rð Þpf g: ð4:67Þ

Fig. 4.67 The primitive

activation energy Ea¼ βEσ

of x(Na2S) + (I�x) B2S3
glasses plotted against β
showing perfect correlation.

The open squares are the
average Na-Na ion

separation distances, d(Na+

�Na+) normalized by

38.59 Å, the value of d.
for x¼ 0.0010. The plot of

d(Na+�Na+)/38.59 Å
vs. β shows no correlation
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The parameters r0 and Λ0 represent the position of the minimum of the well and its

depth, respectively. The choice of q¼ 12 and p¼ 6 corresponds to the standard LJ

potential used by Kob & Andersen [391, 392] and others for other studies by

simulation. For the purpose of investigating the change of dynamics with controlled

change of V(r), Bordat et al. developed two other models by changing only the

exponents, q and p, of the LJ potential for the species A–species A interactions.

They are (q¼ 8, p¼ 5) and (q¼ 12, p¼ 11) and shown together with the (12, 6) LJ

potential in Fig. 4.68.

The dynamics of Lennard-Jones particles is relevant for ionic conductors. The

relevance is by the similarity of the results of the two systems from the MD

simulations. We start from the MD simulation of glassforming binary Lennard-

Jones system composed of 6400 particles of type A and 1600 particles of type

B interacting with the (12, 6) LJ potential by Donati et al. [373] The< r2(t)> of A

particles from this paper are reproduced here in Fig. 4.69a together with the

non-Gaussian parameter α2(t) in Fig. 4.69b. For all temperatures (in L-J unit),

subdiffusion having the fractional power law dependence of< r2(t)>/ t1�n with

(1-n)¼ 0.77 appears at earlier times before the terminal free diffusion with< r2

(t)>¼6Dt takes over. The onset time of the subdiffusion is denoted by tx2, its
location for T¼ 0.451 is indicated approximately by the arrow in Fig. 4.69a. At

lower temperatures, the particles are initially caged, and the caged dynamics

contribute a power law< r2(t)>/ tc to the MSD with c<<1 or a nearly constant

loss (NCL) with frequency dependence ω�c to the susceptibility χ00(ω). At the
lowest temperature T¼ 0.451, c is about 0.1. In order of time, the caged dynamics

term, <r2(t)>/ tc, is followed after a short interlude by the subdiffusion term,<r2

(t)>/ t1�n, and in turn by the terminal diffusion term< r2(t)>¼6Dt. The value

of the fractional power (1-n) of the subdiffusion is comparable to the stretch

exponent β in the Kohlrausch function used to fit the intermediate scattering

function Fs(q,t) for q¼ qmax. Donati et al. [373] fitted Fs(qmax,t) to the Kohlrausch

function having stretched exponent (1-n)¼ 0.75 and τ¼ 655. This together with tc
of the binary L-J particles is about 1, and the CM equation, τ¼ [(tc)

�nτ0]
1/(1�n),

Fig. 4.68 Potential V(r)
governing the particles A–A

interaction. The dashed
curve is the (12, 11) LJ
potential for model I, the

solid curve is the (12, 6) LJ
potential for model II and

the dotted curve is the (8, 5)
LJ potential for model III
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yields τ0� 129. The maximum of α2(t) occurs at about the same time as tx2, the
onset time of subdiffusion. On decreasing temperature, the term< r2(t)>/ tc

persists to longer times, accompanied by decrease in both< r2(t)> and the expo-

nent c reflecting increasing degree of caging.

The results from the MD simulations of the binary Lennard-Jones particles with

the (12, 6) L-J potential shown and illustrated in Fig. 4.69 are similar in every

respect to the dynamics of ions in the Li metasilicate glass shown in Figs. 4.56

and 4.57, as well as the colloidal particles from confocal microscopy in Fig. 4.55.

Such similarity is clear evidence of universal dynamics of many-body interacting

systems and evolution with time as described by the Coupling Model (CM). This

implies that the understanding of the dynamics of ionic conductors can be directly

transferred from that of the dynamics of the L-J systems given here as well as real

glass-formers, and vice versa. It also explains why we give so much coverage to

experimental data and simulations of molecular dynamics of glass-forming systems

in a book on ionics.

Now we move on to see how the dynamics are modified on varying the L-J

potential as done by Bordat et al. [389, 390]. The (12,11) L-J potential is more

harmonic than the classical (12,6) LJ potential, while the (8,5) L-J potential is a flat

well and the most anharmonic. Henceforth the (12,11), (12,6) and (8,5) potentials

are referred to as Model I, II and III respectively, reminding us that anharmonicity is
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Fig. 4.69 (a) Mean square displacement< r2(t)> of the A particles vs time (L-J unit) for several

values of T. For the definitions of the labels, line and arrows see text. (b) Non-Gaussian parameter

α2(t) vs time for the same values of T as in (a). Figure from Donati et al. [373] reproduced by

permission
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increasing in this order. By inspection of the shape of the potentials, one can also

say that the particle is most tightly bound in Model I, lesser in Model II, and least in

Model III. All models are composed of 1500 uncharged particles (1200 species

A and 300 species B). Dynamics have been investigated by computing the self

intermediate scattering functions FS(Q,t) of particles A at Q¼ 2π/r0 for the three

models. At high temperatures, FS(Q,t) decays linear exponentially to zero with a

characteristic time of about 0.45 (L-J unit) close to the crossover time tc� 1 to 2 ps

of the coupling model (CM). When temperature is lowered, the dynamics slows

down dramatically and a two-step process appears. Shown in Fig. 4.70 are FS(Q,t)
versus t/τA of all three models for Q¼ 2π/r0 at the reference temperature Tref
defined by τA(Tref)¼ 46,435.8, a very long time in our simulations and the analogue

of Tg. The values of Tref are 0.688, 0.431, and 0.263 for models I, II, and III,

respectively.

From the relation, FS(Q,t)¼ exp(-Q2< r2(t)>, the plateau in Fig. 4.70 corre-

spond to the level of< r2(t)>¼Atc with c<<1 or the NCL, χ00(ω)¼ANCLω
�c, in

the caged particles regime. The level of the plateau in FS(Q,t) is also called the

nonergodicity parameter, f(Q,T ). Hence the magnitude of the NCL, ANCL, or the

level A of< r2(t)> in the caged particles regime is correlated with the reciprocal of

f(Q,T ). From the FS(Q,t) at each of the lower temperatures, the relaxation time,

τA(T), and the stretched exponent, β(T ), from the fit to the second step decay of

FS(Q,t) by f(Q,T )exp[-(t/τA)
β]. These two parameters are plotted separately in the

inset of Fig. 4.70 for β, and Fig. 4.71 for τA(T ) as a function of the scaled reciprocal
temperature Tref/T for the three models. The results of interest are given as follows.

i. At any Tref/T, the inset of Fig. 4.70 shows that β¼ (1-n) is largest for model I

and smallest for model III. At T¼ Tref, β¼ 0.69, 0.65 and 0.60 respectively for

Fig. 4.70 FS(Q,t) versus scaled time t/τA, where τA is the relaxation time. Dashed, continuous and
dotted lines are for Models I, II and III respectively. For all three models, Q¼ 2π/r0 and τA(Tref)¼
46,435.8. The inset shows the stretch exponent β¼ (1�n) as a function of the scaled reciprocal

temperature Tref/T for the three models. (diamond) Model I, (circle) Model II, (square) Model III
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models I, II and III. Thus, measured by n¼ (1�β), the degree of

non-exponentiality of the relaxation increases with anharmonicity or looseness

of the potential. The same correlation between n and anharmonicity of

intermolecular potential was found from dielectric relaxation data of molecular

glass-formers by Paluch et al., Phys.Rev.Lett.116, 025702 (2016).

ii. The simulations found at some high temperature, FS(Q,t), decays exponentially
to zero with a characteristic time of about 0.45. The fact that the primitive

relaxation is observed at such temperature is because its relaxation time of 0.45

is shorter than tc� 1 of the CM. Hence in Fig. 4.71, the relaxation times τA
within the low Tref/T-range, 0.1< Tref/T< 0.3, are all primitive relaxation times

with apparent primitive activation energy Ea. It can be seen that the slope of

logτA in this Tref/T-range decreases slightly but monotonically in going from

Model I to Model III. Ea is proportional to the product of the slope and Tref. This
trend of the slope together with the values 0.688, 0.431, and 0.263 of Tref for
models I, II, and III, respectively, leads to the result of larger decrease of Ea

with anharmonicity or looseness of the potential. The slope of Model III is

larger than Model I by a factor of 1.36 at Tref/T¼ 1. Notwithstanding, the

product of the slope and Tref, or Ea, is still smaller by a factor of 0.52 for

Model III compared with Model I.

iii. We have shown that the reciprocal of f(Q,T ) is a measure of the magnitude of

the NCL, ANCLω
�c, or< r2(t)>¼Atc, with c<<1 in the caged particles

regime. In Fig. 4.72, the results of 1/f(Q,T) from simulations are plotted against

T/Tref for the three models. The values of 1/f(Q,T) increase almost linearly with

T/Tref for all the three models, but the value of 1/f(Q,T) at the same T/Tref and its

Fig. 4.71 The relaxation times τA obtained from FS(Q,t) for the three models as a function of Tref/
T where Tref is defined as the temperature at which τA reaches 46,435.8. (diamond) Model I,

(circle) Model II, (square) Model III. In the inset, the reciprocal of diffusivity DA of A particles for

the three models are given as a function of T0ref/T. Here T0ref is now defined as the temperature at

which DA is equal to 1.857� 10�5
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slope is largest for Model III, intermediate for Model II, and smallest for Model

I. Considering that the values 0.688, 0.431, and 0.263 of Tref for models I, II,

and III, we can make the conclusion that 1/f(Q,T) of Model III is larger at a

lower temperature than 1/f(Q,T) of Model II at a higher temperature, and even

larger than 1/f(Q,T) of Model I at a even higher temperature. For example in

Fig. 4.72 at T/Tref¼ 0.2, which corresponds to T¼ 0.0526, 0.0862, and 0.137 for

Model III, II, and I respectively, the value of 1/f(Q,T) is correspondingly 1.031,
1.0188, and 1.0125. From the monotonic increase of 1/f(Q,T) with temperature,

if 1/f(Q,T) is compared at the same temperature, it is clear that 1/f(Q,T) is even
larger for Model III than Model II, and much larger than Model I.

The inset shows the correlation of the fragility index m with the slope from the

results of the three models. But since m correlates with n¼ (1-β) for the three

models, this is equivalent to correlation of n with the slope.

The results (i)-(iii) from the simulations of Bordat are all obtained by varying the

anharmonicity of the potential and how tight the particle is bound by the potential.

Therefore all correlations found originate from these two attributes of the potential,

which can be summarized as follows. More harmonic (anharmonic) the potential

and more (less) tightly bound the particle, larger (smaller) is the Kohlrausch

exponent β and the primitive activation energy Ea, but smaller (larger) is the

magnitude of the NCL or< r2(t)> of the caged particle dynamics. By not mention-

ing the potential at all, naturally the original correlations are reduced to the

following corollaries or sub-correlations.

(1) Kohlrausch exponent β is correlated with the primitive activation energy Ea.

(2) The magnitude of the NCL or the level of <r2(t)> in the caged particle

dynamics regime is correlated with Ea and β.

We have pointed out that Fig. 4.69 for the L-J particles is isomorphic to

Figs. 4.56 and 4.57 from Li ions in the Li metasilicate glass, and to Fig. 4.55 for

the colloidal particles. By the isomorphism, all the correlations originating from the

Fig. 4.72 1/f(Q,T) versus
T/Tref for the three models.

(diamond) Model I, (circle)
Model II, (square) Model

III. 1/f(Q,T) is almost linear

relative to T/Tref with a

slope noted α. The inset
shows the correlation of the

fragility m with α from the

results of the three models
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potential as well as the corollaries (1) and (2) found in the L-J particles are directly

transferrable to the dynamics of ionic conductors. In the context of ionic conduc-

tors, in fact corollary (1) is the correlation between β and the product βEσ¼Ea

established from data of many families of alkali oxide glasses [104] illustrated by

Fig. 4.66, and from the family of x(Na2S) + (I-x) B2S3 glasses in Fig. 4.67. Corollary

(2) is the anti-correlation between ANCL and Ea established from many ionic

conductors in Table 4.4 and shown in Fig. 4.64. Notwithstanding, these two

corollaries come from correlations (i)-(iii) all of which originate from the potential.

Hence, ultimately the explanation of the corollaries is based on the anharmonicity

or looseness of the potential, and it is theoretically consistent with the

CM. More anharmonic the potential in the CM, more prominent is the chaos to

slow down the many-ion relaxation and stretch it to longer times (i.e. smaller value

of the Kohlrausch exponent β), as obtained from solution of models such as coupled

arrays of oscillators (see Eq. 4.41), and the results presented in Fig. 4.23. It is also

intuitively clear from the shapes of the potentials in Fig. 4.68 that more anharmonic

the potential, lower is the energy barrier opposing an ion jumping to a neighboring

site (i.e. smaller is Ea), and in the caged dynamics regime, the caged ions have

larger amplitudes of fluctuation or larger< r2(t)> and larger nearly constant loss.

4.11 The Mixed Alkali Effect

It is frequently observed that the conductivity and physical properties of alkali

oxide glasses vary in a extremely non-linear manner when the alkali ion is gradually

replaced by a different one [200–203]. This is known as the “mixed-alkali effect”

(MAE), and gives rise to pronounced changes in the expansion coefficient, viscos-

ity, and in particular the electrical conductivity of mixed-alkali oxide glasses, which

may decrease by several orders of magnitude when even a small amount of one kind

of alkali (A) in a single alkali oxide glass is replaced by another kind (B). A similar

decrease is observed if the roles of alkali ions A and B are exchanged, giving rise to

a deep minimum in the conductivity of mixed alkali glasses at some intermediate

composition. The MAE is exemplified in Fig. 4.73 by the composition dependence

of the dc ionic conductivity for 0.2[xNa2O � (1� x)Rb2O]�0.8B2O3 mixed-alkali

borate glasses with x¼ 0.0, 0.2, 0.4, 0.6, 0.8 after Imre et al. [393]. The dc

conductivity of the sodium glass is about one order of magnitude higher than that

of the rubidium borate glass. The dc conductivity shows a minimum near x¼ 0.4

where its value is around two orders of magnitude lower than the conductivity of the

pure sodium borate glass. As often found in other mixed-alkali glasses, it can be

observed that the minimum becomes deeper with decreasing temperature. This is

related to a maximum occurring in the activation energy of the dc conductivity as

one alkali ion is replaced by the other one. The lower panel shows tracer diffusion

coefficients of 22Na and 86Rb at 653 K in the same sodium-rubidium borate glasses.

The 22Na-diffusion in the single-alkali sodium borate glass is about four orders of

magnitude faster than that of 86Rb present in low concentration. In the rubidium
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borate glass the diffusivity of 86Rb is larger than the diffusivity of 22Na, even

though the sodium ion is smaller than the rubidium ion. It is thus found in general

that the self-diffusion coefficient of the alkali ion in the single-alkali glass is higher

than the impurity-alkali diffusion coefficient [393]. Similar results for the compo-

sition dependence of 22Na and 137Cs tracer diffusion coefficients in sodium-cesium

silicate glasses had been obtained by Jain et al. [394]. These changes in the

diffusion coefficients are due to changes in the activation energies of the diffusiv-

ities of both species, A and B, upon mixing. The MAE occurs in all alkali ion

conducting glasses and has been also reported in fluoride glasses [395] and even in

crystalline ionic conductors such as alkali β-alumina [396–398]. The origin of the

MAE in crystals and glasses might be similar, related to the fact that A and B ions

have a different interaction with their local environment.

Several studies have shown that the local environments of the two different

alkali ions in mixed alkali glasses are different by using X-ray absorption fine

structure (XAFS) spectroscopy [399–401], spin echo double-resonance NMR spec-

troscopy [402, 403], neutron diffraction and Raman spectroscopy [404], or infrared

spectroscopy [405]. These studies have revealed that alkali ions retain more or less

the same local environment as in the respective single alkali glasses, and they are

randomly distributed in the glass structure. Consequently, jumps of a given alkali

Fig. 4.73 (Upper panel)
Composition dependence

of the ionic conductivity for

0.2[xNa2O � (1-x)Rb2O]
0.8B2O3 glasses at three

different temperatures.

(Lower panel) Composition

dependence of the tracer

diffusion coefficients of 22

Na and 86Rb at 653 K

in these glasses at 653 K.

Reproduced from Ref. [393]

by permission
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ion to the sites of a different alkali ion cannot occur due to the large difference

between the site energies for the two alkali ions [155, 216, 217, 408]. By molecular

dynamics simulations of lithium-potassium metasilicate (Li,K)2SiO3 glass,

Habasaki et al. [155, 156] clearly shows from the van Hove function (distinct

part) that interception of the jump path among the unlike alkali ion sites occurs in

the mixed alkali glass. The effect has been confirmed to be caused by the size

differences of lithium and potassium ions. The cause for the interception leading to

the mixed alkali effect has been studied in terms of the potential surfaces, and from

which a site mismatch between the unlike ions is found with respect to the potential

energies. Balasubramanian and Rao [406, 407] have shown similar MD results in

35(xLi2O(1-x)K2O)-65SiO2, glasses. More refined simulations by Habasaki

et al. [64] subsequently show the number of fast ions, facilitated by cooperative

jumps, decreases considerably when small amount of Li ions are frozen.

Consequently there is a large overall reduction of the mobility of the Li ions. The

result is also in accordance with the experimental finding in mixed alkali silicate

glasses that the most dramatic reduction of ionic conductivity occurs in the dilute

foreign alkali limit [409]. The effect found by simulations was described as

‘cooperativity blockage’. We shall defer presentations of the comprehensive results

from simulation of Habasaki and coworkers, including the visualization of paths, to

a chapter on studies of MAE using Molecular Dynamics Simulations (Chap. 10).

Reverse Monte Carlo modeling with the bond-valence method of mixed lithium-

rubidium phosphate (LixRb1�xPO3) glasses have also found that ions of one kind

tend to block the pathways for the other kind of ions and vice versa [410] and can

explain the observed MAE in the experimental ionic conductivity data [411] (see

Fig. 4.74). This blocking would be highly effective due to the low dimensionality of

the conduction pathways.
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Fig. 4.74 (Left panel) Composition dependence of the dc conductivity and its activation energy

for the glass system LixRb1�xPO3 at 300 K.Open squares are experimental data points by Karlsson

et al. [411], and filled squares correspond to the values predicted from the pathway volume

fractions of the structural models by Swenson et al. [410]. The solid lines are a guide to the eye.

(Right panel) A thick slices through the Li conduction pathways in Li0.5Rb0.5PO3 (blue) and those
regions that are blocked by Rb ions but otherwise would have a matching bond valence and

therefore been conduction pathways for the Li ions (pink). Reproduced from [410] by permission
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However, the microscopic mechanisms giving rise to the MAE are not generally

agreed by various researchers. Theoretical model was proposed by Bunde and

coworkers [412, 413]. This is a development of their dynamic structure model.

Based on the results of EXAFS experiments [399], they included a site memory

effect which introduces vacancies appropriate to each kind of mobile ion, and a

mismatch energy which emerges whenever an ion attempts to enter a different kind

of site. The dynamic structure model helped to elucidate some facets of the MAE

but not all. Another theoretical development was achieved by Hunt [126], who

suggested that the diffusion paths may be associated with a random energy land-

scape in the glass with the lower energy states for different types of ions located at

different sites, and could identify the distinct diffusion paths. Further progress in a

theory of the MAE was developed by Maass and coworkers [110] by taking the

Coulomb interaction between the mobile ions into account. Greaves and Ngai [12]

recognized the importance of taking into account the interaction among mobile ions

and developed an empirical approach in order to explain the MAE by ascribing it to

changes in alkali-alkali distances that lead to variations in Coulomb barriers for

single ion jumps in an Anderson-Stuart like ansatz for the activation energies [120].

There is experimental evidence of the importance of the average distance between

like alkali ions in determining the strength of the MAE and in particular the increase

of the activation energy of ionic conductivity upon mixing [414]. According to

them, mixing alkali ions in the glass results in a decrease of the concentration of

mobile alkali ions of each kind (compared to the single alkali glass) and thus in an

increase in the average distance between similar ions, which results in diminishing

ion-ion interaction and correlation. Thus the MAE can be qualitatively understood

by its similarity to the effect of decreasing the alkali ion concentration of a single

alkali glass, which is well known to result in an increase of the activation energy of

conductivity due to lower level of cooperativity between ions [1, 104]. In fact,

molecular dynamics simulations by Habasaki et al. have shown such a reduction of

cooperativity in the dynamics of mobile ions due to the presence of immobile ions

of another kind [64]. More recently, Maass et al. [415] have shown that a small

fraction of vacant sites in the glassy network might be also relevant in originating

the anomalies in ionic transport associated with the mixed alkali effect. These

authors proposed a trapping of vacancies to explain the vulnerability of the mobility

of the majority ion at the beginning of replacement, and that short-range correla-

tions between the site energies might give rise to such trapping effect.

A ubiquitous feature of the MAE is that the most rapid change of the dc

conductivity, σdc, upon replacement of the majority ions occurs in the dilute

limit of the foreign alkali region (see upper panel of Fig. 4.73). The derivative,

(∂logσdc/∂x), with x the fraction of the majority ions, is an appropriate measure of

how rapid the conductivity changes upon increasing the fraction (1�x) of the

minority ions. The rapid decrease in σdc by replacement of the host alkali ions by

just a small amount of foreign alkali ions indicates that the introduction of a single

foreign alkali ion largely decrease the mobility of many host ions. In 1980,

Moynihan et al. [409] reported a study of the MAE in silicate glasses of composi-

tion 0.242[xK2O+(1�x)Na2O]�0.758SiO2 in the dilute sodium ion composition
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range (x¼ 0.9 to 1), and they found that the decrease in ionic conductivity when the

majority alkali K+ is replaced with the foreign alkali Na+ is most rapid in the very

dilute range x¼ 0.98 to 1 and becomes less rapid at larger Na+ contents.

They attempted to account for the decrease in conductivity by assuming that the

foreign alkali complexes with and immobilizes the majority alkali, but concluded

that calculated values of the number of majority alkali ions complexed by a single

foreign-alkali ion were unreasonably large. It was difficult at that time for

Moynihan et al. to understand how a single foreign alkali can immobilize as

many as 50 host alkali ions. However, recent NMR chemical shift measurements

of mixed alkali glasses by Eckert [228], and molecular dynamics simulations by

Habasaki et al. [64], have confirmed that indeed many host alkali ions are affected

by every single foreign ion. Thus, it appears to be true that a single foreign alkali

ion can immobilize a large number of host alkali ions. This is an important

experimental fact since some current models of the MAE do not predict a large

number of host ions being immobilized by a single foreign ion in the dilute foreign

alkali region. An explanation of largest value of (∂logσdc/∂x) at the dilute limit of

the foreign alkali region was provided by Ngai et al. [109] by drawing the analogy

to the simulation results of mobile particles confined by walls formed by immobile

particles [416–418]. In the simulation all immobile and mobile particles interact

with each other by the same Lennard-Jones potential, and the effects of immobile

particles on the mobile particles are obtained. It is found that the particles in the

layer closest to the wall have their relaxation time increased by orders of magni-

tude. This is due to interaction between the particles in the dead wall and the

particles in first layer, can be explained by the CM from large increase of the

coupling parameter. Although different in configuration and system the effect is

similar to the large increase of relaxation time and Tg of the fast component when

mixed with a slow component in binary mixtures of two glass-formers, and the

explanation is again the increase of the coupling parameter [419]. The huge

slowing down of the particles by the neighboring immobile particles does not

stop at the first layer at the interface, and the effect of the immobilized particles in

the first layer is passed on to the second layer and so on, albeit the effect is

attenuated with distance from the wall. Thus a number of layers are effectively

immobilized. If this result from Lennard-Jones liquid can be applied to a mixed

alkali glass in the dilute foreign alkali limit, we are led to conclude that not just the

nearest-neighbor host alkali ions will be severely immobilized by the foreign

alkali ion, but also second nearest-neighbor host alkali ions will also be

immobilized although to a lesser extent, and so on. The immobilizing effect

propagates and dies off with distance away from the foreign alkali ion. It is now

conceivable in the glasses of composition 0.242[xK2O+(1-x)Na2O]-0.758SiO2

studied by Moynihan et al. [409] in the dilute Na+ ion composition range that an

Na+ ion can effectively immobilize as many as 48 K+ ions. Furthermore, the

temperature dependence of the dynamics of L-J particles confined by walls made

of immobile L-J particles show that the observed degree of immobilization

increases rapidly with decreasing temperature (see inset to Fig. 4.75). Again

applying this result to the mixed alkali effect, the observed increase of

4.11 The Mixed Alkali Effect 221



limx!1(∂logσdc/∂x) on decreasing temperature found by Moynihan et al. (see

Fig. 4.75) can be rationalized by similar explanation as given before for the effect

found in confined L-J liquid [417, 418].

4.11.1 Immobilization of Li Ions by Frozen Li Ions
in the Confining Walls

The immobilization of more mobile ions by less mobile ions in the MA effect has

been rationalized by analogy to similar effect found in L-J particles confined by

frozen L-J particles forming the walls. To demonstrate the physics of two systems

Fig. 4.75 Temperature dependence of the limiting slopes, limx!1(∂lnσdc/∂x), of dc conductivity
vs x isotherms obtained for 0.242[xK2O+(1-x)Na2O]-0.758SiO2 glasses by Moynihan et al. [409]

in the dilute sodium ion composition range. As explained in the text, this slope is an indication of

how many host potassium ions are immobilized by a single foreign sodium ion, and is a decreasing

function of temperature. The inset shows ratio of the relaxation time τ(z¼ 0.8) of particles in the

L-J liquid located at z¼ 0.8 close to the frozen L-J glass forming the wall to τ(z¼ 7.5) far from the

wall as obtained from data of molecular dynamics simulation result of Schneider et al. [416]. This

ratio, an indication of the extent of the immobilization of particles in the L-J liquid, is also a

decreasing function of temperature like limx!1(∂lnσdc/∂x)in the main figure. Reproduced from

[417] by permission
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closer, a molecular dynamics simulations was made on the dynamics of Li ions in

Li2SiO3 glass confined by parallel walls formed by the same glass except the Li ions

therein were frozen but still interacting with the Li ion in the confined Li2SiO3 glass

[64]. The geometry of the systems is illustrated in the left panel of Fig. 4.76.

The self-part of the density-density correlation function, Fs(k,t; z) were obtained

at any distance z from the wall for Li ions located at z	 0. The unit of z is L/10,
where L is the side length of the basic cell of the simulation. The Fs(k,t; z) obtained
has the Kohlrausch stretched exponential time dependence, exp[-(t/τ(k;z))β(k;z)

]. The frozen Li ions in the walls cause slowing down of Li ion as seen by in the

increase of τ(k;z) in the middle panel of Fig. 4.76, and the concomitant increase in

stretching of Fs(k,t; z) as seen by the decrease of β(k;z) in the right panel for two

chosen values of k¼ 2π/10 and 2π/3. The effect is largest for the Li ions closest to
the wall and decreases monotonically with distance from the wall. The values of

τ(k;z) for Li ions residing in the innermost z¼ 5 region are close to those for the

unmodified bulk Li2SiO3 glass, which are τ(k)¼ 1292 ps for k¼ 2π/10 and 340 ps

for k¼ 2π/3. Values of β(k;z) in the innermost z¼ 5 region are also close to those for

the unmodified bulk system, which are β(k)¼ 0.67 for k¼ 2π/10 and 0.32 k¼ 2π/3.
The changes in the dynamics of Li ions interacting with the frozen Li ions in the

confining walls are exact analogues of the L-J particles confined by frozen L-J

particles in the confining walls obtained by Scheidler et al. [416], and the results

explained by the CM in [417]. This becomes obvious when comparing the depen-

dence of τ(k;z) and β(k;z) on distance from the wall in Fig. 4.76 with those of the

same quantities for the confined L-J particles in Ref. [416, 417].

The above discussion highlights the importance of ion-ion interaction in

explaining the MAE. Therefore, models of ion dynamics of single alkali glasses

without taking ion-ion interaction seriously will not be able to make any significant

advance in understanding the MAE.

Fig. 4.76 (Left) Li metasilicate glass confined by two walls of the same Li metasilicate glass

except the Li ions therein are frozen. (Middle) Plot of τ(z) against z for the stretched exponential

region of Fs(k,t) of Li ions in Li2SiO3 glass (in ps). Filled circle: k¼ 2π/10, filled square: k¼ 2π/3.
(Right) β(z) against z for the stretched exponential region of Fs(k,t) of Li ions. Filled circle: k¼ 2π/
10, filled square: k¼ 2π/3. (The values of β(z) in the z¼ 5 region are close to the values for the bulk

Li2SiO3, which are β¼ 0.67 and 0.32 for k¼ 2π/10 and k¼ 2π/3, respectively. Data from Ref. [64]

are replotted in all figures here
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In glasses with low alkali content there is a negligible effect of ion–ion interac-

tion on the dynamics of ion transport. A natural consequence is that the strength of

the MAE should decrease on lowering the total alkali concentration in the glass

(i.e. increasing the average ion-ion separation distance in the single alkali glass).

This is confirmed by the experimental results by Tomozawa and coworkers

[420, 421] in mixed alkali germanate glasses of composition 0.019[xK2O+(1-x)
Na2O]-99.981GeO2 with an extremely low (0.019 mol%) total alkali content. By

the way, the nearly Debye-like dynamics of the single alkali germanate glass

containing 0.0079 mol% Na2O from Cordaro and Tomozawa [73] has been

shown before in connection with the subject matter of Fig. 4.12, Th results of the

mixed alkali germinate glass show that at 350 �C the logσdc vs. x plot does not

exhibit the minimum associated with the MAE. After mixing the alkalis, the ions

remain far apart and ion-ion interaction is negligible as supported by the normal

semicircular trace of the data in a plot of Z00 vs. Z0. Hence there is no effect

analogous to ‘immobilization’ of one kind of alkali ions by another kind.

This trend of decreasing magnitude of the MAE on increasing separation of the

ions was verified by Voss et al. [414] in various series of Na–Rb alumino-

germanate glasses and Na–Rb borate glasses that allow exploring a wide range of

the value of< dion>/<dnetwork>, the ratio between the average Na–Na distance to

the average separation between the network–former atoms. They defined a strength

of the mixed alkali effect as the relative difference between the measured activation

energy of the dc conductivity at a given (mixed alkali) composition and the

activation energy one would expect for a linear interpolation between the activation

enthalpies of the end-member (single alkali) compositions. Figure 4.77 shows

that the strength of the mixed-alkali effect, ΔMAE, decreases as a function of

<dion>/<dnetwork>.
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Fig. 4.77 Strength of the mixed-alkali effect,ΔMAE, as a function of the ratio between the average

Na–Na distance to the average separation between the network–former atoms,<dion>/<dnetwork>.

Open symbols represent Na–Rb alumino-germanate glasses, whereas the two filled circles refer to
Na–Rb borate glasses, respectively. Reproduced from Ref. [414] by permissiont
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Besides the changes in the activation energies and isothermal dc conductivity

associated to the MAE, several works have reported deviations in the ac conduc-

tivity spectra of mixed alkali glasses from the typical behavior of single alkali

glasses. These deviations were first pointed out by Macedo et al. [234] and by

Tomozawa et al. [233, 235]. Macedo and coworkers [422] studied the electrical

conductivity relaxation of 0.5Na2O � 0.5K2O � 3SiO2 glass compared to that of the

single alkali Na2O � 3SiO2 glass, and found that the shapes of the electric modulus

spectra for the single alkali and mixed alkali glasses differ significantly, and at all

temperatures the distribution of conductivity relaxation times for the mixed alkali

glass was narrower than that for the single alkali glass, i.e., they measured narrower

peaks in the imaginary part of the electric modulus for the mixed alkali glass.

Tomozawa and coworkers [423] found that the permittivity and impedance spectra

of Li2O � 2SiO2 and [0.5Na2O � 0.5LiO2] � 2SiO2 glasses are remarkably different at

low frequencies. It is well known that in these representations of the experimental

data, and contrary to the case of the electric modulus representation, the low

frequency contributions from the less mobile (or immobile) ions are emphasized

[1, 5, 6, 17, 30], and the presence of immobile or less mobile ions in the mixed

alkali glass can explain these differences observed. Roling et al. [424] have also

reported electrical conductivity data for several mixed alkali borate and alumino-

silicate glasses, and found that in mixed alkali glasses the crossover from dc to

dispersive conductivity extends over a broader frequency range than in single alkali

glasses. In that work the authors suggest that the difference observed might be in

fact a fingerprint of faster and slower ions and due to an incomplete decoupling

between the diffusion of both kinds of ions in the glass. More recently, Cramer

et al. [141] have also reported these differences in the conductivity spectra of 0.3

[xLi2O � (1-x)Na2O] � 0.7B2O3 glasses, showing that the data for different compo-

sitions do not obey the time-temperature superposition principle (see Fig. 4.78), and

suggest it might be due to differently activated mobilities of the two different ionic

species. Cramer et al. [425] have also reported for the same borate glasses slight

differences in the conductivity values at very high frequencies, close to the THz

regime, where the conductivity shows linear and super linear frequency depen-

dence. Since in their opinion these contributions to the dynamic conductivity would

not result from ion hopping movements, they concluded their results show a new

mixed alkali effect. However, they stressed that it is not clear the effect of the

network contributions to the conductivity at such high frequencies, and that further

studies on different kinds on glass systems with varying network modifier content

would be necessary to prove their interpretation. It is worthwhile to remark that this

claim by Cramer et al. might be at odds with the previous finding by Jain et al. [368]

in sodium-rubidium germanate glasses that the MAE is essentially absent at enough

high frequencies and low temperatures, consistent with the fact that the MAE arises

from the long range motion of ions. It has been also reported that the static dielectric

constant, εs, and thus the dielectric relaxation strength, (εs-ε1), of the mixed alkali

glass is much higher than that of the corresponding single alkali glass

[424, 426]. This result actually suggests that, in addition to the relaxation from

mobile ions, there is an additional relaxation process contributing to the dielectric
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permittivity at low frequencies in the case of mixed alkali glasses. Tomozawa

et al. [421, 423] showed that this additional relaxation was responsible for the

large value of the dielectric permittivity at low frequencies in mixed alkali glasses

and corresponded to a large polarization contributed by ions of low mobility, which

are the alkali ions immobilized to various degrees in the neighborhoods of the other

kind alkali ions as discussed in the above. These experimental facts can thus be

taken as additional evidence of the immobilization of ions in mixed alkali glasses

due to the MAE (Fig. 4.78).

In SA glasses all ions are equivalent and mobile, at least before the details of the

evolution of the heterogeneous dynamics with time are considered, and their

dynamics are well suited for the application of the coupling model. On the other

hand, in MA glasses there is the coexistence of immobile, and more mobile ions.

This possibility we have seen in the dilute foreign-alkali case and can be expected

to be the case for all MA compositions. In the framework of the Coupling Model,

for the most mobile ions of one alkali species there is reason to expect the

Kohlrausch function may still be applicable in describing their correlated dynamics

originating from their mutual interactions, although the complication now due to

the presence of less mobile ions may make this only an approximation. However,

the electric modulus representation is known to suppress low frequency contribu-

tions, not only from the electrode polarization, but also from the less mobile and the

immobile ions in the MA glasses. Such suppression in effect makes the Kohlrausch

Fig. 4.78 (a) Scaled conductivity spectra of 0.3[xLi2O � (1-x)Na2O] � 0.7B2O3 glasses at 323 K.

Besides the Summerfield scaling, an additional scaling factor f (close to unity for all compositions)

is used in the scaling plot to make the spectra coincide at high frequencies. (b) Composition

dependence of the dc conductivity of 0.3[xLi2O � (1-x)Na2O] � 0.7B2O3 glasses at 323 K. (c)
Activation energy of the dc conductivity for the same glasses as a function of the lithium content

x. Reproduced from Ref. [141] by permission
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fits to M*( f ) data of MA glasses practical because only the mobile ions contribute

toM*( f ). The story is different, however, when the same MA data are shown in the

ε*( f ) or the complex impedance Z* vs. logf representation [423]. In these repre-

sentations of the data, the low frequency contributions from less mobile and

immobile ions are not deemphasized and show up prominently as large deviations

from the prediction of the Kohlrausch relaxation fit to M*( f ) at low frequencies

well below the frequency maximum in the M00 vs. log f plot. The large deviations

from Kohlrausch relaxation were first seen in the complex impedance plots of Z00

vs. Z0 of MA glasses and later at lower frequencies in ε0( f ), the real part of ε*( f ).
Whereas Z00 vs. Z0 plots of actual data for the single alkali glasses or Z00 vs. Z0 curves
predicted by the Kohlrausch fit to the SA glass electric modulus data display

approximately the shape of a submerged semicircle, the data for MA glasses

show large deviations from this shape. This deviation was pointed out by Moynihan

and Boesch [427] and by Tomozawa and coworkers [421]. Tomozawa and

coworkers further showed enormous differences between SA and MA glasses in

ε0( f ) and Z*( f ) at low frequencies by comparing the data of Li2O-2SiO2 and

[0.5Na2O+ 0.5LiO2]-2SiO2 glasses. The dielectric relaxation strength, (εs � ε1),

of the MA glass is much higher than that of the SA glass, due to the presence of an

additional relaxation contribution in MA glasses contributed by ions of the alkali

ions immobilized at lower frequencies.

Therefore, when shown as ε0( f ) vs. log f, the data of MA glasses support the

presence of contributions to polarization from immobilized or partially

immobilized alkali ions that are not accounted for by the Kohlrausch relaxation

describing the dynamics of mobile ions. The reason why the Kohlrausch relaxation

still gives acceptable, though approximate, fits to M*( f ) data of MA glasses, as

found by many workers (see references given in [109]), is the known suppression by

the electric modulus of any low frequency polarizations, including those from the

immobilized or partially immobilized ions. In effect, by showing the data asM*( f )
one has selected only the faster dielectric response of the mobile ions in the MA

glass. For these mobile ions, the description using the Kohlrausch relaxation is

justified from the Coupling Model point of view. Unlike the case of SA glasses,

there could still be deviations caused by the inherent presence of some distribution

of mobility of the mobile ions or by mobile alkali ions of both kinds with compa-

rable mobility in some compositions contributing to M*( f ). The number of these

mobile ions in a high alkali MA glass is significantly fewer than the total number of

alkali ions because of the large number of ions that have been immobilized, as

discussed earlier in Sect. 4.11. Structural studies of mixed alkali glasses [399, 400,

428–431] indicate that each kind of alkali ion maintains its characteristic local

environment independent of the MA glass composition. The large difference in site

energies of two alkalis excludes the use of sites of one kind of alkali ion by another,

rendering effectively fewer sites available for conduction. Considering these factors

in the comparison with SA glasses with same total alkali concentration, we see now

in the MA glasses there are significantly fewer mobile ions, and on the average they

are further apart. The situation suggests that the transport of mobile ions in the MA

glass resembles a SA glass with reduced alkali concentration, which we know has a
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lower conductivity at the same temperature and a higher activation enthalpy, and

these are exactly the changes when modifying a SA glass to a MA glass [409]. Thus

the MA effect when considered in terms of the change in activation enthalpy and

isothermal conductivity can be qualitatively understood by its similarity to the

effect of decreasing the alkali ion concentration of a SA glass, a suggestion that

was made earlier by Greaves and Ngai [12]. A concomitant consequence of the

larger separation between the mobile ions is the reduction of ion-ion interaction and

correlation. In the Coupling Model, this means that the coupling parameter n of the
mobile ions is reduced, the Kohlrausch exponent is increased and the dispersion of

M*( f ) narrows as the MA effect increases. This narrowing of the dispersion is

countered by the broadening due to the inevitable presence of some inherent

distribution of mobility of even for the mobile ions. Thus, if experimentally there

is indeed a narrowing of M*( f ) with increasing MA effect, then the actual

narrowing due to decreasing mobile ion interactions is dominating the data. From

a survey of the published literature on MA glasses with high concentrations of

alkali ions, we find that, in general, whenever the data is represented by the electric

modulus, the dispersion ofM*( f ) narrows when more and more majority alkali ions

are replaced by the minority alkali ions and exhibits a minimum width at some

intermediate composition. When the M*( f ) data are fitted to the Fourier transform

of the Kohlrausch function, the Kohlrausch exponent β� (1-n) also displays an

increase towards a maximum at some intermediate composition [12, 87, 409, 421,

422, 432–435]. The experimental observation is exemplified in Fig. 4.79 by the

electric modulus data of the alkali silicate glasses [xK2O � (1-x)Na2O] � 3SiO2. The

experimental data show that the KWW exponent β increases, or the dispersion

narrows, with increasing amounts of foreign alkali in the dilute foreign-alkali

region, leading to a maximum in β at an intermediate composition close to the
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Fig. 4.79 (Left) Composition dependence of the d.c. conductivity for the alkali silicate glasses

[xK2O � (1-x)Na2O] � 3SiO2. Data taken from Ref. [436] and re-plotted. (Middle) Value of the

KWW exponent β obtained from fits to the electric modulus data by using the KWW function for

the same glasses. Here β for all x have been obtained from electric modulus data that have similar

values of the relaxation time τ (τ� 3� 10�3s within a factor of 2). The data show that β increases
or the dispersion narrows with increasing amounts of foreign Na in the dilute foreign Na region,

leading to a maximum in β at an intermediate composition. Data taken from Ref. [436] and

re-plotted. (Right) Electric modulus spectra of the mixed alkali silicate glass 0.242[xK2O � (1-x)
Na2O] � 0.758SiO2 with x¼ 0.950, in the dilute Na+ ion composition range compared with the

parent single alkali glass (x¼ 1) studied by Moynihan et al. [409]
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minimum of d.c. conductivity. The right panel of Fig. 4.79 shows the narrower

peak in the imaginary part of the electric modulus data of the mixed alkali glass

(0.242[xK2O � (1-x)Na2O] � 0.758SiO2 with x¼ 0.950, in the dilute sodium ion

composition range compared with the parent single alkali glass with x¼ 1 studied

by Moynihan et al. [409]. The same was found in mixed alkali LixRb1�xPO3 glasses

by Karlsson et al. [411, 435], and they also interpreted this result as indicating that

the mixed alkali glasses behave as single alkali glasses of effectively lower con-

centrations. The observed decrease in the width of the relaxation spectra of the

electric modulus in mixed alkali glasses can be considered as evidence for the

reduced ion-ion interaction due to fewer mobile ions and wider separations between

them [12], as mentioned before in this section.

4.11.2 Comparison of Electrical Relaxation with Mechanical
Relaxation

Mechanical-relaxation (internal friction as a function of temperature at a fixed

frequency) measurements on mixed alkai silicate, borate and phosphate glasses

performed by many workers was reviewed by Day [437]. They show the same

behavior as foreign alkali B is introduced into a single alkali A glass. On increasing

the content of B, the internal friction peak associated with host A is rapidly reduced

in intensity and shifted to higher temperatures. This trend indicate that it comes

from diffusion of the mobile host ions. It is also in agreement with the reduction of

electrode modulus loss and the increase of activation energy of diffusion of A, and

consistent with the large number of A immobilized by B.

Simultaneously, starting at low concentration of B a new internal friction peak

appears at higher temperatures, which rapidly increase in intensity. The new peak

was called the “mixed alkali peak”, not found in the electric modulus spectrum. The

origin of this mixed alkali peak comes the elastic dipoles formed by the

immobilized A and B alkali ions. Again this is consistent with the interpretation

given before on mixed alkali effect probed by electrical relaxation.

4.12 Haven Ratio, Breakdown of Nernst-Einstein Relation

The breakdown of the Stoke-Einstein relation in molecular glassformers has been

considered to be one of the important and general characteristics by the glass

transition research community. An analogue of this anomaly in glassforming

systems can be found in glassy and crystalline ionic conductors by the fact that

the self (tracer) diffusion coefficient, D*, and the conductivity diffusion coefficient,
Dσ, are not the same. In glassy single-alkali ionic conductors, D* is measured

by tracer diffusion of an radioactive isotope of the same alkali, and Dσ is

calculated from the measured dc conductivity, σdc, via the Nernst–Einstein relation,
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σdc¼ (Nq2/kBT )Dσ between conductivity and diffusion coefficient that holds for

non-interacting systems. Here N is the number density of alkali ions, q the ion

charge, kB the Boltzmann constant, and T the temperature. The experimental fact

that D* is larger than Dσ in many glassy ionic conductors with large concentration

of mobile alkali ions is evidence of breakdown of the Nernst-Einstein relation,

which should be σdc¼ (Nq2/kBT )D*. The degree of breakdown is usually indicated

by the Haven ratio, HR¼D*/Dσ, which has values less than or equal to one [438].

The smaller HR is, the larger is the breakdown. Since ion-ion interaction and many-

ion dynamics have been identified as important in glassy and crystalline ionic

conductors containing high concentration of mobile ions, it is natural to consider

it as the cause of the breakdown. Simulation of Li ions motion in lithium silicate

glasses by Heuer et al. [106] also have concluded that the inverse of the Haven ratio

can be considered as a measure of the degree of “collectivity” in ionic motion. From

molecular dynamics simulations, Habasaki et al. [156] had already pointed out that

cooperative ion jumps induced by ion-ion interactions contribute to the Haven ratio.

They cited the MD work of Na-β00-alumina of Hafskjold and Li [439], which

pointed out that a small Haven ratio corresponds to highly correlated velocities of

different conducting ions, indicating that ions move in the same direction simulta-

neously. Since the interception of jump paths on mixing found by Habasaki

et al. [64, 156, 440] should affect co-operative motion of ions too, the larger

value of the Haven ratio in the mixed alkali system can be explained in terms of

a decreased number of the co-operative forward jumps.

One way to support this is consistency of the prediction that HR should increases

with decreasing ion-ion interaction strength as can be realized by increasing the

average separation between ions. The limit of HR¼ 1 is reached and Nernst-

Einstein relation holds when ion-ion interaction becomes negligible. The equivalent

of this in the CM description is the expected increase of HR with decrease of the

coupling parameter n on decreasing ion concentration, where n can be obtained

from the fit to the electric modulus data by the Kohlrausch function, exp[�(t/τ)1�n].

The decrease of n on decreasing ion concentration in the same family of glassy ionic

conductors have been verified before in Refs [87, 104], and in crystalline ionic

conductors in Ref. [318]. For glassy ionic conductors, the support of the ion-ion

interaction is the cause of the breakdown of the Nernst-Einstein relation can be

drawn from the collection of experimental data of the dependence ofHR on total alkali

content of alkali borate, germinate, and silicate glasses by Kelly et al. [385] and Na

alumino-germanate, and Na borate glasses by Voss et al. [414]. Kelly et al. have

reported for each family of alkali oxide glass that HR increases with decreasing total

alkali content Y for alkali borate, germanate, and silicate glasses. Voss et al. combined

their Haven ratio data of Na borate and Na alumino-germanate glasses with the data of

Kelly et al., and plotted all data ofHR altogether against the ratio of the averageNa–Na

distance to the network distance,<dNa>/<dnetwork>. This plot shown here in Fig. 4.80

verifies the expected increase of HR on increasing ion-ion distance, and the limit

HR¼ 1 is attained at low alkali concentration.

The degree of breakdown of the Stokes-Einstein relation of glassformers

increases on decreasing temperature towards Tg [60]. Similar T-dependence of the
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degree of breakdown of the Nernst-Einstein relation was found by simulation and

experiment. Decrease of the Haven ratio on decreasing temperature was found by

Kn€odler et al. [146] by simulation of a stochastic lattice gas model with ion-ion

interaction included into the Hamiltonian, and by experimental measurements in a

Rb borate glass, 0.2Rb2O � 0.8B2O3 [442]. However, HR of the corresponding Na

borate glass, 0.2Na2O � 0.8B2O3, show no temperature dependence.

Explanation of the breakdown of the Stokes-Einstein relation in glassformers

given by the CM was based on the correlation functions for center of mass diffusion

and viscosity weigh differently the effects of the many-body relaxation, resulting in

different coupling parameters and relaxation times. A similar reasoning was given

to explain the difference in relaxation times between nuclear spin relaxation

and conductivity relaxation of glassy ionic conductors to be discussed in Chapter 5.

The origin of the Haven ratio being less than unity in glassy ionics may also

be explained by the slight difference between the tracer diffusion correlation func-

tion, CD(t)¼<ri(0)ri(t)> and the conductivity correlation function, Cσ(t)¼
(l/N)Σij< vi(0)vj(t)>, where ri and vi are the position and velocity of the diffusing

ions. The i 6¼ j cross-correlation terms in Cσ(t) do not appear in the CD(t).

4.12.1 The Haven Ratio for Mixed Alkali Glasses

Having shown for single alkali glasses that the Haven ratio HR anti-correlates with

ion-ion interaction and many-ion cooperative dynamics, here the ‘common’ Haven
ratios of the mixed alkali glasses, 0.2[xNa2O � (1�x)Rb2O] � 0.8B2O3, obtained by

Fig. 4.80 Haven ratio HR as a function of the ratio of the average Na–Na distance to the network

distance, <dNa>/<dnetwork>. Values for Na-borate glasses: filled circle—Voss et al. [441]

(T¼ 380 C), open circle—Kelly et al. [385] (T¼ 300 C); Na-alumino-germanate glasses: filled
triangle—from Ref. [414] (T¼ 380 C), open triangle—Kelly et al. [385] (T¼ 300 C). Reproduced

from Ref. [414] by permission
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Imre et al. [393] are used to further support the decrease of ion-ion interaction and

many-ion dynamics in the mixed alkali effect.

The common HR(x) of the mixed alkali glass with composition x is defined by

H xð Þ ¼ Nq2

kBTσdc xð Þ
� �

xDNa xð Þ þ 1� xð ÞDRb xð Þ� �
; ð4:68Þ

where DNa and DRb are the tracer diffusion coefficient of Na and Rb respectively.

The right panel of Fig. 4.81 shows HR increases on introducing foreign alkali into

the host, and it peaks at the same composition (x¼ 0.4) as the activation enthalpy

ΔHσ of d.c. conductivity (see left panel). These properties of HR and ΔHσ corrob-

orate in indicating the decrease of ion-ion interaction and many-ion dynamics as

one of the manifestations of the mixed alkali effect. Actually, the maximum of the

Haven ratio at some intermediate x value shown in the right panel of Fig. 4.81 was

found earlier by Terai [443], and by Jain et al. [394]

4.13 Relating Macroscopic Electrical Conductivity
to Microscopic Movements of Ions

The question of how to relate the macroscopic conductivity relaxation measure-

ments in ionic conductors (either permittivity ε∗(ω), conductivity σ∗(ω), or electric
modulus M∗(ω)) to the microscopic movement of the ions, is a longstanding and

relevant issue to solve. Here we compare the macroscopic electrical response with a

stochastic transport theory of charged carriers, and find that the electric modulus,M
∗(ω), is the most appropriate representation of the macroscopic data to describe the

microscopic movement of the ions. It is found thatM∗(ω) faithfully reproduces the
spectral shape of the microscopic ionic movement except that the characteristic

Fig. 4.81 (Left) Activation enthalpy ΔHσ and pre-exponential factor D0
σ of the conductivity

diffusion coefficient as a function of composition below the glass-transition temperature for 0.2

[xNa2O � (1-x)Rb2O] � 0.8B2O3 glasses. (Right) Composition dependence of the common Haven

ratio of the same glass. Reproduced from Ref. [393] by permission
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relaxation frequency is shifted away from the microscopic ionic hopping relaxation

frequency by a frequency-independent factor that can be calculated [31].

In 1973, Scher and Lax (SL) [444] published a theory of stochastic transport of

charged carriers (ions in the case presented here). They started from the Nyquist

theorem which relates admittance and noise and generalizes the Einstein relation

between mobility, μ, and diffusion constant, D, to nonzero frequency as

μ∗ ωð Þ ¼ q=kTð ÞD∗ ωð Þ ð4:69Þ

where q is the ion charge, k is the Boltzmann constant and T is the temperature

[445, 446]. The real part of the frequency-dependent diffusion constant D*(ω) is
related to the velocity-velocity autocorrelation function, <v(t) v(0)> by

ReD∗ ωð Þ ¼
ð1
0

cosωt < v tð Þv 0ð Þ > dt; ð4:70Þ

and to the mean squared displacement of the carrier, < r tð Þ � r 0ð Þ½ �2 >, by

D∗ ωð Þ ¼ �1

6
ω2

ð1
0

e�iωt < r tð Þ � r 0ð Þ½ �2 > dt: ð4:71Þ

This form for D*(ω) naturally obeys the Kramers-Kronig relationship,

�ImD∗ ωð Þ ¼ 1

π
℘

ð1
�1

ReD∗ ωð Þ
ω, � ω

dω; ð4:72Þ

The complex conductivity is given by the relations

σ∗ ωð Þ ¼ Nqμ∗ ωð Þ ¼ Nq2=kT
� 	

D∗ ωð Þ ð4:73Þ

where N is the density of the mobile ions. Whatever the mechanism of ionic

transport, a calculation of σ*(ω) needs to determine the probability of finding a

carrier at any point at time t if it was at the origin at t¼ 0. The model used by SL to

calculate such a probability function is a generalization of the continuous time

random walk (CTRW) of Montroll and Weiss [447]. In that model the basic

quantity is the probability that the time between hops is in the interval (t,t+Δt)
and the displacement is s, is equal to ψ(s,t) Δt. Then, ϕ(t) defined by

ϕ tð Þ ¼ 1�
ðt
0

ψ τð Þdτ ð4:74Þ
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with

ψ tð Þ ¼
X
s

ψ s; tð Þ; ð4:75Þ

which is the probability that the ion remains fixed in the time interval [0,t]. From
Eq. 4.74, it is clear that

ψ tð Þ ¼ �d

dt
φ tð Þ ð4:76Þ

If the spatial and temporal probability distribution of each hop of the ion is

independent of each other such that ψ(s,t) can be written as a product, p(s)ψ(t)

with
P

sp sð Þ ¼ 1, then calculating < r tð Þ � r 0ð Þ½ �2 > by the CTRW method and

substituting it into Eq. 4.70, SL finally obtained the key result:

D∗ ωð Þ ¼ 1

6
r2rms iωð Þeψ ωð Þ= 1� eψ ωð Þ½ �; ð4:77Þ

where

r2rms ¼
X
s

s2p sð Þ ð4:78Þ

and eψ ωð Þ is the Laplace or causal Fourier transform of ψ(t) defined by

eψ ωð Þ ¼
ð1
0

e�iωtψ tð Þdt: ð4:79Þ

Once the principal results of the stochastic transport theory of SL have been

summarized in the above, we are able to show the relation between the electric

modulus function, M*(ω) and the theoretical expression for the conductivity of

SL. We can rewrite Eq. 4.77 using Eqs. 4.76 and 4.79, as

D∗ ωð Þ ¼ r2rms=6
� 	

iωð Þ eψ ωð Þ
1� eψ ωð Þ ¼ r2rms=6

� 	
iωð Þ

Ð1
0

dte�iωt �d
dtϕ tð Þ� 	

1� Ð1
0

dte�iωt �d
dtϕ tð Þ� 	� �

8>>><>>>:
9>>>=>>>;

ð4:80Þ

Then, from Eqs. 4.72 and 4.80, the complex conductivity can be calculated from

ϕ(t) by
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σ∗STT ωð Þ ¼ Nq2=kT
� 	

r2rms=6
� 	

iωð Þ

Ð1
0

dte�iωt �d
dtϕ tð Þ� 	

�
1� Ð1

0

dte�iωt �d
dtϕ tð Þ� 	�

8>>><>>>:
9>>>=>>>;: ð4:81Þ

The suffix STT is introduced in Eq. 4.81 to indicate the quantity is obtained

from the stochastic transport theory, which is assumed to describe correctly the

microscopic ion dynamics. This theoretical expression is to be compared with

the macroscopic one, σ�EM, which can be written using the electric modulus

formalism as

σ*EM ωð Þ ¼ εo
iω

M∗ ωð Þ ¼ εo=M1ð Þ iωð Þ 1�
1� Ð1

0

dte�iωt �d
dtΦ tð Þ� 	�

8>><>>:
9>>=>>;; ð4:82Þ

withM1 ¼ 1=ε1 the inverse of the high frequency permittivity value. We can also

write an expression for the macroscopic electrical conductivity as the sum of two

different contributions,

σ*EM ωð Þ ¼ σ*EM, ion ωð Þ þ iωεoε1; ð4:83Þ

with σ�EM;ion(ω) the part coming entirely from ion diffusion, and iωεoε1 a pure

imaginary part accounting for the permittivity at high frequencies. From Eqs. (4.82)

and (4.83) we can obtain the following relation between σ�EM;ion(ω) and the macro-

scopic decay function Φ(t):

σ*EM, ion ωð Þ ¼ εo=M1ð Þ iωð Þ

Ð1
0

dte�iωt �d
dtΦ tð Þ� 	

�
1� Ð1

0

dte�iωt �d
dtΦ tð Þ� 	�

8>>><>>>:
9>>>=>>>; ð4:84Þ

By inspection of the expressions inside the curly brackets in Eqs. 4.81 and 4.84,

one finds that the frequency dependencies of the theoretical contribution of ionic

diffusion to the conductivity from the Scher and Lax theory,σ∗STT ωð Þ, and of the ionic
contribution to the macroscopic conductivity derived from the electric modulus

formalism, σ�EM;ion(ω), have similar functional forms. In spite of the similarity in

form, we hasten to mention that σ∗STT ωð Þ and σ�EM;ion(ω) differ in their dependencies

on ω because Φ(t) and ϕ(t) have different characteristic time scales, τEM and τSTT
respectively. Interestingly, this similarity leads to a relation between Φ(t) and ϕ(t),
which gives from the microscopic ϕ(t) a more basic interpretation to the macro-

scopic Φ(t) than the decay of the electric field at constant displacement vector, as

customarily done in the electricmodulus formalism [5, 6, 17, 29, 30]. The pre-factors
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of the frequency dependent terms in Eqs. 4.81 and 4.84 are different. This is

understandable because the theoretical expression (4.81) is obtained from the

mean square displacement, the frequency dependent diffusion constant and the use

of the Nyquist theorem, which generalizes the Nernst-Einstein relation between

conductivity and diffusion constant to nonzero frequency. On the other hand, the

route to expressions (4.82) and (4.84) of the electric modulus formalism is through

the Maxwell relation. The two approaches, being based on sound physical princi-

ples, are legitimate ways to arrive at σ*(ω). Both ϕ(t) and Φ(t) start from the initial

(i.e., at t¼ 0) value of 1 and decrease monotonically towards zero with time.

However,ϕ(t) andΦ(t) are characterized respectively by two different characteristic
time constants, τSTT and τEM.We can go a step further in relating the STT and the EM

approaches by rewriting Eqs. 4.81 and 4.84 as

σ∗STT ωð Þ ¼ Nq2=kT
� 	

r2rms=6
� 	

iωð Þ 1

iω eϕSTT ωð Þ � 1

( )
ð4:85Þ

and

σ*EM, ion ωð Þ ¼ εo=M1ð Þ iωð Þ 1

iω eΦEM ωð Þ � 1

( )
: ð4:86Þ

Here we have introduced eϕ ωð Þ and eΦ ωð Þ as the Laplace transforms of φ(t)
and Φ(t) respectively, and made use of the relationship between the

Laplace transform of a function and that of its time derivative, i.e.,

ð1
0

dte�iωt

�d
dtϕ tð Þ� 	 ¼ 1� iωeϕ ωð Þ. Writing out explicitly the time dependencies ofΦ(t/τEM)

and ϕ(t/τSTT) to include their respective characteristic times, and using the identity,eϕ ωð Þ ¼ τeϕ ωτð Þ, we arrive at the following expressions,

σ∗STT ωτSTTð Þ ¼ Nq2=kT
� 	

r2rms=6
� 	 1

τSTT

1eϕSTT ωτSTTð Þ � iωτSTT

( )
ð4:87Þ

and

σ*EM, ion ωτEMð Þ ¼ εo=M1ð Þ 1

τEM

1eΦEM ωτEMð Þ � iωτEM

( )
: ð4:88Þ

Note that inside the curly brackets in Eqs. 4.87 and 4.88 the expressions have the

same structure. If eφSTT ωτSTTð Þ and eΦEM ωτEMð Þ are the same functions of the

variables ωτSTT and ωτEM, then a posteriori they have the same value in the limits of

ωτSTT ! 0 and ωτEM ! 0 respectively. Thus σ∗STT ωτSTTð Þ and σ∗EM;ion(ωτEM) will
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have equal d.c. conductivity if the factors outside the curly brackets in Eqs. 4.87 and

4.88 are the same, i.e.

τSTT=τEM ¼ Nq2r2rms
� 	

= 6kTεoε1ð Þ: ð4:89aÞ

If this relation between the macroscopic conductivity relaxation time, τEM, of EM
and the microscopic ionic hopping correlation time, τSTT, is satisfied, the two

expressions for the complex conductivity, σ∗STT ωτSTTð Þ and σ∗EM;ion(ωτEM), become

isomorphic to each other. However, as a function of pure frequency ω, σ∗STT ωð Þ
differs from σ∗EM;ion(ω). When plotted against log ω, σ∗STT ωð Þ differs from σ∗EM;ion(ω)

only by a horizontal shift of the whole curve σ∗EM;ion(ω) parallel to the logω-axis

with a shift factor equal to log(τSTT/τEM). The same relation holds between Re

σ∗STT ωð Þ� �
and Re[σ∗EM(ω)] because from Eq. (4.83) it follows that Re[σ∗EM(ω)] is

exactly equal to Re[σ∗EM;ion(ω)].

In general, τEM is not equal to τSTT and they are related to each other by the ratio
shown on the right-hand-side of Eq. 4.89. Hence, τEM cannot be identified with the

microscopic ion hopping relaxation time, τSTT. Depending on the material param-

eters on the right-hand-side of Eq. (4.89), the two relaxation times can be very

different. In fact, two systems with identical microscopic ion dynamics and the

same τSTT but have different values of ε1 will have two different values of τEM,
each related to the same τSTT by Eq. 4.89. This dependence of τEM on ε1 is

considered by some workers as a shortcoming of the EM [78]. We do not agree

with this opinion because this invariably will occur in any representation of the

electrical relaxation data because the latter are from macroscopic measurement

where ε1 inevitably enters. Nevertheless, even considered as a shortcoming of the

EM, this is a minor problem that can be overcome. From τEM the microscopic STT

relaxation time can be readily calculated by the expression,

τSTT ¼ τEM Nq2r2rms
� 	

= 6kTεoε1ð Þ: ð4:89bÞ

In the EM, the d.c. conductivity, σEM,dc is calculated by the well known relation,

σEM,dc ¼ εoε1=τEM; ð4:89cÞ

in which ε1 appears explicitly in the numerator and also implicitly in the denom-

inator. However, when substituting Eq. (4.89a) into Eq. (4.89c), the macroscopic

d.c. conductivity turns out to give correctly the microscopic d.c. conductivity, i.e.,

σEM,dc ¼ εoε1=τEM ¼ Nq2r2rms=6kTτSTT ð4:89dÞ

The consistency of σEM,dc with the microscopic d.c. conductivity explains why

σEM,dc calculated by Eq. (4.89b) are always in good agreement with experimental

values [4–6, 23, 270, 275]. Note also that except for the slowly varying T�1 factor in

Eq. (89), the temperature dependence of τSTT and τEM is the same. They have about
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the same activation energy as long as the activation energy in temperature unit is

much larger than T.

It follows from eϕSTT ωτSTTð Þ and eΦEM ωτEMð Þ being the same functions of the

variables ωτSTT and ωτEM respectively, that the normalized electric modulus M*

(ωτEM)/M1 of Eq. 4.12 can be related to the microscopic eϕSTT ωτSTTð Þ by

M∗ ωτEMð Þ=M1 ¼ iωτEM eΦ ωτEMð Þ ¼ iωτEMeϕ ωτSTTð Þ ð4:90Þ

Since eϕSTT ωτSTTð Þ appears in the expression (Eq. 4.87) for σ�STT(ω), this result
leads to the important conclusion that the shape of the dispersion of [M*(ωτEM)/
M1] obtained from data analysis using the electric modulus formalism can be

identified with the shape of the dispersion of eϕ ωτSTTð Þ, which originates from the

microscopic movement of the ions and determines the frequency dependent trans-

port coefficients in the stochastic transport theory (Eq. 4.87). Therefore, the shape

of the observed loss peak of Im(M*(ωτEM)/M1) is uniquely determined by the

movement of the ions. This correspondence between the EM and the stochastic

transport theory, though not totally exact (i.e., the difference in the relaxation times

given by Eq. 4.89b) also justifies that the electric modulus has a theoretical basis,

e.g. the stochastic transport theory of Scher and Lax. Although the τEM differs from

τSTT by the factor in Eq. 4.89b, the dispersion of (M*(ωτEM)/M1) and the quantity

iωeϕSTT ωτSTTð Þof the stochastic transport theory is exactly the same. Therefore, any

dispersion coming from ion hopping and picked up by the stochastic transport

theory in Eq. 4.87 will be seen exactly in the same shape or form in the EM

representation of the data at frequencies in the neighborhood of (τEM)
�1. It is also

worthwhile to point out from Eq. 4.89a that the ratio (ε1/τEM) is a constant

independent of ε1. Hence, as a function of ωτEM, the ionic motion contribution

to the conductivity, σ�EM;ion(ωτEM), given by Eq. 4.88 is independent of the value

of the high frequency dielectric constant, ε1. For more discussion of this, see

Appendix in Ref. 31.

Finally, some remarks on CTRW used by Scher and Lax (SL) are appropriate

before closing this section. In the past, Tunaley [448] made a literal interpretation of

the CTRW procedure of SL as an ongoing renewal process which led to frequency

independent D*(ω) and σ*(ω). This difficulty is removed by a proper treatment of

the CTRW problem as demonstrated by Lax et al. [449] and others [450, 451]. Also,

a formal equivalence between averaged particle transport in disordered systems and

the generalized master equation or the CTRW theory was established by Klafter and

Silbey [452]. Although the CTRW as a theory is on firm grounds, it may not be

general enough to describe any model of charged carrier transport as was found by

Maass, Meyer and Bunde [143] for their model.

In summary, by comparing the results of a stochastic microscopic transport

theory of the dynamics of ionic movement with the electric modulus representation

of the macroscopic conductivity relaxation data, we have shown that the form of

microscopic ion hopping correlation function is faithfully reproduced in the electric
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modulus formalism. This correspondence between microscopic description and the

electric modulus analysis of macroscopic measurement of ionic motion indicate

that the electric modulus, M*, is the most suitable representation of macroscopic

data compared with other alternatives, e.g. ε* and σ*. However, the macroscopic

conductivity relaxation time obtained from the electric modulus analysis of the data

differs from the microscopic ion hopping correlation time by a known factor, which

is weakly temperature dependent. Consequently the two times have practically the

same thermal activation energy and other dependencies on variables such as the

isotope mass of the diffusing ion.

4.13.1 An Experimental Verification

Nuclear spin lattice relaxation and conductivity relaxation data of the crystalline

ionic conductor Li0.5La0.5TiO3 (LLTO) obtained by León et al. [55] have been

employed [31] to demonstrate that in this crystalline conductor the nuclear spin

relaxation correlation function is in every respect the same as the microscopic ion

hopping conductivity correlation function. The latter has been calculated from the

macroscopic electrical relaxation data, according to the relation between them

established by Eq. (4.89). Thus, the nuclear spin relaxation data enable us to verify

the relation between the macroscopic conductivity relaxation function and the

microscopic ion hopping correlation function. For details see Ref. [31] and Chapter

5 of this book on NMR.

4.14 Relation to Other Chapters

The present chapter is intended to present the dynamics of ionic conductors as

obtained from experimental measurements and compared with theoretical predic-

tions. Many issues will be discussed again from different angles and amplified

by additional experimental data and simulations in other chapters to follow. For

example, the Chap. 5 on nuclear magnetic resonance, Chap. 6 on nanoionics, Chap. 7

on ionic liquids, and Chaps. 9–11 on molecular dynamics simulations will revisit the

issues and provide additional information that corroborate the findings and interpre-

tations of this chapter, and enhance the understanding. Efforts will be made to relate

the results in the other chapters back to that in the present chapter.
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217. F. Kohlrausch. Beiträge zur Kenntniss der elastischen Nachwirkung. Pogg. Ann. Phys. Chem.

128, 1–20, 207–228, 399–419 (1866)

218. R.S. McKay, J.D. Meiss (eds.), Hamiltonian Dynamic Systems (Adam Hilger, Bristol, 1987)

219. S.W. McDonald, A.N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979)

220. G. Casati, F. Valz-Gris, I. Guarneri, Lett. Nuovo Cimento 28, 279 (1980)

221. J.P. Keating, S. Müller, Proc. R. Soc. A 463, 3241 (2007)

222. H.-J. St€ockmann, Quantum chaos: an introduction (Cambridge, University Press, Cam-

bridge, UK, 1999)

223. C. Jaffe, W.P. Reinhardt, J. Chem. Phys. 77, 5191 (1982)

224. R.B. Shirts, W.P. Reinhardt, J. Chem. Phys. 77, 5204 (1982)

225. K.L. Ngai, J. Phys. C 12, 6437 (2000)

226. S.H. Strogatz, R. Mirollo, P.C. Mathews, Phys. Rev. Lett. 68, 2730 (1992)

227. P. Debye, Polar Molecules (Dover, New York, 1929)

228. J. Colmenero, A. Alegria, A. Arbe, B. Frick, Phys. Rev. Lett. 69, 478 (1992)

229. R. Zorn, A. Arbe, J. Colmenero, B. Frick, D. Richter, U. Buchenau, Phys. Rev. E 52,
781 (1995)

230. J. Colmenero, A. Arbe, G. Coddens, B. Frick, C. Mijangos, H. Reinecke, Phys. Rev. Lett. 78,
1928 (1997)

231. V.G. Sakai, J.K. Maranas, Z. Chowdhuri, I. Peral, J.R.D. Copley, J. Polym. Sci. Part B Polym.

Phys. 43, 2914 (2005)

232. V.G. Sakai, J.K. Maranas, I. Peral, J.R.D. Copley, Macromolecules 41, 3701 (2008)

244 4 Electrical Response of Ionic Conductors



233. G. Wahnstr€om, L.J. Lewis, Phys. A 201, 150 (1993)

234. J. Colmenero, F. Alvarez, A. Arbe, Phys. Rev. E 65, 041804 (2002)

235. Y. Khairy, F. Alvarez, A. Arbe, J. Colmenero, Phys. Rev. E 88, 042302 (2013)

236. A. Triolo, O. Russina, V. Arrighi, F. Juranyi, S. Janssen, C.M. Gordon, J. Chem, Phys. 119,
8549–8557 (2003)

237. J. Colmenero, A. Arbe, A. Alegria, Phys. Rev. Lett. 71, 2603 (1993)

238. K.L. Ngai, J. Colmenero, A. Arbe, A. Alegria, Macromolecules 25, 6727 (1992)

239. J. Colmenero, A. Arbe, A. Alegria, K.L. Ngai, J. Non-Cryst. Solids 172–174, 229 (1994)

240. A. Arbe, A. Moral, A. Alegrı́a, J. Colmenero, W. Pyckhout-Hintzen, D. Richter, B. Farago,

B. Frick, J. Chem. Phys. 117, 1336 (2002)

241. A. Arbe, J. Colmenero, F. Alvarez, M. Monkenbusch, D. Richter, B. Farago, B. Frick, Phys.

Rev. E 67, 051802 (2003)

242. B. Farago, A. Arbe, J. Colmenero, R. Faust, U. Buchenau, D. Richter, Phys. Rev. E 65,
051803 (2002)

243. D. Richter, A. Arbe, J. Colmenero, M. Monkenbusch, B. Farago, R. Faust, Macromolecules

31, 1133 (1998)

244. J. Colmenero, A. Arbe, F. Alvarez, M. Monkenbusch, D. Richter, B. Farago, B. Frick,

J. Phys.: Condens. Matter 15, S1127–S1138 (2003)

245. A. Arbe, J. Colmenero, M. Monkenbusch, D. Richter, Phys. Rev. Lett. 81, 590 (1998)

246. M. Tachez, R. Mercier, J.P. Malugani, A.J. Dianoux, Solid State Ionics 20, 93 (1986)

247. A.J. Dianoux, M. Tachez, R. Mercier, J.P. Malugani, J. Non-Cryst. Solids 131-133,
973 (1991)

248. A.P. Owens, A. Pradel, M. Ribes, S.R. Elliott, J. Non-Cryst. Solids 131-133, 1104 (1991)

249. K.L. Ngai, O. Kanert, Solid State Ionics 53-56, 936 (1992)

250. P.N. Segre, P.N. Pusey, Phys. Rev. Lett. 77, 771 (1996)

251. K.L. Ngai, G.D.J. Phillies, J. Chem. Phys. 105, 8385 (1996)

252. K.L. Ngai, Macromol. Symp. 146(117), 776 (1999)

253. S.Z. Ren, W.F. Shi, W.B. Zhang, C.M. Sorensen, Phys. Rev. A 45, 2416 (1992)

254. G.D.J. Phillies, C. Richardson, C.A. Quinlan, S.Z. Ren, Macromolecules 26, 6849 (1993)

255. B. Nystr€om, H. Walderhaug, F.N. Hansen, J. Phys. Chem. 97, 7743 (1993)

256. K.L. Ngai, Adv. Colloid Interf. Sci. 64, 1 (1996)

257. M. Adam, M. Delasanti, J.P. Munch, D. Durand, Phys. Rev. Lett. 61, 706 (1988)

258. R. Belin, G. Taillades, A. Pradel, M. Ribes, Solid State Ionics 136–137, 1025–1029 (2000)

259. U. Strom, J.R. Hendrickson, R.J. Wagner, P.C. Taylor, Solid State Commun. 15, 1871 (1974)
260. U. Strom, P.C. Taylor, Phys. Rev. B 16, 5512 (1977)

261. C. Cramer, K. Funke, T. Saatkamp, Philos. Mag. B71, 701 (http://www.tandfonline.com)

(1995)

262. M. Tatsumisago, C.A. Angell, S.W. Martin, J. Chem. Phys. 97, 6868 (1992)

263. C. Cramer, R. Graeber, M.D. Ingram, T. Saatkamp, D. Wilmer, K. Funke, Mater. Res. Soc.

Symp. Proc. 369, 233 (1995)

264. R. Hoppe, T. Kloidt, K. Funke, Ber. Bunsenges. Phys. Chem. 95, 1025 (1991)

265. K.L. Ngai, C. Cramer, T. Saatkamp, K. Funke, in Non-Equilibrium Phenomena in
Supercooled Fluids, Glasses and Amorphous Materials, ed. by M. Giorano, D. Leporini,

M.P. Tosi (World Scientific, Singapore, 1996), pp. 3–24

266. A.P. Owens, A. Pradel, M. Ribes, S.R. Elliott, J. Non-Cryst. Solids 131–133, 1104 (1991)

267. A.P. Owens, A. Pradel, M. Ribes, S.R. Elliott, Mater. Res. Soc. Symp. Proc. 210, 621 (1991)
268. C. Cramer, M. Buscher, Solid State Ionics 105, 109 (1998)

269. K.L. Ngai, J. Non-Cryst. Solids 248, 194 (1999)

270. C. León, L. Lucia, J. Santamaria, Phys. Rev. B 55, 5302 (1997)

271. R.E.W. Casselton, Phys. Status Solidi 2, 571 (1970)

272. J.M. Dixon, L.D. LaGrange, U. Merten, C.F. Miller, J.T. Porter, J. Electrochem. Soc. 110,
276 (1963)

273. D.W. Strickler, W.G. Carlson, J. Am. Ceram. Soc. 47, 122 (1964)

References 245

http://www.tandfonline.com


274. H. Nafe, Solid State Ionics 13, 255 (1984)

275. C. León, L. Lucia, J. Santamaria, Philos. Mag. B 75, 629 (1997)

276. T.H. Etsell, S.N. Flengas, Chem. Rev. 70, 339 (1970)

277. J.E. Bauerle, J. Hrizo, J. Phys. Chem. Solids 30, 565 (1969)

278. S. Shin, M. Ishigame, Phys. Rev. B 34, 8875 (1986)

279. T. Suemoto, M. Ishigame, Phys. Rev. B 33, 2757 (1986)

280. J. Solier, I. Cachadi~na, A. Dominguez-Rodriguez, Phys. Rev. B 48, 3704 (1993)

281. A. Rivera, J. Santamarı ́a, C. León, Appl. Phys. Lett. 78, 610 (2001)

282. M. Kilo, C. Argirusis, G. Borchardt, R.A. Jackson, Phys. Chem. Chem. Phys. 5, 2219 (2003)
283. M.D. Ingram, C.A. Vincent, A.R. Wandless, J. Non-Cryst. Solids 53, 73 (1982)

284. S. Murugavel, Phys. Rev. B 72, 134204 (2005)

285. M. Malki, M. Micoulaut, F. Chaimbault, Y. Vaills, Phys. Rev. Lett. 96, 145504 (2006)

286. C. Bischoff, K. Schuller, S.P. Beckman, S.W. Martin, Phys. Rev. Lett. 109, 075901 (2012)

287. H. Jain, N.L. Peterson, Philos. Mag. A 46, 351 (1982)

288. H.L. Downing, N.L. Peterson, H. Jain, J. Non-Cryst. Solids 50, 203 (1982)

289. W. Meyer, H. Neldel, Z. Tech. 18, 588 (1937)

290. G.J. Dienes, J. Appl. Phys. 21, 1189 (1950)

291. T. Dosdale, R.J. Brooks, J. Mat. Sci. 13, 167 (1978)

292. A. Sch€onhals, D. Wolff, J. Springer, Macromolecules 28, 6254 (1995)

293. E. Marchal, J. Non-Cryst. Solids 172-174, 902 (1994)

294. D.P. Almond, A.R. West, Solid State Ionics 18 &19, 1105 (1986)

295. A.S. Nowick, W.-K. Lee, H. Jain, Solid State Ionics 28–30, 89 (1988)

296. K.L. Ngai, Solid State Ionics 105, 231–235 (1998)

297. C. Liu, C.A. Angell, J. Non-Cryst. Solids 83, 162 (1986)

298. M.B.M. Mangion, G.P. Johari, Phys. Chem. Glasses 29, 225 (1988)

299. R. Krishnamurthy, Y.-G. Yoon, D.J. Srolovitz, R. Car, J. Am. Ceram. Soc. 87, 1821 (2005)

300. E. Lee, F.B. Prinz, W. Cai, Phys. Rev. B 83, 052301 (2011)
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414. S. Voss, S.V. Divinski, Á.W. Imre, H. Mehrer, J.N. Mundy, Solid State Ionics 176, 1383
(2005)

415. P. Maass, R. Peibst, J. Non-Cryst. Solids 352, 5178 (2006)

416. P. Scheidler, W. Kob, K. Binder, G. Parisi, Philos. Mag. B 82, 283 (2009)

417. K.L. Ngai, Philos. Mag. B 82, 291 (2002)

418. K.L. Ngai, J. Polym. Sci. Part B Polym. Phys. 44, 2980 (2006)

419. K.L. Ngai, S. Capaccioli, J. Chem. Phys. 138, 054903 (2013)

420. J.F. Cordaro, M. Tomozawa, J. Am. Ceram. Soc. 65, c50 (1982)

421. M. Tomozawa, J.M. Hyde, J.F. Cordaro, M. Yoshiyagawa, Phys. Chem. Glas. 33, 69 (n.d.)

422. T.J. Higgins, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 56,
334 (1973)

423. J.M. Hyde, M. Tomozawa, M. Yoshiyagawa, Phys. Chem. Glas. 28, 174 (1987)

424. B. Roling, A. Happe, M.D. Ingram, K. Funke, J. Phys. Chem. B 103, 4122 (1999)

425. C. Cramer, S. Brunklaus, E. Ratai, Y. Gao, Phys. Rev. Lett. 91, 266601 (2003)

426. M. Tomozawa, J. Non-Cryst. Solids 196, 280 (1996)

427. C.T. Moynihan, L.P. Boesch, Presented at the 79th Annual Meeting of the American Ceramic

Society, Chicago, Paper 26-G-77

428. G.N. Greaves, C.R.A. Catlow, B. Vassal, J. Charnock, C.M.B. Henderson, R. Zhu, S. Qiao,

Y. Wang, S.J. Gurman, S. Houde-Walter, IOP Conf. Proc. Ser. No. III (Institute of Physics

and Physical Society, London, 1990), p. 411

429. F. Ali, A.V. Chadwick, G.N. Greaves, M.C. Jermy, K.L. Ngai, M.E. Smith, Solid State Nucl.

Magn. Reson. 5, 133 (1995)

430. B. Gee, H. Eckert, J. Phys. Chem. 100, 3705 (1996)

431. J. Swenson, A. Matic, A. Brodin, L. B€orjesson, W.S. Howells, Phys. Rev. B 58, 11331 (1998)
432. K.L. Ngai, H. Jain, Solid State Ionics 18&19, 362 (1986)

433. W.C. Huang, H. Jain, J. Non-Cryst. Solids 212, 117 (1997)

434. A.R. Kulkarni, P. Lunkenheimer, A. Loidl, Mater. Chem. Phys. 63, 93 (2000)

435. C. Karlsson, A. Mandanici, A. Matic, J. Swenson, L. B€orjesson, J. Non-Cryst. Solids

307–310, 1012 (2002)

436. L.P. Boesch, Ph.D. thesis, Catholic University of America, 1975

437. D.E. Day, J. Non-Cryst. Solids 21, 343 (1976)

438. Y. Haven, B. Verkerk, Phys. Chem. Glass 6, 38 (1965)

439. B. Hafskjold, X. Li, J. Phys.: Condens. Matter 7, 2949 (1995)

440. J. Habasaki, K.L. Ngai, Y. Hiwatari, C.T. Moynihan, J. Non-Cryst. Solids 349, 223 (2004)

441. S. Voss, F. Berkemeier, A.W. Imre, H. Mehrer, Z. Phys. Chem. 218, 1353 (2004)

442. S. Voss, A.W. Imre, H. Mehrer, Phys. Chem. Chem. Phys. 6, 3669 (2004)

References 249



443. R. Terai, J. Non-Cryst. Solids 6, 121 (1971)

444. H. Scher, M. Lax, Phys. Rev. B 7, 4491 (1973)

445. M. Lax, Rev. Mod. Phys. 32, 25 (1960)

446. H. Scher, E. Montroll, Phys. Rev. B 12, 2455 (1975)

447. E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)

448. J. Tunaley, Phys. Rev. Lett. 33, 1037 (1974)

449. M. Lax, H. Scher, Phys. Rev. Lett. 39, 781 (1977)

450. A.A. Kumar, J. Heinrichs, J. Phys. C Solid State Phys. 13, 2131 (1980)

451. J. Haus, K. Kehr, Phys. Rev. B 28, 3573 (1983)

452. J. Klafter, R. Silbey, Phys. Rev. Lett. 44, 55 (1980)

250 4 Electrical Response of Ionic Conductors



Chapter 5

NMR Experiments in Ionic Conductors

Nuclear Magnetic Resonance (NMR) has been shown to be a useful tool for the

study of the structure [1–4] and dynamics [3, 5–11] of ionic conductors. While

magic-angle spinning techniques are most often used for obtaining structural

details, the dynamics of ion are usually explored by measuring spin-relaxation

times [12]. Many of these NMR studies of ionically conducting materials have

focused on lithium ion conductors. The reason is probably twofold: on one hand, the

huge interest in these materials for their application in solid state batteries due to the

usually high lithium mobility; and on the other hand, the existence of two stables

isotopes, 6Li and 7Li, with different magnetic dipole and electrical quadrupole

moments, that allow studying these ionic conductors from two different views

since different NMR interactions are dominant for different probe nuclei [10, 11,

13, 14]. However, in many cases lithiumNMR experiments are performed with the 7

Li (I¼ 3/2) nucleus rather than 6Li (I¼ 1). This is because of the higher sensitivity

of the former due to its higher natural abundance and gyromagnetic ratio, while 6Li

experiments require enrichment of the samples. Incidentally a series of (6Li,7Li)2O-

2.88B2O3 glasses had been studied for the Li isotope mass dependence of conduc-

tivity by Downing et al. [15], and data were explained by the Coupling Model

[16]. Recently, NMR spectroscopy has been also shown to be useful to probe the

structural changes that occur in battery electrode materials during electrochemical

cycling [17]. While most of these studies have been performed ex situ, providing
considerable insight into the structural and dynamical processes that occur in

battery materials at different (previously achieved) states of charge, in situ NMR

now provides a non-invasive means to study the electrochemically-induced struc-

tural changes that occur on cycling a lithium ion battery [18].

In this chapter we will focus in particular on how NMR experiments can be used

to study the dynamics of mobile ions in electrolytes, showing examples on different

crystalline and glassy lithium ion conductors, and we will also show how the data

obtained from these experiments can be compared to electrical conductivity relax-

ation (ECR) measurements.

© Springer International Publishing Switzerland 2017
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5.1 Ion Dynamics Studied by NMR Techniques

The diffusion of ions in solids takes place by their hopping motion from one site to

another available one in a discrete lattice. In a previous chapter we have described

the use of NMR techniques to study the dynamics of mobile ions in ionic conduc-

tors. There are several works dealing with the spin–lattice relaxation (SLR) of

interacting magnetic dipoles and quadrupole while ions are diffusing through

particular types of crystal structures [19–24], and with the method to detect

anisotropic diffusion from 2D or 1D ion transport in some cases [22, 25–30]. In

crystalline lithium conductors, there is usually some form of disorder in the

sublattice of mobile ions. The effects of disorder on the time dependence of the

correlation function for ion diffusion have been also considered by different authors

[31–35], trying to account for the different activation energies found experimen-

tally on the low-temperature and high-temperature sides of the 1/T1 peak. This

departure from the behavior of described by the Bloembergen-Purcell-Pound (BPP)

behavior [36] can be the result from replacing the exponential time dependence by a

stretched exponential time dependence for the correlation function [8].

Lithium lanthanum titanates, Li3xLa2/3-xTiO3, (LLTO) is a family of crystalline

lithium ion conductors [37] that has been widely studied by NMR [38–43]. Since its

discovery [44–47], this perovskite-type (ABO3) oxide is among the fastest lithium

ion-conducting solid electrolytes known at room temperature. Its conductivity as

function of temperature can be seen from Fig. 4.1 in Chap. 4. Although there is

often controversy on the exact structure of a particular member of the LLTO series,

which seems to be strongly dependent on the details of sintering and quenching

procedures of these ceramics, there is agreement that the basic structural unit is a

cubic perovskite with titanium atoms at the corners of the cube (B sites), oxygen at

the middle on the edges (forming octahedra with Ti at the center), and lanthanum or

vacancies at the center of the cube (A sites) [37, 48]. Neutron diffraction experi-

ments have shown that lithium ions are located at the center of the faces, and can

thus easily move through the structure due to the presence of vacant A sites [48].

There is evidence of ordering of lanthanum and vacancies at A sites in alternate

layers for x< 0.1, favoring a 2D motion of Li+ ions. Such ordering would disappear

for higher lithium contents, giving rise to a cubic phase and to a 3D Li+ motion

[41, 49–51].
7Li spectra and relaxation times have been reported by Bohnké et al. for several

LLTO samples with different lithium content [38, 40, 52], showing that there is a

quadrupolar splitting that depends on composition at least at room temperature, (see

Fig. 5.1). At high enough temperature, and if the correlation time is short enough

and the ions sample many sites, this splitting depends on the average value of the

electric field gradient (EFG). Thus, it is difficult to explain the observed changes in

the quadrupolar splitting with composition since the correlation time at a fixed

temperature may change with composition. For a given composition, it is found that

the splitting increases and the lines broaden by decreasing temperature. At 150 K no

satellite peaks are visible, and while the reason for this is not definitely answered, it
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is possible that satellites become too broad to be observed. The same authors have

also reported that, for the sample Li0.33La0.56TiO3 (x¼ 0.11), there is a change from

2D to 3D motion of Li+ ions by increasing temperature above 200 K, and the onset

of motional narrowing of the central transition [38].

Figure 5.2 shows the temperature dependence of the spin–lattice relaxation rate,

1/T1, at Larmor frequencies of 10, 20 and 31 MHz, for Li0.5La0.5TiO3 [43]. The rate

1/T1 is related to the SLR correlation function g(t) through the equation

Fig. 5.1 Room temperature
7Li spectra recorded

at 116 MHz for

Li3xLa2/3-xTiO3 samples

with different lithium

content (x¼ 0.057,

0.065, 0.08 and 0.095).

Reproduced from [52]

by permission

Fig. 5.2 Temperature

dependence of 1/T1 at
10.6 MHz (squares),
20 MHz (circles) and
31 MHz (triangles) for
Li0.5La0.5TiO3. Dashed
lines have slopes of 0.26 eV

at high temperatures and

0.15 eV at low

temperatures. Data after

Sanz et al. [43]
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1

T1 ωL; Tð Þ ¼ C J
0
ωL; Tð Þ þ 4J

0
2ωL, Tð Þ

h i
; ð5:1Þ

where ωL is the Larmor frequency, C is a constant, and the spectral density function,

J*(ω), is the Fourier transform of the SLR correlation function g(t),

J* ω; Tð Þ ¼
ð1

�1
g t;Tð Þe�iωtdt: ð5:2Þ

Two different activation energies, Eh and El, are obtained, respectively, from the

Arrhenius plots of 1/T1 at the high and low temperature sides of the peaks. This

asymmetry of 1/T1 peaks would result from a non exponential correlation function,

that is better described instead by a stretched exponential or Kohlrausch–Williams–

Watts (KWW) function [53], g tð Þ ¼ exp � t=τsð Þβs
h i

(see Fig. 5.3). According to

Ngai’s coupling model (CM), activation energies Es and Ea are defined such that Es

is an activation energy for long range motion of ions and Ea is a microscopic

activation energy for local motion free of the effect of cooperativity [31, 54–56]. If

the correlation time for ionic motion has an Arrhenius temperature dependence,

these activation energies Es and Ea are directly obtained from the slopes of the high

and the low temperature sides of the 1/T1 plot respectively, Es¼Eh and Ea¼El, and

both energies are related through the β exponent in the KWW correlation function

Fig. 5.3 Temperature

dependence of 1/T1 at
16.1 MHz (upper curve),
and 116.64 MHz (lower
curve) for Li9B19S33.

Lines are descriptions by

the Kohlrausch–Williams–

Watts [53] model (dashed),
and by a Cole–Davidson

[58] distribution of

correlation times (solid).
Reproduced from [59] by

permission
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according to Ea¼ βsEs [8, 31, 54, 55, 57]. However, in the case of a non-Arrhenius

temperature dependence of the correlation time, activation energies for ionic

motion depend on temperature and the relation Ea¼ βsEs holds only if both energies

are calculated in the same temperature range [43]. Experimental 1/T1 curves

obtained for Li0.5La0.5TiO3 show an activation energy Ea¼El¼ 0.15 eV at low

temperatures. The activation energy for the high temperature side of the peak

cannot be estimated unambiguously except for data measured at 10 MHz, where

a value of Es¼Eh¼ 0.26 eV is obtained in the higher temperature range

(400 K< T< 500 K). In fact, the same activation energy of 0.26 eV has been

obtained for the dc conductivity from electrical conductivity relaxation measure-

ments in this same temperature range (400 K< T< 500 K), suggesting that long

range activation energies might be the same if they are measured at this same higher

temperature range. However, to compare with Ea¼El¼ 0.15 eV determined at low

temperatures, we must use Es from NMR at low temperatures, which is not

available. Thus the value of Es is taken from the measured activation energy Eσ

of the dc conductivity in the same temperature range (below 250 K), which is equal

to 0.4 eV. Putting this value of Es¼ 0.40 eV and Ea¼ 0.15 eV from the low

temperature branches of 1/T1 curves into the prediction, Ea¼ βsEs, the result is

βs¼ 0.38. This value is consistent with the frequency dependence, at a fixed

temperature, of 1=T1 � ωL
�1�βs at the low temperature side of 1/T1 plots, that

yields βs¼ 0.4. The assumption of Es�Eσ made is justified because the correlation

function of ion are nearly the same for NMR and conductivity relaxation in the case

of Li0.5La0.5TiO3. This was implied by the remarks on Li0.5La0.5TiO3 made at the

end of Sect. 4.13, and will be reaffirmed later in this chapter.

Lithium titanium sulfide (LixTiS2) is a nice example of the influence that the

dimensionality of the ion transport pathways has on the spin–lattice relaxation data

[60]. Depending on the lithium content these compounds show a rich polymor-

phism, and different studies have found cubic (x� 0.6), trigonal (x� 0.7), and

hexagonal (x� 1) phases [61, 62]. Figure 5.4 shows the spin-relaxation times T1,
T1ρ and T2 together with the decay times τSAE of the stimulated-echo for LiTiS2.

Each of these quantities probes ionic dynamics at different time scales. Most

remarkable is the fact that, for this hexagonal phase, the spin–lattice relaxation

time T1 is frequency dependent at the high temperature side of the peak, evidencing

that the diffusion process is two-dimensional. In fact, the data follow as expected a

logarithmic dependence on the Larmor frequency, i.e. on the magnetic field used,

over several decades. Such a frequency dependence is absent in the cubic phase, as

expected for a three-dimensional diffusion process [10, 60–62].

As mentioned before, the NMR data of crystalline and glassy ionic conductors

show similar features. Despite the similarity, the non-exponentiality of the corre-

lation function and the asymmetry in the Arrhenius plots of 1/T1, have been

ascribed by other as mainly due to the disordered environment felt by the mobile

ions even in crystalline materials. But NMR spectroscopy has been particularly

useful to investigate the details of structure and dynamics of mobile ions in glasses.

There are many works reporting motional narrowing of 7Li or 6Li spectra in glasses,

but since it occurs in a relatively narrow temperature range in fast ion conductors,
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spin–lattice relaxation measurements are usually preferred in order to study the

lithium ion dynamics [8, 63–70]. As an example, Fig. 5.5 shows an Arrhenius plot

of the spin–lattice relaxation rate for the glassy fast lithium ion conductor

(Li2S)0.56(SiS2)0.44 at several frequencies [70]. The large asymmetry of the 1/T1
peaks vs reciprocal temperature and its frequency dependence are indicative of

strong non-exponential time dependence of the correlation function. In fact, also

shown in the figure are the best fits to a KWW stretched-exponential function, with

a value of βs¼ 0.35 for the KWW exponent. The deviation of the NMR data from

the curve of best fit was observed at the lowest temperatures, and expecially at the

higher frequencies, could to be due to an additional frequency-independent contri-

bution to relaxation. This discrepancy is generally found in fast ion conductors and

has been ascribed in the past to be due to localized low frequency excitations arising

from the disordered potential landscape [71, 72]. These low frequency excitations

have been described by using a broad distribution of asymmetric double well

potentials [73, 74] in several glasses [57, 75, 76]. In fact, the observed behavior

at the lowest temperatures in the spin–lattice relaxation rate is reminiscent of the

nearly constant loss (NCL) measured in electrical conductivity relaxation (ECR)

experiments [75, 77–83], which has been recently explained in terms of caged ion

Fig. 5.4 Temperature dependence of several 7Li NMR relaxation rates for LiTiS2. The spin–

lattice relaxation rates 1/T1 were measured at 9.97 MHz (circle with dot), 19.2 MHz (crossed
square), 32.2 MHz (open triangle), and 77.7 MHz ( filled inverted triangle), and the spin–spin

relaxation rate 1/T2 at 77.7 MHz (half filled circle). The rate 1/T1ρ (open circle) probes the

dynamics in the kHz range, and the spin-alignment measurements ( filled circle 32.2 MHz, square
77.7 MHz) are sensitive to ultra-slow motions of lithium ions. The lines are guides to the eye.

Reproduced by permission from [62]
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motion [84–86]. The properties of the NCL and relation to the conductivity

relaxation are discussed at length in Sect. 4.8.

NMR multi-time correlation functions (MT-CF) have recently opened an inter-

esting new avenue towards the understanding of the dynamics of mobile ions in

solids [10, 11, 87, 88]. The analysis of NMR stimulated echo signals allows

correlating the positions of an ion at two, three, or four points in time, thus

providing new insight into the nature of ionic hopping motion. Since the resonance

frequency of a nucleus associated with a mobile ion is determined by the local

environment, and the environments are in general different for different sites in the

solid, translational diffusion gives rise to a time dependence of the resonance

frequency. By correlating the resonance frequencies at different times it is possible

to obtain information about the ion diffusion process. NMR MT-CF are measured

by using the stimulated pulse sequence (pulse - tp - pulse - tm - pulse - tp) that define
short evolution times between pulses, tp<<τ, during which the resonance frequen-
cies of the nuclei are probed, and long mixing times tm� τ, during which the

resonance frequencies can change due to ion hopping events. Here τ is the corre-

lation time of the ionic hopping motion [89, 90]. If the height of the echo is

measured after the stimulated-echo pulse sequence for a constant value of tp and
several tm, two-time correlation functions (2T-CF) are obtained. Similarly, three-

time and four-time correlation functions can be obtained if 2 or 3 different mixing

times are separated by corresponding evolution times in the pulse sequence.

Actually, these pulse sequences can be considered as consecutive stimulated-echo

pulse sequences. These higher order (three-time and four-time) correlation func-

tions are useful when the diffusion process is characterized by non-exponential

correlation functions [87].

In general NMRMT-CF depend on the value of the evolution time tp, but they do
not when the spectral widths associated with the quadrupole/chemical shift inter-

actions, Δωi, and with the dipole-dipole interactions between the nuclei, Δωd,

6

4

2

0

−2
0 2

103 /T (K−1)

In
[R

1(
s−

1 )
]

4

40 MHz

0.56Li2S  +  0.44SiS2

12.2
7
4

6 8

Fig. 5.5 Arrhenius plot of

the 7Li spin–lattice

relaxation rate in 0.56Li2S

+ 0.44Si2S at several

frequencies. Solid lines are
fits to a KWW correlation

function with βs¼ 0.35.

Reproduced from [70]

by permission

5.1 Ion Dynamics Studied by NMR Techniques 257

http://dx.doi.org/10.1007/978-3-319-42391-3_4


satisfy the relation Δωitp » 1 »Δωptp [87]. Then the 2T-CF can be well described by

using a Kohlrausch–Williams–Watts (KWW) decay as a function of the mixing

time tm,F2 tp; tm
� � � F2 tmð Þ ¼ 1� Cð Þexp�� tm=τKWWð ÞβKWW

�þ C; and it repre-

sents the probability that an ion occupies the same site after the time tm. Although
dipole-dipole interactions favor the existence of spin diffusion in the case of 6Li and
7Li nuclei, its contribution to stimulated-echo decays can often be separated from

that arising from ion dynamics since the former is rather independent of tempera-

ture while the latter is thermally activated with the activation energy of ion hopping.

Figure 5.6 shows the time dependence of 2T-CF at several temperatures for the

LiPO3 glass, once corrected for spin diffusion [66]. It can be observed that indeed

the decays are stretched exponentials and the KWW exponent, βKWW¼ 0.27, is

rather independent of temperature. The inset shows the Arrhenius temperature

dependence found for the mean correlation time, which is in agreement with

those obtained by mechanical relaxation measurements [91]. It is worth noting

that, unlike NMR line-shape analysis, NMR stimulated-echo analysis yields an

activation energy that agrees with that obtained from dc conductivity data [92],

allowing long range ion transport properties to be probed microscopically. This has

Fig. 5.6 6Li NMR two time correlation function of LiPO3 glass (50%
6Li enrichment), obtained

from stimulated-echo experiments at 350, 310, 275, and 258 K. All data were corrected for spin

diffusion. The evolution time was set to tp¼ 100 μs. The dashed lines are KWW fits with β¼ 0.27.
The inset shows an Arrhenius plot of the mean correlation times obtained from the KWW fits

(solid squares). The solid line is a fit with an Arrhenius law, yielding an activation energy of

Ea¼ 0.66 eV. Results from 7Li NMR line-shape analysis (crosses) and mechanical relaxation

studies (open circles) [91] on LiPO3 glass are included for comparison. Reproduced from [10] by

permission
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been observed also in other lithium ion conductors [93], providing evidence that

stimulated-echo experiments probes the elementary steps (ion jumps) of the long

range ion diffusion process.

5.2 Relation Between SLR and ECR in Ionic Conductors

Electrical conductivity relaxation (ECR) experimental data in ionic conductors,

represented by either the complex conductivity or the complex electric modulus,

are determined by how the mobile interacting ions respond to an applied electric

field. Thus, these data provide information about the dynamics of mobile ions but

are macroscopic in nature. In contrast, nuclear spin relaxation (NSR) is a more

direct and microscopic probe of the ionic motion, and from the nuclear spin–lattice

relaxation (SLR) experimental data one can directly infer the microscopic dynam-

ics of the ions. Combined studies of ion dynamics using ECR and SLR were first

reported at almost the same time by Tatsumisago et al. in Li chloroborate glasses

[94, 95], and by Kanert and coworkers in heavy metal fluorozirconate glasses

[55, 57, 96], and they all found large difference between the ECR and SLR results.

At some temperatures, the NSR correlation time of the mobile ion, τs, are several

orders of magnitude longer than the ECR time, τσ, while the thermal activation

energy of τs, Es, is significantly larger than Eσ of τσ. Since the two techniques are

monitoring motion of the ions, it is puzzling that there is such a pronounced

difference between SLR and ECR times and activation energies. Similar differ-

ences were subsequently observed in other superionic glasses including

(Li2S)0.56(SiS2)0.44 [70], x(Li2S) + (1�x)GeS2 [97] and x(Li2S) + (1�x)B2S3 [64],

and in crystalline Naβ-Al2O3 [98], confirming that the effect can be considered as a

general property of ionic conductors. Computer experiments by Monte Carlo

simulation of ionic motion in disordered lattices, taking into account the Coulomb

interactions between the mobile ions [99], found the same difference between SLR

and ECR as in real experiments. The proposed explanations are limited to address

the difference between the activation energies Es and Eσ [97, 100–104]. We shall

review the explanations given by the CM because they are quantitative and because

the CM had successfully explained many properties of SLR and ECR, while

explanation of others are qualitative and limited to this problem. However, these

explanations in Refs. [97,100–104] did not explain quantitatively the large differ-

ence between the magnitudes of τs and τσ. Further development of the CM had led

to the recognition that this difference arises not only from the different correlation

functions characterizing ECR and SLR dynamics, but also from the macroscopic

and microscopic nature, respectively, of the corresponding measurements

[105]. The complete explanation of the difference between SLR and ECR are

given next.

It is found in experiments that both the ECR and NSR correlation functions

depart from a pure exponential behavior and have the Kohlrausch forms and

Arrhenius T-dependences for their relaxation times:
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ϕM tð Þ ¼ exp � t=τMð Þ1�nM
h i

, where τM ¼ τM,1exp EM=kTð Þ ð5:3Þ

and

ϕs tð Þ ¼ exp � t=τsð Þ1�ns
h i

, where τs ¼ τs,1exp Es=kTð Þ ð5:4Þ

As already mentioned, the relations τs� τM and Es>EM were reported to hold

when comparing ECR and NSR data in ionic conducting glasses. Moreover, it was

found that ns> nM. The effect was also found by a Monte Carlo simulation

experiment of a disordered Coulomb lattice gas model of the ionic conductor

[33, 34, 106, 107]. It is also present in the NMR and conductivity relaxation data

of the non-glassy fast ionic conductor sodium β-alumina, Na-βAl2O3, found by

Bjorkstam and Villa [108]. A relevant issue that was missed for long time is the fact

that electrical conductivity relaxation is a macroscopic probe involving the mea-

surement of capacitance C(ω) and conductance G(ω), from which the macroscopic

quantities, ε*(ω), σ*(ω) or M*(ω), are obtained. Therefore, the macroscopic elec-

trical conductivity correlation function in Eq. (5.3) fitting the M*(ω) is not the

microscopic conductivity correlation function, ϕσ(t), for ion transport given by

ϕσ tð Þ ¼ exp � t=τσð Þ1�nσ
h i

, where τσ ¼ τσ,1exp Eσ=kTð Þ: ð5:5Þ

It has been shown [109] that the correlation functions ϕM(t) and ϕσ(t) are isomor-

phic, i.e., the Kohlrausch exponents of ϕM(t) and ϕσ(t) are the same, nM¼ nσ,
because the time dependence or frequency dispersion of the microscopic ion

dynamics is faithfully reproduced by the macroscopic measurement (see Section

4.13). The macroscopic τM and the microscopic τσ are however in general different
from each other. They have the same activation energy EM¼Eσ but different

pre-exponential factors τσ,1 and τM,1. On the other hand, nuclear spin–lattice

relaxation is a microscopic probe of the dynamics of the mobile ions, and the

SLR, T�1
1 ωL; Tð Þ, corresponds to the microscopic correlation function ϕs(t).

In the following we describe examples of the differences found between ECR

and SLR in ionic conductors. Figure 5.7a shows the temperature dependence of the

relaxation times obtained from ECR and SLR measurements on a heavy metal

fluorozirconate glass with the composition (in mol%): 27.4 ZrF4, 27.4 HfF4, 19.8

BaF2, 3 LaF3, 3.2 AlF3, 20NaF (ZBLAN) [96, 110]. The ionic conductivity due to

mobile F- ions was measured over ranges of frequencies and temperatures, and the

ECR time τM, its activation energy, Eσ, and the coupling parameter nσ from these

measurements are shown in Fig. 5.7a and Table 5.1. The spin–lattice relaxation

(SLR) times τs of ZBLAN were obtained from measurements of the 19F spin lattice

relaxation rateT�1
1ρ ωL; Tð Þ in the rotating frame at Larmor frequencies of 28, 42, and

62 kHz. In order to compare the relaxation times obtained from both techniques, the

Larmor frequencies were chosen to match those used to measure the conductivity
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relaxation time τM [57]. The results of τs are shown in Fig. 5.7a, and ns and Es

determined from fits to temperature dependence of T�1
1ρ ωL; Tð Þ [57] are given in

Table 5.1. All the measurements were performed at temperatures below the glass

transition (Tg¼ 553 K) since in the glassy state the temperature dependences of τs
and τM are undoubtedly Arrhenius. The difference between ECR and SLR times is

clear from the data, although both measure the motion of the F- ions.

Another examples are the SLR and ECR experimental data by Kim et al. [64, 97]

on Li+ ion motion in the fast glassy ionic conductor (Li2S)x(GeS2)1-x (x¼ 0.35 and

Fig. 5.7 (a) ZBLANconductivity correlation times τM fromdata analysis of the electricmodulus and

NSR correlation time τs from frequency dependence of 19F 1/T1ρ maxima plotted against 1000/T.
From Ref. [57], reproduced by permission. Panels (b–d) show similar Arrhenius plots of the

correlation times, τs, deduced from 7Li NMR spin–lattice relaxation measurement, and τM, from
electrical conductivity measurement for (Li2S)x(GeS2)1�x, (Li2S)0.56(SiS2)0.44 and 0.6LiCl-0.7Li2O-

B2O3 respectively. Reproduced from Refs. [97, 100, 104] by permission
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0.45), similar measurements of glassy Li+ conductor (Li2S)0.56(SiS2)0.44, by Borsa

et al. [70], and the study by Tatsumisago et al. [94, 95] on Li+ ion motion in the fast

glassy ionic conductor 0.6LiCl-0.7Li2O-B2O3. Panels (b-d) in Fig. 5.7 are, respec-

tively, Arrhenius plots of the correlation times for these glasses of the mobile Li+

ion, τs, deduced from 7Li nuclear spin–lattice relaxation measurement, and the

macroscopic electrical conductivity relaxation time, τM, from dielectric measure-

ments. Note that in these works, unlike the rotating frame SLR measurements in the

tens of kHz range of Kanert and coworkers, the Larmor frequencies of the SLR used

are in the 10–100 MHz range, higher than the frequencies used in conductivity

relaxation measurements. The activation energies Es and Eσ, together with the

KWW parameters ns for SLR and nσ for conductivity relaxation have been deter-

mined from the data and are given in Table 5.1.

These differences found experimentally between SLR and ECR have been

explained and rationalized within the Coupling Model [100, 103–105]. The micro-

scopic complex conductivity, σ*(ω), related to the velocity-velocity correlation

function of ions, can be written as (for derivation see Section 4.13)

σ∗ ωð Þ ¼ Nq2=kT
� �

r2rms=6
� �

iωð Þ 1

iω~ϕσ ωð Þ � 1

( )
ð5:6Þ

where N is the density of the mobile ions, q the ion charge, k the Boltzmann

constant and T the temperature, and the quantity r2rms represents the mean squared

displacement of an ion due to a single hopping event. The function, ~ϕ σ ωð Þ, is the
Laplace-Fourier transform of the correlation function ϕσ(t), which is the probability
that the ion remains fixed in the time interval [0,t] in the microscopic stochastic

transport theory by Scher and Lax [111, 112] discussed in Sect. 4.13. In the context

of the coupling model, ϕσ(t) has the form [113, 114],

ϕσ tð Þ ¼ exp � t=τσð Þ1�nσ
h i

, for t > tc: ð5:7Þ

Table 5.1 The relaxation time τs, activation energy Es and coupling parameters ns for SLR, and
the corresponding quantities, τM, Eσ, and ns for ECR for three different glassy ionic conductors

Ionic conductor Dynamic variable U βU� (1�nU) E∗
U (K ) 1� nUð ÞE∗

U (K )

(Li2S)0.56(SiS2)0.44 spin (SLR) 0.35 5845 2046

(Li2S)0.56(SiS2)0.44 σ (ECR) 0.52 3911 2034

(Li2S)0.45(GeS2)0.55 spin (SLR) 0.34 5750 1950

(Li2S)0.45(GeS2)0.55 σ (ECR) 0.44 4730 2080

(LiCl)0.6(Li2O)0.7(B2O3) spin (SLR) 0.35 7400 2590

(LiCl)0.6(Li2O)0.7(B2O3) σ (ECR) 0.50 5500 2750

ZBLANa spin (SLR) 0.30 13,346 3830

ZBLANa σ (ECR) 0.44 9284 4085
a27.4 ZrF, 27.4 HfF, 19.8 BaF, 3 LaF, 3.2 A1F3, 20 NaF (in mol%)
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On the other hand, in NMR measurements the ion-induced spin–lattice relaxa-

tion (SLR) is caused by time-dependent fluctuations of the nuclear spin coupling

energy ωij between interacting ion pairs (i,j) [71]. The resulting SLR rate,

T�1
1 ωL; Tð Þ, as a function of temperature T at the Larmor frequency ωL is given

by the expression C J ωL; Tð Þ þ 4J 2ωL,Tð Þ½ �. Here C is the coupling constant and

J(ω,T), the spectral density function, is the real part of the Fourier transform,

J ω; Tð Þ � Re

ð1
0

ϕs t=τsð Þexp �iωtð Þdt� of the pair-pair correlation function ϕs tð Þ

¼
X
i, j

< ωij 0ð Þωij tð Þ > [105]. If the ion NSR is via magnetic dipole or quadrupolar

interactions, it is governed by the correlation function,

ϕs tð Þ ¼ 1=Nð Þ
X

i 6¼j
1=Nð Þ

X
i 6¼j

F
qð Þ
ij tð ÞF qð Þ

ij 0ð Þ
D E

; ð5:8Þ

where

F
qð Þ
ij tð Þ ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8π=15

p
Y2 qð ÞΩij=r

3
ij; ð5:9Þ

Y2 is the spherical harmonics, rij is the distance between two ions, and q¼ 1,

2 [71]. It is important to note from Eq. (5.6) that ϕσ(t) is effectively a correlation

function of an ion while ϕs(t) from Eq. (5.8) is a correlation function of a pair of

ions [100, 104]. It is clear from the 1/rij
3 dependence in Eq. (5.9) that ϕs(t) weighs

more heavily on the contributions from ion pairs at smaller distance of separation

rij. Therefore, it is expected that ion-ion interaction has a stronger effect on ϕs(t)
than on ϕσ(t) and this translates in the Coupling Model to a larger SLR coupling

parameter ns in the stretched exponential function, ϕs tð Þ ¼ exp � t=τsð Þ1�ns
h i

for

t> tc [103]. This important deduction that can be written down explicitly as

ns > nσ; ð5:10Þ

follows from the conceptual basis of the Coupling Model. For shorter times, t< tc,
interactions have no effect on the correlation function according to the Coupling

Model, and the ions are hopping independently of each other (see Sect. 4.4 in

Chap. 4 for details). Since both conductivity relaxation and SLR are monitoring the

independent hops of the ions at times shorter than tc, ϕσ(t) and ϕs(t) are the same

and given by ϕs tð Þ ¼ ϕσ tð Þ ¼ exp �t=τoð Þ where τo ¼ τ1exp Ea=kTð Þ is the

primitive relaxation time and Ea is the activation energy [105, 113]. At time longer

than tc, ϕσ(t) is given by Eq. (5.7). Continuity of ϕσ(t) at tc leads to

τσ ¼ t�nσ
c τo

� �1= 1�nσð Þ ¼ t�nσ
c τ1

� �1= 1�nσð Þ
exp

Ea

1� nσð ÞkT
� �

� τσ,1exp
Eσ

kT

	 

; ð5:11Þ
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where, by definition, τσ,1 and Eσ are respectively the pre-exponential factor and

activation energy of the conductivity relaxation time τσ. Similarly, continuity of

ϕs(t) at tc leads to

τs ¼ t�ns
c τo

� �1= 1�nsð Þ ¼ t�ns
c τ1

� �1= 1�nsð Þ
exp

Ea

1� nsð ÞkT
� �

� τs,1exp
Es

kT

� �
; ð5:12Þ

where τs,1 and Es are respectively the pre-exponential factor and activation energy

of the SLR time τs. It can be straightforwardly obtained from Eqs. (5.11) and (5.12)

that τs and τσ are related by

τs ¼ t �nsþnσð Þ
c τσ

1�nσð Þ
h i1= 1�nsð Þ

ð5:13Þ

Therefore, the relation between the activation energies Es and Eσ of the nuclear

SLR times τs and conductivity relaxation times τM respectively is given by

Es ¼ Eσ 1� nσð Þ= 1� nsð Þ, or 1� nsð ÞEs ¼ 1� nσð ÞEσ; ð5:14Þ

From the relation ns > nσ deduced within the Coupling Model (CM) framework as

well as verified by experiment in glassy ionic conductors, the stronger temperature

dependence of τs than τσ is explained. Moreover, a quantitative test is afforded by

comparing the products (1�ns)Es with (1�nσ)Eσ. They should be equal according

to the CM, and indeed this is the case (see Table 5.1).

5.2.1 Absence of Difference Between 11B Spin Relaxation
and Li Ion Conductivity Relaxation
in (LiCl)0.6(Li2O)0.7(B2O3)

In explaining the difference between Es and Eσ, we have used the example of the

1/rij
3 dependence in Eq. (5.9) that ϕs(t) of the mobile ion is a ion-ion pair correlation

function weighing more heavily on the contributions from ion pairs at smaller

distance of separation rij. By contrast the correlation function ϕσ(t) is essentially
a one particle correlation function if ignoring the cross-correlation and the associ-

ated Haven ratio. The stronger effect of ion-ion interaction on ϕs(t) than in ϕσ(t)
results in a larger ns than nσ, and the explanation of experimental findings by the

CM Eq. (5.14). However, this is not the case if the SLR comes from the nucleus of

an immobile atom in the glassy matrix, such as 11B in (LiCl)0.6(Li2O)0.7(B2O3)

[69]. The SLR correlation, ϕsB(t), of
11B is contributed from the motion of Li ions

sensed by the 11B nucleus, similar to that of diffusion and ECR. Hence the coupling

parameter nB of ϕsB(t) is about the same as nσ, and it follows from the CM that the 11

B SLR correlation time, τB, should be nearly the same as τσ and with the same

activation energy. This additional prediction from the CM led to the examination of
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the 11B SLR data of Trunnell et al. in Ref. [115]. From the analysis of the data, the

additional prediction is verified. For more details and consideration of similar

situation in Ag ion borate glass, see Ref. [115].

5.2.2 Quantitative Difference Between the Values
of τs and τM

Notwithstanding the success in understanding the difference between Es and Eσ, the

large difference between the values of τs and τM has not been accounted for. The

reason is that electrical conductivity relaxation measurement provides a macro-

scopic conductivity relaxation time, τM, which does not have the same value as the

microscopic conductivity relaxation time τσ. Although the temperature dependence

of τσ is the same as that of τM, and the coupling parameter obtained from the

macroscopic data is exactly the same as nσ [109]. However, it is possible to

determine the microscopic conductivity relaxation time, τσ, from the macroscopic

measurement [109], and thus to verify the predicted relation in Eq. (5.13).

As already mentioned in Chap. 4, the electric modulus is often written as

M� ωð Þ ¼ M0 þ iM} ¼ M1
�
1�

ð1
0

dt exp �iωtð Þ �dΦ=dtð Þ�, a one-sided Fourier

transform of a macroscopic decay function Φ(t) caused by migration of ions

[116–118]. Here M1 is the reciprocal of the high frequency dielectric constant

ε1. The ECR data in the electric modulus representation are fitted by M*(ω)

calculated with the Kohlrausch function Φ t=τMð Þ ¼ exp � t=τMð Þ1�nM
h i

and the

macroscopic parameters, τM and 1�nM are determined in the process [119, 120]. It

is found that the macroscopicΦ(t/τEM) and the microscopic ϕσ(t/τσ) are one and the
same function of the two different scaled variables, t/τEM and t/τσ, respectively
[121] (see Sect. 4.13). Hence, from the Kohlrausch expressions written down earlier

for ϕσ and Φ respectively, we have 1� nσ ¼ 1� nM. However, τM and τσ have

different values but they are related to each other by [109]

τσ=τM ¼ Nq2r2rms
� �

= 6kTεoε1ð Þ: ð5:15Þ

It is thus possible to calculate the microscopic ion hopping relaxation time, τσ, from
the macroscopic τM, which can be obtained from the ECR experimental data. On

combining Eqs. (5.13) and (5.15), the SLR relaxation time can be calculated

quantitatively from the ECR relaxation time τM by

τs ¼ t nM�nsð Þ
c τMNq

2r2rms=6kTεoε1
� �1�nM

h i1= 1�nsð Þ
: ð5:16Þ
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Moreover, the activation energies of SLR times, Es, and ECR times, EM, are related

by

Es=EM ¼ 1� nMð Þ= 1� nsð Þ; ð5:17Þ

a prediction that has previously been verified by experimental data (see Table 5.1).

In order to test the predicted quantitative difference given by Eq. (5.16) between

τs and τM, we must have their experimental values as well as measured or estimated

values of the parameters in the equation. The crossover time tc of glassy, crystalline
and molten ionic conductors has been determined to be about 1–2 ps from isother-

mal conductivity relaxation spectra at high temperatures [122–124] and tempera-

ture dependence of d.c. conductivity [56]. The mobile ion density N can be

determined from the chemical composition and the density of the ionic conductor,

assuming all ions contribute to conductivity. The quantity rrms is not exactly known
in glassy ionic conductors. If there is crystalline analogue to the glass, it can be

estimated by the hopping distance of the ion in the crystalline analogue. Otherwise,

it can be estimated simply by using the approximation rrms � N�1=3. The quantities

ε1, nM and τM are determined from fits of the electrical conductivity relaxation data

in the usual manner [118–120] (see also Chap. 4). The theoretical values of τs
calculated by the right-hand-side of Eq. (5.16) involves only a single parameter

from SLR measurements, namely ns. The experimental value of τs at the temper-

ature where the SLR rate attains the maximum value is easily obtained without

using any fitting procedure whatsoever from the Larmor measuring frequency ωL

by the relationωLτs ¼ 0:64 [70]. Some workers [57, 94, 96] use the simpler relation,

ωLτs ¼ 1 to obtain τs from the SLR rate data. Anyhow, the difference of τs obtained
from the two definitions is small. The SLR Kohlrausch exponent 1�ns in the

stretched exponential function, ϕs tð Þ ¼ exp � t=τsð Þ1�ns
h i

for each ionic conductor

can be obtained by fitting the SLR rate,T�1
1 ωL; Tð Þ, as a function of temperature T at

the Larmor frequency ωL as it is usually performed [57, 64, 69, 94, 97, 101, 102,

110]. The τM of ionic conductors shown in Fig. 5.7 are Arrhenius in the lower

temperature range where conductivity relaxation measurements are made in the

typical frequency range of 10�2<ω/2π< 106 Hz. The stretch exponent 1�nM used

to fit the isothermal electric modulus data in this frequency range has only slight

temperature dependence. It is worthwhile to remark here that the fit using Fourier

transform of the Kohlrausch stretched exponential function should be carried out

with emphasis of good fit to only the data taken at frequencies not too far above the

M” peak frequency. This practice is the same as that used by Moynihan and

coworkers [116, 117, 125]. The reason for us doing this is that the deviation of

the data from the Kohlrausch fit at higher frequencies is due to the presence of the

unresolved or resolved secondary conductivity relaxation followed by the near

constant loss contribution [120], which are processes distinctly different from the

primary conductivity relaxation. On the other hand, Svare et al. [126] were not

mindful of the faster processes contributing to the electric modulus at high frequen-

cies, and they performed the Kohlrausch fits to electric modulus data of 0.35Li2S
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+ 0.65GeS2 by including these faster processes are part of the primary conductivity

relaxation. Thus, the nM values they obtained are inaccurate and has more appre-

ciable temperature dependence for peak frequency in the range 10<ωmax/2π< 106

Hz, which is an artifact of the fitting procedure used. It is interesting to note that in

the paper by Borsa et al. [70], the real and imaginary parts of the electric modulus of

0.56Li2S-0.44SiS2 taken in a similar frequency window as 0.35Li2S + 0.65GeS2 at

different temperatures superpose near perfectly on a master curve. Such near

perfect superposition of raw data suggests before any fits are made that nM will

not have too much of a temperature dependence.

Since the Larmor frequency is typically about 10 MHz in SLR measurements,

they are usually carried out at much higher temperatures than ECR measurements.

At the high temperatures near the T�1
1 maximum, the measured σdc of the three

glassy ionic conductors considered here show slight deviations from the extrapo-

lation of the Arrhenius temperature dependence obeyed at lower temperatures. In

the context of the coupling model, the deviations from Arrhenius extrapolation can

originate from some decrease of nM at high temperatures, compared with the

approximately constant value at the lower temperatures of ECR measurements.

Unfortunately, the measurement of ECR and hence nM in most ionic conductors at

the high temperatures of SLR measurement is not available because the peak

frequency of the electric modulus is well above the high frequency limit of typical

instruments. This uncertainty of the actual nM at high temperatures in Eq. (5.16) can

be avoided by using its near constant value at low temperatures and τM obtained by

extrapolation of its Arrhenius temperature dependence also at low temperatures.

Using the procedure explained above, the calculated τs of three ionic conductors by
Eq. (5.16) are shown as solid lines (labeled in the Figures by “τs correctly calculated
from τσ”) in Figs. 5.8, 5.9, 5.10 and 5.11 for three glassy ionic conductors,

0.56Li2S-0.44SiS2, 0.45Li2S + 0.55GeS2, 0.6LiCl-0.7Li2O-B2O3, and the crystal-

line Li0.5La0.5TiO3. The parameters used are listed in Table 5.2. Shown also are the

measured τM and extrapolated by their Arrhenius dependence to higher tempera-

tures, the τσ calculated from them by Eq. (5.15), and the experimental data points of

τs obtained from the Larmor frequencies. Since rrms is not exactly known, several

values less than N�1/3 are used to calculate τs. It can be observed that, within a

reasonable range of possible values of rrms, the calculated values of τs are in good

agreement with the experimental values. The “primitive” or independent relaxation

times τo and τoM, calculated by solving the equations,

τσ ¼ t�nσ
c τo

� �1= 1�nσð Þ ð5:18Þ

and

τM ¼ t�nM
c τo,M

� �1= 1�nMð Þ ð5:19Þ

are also plotted in Fig. 5.8. Finally, the calculated SLR times (line labeled in the

figures by “τs incorrectly calculated from τM”) had we replaced the microscopic ion
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Fig. 5.8 Arrhenius plot of the correlation time of the mobile ion, τs, deduced from 7Li nuclear

spin–lattice relaxation measurement and the macroscopic electrical conductivity relaxation

time, τM (labeled here by τEM), for 0.56Li2S-0.44SiS2. Experimental data of τs ( filled diamonds
determined byωLτs ¼ 1 and open diamonds determined byωLτs ¼ 0:64), and τEM (closed circles).
The three dashed lines in descending order are the corresponding microscopic ion hopping

relaxation time τσ calculated by Eq. (5.15) for rrms¼ 3, 2.5 and 2 Å and other known parameters

[105]. The most probable value of rrms is 2.5 Å. The three dotted lines in descending order are the

corresponding microscopic ion hopping relaxation time τo calculated from τσ by solving Eq. (5.18)
for the three cases of rrms¼ 3, 2.5 and 2Å. The three full lines in descending order are τs calculated
by Eq. (5.16) with rrms¼ 3, 2.5 and 2 Å respectively and other parameters [105]. There is

good agreement with the experimental τs. Shown also is the primitive relaxation time τo,EM
(dashed line at the bottom) calculated from τEM by solving Eq. (5.19). Note that τs calculated
from τ0,EM (dashed-dotted line) cannot explain the spin-relaxation time data for reason explained

in the text. Reproduced from [105] by permission
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hopping time, τσ, in Eq. (5.13) by the macroscopic ECR time, τM, are also shown in
the plots. Naturally, such τs does not explain the experimental data of τs. Although
the inaccuracy in the determination of the quantity rrmsin ionic glasses is found to be
not very relevant for estimating τs, a final example of the excellent agreement

between the experimental and theoretically calculated values of τs is shown in

Fig. 5.8 for the crystalline ionic conductor Li0.5La0.5TiO3 [43, 105, 127], where the

value of rrms¼ 3.87 Å is known [45]. The success of Eq. (5.16) to account for the

experimental τs can be considered as another reminder that τM is a macroscopic

conductivity relaxation time, while τσ is the microscopic conductivity relaxation

time. They differ, and the difference is about an order of magnitude for these

Fig. 5.9 Arrhenius plot of the correlation time of the mobile ion, τs, deduced from 7Li nuclear

spin–lattice relaxation measurement and the macroscopic electrical conductivity relaxation time,

τM, for 0.45Li2S + 0.55GeS2. Experimental data of τs ( filled and open circles), and τM (triangles).
The legends of other lines are the same as in the caption of Fig. 5.8, except here only results for

rrms¼ 2.5 Å are shown. Reproduced from [105] by permission
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glasses. The difference between their corresponding independent relaxation times

τo and τo,M is smaller. Nevertheless, the difference is important in calculating τs and
in particular to get good agreement between the calculated τs with experimental

data [105].

In summary, it is possible to obtain the microscopic conductivity relaxation time

τσ from its macroscopic counterpart τM, and then, by using the Coupling Model

(CM), to calculate theoretically τs from the parameters obtainable from the con-

ductivity relaxation and spin–lattice relaxation experimental data. Good agreement

between the experimental values of τs and the theoretical values calculated via

Eq. (5.16) are obtained. The predictions from the CM can thus account

Fig. 5.10 Arrhenius plot of the correlation time of the mobile ion, τs, deduced from 7Li nuclear

spin–lattice relaxation measurement and the macroscopic electrical conductivity relaxation time,

τM, for 0.6LiCl-0.7Li2O-B2O3. Experimental data of τs ( filled and open squares), and τM (other
symbols). Legends of other lines are the same as in the caption of Fig. 5.8. Reproduced from [105]

by permission
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quantitatively for the large difference found experimentally between the correlation

times of conductivity relaxation, τM, and of the mobile ion nuclear spin relaxation,

τs, in ionic conductors. So far and 2 decades have elapsed of time since the

publication of the experimental data, no other model has accomplished this feat.

In Chap. 4 we have critically reviewed the developments of the works on ion

dynamics by Funke and coworkers over the past decades. There we pointed out

that despite their scholarly studies, the major accomplishments are limited to fitting

the frequency dependence of conductivity σ0(ω). In their 2010 review, fits of σ0(ω)
data of 0.45 LiBr � 0.56 Li2O �B2O3 glass [128] were shown as examples. Their Li

ion borate glass [129] is similar to (LiCl)0.6(Li2O)0.7(B2O3) in chemical composi-

tion, which shows the ion dynamics probed by SLR are drastically different from

Fig. 5.11 Arrhenius plot of the correlation time of the mobile ion, τs, deduced from 7Li nuclear

spin–lattice relaxation measurement and the macroscopic electrical conductivity relaxation time,

τM, for Li0.5La0.5TiO3, a crystalline ionic conductor. Experimental data of τs ( filled diamonds) and
τEM ( filled circles). The value of rrms¼ 3.87 Å is known. Reproduced from [105] by permission
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that by ECR. Explanation of this spectacular and general property of ion dynamics

has not been attempted by anyone using Funke’s model. This is one of many

instances justifying our critique of Funke’s model in the previous chapter.
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Chapter 6

Nanoionics

Recently, the development of nanotechnology and the possibility of obtaining

artificially nanostructured materials have led to new strategies to find materials

with high ionic conductivity values [1]. When decreasing the size of the solid below

typically 100 nm, at least in one dimension, surface, interface, and, finite size

effects may appear and result in enhanced ionic transport [2–4]. Nanotechnology

is thus expected to have a large impact on the next generation of fuel cells and solid

state batteries, and the term nanoionics has been coined to embrace the new

concepts in ion transport and electrochemical storage resulting from nanoscale

effects [5]. Today it is possible to grow ultrathin films with a thickness of just a

few nanometers and of high crystallinity in large lateral lengthscales of at least

several microns [6]. It is also possible to reduce crystallite size in all three

dimensions to obtain nanocrystalline materials, and polycrystalline materials with

an average grain size in the range from 5 to 100 nm. In nanocrystalline materials,

the presence of a large number of grain boundaries or interfacial regions may result

in drastic changes of the ionic conductivity [7]. Note that, assuming that the

thickness of the grain boundary is about 1 nm, reducing the crystallite size to just

a few nanometres results in an increase of the volume fraction of interfacial regions

that can be as high as 50% [8]. In grain boundaries or interfaces many atoms have a

reduced coordination number with respect to the bulk, which may lead to an

enhanced electronic or ionic diffusion.

In the pioneering work by Tuller and coworkers, a quite remarkable enhance-

ment of the electronic conductivity was discovered on mixed ionic-electronic

conductor CeO2 nanocrystalline samples, which was ascribed to the accumulation

of oxygen vacancies at the grain boundary cores [9]. In that work, the conductivity

of micro- and nanocrystalline samples was measured as a function of the oxygen

partial pressure over a range of about 25 decades (see Fig. 6.1). Two different

regimes are found for the microcrystalline sample with grain size of about 5 μm. At

high oxygen partial pressure the conductivity is dominated by ionic transport and

thus is rather independent of the oxygen partial pressure. At low oxygen partial

pressure, the conductivity increases by decreasing the oxygen partial pressure, which
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is taken as evidence that the electronic contribution becomes dominant

[10]. In the case of the nanocrystalline sample, with a grain size of 10 nm, the

electronic conductivity is enhanced by about four orders of magnitude, and domi-

nates the total conductivity even at high oxygen partial pressures. The result can be

explained in terms of the higher concentration of oxygen vacancies in the nano-

crystalline sample.

6.1 Space Charge Effects

Not much later, Maier and colleagues [11] broke new grounds in the field of

nanoionics by obtaining a large increase of the ionic conductivity in layered

BaF2/CaF2 heterostructures, grown by molecular beam epitaxy, with layer thick-

nesses in the nanometre range (see Fig. 6.2). They found that the thinner the layers

the larger is the enhancement of the conductivity. They explain the enhancement as

a result of an interfacial effect resulting from the transfer of fluorine ions into the

CaF2 side due to the gradient of the electrochemical potential across the interface.

This yields enhanced vacancy concentration in the Ba side when the thickness of

the individual layers become comparable to the size of the space charge region,

i.e. ~ tens of nanometers. Since CaF2 and BaF2 are ionic conductors with mobile F�

ions, ion redistribution and the formation of a space-charge region at the interface

between the two materials is required from the thermodynamical point of view

(uniformity of electrochemical potential) [12].
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Fig. 6.1 Bulk conductivity of a coarsened CeO2�x polycrystal exhibits electronic and ionic

regimes as a function of oxygen partial pressure PO2. In contrast, the nanocrystal conductivity

shows electronic behavior characteristic of a reduced oxide even at high PO2, and is about four

orders of magnitude greater than the extrapolated electronic conductivity of the coarsened

polycrystal at 600 �C. Reproduced from Ref. [13] by permission
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A large ionic conductivity enhancement, of several orders of magnitude, has also

been reported for nanocrystalline BaF2 and CaF2 as well as in BaF2:CaF2 compos-

ites with grain sizes between 10 and 30 nm prepared by high-energy ball milling

[14], which is much easier to perform than molecular beam epitaxy (MBE). In

addition to space-charge effects, the presence of a large concentration of defects in

these mechanically prepared samples compared to the thin films might be also

relevant for the observed increase in the ionic conductivity.

More recently, an increase of the lithium ion conductivity of about three orders

of magnitude has been found by performing impedance spectroscopy measure-

ments in amorphous lithium borate films, with nominal composition 0.2 Li2O � 0.8
B2O3, when decreasing the film thickness from 700 to 7 nm [15]. The authors found

that space-charge effects are able to explain their findings, though they favour an

interpretation based on the formation of ionic pathways shorting the electrodes that

are more numerous as the thickness of the layer is decreased. Heitjans et al. [16]

studied lithium ion diffusion in nanocrystalline (1�x)Li2O:xX2O3 (X¼B, Al)

composite materials formed by mixing nanocrystalline ion conductor with a nano-

crystalline insulator. By using 7Li nuclear magnetic resonance (NMR) line shape

analyses and spin-lattice relaxation measurements, they found an increase of the

lithium ion diffusivity due to Li ions at the hetero-interfaces between the ionic

conducting and insulating nanocrystals. NMR technique allows discriminating

between slow ions located inside the grains and fast ions at the interfacial regions.

Solid protonic conductors are also very relevant because of their applications in

sustainable energy technologies through efficient fuel cells, electrolyzers, and

gas-separation membranes [18]. Several nanocrystalline oxide ceramics, such as

yttria-doped zirconia or gadolinium-doped ceria have been recently reported to

Fig. 6.2 Arrhenius plot of

parallel ionic conductivity

measured for several

layered BaF2/CaF2
heterostructures, with an

overall film thickness

approximately the same in

all cases (about 500 nm),

but with different bilayer

thickness. Reproduced from

Ref. [11] by permission
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present high proton conductivity values near room temperature [19–21]. It has

been proposed that protons may diffuse easily along grain-boundary cores as a

result of a space-charge layer effect, but it is also possible that adsorbed water at

the less dense nanocrystalline ceramics results in the enhanced proton conduction

[22]. In this regard, a comparison of electrical conduction experiments in porous

and dense nanocrystalline Gd-doped ceria thin films has shown that the residual

open porosity, rather than the presence of grain boundaries, is the key factor for the

higher protonic conductivity observed near room temperature [23]. Other relevant

example of a strong enhancement of the protonic conductivity at the nanoscale is

found in TiO2 anatase and solid acid CsHSO4 composites, where very large

hydrogen concentrations in TiO2 of the order of 1021 cm�3 have been reported

[24]. Nanoporous TiO2 anatase thin films (see Fig. 6.3) have shown comparable

proton conductivity, lower cost, and higher hydrophilicity than Nafion membranes

used in proton-exchange membrane fuel cells [17]. First principles density func-

tional theory calculations have indeed shown that proton insertion from CsHSO4

into TiO2 is favourable, with a negative formation enthalpy, and the estimated

average proton concentration in TiO2 is in good agreement with experimental

findings [24].

In contrast to the above mentioned results for BaF2/CaF2 heterostructures and

composites, as well as for lithium borate nanocrystals and thin films, and proton

conducting thin films, controversial results have been reported on the occurrence of

an enhancement of the ionic conductivity at the interfaces or grain boundaries of

oxide ion conductors such as yttria stabilized zirconia (YSZ), xY2O3: (1�x)ZrO2,

characterized by a much larger concentration of mobile ions. Among oxide-ion

conductors, those of anion-deficient fluorite structure like YSZ are extensively used

today as electrolytes in SOFCs [25, 26]. Doping with Y2O3 is known to stabilize at

room temperature the cubic fluorite structure of ZrO2, and also to supply the oxygen
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vacancies responsible for its ionic conductivity [27]. While some authors have

reported an increase of the ionic conductivity in nanocrystalline samples [28],

others found no changes [29] or even a decrease [30, 31] of the conductivity. For

example, Durá et al. [32] reported on the effects of decreasing the grain size

between 900 and 17 nm on the oxide-ion conductivity of nanocrystalline YSZ

ceramics with 10% mol yttria content prepared by ball milling. It is worthwhile to

mention that they measured X-ray absorption near edge structure (XANES) and

extended X-ray absorption fine structure (EXAFS), and found that at the grain

boundary the coordination of the absorbing atoms decreases due to the surface

effect but without affecting the local structure. They reported also that microstruc-

ture and composition of the grain boundary are rather independent of the grain size

and similar to that of the bulk [33]. Concerning the results of the ionic conductivity,

they used the Brick Layer Model [2, 34, 35] to analyse experimental impedance

spectroscopy data and obtain that the specific grain boundary conductivity is rather

independent of the grain size, while the bulk conductivity values decrease when

decreasing grain size (see Fig. 6.4).

However it is not clear how the implicit oversimplifications made by using the

Brick Layer Model in the data analysis might affect the determination of the

specific conductivity values for the bulk and grain boundary contributions in such

ceramic samples with nanometer grain sizes. 18O tracer diffusion experiments

assisted by secondary ion mass spectroscopy also yield contradictory results in

YSZ: while 3 orders of magnitude increase of the diffusion coefficient was reported

in nanocrystalline thin films as compared with bulk samples [36], no change was

found in bulk nanocrystalline ceramics [37]. Furthermore, since the theoretical

value of the Debye screening length in these materials is very short, of the order

of 0.1 nm for typical dopant concentrations (8% YSZ) and at intermediate temper-

atures (500 �C), it is not straightforward to explain the observed increases in ionic

conductivity as due to a space-charge effect.

Within the space-charge model [35], the profiles of mobile defects in the space-

charge layers are governed by the Poisson equation. The electrochemical potential

of any mobile defect species j with an effective charge z at a distance x from the

interface plane (x¼ 0) is given by

ηj xð Þ ¼ μ0j þ kBTlncj xð Þ þ zeϕ xð Þ; ð6:1Þ

where cj(x) is the defect concentration, ϕ(x) is the electrostatic potential, μ0j the
standard chemical potential, e is the electron charge, kB the Boltzmann constant,

and T the temperature. Far from the interface the electrochemical potential of the

defect is

ηj 1ð Þ ¼ μ0j þ kBTlncj 1ð Þ þ zeϕ 1ð Þ: ð6:2Þ

In equilibrium the condition ηj xð Þ ¼ ηj 1ð Þ must be satisfied, and therefore:

eΔϕ xð Þ ¼ eϕ xð Þ � eϕ 1ð Þ ¼ kBT

z
ln cj 1ð Þ=cj xð Þ� �

; ð6:3aÞ
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cj xð Þ=cj 1ð Þ ¼ exp �ezΔϕ xð Þ=kBT½ �: ð6:3bÞ

In Eq. (6.3a)Δϕ xð Þ ¼ ϕ xð Þ � ϕ 1ð Þ represents the difference between the value of

electrostatic potential at a distance x from the interface and the value of electrostatic

potential at equilibrium for the bulk (far enough from the interface). Δϕ(x) can be

solved from the Poisson equation, given by

Fig. 6.4 Atomic force microscope images for nanocrystalline 10% mol YSZ samples with

nominal grain size of (a) 17 nm, (b) 50 nm, and (c) 100 nm. (d) Arrhenius plot of the bulk ionic

dc conductivity for nanocrystalline 10% mol YSZ samples with different grain sizes. Dashed line
represents the conductivity data of a 9.5% mol-YSZ single-crystalline sample for comparison

(Ref. [38]). (e) Arrhenius plot of the specific grain boundary (main panel) and grain boundary

(inset) conductivities for the same set of samples. Data after Ref. [32]

282 6 Nanoionics



d2Δϕ xð Þ
dx2

¼ �Q xð Þ
εε0

; ð6:4Þ

with appropriate boundary conditions (see Fig. 6.5). In Eq. (6.4) ε is the dielectric
permittivity, ε0 is the permittivity of a vacuum, and Q(x) is the charge density.

The built-in electrostatic barrier, Δϕ ¼ ϕ 0ð Þ � ϕ 1ð Þ, arising at interfaces

between ionic conductors where redistribution of electric charge takes place, has

been used to explain the observed decrease of ionic conductivity across grain

boundaries in polycrystalline materials [5, 35, 40]. Such effects are especially

relevant in nanoionic systems, due to the increasing influence of grain boundaries

and interfaces compared to the bulk [3, 11, 41]. At grain boundaries the energy for

defect generation generally differs from the bulk value and charge neutrality may

be broken as a result of defect accumulation or segregation of chemical species.

Within the Mott-Schottky model, where the charge density is assumed to be

approximately constant in the whole space-charge region, the ensuing electrostatic

fields are screened by mobile charges over the space charge layer thickness λ*

determined by the height of the potential barrier Δϕ, and the Debye screening

length LD of the material [35]. LD can be estimated from the dopant concentration

n1 and the dielectric permittivity of the material ε according to the Debye-Hückel
theory [42] as:

LD ¼ εε0kBT

2z2e2n1

� �1=2

: ð6:5Þ

According to the Schottky model, the Poisson’s equation can be used to obtain the

thickness of the space charge layer λ* given by [12]:

Fig. 6.5 Simulation of the

electrostatic potential (solid
line) and electric field

(dashed line) as a function
of the distance from the

interface or grain boundary

core in a YSZ bicrystal, as

obtained from the numerical

solution of the Poisson

equation [39]. Here it is

assumed that the total net

charge is zero and the

potential barrier is set to

0.35 eV
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λ* ¼ 2εε0ΔΦ
zen1

� �1=2

: ð6:6Þ

Thus, the relation

LD ¼ λ*
kBT

4zeΔΦ

� �1=2

; ð6:7Þ

is obtained by combining Eqs. (6.5) and (6.6), which allows an experimental

determination of LD from the Mott-Schottky model. However, a discrepancy

between experiment and theory is often encountered, and constituted a long-

standing problem in ionic conductors [35]. Such disagreement may arise from a

more complex structure of the space charge layer at the grain boundaries, possibly

containing a Gouy-Chapman layer instead or besides a Schottky one [2, 43], or from

an inhomogeneous charge distribution at an atomic scale due to differences in strain

along the grain boundary direction. Furthermore, the existence of multiple grain

boundaries, varying grain boundary properties, and unknown ionic pathways across
as much as along grain boundaries are being averaged when measuring the electri-

cal response of grain boundaries in macroscopic ceramic samples. The poor knowl-

edge of the structure and composition changes at the grain boundaries further

obscures interpretation of the data. A paradigmatic case is YSZ, where for typical

dopant concentrations (1027 to 1028 m�3) at intermediate temperatures (500 �C), a
relatively small value of the Debye screening length of the order of 1 Å is predicted

theoretically. However, much higher values of about 1 nm are inferred experimen-

tally from dielectric spectroscopic measurements on YSZ ceramics

[35]. These findings cast some doubt on the occurrence itself of space charge layers

in YSZ and, consequently, the overall validity of the Debye model in YSZ has been

disputed [37, 44, 45].

In order to gain more insight on this issue, Frechero et al. [39] performed a

detailed study of the chemistry, structure and transport of a single grain boundary in
a YSZ bicrystal combining state-of-the-art electron microscopy and spectroscopy,

contact microscopy with electrochemical contrast, dielectric spectroscopy on arti-

ficially patterned microstructures, and density functional theory (DFT) based cal-

culations. They used a commercial YSZ bicrystal with a doping concentration

y¼ 0.09 in moles of Y2O3 per formula and a symmetrical �12�/12� [110] tilt

grain boundary. Their results were found to be at odds with the conventional

understanding of ion transport through grain boundaries based on charge screening

by mobile ions as described in terms of Gouy-Chapman or Mott-Schottky models

for a space-charge region. They found that ion conductivity across the boundary is

indeed strongly depressed. This is shown in Fig. 6.6 where the complex impedance

is plotted at several temperatures and the dielectric relaxations of the bulk, grain

boundary, and electrodes can be separated and are observed at the highest, inter-

mediate and lowest frequencies respectively. If a space-charge region were associ-

ated with each side of the grain boundary, when the frequency of the ac electric field
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is low enough, positive and negative charge would alternately accumulate at each

side of the grain boundary, separated by a distance 2λ*, due to the blocking of

mobile ions. λ* would be the thickness of the space charge layer at each side of the

grain boundary. From the ratio between the bulk (Cb) and grain boundary (Cgb)

capacitance values (see Fig. 6.7), by using the expression Cb/Cgb� 2λ*/de, where de
is the effective distance between electrodes, a value of λ*� 4� 1 Å was estimated,

of the order of the size of one unit cell. This value is about one order of magnitude

smaller than previous estimates from ceramic samples [35]. Moreover, Scanning

Transmission Electron Microscopy–Electron Energy Loss Spectroscopy (STEM-

EELS) results for the extent of the oxygen depletion on either side of the grain

boundary are in excellent agreement with this short λ* value, pointing to an intimate

connection between the structural vacancies and the observed blocking of ion

transport, and that the underlying thesis of the Schottky model is not applicable

for such short λ* value [39].
This result evidences that oxygen vacancies found at the grain boundary are

structural and not the result of space-charge formation according to the Schottky

model. Moreover, the experimental profiles of oxygen vacancies measured by

EELS do not show any depletion of oxygen vacancies (see Fig. 6.8), and thus the

data cannot be rationalized in terms of conventional space-charge models. It is

important to remark that the absence of space charge layers found in YSZ for this

particular grain boundary orientation may not be a general result for all grain

boundaries in ionic conductors. The formation of space charge layers is more

probable to occur in ionic conductors with much lower concentration of mobile

Fig. 6.6 Complex impedance plots at 275 �C (triangles) and 300 �C (diamonds) showing the

contributions to ionic transport due to the bulk (left semicircle) and to the grain boundary

(gb) (right semicircle) in YSZ bicrystals with electrodes separated d¼ 10 μm (open symbols)
and 5 μm (solid symbols). The inset shows an optical microscopy image of the bi-crystalline

boundary between the two gold electrodes. Data taken from Ref. [39]
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Fig. 6.7 Frequency dependence of the imaginary part of the impedance (top panel) and of the

capacitance (bottom panel) at several temperatures (240 �C, 250 �C, 275 �C, 300 �C from left to
right) for the same sample shown in Fig. 6.6 with electrode separation d¼ 10 μm. Solid lines are
fits to the equivalent circuit shown in the sketch. Data taken from Ref. [39]

Fig. 6.8 The left panel shows a Z-contrast image of the grain boundary region in a YSZ bicrystal

with 9% yttria concentration in moles per formula and a symmetrical �12�/12� [110] tilt grain

boundary. The image was obtained in a Nion UltraSTEM 200 electron microscope operated at

200 kV, the yellow dashed box marks the area where an EEL spectrum image was acquired. The

right panel shows normalized integrated signal profiles across the direction marked with an arrow
on the left panel. Open symbols correspond to the quantification based on the analysis of the O K

and Zr and Y L2,3 edges. Solid symbols result from a quantification performed on a spectrum image

including the O K and the Zr and YM edges instead. Zr and Y profiles have been normalized to the

total cation concentration. The black line is the stoichiometric O content that would be expected

from the measured Zr and Y signals alone. Data taken from Ref. [39]



ions since it results in longer values of the Debye length. The observed absence of

depletion of oxygen vacancies in the YSZ grain boundary by Frechero et al. [39]

requires a different explanation for the observed barrier of ion transport at the grain

boundary. They performed density functional theory (DFT) calculations and

showed that charge neutrality is not achieved by an oxygen-depleted vacancy

layer, but rather by a negatively charged core created by acceptor states at the

grain boundary. Thus, oxygen vacancies arriving at one side of a grain boundary

initially face an attractive potential because of the mild negative charge on grain

boundaries. However, for vacancies to depart from the other side they would have

to climb out of an electrostatic well that attracts them toward the grain boundary,

naturally resulting in an increase of the barrier for ion transport.

Frechero et al. [39] conducted also nanoscale mapping of electrochemical

activity using electrochemical strain microscopy (ESM) in order to probe local

ion conductivity close to the grain boundary plane, and found that the mobility of

oxygen ions is indeed much lower than in the bulk [46, 47]. ESM provided a direct

image of how the grain boundary acts as a barrier for ion transport and showed the

power of this new technique to study ion dynamics at a microscopic scale.

6.2 Oxide Thin Films and Interfaces

Whether or not space-charge effects are always relevant to explain ionic transport at

interfaces, the possibility of an enhanced ionic conductivity in YSZ nanostructures

triggered large activity in the field, since it may result in a significant impact in the

design of solid oxide fuel cell (SOFC) electrolytes with operation temperatures

closer to room temperature [48] or in materials with higher oxygen exchange rates

that could be used as novel electrodes [49]. Tuller et al. [28] reported a two orders of

magnitude increase of the ionic conductivity of thin films of YSZ deposited by spin

coating on Al2O3, when their thickness is reduced into the 10 nm range. Later,

Kosacki et al. [44] also reported a large increase of the conductivity of 10% mol

yttria-doped YSZ epitaxial thin films grown on MgO substrates when the thickness

is reduced down to 15 nm. Interestingly, they found that the increase by more than

two orders of magnitude of the dc conductivity at 400 �C is accompanied by a

concomitant reduction of the activation energy down to 0.62 eV, and propose that

the conductivity increase is due to a highly conducting 1 nm layer at the YSZ/MgO

interface (see Fig. 6.9). These results have been explained in the framework of the

Coupling Model in terms of weaker ion-ion interactions in the diffusion process at

the interface (see Sect. 6.3.1).

Karthikeyan et al. [50] have measured a more moderate conductivity increase, of

about one order of magnitude, on 17 nm YSZ polycrystalline multiphase thin film

samples grown on MgO. On the other hand, Guo et al. [51] found a decrease of the

ionic conductivity of 12 nm thick nanograined polycrystalline YSZ thin films

deposited on MgO as compared to 8% mol yttria-doped bulk ceramics, and

essentially no change of the activation energy. Altogether, these results suggest
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that epitaxial growth is an important step in attaining the enhanced ionic mobility

[52]. In fact, several papers have reported conductivity enhancements at fluorite

based heterostructures and superlattices, that have been explained in terms of an

increase of the migration volume resulting from misfit dislocations at the interface

[53–56], and indicate that the higher conductivity values at epitaxial interfaces

involving nanometer thick YSZ may arise not (only) from space charge effects but

from epitaxial strain or atomic reconstruction reported to appear at interfaces

between correlated oxides [57, 58].

In an attempt to isolate a true interface effect on ion conductivity at oxide

heterostructures, Garcia-Barriocanal et al. [6] grew highly strained multilayers

combining STO and ultrathin YSZ layers with controlled thickness down to the

unit cell level (0.3–1 nm) (see Fig. 6.10). They found conductivity values from

dielectric spectroscopy measurements as large as eight orders of magnitude higher

than bulk YSZ conductivity values at room temperature, which they attributed to

enhanced oxide ion conductivity [6]. The dc conductivity determined by ac

methods was independent of the YSZ layer thickness, which was taken as an

indication of its interfacial origin. Guo has proposed [60] the electronic origin of

the large conductivity values found in this experiment, but the possibility that the

enhanced conductivity originated in electron doping of the substrate or STO layers

was eliminated by measuring the dc (electronic) contribution of the conductivity,

which turned out to be almost three orders of magnitude smaller than the global

conductivity measured with ac methods [45]. Garcia-Barriocanal et al. [6]

discussed the conductivity enhancement in terms of a decrease of the activation

energy from values of about 1 eV for bulk samples to 0.6 eV for the ultrathin

Fig. 6.9 Temperature

dependence of the electrical

conductivity determined for

epitaxial 10%mol YSZ thin

films with different

thicknesses. Reproduced

from Ref. [44] by

permission. The vertical
arrow indicates the change

of about 2 decades in

reducing the thickness

down to 15 nm, which

will be revisited in Fig. 6.11
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trilayers (see Fig. 6.10) and of the large conductivity pre-exponential factor of the

STO/YSZ/STO trilayer samples, which may result from an increase in the concen-

tration of oxygen vacancies, and/or a large entropy term related to disorder

[45]. A reduction of the activation energy for oxygen ion diffusion has been

obtained from an ab initio-based kinetic Monte Carlo model for ionic conductivity

in YSZ [61]. The decrease in the activation energy has been interpreted in terms of

Fig. 6.10 (a) Z-contrast STEM image of an epitaxial 1-nm-thick YSZ layer (marked by the

arrow) between 10 nm STO layers in a [YSZ1nm/STO10nm]9 superlattice (with nine repeats). (b)
Low magnification image of the same superlattice. (c) Arrhenius plot of the conductivity of the

trilayers STO/YSZ/STO. The thickness range of the YSZ layer is 1–30 nm. Also included are the

data of a single crystal (sc) of YSZ and a thin film (tf) 700 nm thick. (d) Conductance at 400 K of

[YSZ1nm/STO10nm]ni/2 superlattices (with ni/2 repeats) as a function of the number of interfaces

ni. (e) AFM image of a 1 nm-thick YSZ layer grown on TiO2 terminated 0.1% wt. Nb-doped

SrTiO3 showing a two-dimensional growth mode. Figure adapted with permission from Refer-

ences [6, 59]
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weaker ion-ion interactions in the ultra-thin YSZ layers within the Coupling Model

(see Sect. 6.3.2). Ionic interactions are found to be essential in reproducing the

effective activation energy [62] and the enhanced oxygen ion mobility may result

from a non-random distribution of the dopant Y ions at the interfacial planes [61], to

structural disorder [63], or from a decrease of ionic interactions when the layer

thickness goes down to the nanometer range [64]. An important point might be the

effect of epitaxial strain on defect association, which in YSZ is known to immobi-

lize oxygen vacancies at temperatures lower than 1000 K. Hence, the conductivity

is controlled by both the mobility and the defect association constant. Generally it is

believed that associates are formed between Yzr
0 andV��

O (in Kr€oger-Vink notation),
although oxygen vacancies could also be immobilized by a strain field due to the

size difference between Zr4þ and Y3þ cations [65]. An interesting possibility is that

the apparent mobility could increase significantly when this strain field is alleviated

by externally induced strain (although not by several orders of magnitude).

Other authors have also reported substantial enhancement (though smaller than

in Ref. [6]) of the ionic conductivity in ultrathin epitaxial YSZ layers. Sillassen

et al. [66] reported more than three orders of magnitude enhancement of the oxide

ion conductivity at low temperatures (lower than 350 �C) in epitaxial YSZ films

grown on MgO substrates. Their results also indicate that the observed enhance-

ment is due to an interfacial effect, and related to a combination of misfit disloca-

tion density and elastic strain in the interface. The importance of epitaxial strain in

determining an increase in the ionic conductivity at oxide interfaces and nanolayers

has been very recently addressed experimentally by several groups. Janek et al. [67]

have reported on the influence of strain on ion conduction at oxide interfaces,

finding small conductivity enhancements in samples grown by pulsed laser depo-

sition (PLD) with partially or non-coherent interfaces. Hertz et al. [68] have

reported improved oxide ion conductivity on ultra-thin films of YSZ (below

10 nm thick) grown by sputtering on Al2O3 substrates. There is an increase in the

out-of-plane lattice parameter in these films due to tensile strain, which may assist

in-plane ionic conduction. Lian et al. [69] have reported a two order of magnitude

increase in oxide-ion conductivity, as compared with bulk YSZ, in YSZ/Gd2Zr2O7

heterostructures with 3% tensile strain and dislocation-free interfaces upon the

manipulation of the layer thickness down to 5 nm. Hyodo et al. [70] study

Pr2Ni0.71Cu0.24Ga0.05O4/Sm0.2Ce0.8O2 (PNCG/SDC) layer-by-layer nano-sized

laminated films and found a significant increase of oxide ion conductivity compared

to bulk SDC values that they proposed to be due to the expanded lattice of SDC in

these heterostructures. An enhancement of 18O tracer diffusion coefficient for

transport along strained YSZ films in YSZ/Y2O3 multilayer samples has been

reported by Janek et al. [71] From the functional course of the measured mean

oxygen ion diffusion coefficient vs. layer thickness between 12 and 45 nm, they

estimate an elastically strained interface region thinner than 5 nm with modified

ionic transport properties. One has to be careful with interpreting impedance

measurements when using active electrodes like Ag or Pt. Gold is a better option

to block oxygen ions [72]. Furthermore, measurement of the in-plain conductivity
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of thin films could be influenced by surface diffusion (conduction). The critical

point about enhanced oxygen ion conductivity is proof by 18O-exchange experi-

ments preferably under current flow. There are also some controversial results

regarding the conductivity enhancement of epitaxially strained layers. Pergolesi

et al. [73] have studied YSZ-CeO2 heterostructures on MgO substrates, where

interfaces were found to be non-uniformly but significantly strained, and they

reported no detectable contribution to the total conductivity even in the case of

layers as thin as about 10 unit cells. By using PLD, Fleig et al. [74] grew YSZ layers

with larger thickness ranging from 30 to 300 nm onto MgO, Al2O3 and SrTiO3

substrates, with different lattice parameters, and did not find an enhancement in

ionic conductivity. They attribute this result to the presence of grain boundaries in

the films that strongly block ion transport. Cavallaro et al. [75] have grown

YSZ/STO heterostructures by using PLD and found that the layers were discontin-

uous and YSZ islands had mixed crystalline orientations. They found enhanced

values of the electronic conductivity that they attributed to an interfacial alloyed

oxide resulting from zirconium/strontium intermixing. These results suggest the

possible importance of crystalline orientation of the YSZ growth in order to obtain

coherent and epitaxial films with enhanced ionic conductivity. By using different

temperatures during the growth of YSZ films on STO with a sputtering technique,

Rivera-Calzada et al. [59] were able to control their crystalline orientation what

allowed stabilizing different morphologies, layer continuity and epitaxy, and as a

result achieved different degrees of ion mobility enhancement. Despite the 7%

mismatch between both highly dissimilar structures, h001i YSZ growth yields

coherent interfaces by stabilizing a disordered oxygen sublattice with an increased

number of accessible positions for oxygen which promote oxygen diffusion. On the

other hand, the h110i YSZ orientation results in the growth of connected islands,

whose boundaries block the long range diffusion of ions. Moreover, the fact that

conductance of superlattices with coherent interfaces scaled with the number of

interfaces evidences that enhancement of ion conductivity is an interfacial effect

(see Fig. 6.10). These results demonstrate that epitaxial strain is an important

parameter in designing a high mobility landscape at the interfaces in addition to

space charge effects [76, 77].

In fact, several theoretical groups have proposed that epitaxial strain provides an

avenue to increase the conductivity of ion conducting solids, and understanding its

effect and uncovering the microscopic mechanism has become an important chal-

lenge [64, 67, 78–82]. One important direction has been the use of static models

based simulations to evaluate changes in the migration volume. Korte and

co-workers, from a qualitative model of ion diffusion along hetero-interfaces

based on the increased of activation volume associated to the density of misfit

dislocations and the interfacial strain have pointed out that strain by itself can only

account for 2–3 orders of magnitude conductivity increase in YSZ/STO

heterostructures [67, 78]. This model predicts linear increase of the conductivity

with lattice mismatch for tensile strained interfaces while compressive strain will

decrease the ionic conductivity. On the other hand Roger de Souza and colleagues

[83, 84], made use of static lattice simulation techniques using phenomenological
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potentials to describe lattice relaxation. The effect of strain affects the free energy

for migration through its effect on the free migration volume. This model would

account for a conductivity increase up to 5 orders of magnitude using the experi-

mental values of the activation energy in YSZ/STO heterostructures by Garcia-

Barriocanal et al. [6]. It is concluded that lattice strain alone cannot be responsible

for the total conductivity increase found experimentally [84]. Furthermore, a recent

paper by Bilge Yildiz and collaborators [80] has examined the effect of biaxial

strain on the oxygen diffusivity using combined density functional theory DFT

calculations and kinetic Monte Carlo (KMC), and conclude that bonds

reconfiguration poses an upper limit to the effect of epitaxial strain in enhancing

the conductivity by expanding the conduction path. A problem with these models

may result from the fact that they tackle the issue of epitaxial strain by stressing

bulk structure, i.e., they do not explicitly include the presence of interfaces which

may incorporate interesting ingredients related to the chemical and structural

compatibility of the merging lattices. Density-functional calculations have been

used to investigate the influence of the (001) oriented interface on the conductivity

increase in YSZ/STO superlattices explicitly considering the presence of the

interface by introducing mixed YSZ/STO supercells [79]. The authors of that

work proposed that the combination of epitaxial strain and oxygen sublattice

incompatibility between both structures are key in yielding the highly conducting

interface. They report that 7% strain produces a drastic change in the O sublattice

of YSZ, which becomes as disordered as expected from an increase of the temper-

ature up to 2000 K. The O ion mean square displacement (mobility) is strongly

enhanced (by a factor of over 106) as a result of the combined presence of oxygen

vacancies and disorder. The incompatibility of the oxygen positions in the interface

planes (octahedral in STO vs tetrahedral in YSZ) are proposed to play a key role in

stabilizing the highly conducting interface by introducing extreme disorder in the

oxygen sublattice in the region close to the interface. EELS experiments (both

spectroscopy and imaging) have provided evidence for the oxygen disorder

[82]. Moreover, density functional simulations show that a new YSZ phase is

stabilized at epitaxially strained heterostructures for mismatch strain levels in

excess of 5.2% [79]. This result explains in fact why these high levels of strain

do not result in strain relaxation by mismatch dislocations and islanding and

evidences that lattice relaxation plays a dominant role in phase stabilization. Very

recently, Li et al. [85] performed DFT and first-principles molecular dynamics

simulations to examine the strain effect on oxygen conductivity in KTaO3/YSZ/

KTaO3 sandwich structure with 9.7% lattice mismatch. They found a large

decrease of the activation energy for ionic conduction, and estimated the oxygen

ionic conductivity for KTO-strained zirconia to be 6.4� 107 times higher than that

of the unstrained bulk zirconia at 500 K. Interestingly, by using Al2O3 and SrTiO3

instead of KTaO3 in the simulations, a nearly linear relationship is identified in that

work between the energy barrier and the lattice mismatch in the sandwich

structures.

Aside from epitaxial strain, polarity mismatch may play an important role in

determining the atomic reconstruction at the interface [86]. In the case for example

of (100) YSZ/STO superlattices, the non-polar STO (100) planes alternate with
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strongly polar YSZ (100) planes with a sequence (Zr)4þ-(O2)
4�-(Zr)4þ-. . . This

plane sequence is in fact a very energetically unstable situation, and it cannot be

settled by electron transfer to the interface since STO interfaces are found to be

always terminated in a TiO2 plane [6]. In this case, it has been suggested

the possibility that oxygen vacancies nucleate at the interface to avoid polarity

mismatch and to restore charge neutrality [52]. This might actually explain the

nucleation of a large number of oxygen vacancies at YSZ/STO interfaces. Another

possibility is the formation of an (ZrO)2þ-plane with rocksalt structure, as proposed
recently by Dyer et al. [87] from theoretical arguments. This interface termination

preserves charge neutrality, avoids polarity mismatch, and is also consistent with

experimental observations. This reconstruction may be in fact related to the forma-

tion of a zirconate compound at the interface [75]. In a related context, molecular

dynamics simulations have shown [63] that in YSZ films onMgO substrates there is

a slight enrichment of dopant, and that the extent of dopant enrichment is greater for

lower thickness YSZ films. This would give rise to an increase of the interfacial

conductivity by 2 orders of magnitude as the YSZ film size decreases from 9 to

3 nm due to the concomitant decrease in activation energy barrier from 0.54 to

0.35 eV in the 1200–2000 K temperature range. These results show that, apart from

epitaxial strain, atomic reconstruction arising at interfaces (due to polarity

mismatch or other forms of chemical incompatibility) may give rise to modified

coordination and stoichiometry at epitaxial interfaces and are important to under-

stand changes in ionic conductivity.

6.3 Nano Ion Dynamics

In Chaps. 4 and 5 many anomalous dynamic properties of ionic conductors with

high ionic concentrations are presented and their origin is attributed to cooperative

motion of ions due to ion-ion interaction. The dynamics of ions changes with

increasing time progressively from roughly four time regimes. (1) Initially all

ions are caged. (2) Thermally activated single ion hops out of cage with the

primitive relaxation time τσ0(T ), the onset of which terminates the caged ion

dynamics regime. (3) The number of ions hopping successfully and simultaneously

increase with time, the rate of which is controlled by the ion-ion interaction and

correlation because the process is cooperative. (4) The averaged maximum number

of ions hopping cooperatively Ndif or the maximum length-scale of cooperativity

Ldif is finally reached at times of the order of tdif. This terminal conductivity

α-relaxation has correlation function given by the Kohlrausch stretched exponential
function, ϕ tð Þ ¼ exp � t=τσð Þ1�nσ

h i
, with the conductivity α-relaxation time τσα(T)

determining the d.c. conductivity σdc and the diffusion D. Stronger the ion-ion

interaction, larger is Ndif or Ldif and longer is tdif. This evolution of ion dynamics

with time is the precept of the Coupling Model (CM) and substantiated by exper-

iments as well as molecular dynamics simulations of the motion of Li ions in
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Li2SiO3 shown by Fig. 4.59 in Chap. 4. This description of ion dynamics together

with the CM relation between τσα(T ) and τσ0(T),

τσα ¼ tσcð Þ�nσ τσ0½ �1= 1�nσð Þ
; ð6:8Þ

explain many properties of the ion dynamics in bulk ionic conductors in

Chaps. 4 and 5.

Notwithstanding, the size of Ldif can be of the order of nanometer in many ionic

conductors with large concentration of mobile ions. Therefore cooperativity in

nanoionics, where one or more dimensions of the material is reduced to nanometer

size, can be severely reduced and ion dynamics modified. In thin films deposited on

a substrate, ion mobility is expected to be much enhanced at or near the free surface

due to absence of ions on the other side of the free surface. Thus some changes of

the ion dynamics in bulk of ionic conductors are expected when size is reduced to

nanometer. This section is written to show the changes in some ionic conductors for

which the ion dynamics are well characterized both in the bulk and in thin films.

The CM explanation of the bulk ion dynamics is examined whether it can continue

to account for the changes in thin films. There are lot more studies of change of

structural α-relaxation and viscosity in non-ionic glass-formers confined to nano-

meter size and in thin films with the presence of free surface. For this reason it is

worthwhile to show some examples to heighten the awareness that the phenome-

nology as well as the underlying physics is the same in the two fields of ionic

conductivity relaxation and glass transition [88–92].

6.3.1 Oxygen Ion Dynamics in YSZ Thin Films

6.3.1.1 Thin Films of YSZ Deposited on MgO Substrates

Yttria-stabilized zirconia (YSZ), ((1�x)ZrO2:xY2O3), has high oxygen ion conduc-

tivity at high temperatures, making the material attractive in technological appli-

cations including oxygen sensors, solid oxide fuel cell (SOFC) electrolytes, and etc.

The oxygen ion dynamics in bulk YSZ have been amply discussed in Chap. 4, and

at Fig. 4.33 therein the reader can find the τσα(T ) or τ
*(T) experimental data, and

τσ0(T) calculated by the CM equation. Here we consider the oxygen ion dynamics

in thin films of YSZ with thickness in the nanometer scale [64].

In highly textured thin films of YSZ with 9.5 mol% Y2O3 deposited on MgO

substrates and thicknesses between 60 and 15 nm, Kosacki et al. [44] found

enhanced conductivity. Their results were shown before in Fig. 6.9. The

d.c. conductivity, σdc, in the 15 nm film is about 2 orders of magnitude higher

than 2000 nm thick films at 673 K. Its activation energy is 0.62 eV, which is

significantly lower than 1.09 eV of the 2000 nm thick film, and 1.16 eV of the bulk

samples with about the same composition. The d.c. conductivity, σdc, data of the

15 nm film from Kosacki et al. are converted to τσα(T ) via the relation,
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σdc ¼ E0ε1= τσα Tð Þh i; ð6:9Þ

where εo¼ 8.854� 10�14 F/cm is the permittivity of free space, and the results are

shown by purple closed squares lying just above the dotted line representing τ0(T)
in Fig. 6.11. From the dependence of σdc on film thickness, Kosacki et al. concluded

that the bulk conductivity and the surface/interface conductivity contribute in

parallel. The surface/interface contribution becomes more important in thinner

film. Using a mixture model to separate one contribution from the other, Kosacki

et al. deduced that the surface/interface conductivity is about three to four orders of

magnitude higher than that of the bulk, and its activation energy is 0.45 eV. These

results are interesting but one should be mindful that they are dependent on the

mixture model used to analyze the data. How exactly the two contributions have to

be put together to become the observed σdc in the thin films is an open question.

Notwithstanding, the results suggest the activation energy of the surface/interface

conductivity is 0.62 eV as observed or less. This experimental fact is important for

the CM explanation. At the surface/interface of YSZ, interaction between oxygen

ions is weaker than in the bulk because of the absence of mobile oxygen ions

(i.e. absence of oxygen vacancies) across the surface/interface. Weaker ion-ion

interaction at the surface/interface leads to coupling parameter, nS, smaller than

nb¼ 0.55–0.57 for the bulk. It follows from the CM equation (6.8) and relation (6.9)

that the activation energy of the surface/interface conductivity, Eσ,S, and bulk

conductivity Eσ,b is given by

Eσ,S ¼ Ea= 1� nSð Þ and Eσ,b ¼ Ea= 1� nbð Þ; ð6:10Þ

From these expressions, Eσ,S is smaller than ¼ 1.15 eV, because nS is less than
nb, and the actual energy barrier, Ea, is the same in the bulk or at the surface/

interface. This feature, i.e. Eσ,S<Eσ,b, is consistent with the experimental data as

shown in Fig. 6.11.

From Eq. (6.8), the bulk and surface/interface conductivity relaxation times

τσ,b(T) and τσ,S(T ) can be rewritten as,

τσ,b Tð Þ ¼ τ0 Tð Þ τ0 Tð Þ=tc½ �nb= 1�nbð Þ ð6:11Þ

and

τσ,S Tð Þ ¼ τ0 Tð Þ τ0 Tð Þ=tc½ �nS= 1�nSð Þ ð6:12Þ

Since the exponent, n/(1�n), is a monotonic increasing function of n, and (τ0/tc)	 1,

it follows fromEqs. (6.11) and (6.12) and nS is less than nb that τσ,S(T) is much shorter

than τσ,b(T) in agreement with the experimental data.
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6.3.2 Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3

Heterostructures

Thinner the YSZ film, more important is the influence of the surface/interface in

reducing the ion-ion interaction, and naturally nS becomes smaller. The conse-

quences are larger decrease in Eσ,S to approach the actual energy barrier, Ea, and

Fig. 6.11 Arrhenius plots of various relaxation times of oxygen ions in bulk YSZ and thin films of

YSZ. The blue closed circles within the range, 0.6< 1000/T< 1.1 are τ*(T ) calculated from high

temperature d.c. conductivity data. The purple dotted line are the independent ion hopping

relaxation time τ0(T ) calculated from bulk τ*(T ) with tc¼ 1 ps. The data of the conductivity

relaxation times, τσ,S(T ), of 15 nm YSZ thin film deposited on MgO are shown by closed purple
squares located just above the purple dotted line representing τ0(T ). The τσ,S(T ) of 62, 30, 5, and
1 nm YSZ thin film sandwiched between two 10 nm STO layers are shown by green open squares
(near and above the green dashed line), closed purple triangles, closed blue circles, and open red
diamonds (below the green dashed line) respectively
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higher d.c. conductivity or shorter τσ,S(T ). These trends were found by Garcia-

Barriocanal et al. [45, 59] in a trilayer heterostructure where a film of YSZ with

8 mol% Y2O3 were sandwiched between two 10-nm-thick layers of insulating

SrTiO3 (STO). The YSZ film thickness ranges from 62 nm down to 1 nm. In

addition, superlattices alternating 10-nm thick STO layer with the YSZ film were

fabricated. The interfaces between the STO and the YSZ are atomically flat, with

the YSZ perfectly coherent with the STO. Due to large mismatch between the

lattice constants of STO and YSZ, the epitaxial growth of the YSZ on top of the

STO engenders a large expansive strain in the thin YSZ layers of 7% in the ab
plane. As already mentioned in Sect. 6.2, Garcia-Barriocanal et al. performed

conductivity relaxation measurements to determine the d.c. conductivity, which

they ascertained by other measurement that it comes from oxygen ionic diffusion,

and (non-dispersive) electronic contribution is negligible. In the following discus-

sion it is assumed that the observed conductivity is in fact due to an enhanced ionic

conductivity. Garcia-Barriocanal’s data of σdc are converted here to τσ,S(T ) via

Eq. (6.9), and the temperature dependence of τσ,S(T) for [STO10nm/YSZXnm/

STO10nm] trilayers with X¼ 62, 30, 5, and 1 nm thick YSZ films are shown in

Fig. 6.11. Represented by open green squares, τσ,S(T) of the 62 nm YSZ film show a

decrease of about two orders of magnitude than τσ,b(T ) at the measurement tem-

perature range, and the activation energy of τσ,S(T ) decreases to 0.72 eV from

1.16 eV for τσ,b(T ). On decreasing the thickness of the YSZ layer to 30 nm, τσ,S(T)
decreases another three orders of magnitude, and the activation energy decreases to

0.6 eV. On further decrease of the thickness to 5 nm and all the way down to 1 nm

(two unit cells of YSZ), the conductivity increases and the corresponding τσ,S(T)
decreases inversely as the thickness of the YSZ layer. The dc conductivity of the

1-nm YSZ layer shows a exceedingly high value of 0.014 S/cm at 357 K, with an

activation energy of 0.64 eV. Garcia-Barriocanal et al. also made ac and dc

conductance measurements on YSZ/STO superlattices and from the collection of

data they concluded that the high conductivity measured comes from the interface

of the YSZ film with the STO. The activation energies of the interface conductivity

of the 30, 5 and 1 nm thin YSZ films in the range, 0.60
Eσ,S
 0.64 eV, are nearly

the same as the independent ion hopping activation energy Ea� 0.52 eV deduced

from bulk conductivity relaxation data of YSZ with slightly higher mole % of

Y2O3, and Ea,QELS¼ 0.63 eV from quasielastic light scattering in bulk YSZ with

similar mol% of Y2O3 [93]. This is unsurprising because of the expected large

reduction of ion-ion interaction at the interface and hence also nS for the interface
conduction in nm thin films of YSZ. It follows from Eq. (6.10) that as nS! 0 on

decreasing film thickness down to 1 nm, we have Eσ,S!Ea.

By inspection of Fig. 6.11, it can be seen that τσ,S(T ) of the nm thin YSZ films are

about 2–3 orders of magnitude shorter than the independent ion hopping relaxation

time, τ0, deduced from bulk ionic conductivity. Garcia-Barriocanal et al. suggested

the cause of this enhancement is the large in-plane expansive strain on the YSZ

interface plane (see Sect. 6.2), which give rises to higher concentration of vacant

oxygen positions and probable positional disorder. Pennycook et al. [79, 82]

performed simulated annealing to determine the structure of the STO-YSZ
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multilayers and confirm that the oxygen sublattice near the interface remains highly

disordered all the way down to 360 K. From their examination of the energetic of

oxygen vacancies at the YSZ interfacial plane, Pennycook et al. concluded that

vacancy hopping, and therefore ionic conduction, occurs preferentially in a region

adjacent to the interfacial plane, where the O atoms are perturbed but unconstrained

by the STO. The importance of structural disorder in determining ionic transport

properties in YSZ films with nanoscale thickness has been recently highlighted

from a recent atomistic simulation study by Ramanathan et al. [63]. Because the

oxygen sublattice near the interface is highly disordered, an activation entropy

enters into determination of the independent hopping frequency, 1/τ0, which

becomes

1=τ0 Tð Þ ¼ τ1ð Þ�1
exp �Ea=kTð Þexp ΔS=kð Þ: ð6:13Þ

The activation entropy term, exp(ΔS/k), increases the independent hopping fre-

quency of oxygen at the interface of the nm thin film of YSZ, and accounts for the

observation that τσ,S(T ) of the nm thin YSZ films are about 2–3 orders of magnitude

shorter than the independent ion hopping relaxation time, τ0, deduced from bulk

ionic conductivity.

6.3.3 Computer Simulations Data Compared
with Theoretical Interpretation

Computer simulations of oxygen ion dynamics in YSZ using various methods have

been published by many groups. The results generated have fundamental signifi-

cance and are critical for testing the predictions of the CM. The migration energy

barriers and the self-diffusion of oxygen at macroscopic time-scale had been

calculated by kinetic Monte Carlo (kMC) simulation with density functional theory

[94]. The method assumes that oxygen diffusion is well-represented by oxygen

vacancy hopping through the edges of cation tetrahedra. The advantage of this

method is that it is not restricted to relatively short times, like molecular dynamics

simulations. For example, the smallest of all the activation barriers for oxygen

vacancy migration is across the Zr–Zr edges, and it is 0.58 eV. Activation energy

for oxygen self-diffusion, EKa, increases with y, the mol % of Y2O3, from nearly

0.58 eV for x less than 2.5 to �0.59 eV for x¼ 8, �0.60 eV for x¼ 10, and

�0.61 eV for x¼ 12. It was pointed out in Ref. [61] that these migration energy

barriers were calculated without including ionic interactions. This may explain why

the calculated migration energy barriers EKa are smaller than bulk Eσ,b found in

conductivity and quasielastic light scattering experiments, say for 8–10 mol% of

Y2O3. Notwithstanding, these smaller activation energies EKa calculated without

ion-ion interaction is the actual energy barrier, and hence it can be identified with

the energy barrier for independent oxygen hop, Ea, of the CM in Eq. (6.10). It is
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clear that EKa� 0.59 eV for y¼ 8 mol % lies close and in between the two values of

the energy barrier for independent oxygen hop: Ea� 0.52 eV and Ea,QELS¼ 0.63 eV

deduced from conductivity relaxation and quasielastic light scattering respectively.

Thus, the result of EKa� 0.60 eV from the simulations in Ref. [94] supports the

prediction of the CM that the true energy barrier Ea of oxygen ion hopping is in the

range 0.52
Ea
 0.63 eV, which has not been tested before.

Recognizing the importance of accounting for ionic interactions, a kinetic Monte

Carlo model was used to calculate ionic conductivity in single-crystal YSZ. The

kinetic Monte Carlo model [61] was based on combining density functional theory

with the cluster expansion method. The results of ionic conductivity of YSZ with

8 mol% of Y2O3 showed an increase of the activation energy to 0.74 eV at high

T and 0.85 eV at low T, as compared with EKa� 0.59 eV. The enhancement of the

activation energy found by including ion-ion interaction in the simulations of Lee

et al. is in accord with the prediction of the CM in Eq. (6.10), although the size is

still smaller than Eσ,b¼ 1.16 eV found by conductivity relaxation data.

Another molecular dynamics simulation in which the interaction between oxy-

gen ions was included was published by Tarancón et al. [95]. The potential energy

chosen is a function of the distance between ions, Zr4þ, Y3þ, and O2�. It is

composed of a Born–Mayer–Buckingham potential for short range interactions,

and Coulomb terms to describe the long-range electrostatic interactions between the

ions of YSZ. These authors obtained the oxygen tracer diffusion coefficient of YSZ

with 8 mol% Y2O3 at high temperatures ranging from 1159 to 1959 K. From the

Arrhenius temperature dependence, they obtained the activation energy of 0.68 eV,

which is significantly smaller than Eσ,b¼ 1.16 eV of d.c. conductivity at lower

temperatures. Expressed in terms of 1000/T, the temperature range of the simula-

tions corresponds to 0.51
 1000/T
 0.86 K�1. As can be seen by inspection of

Fig. 6.11, in this temperature range, overall the conductivity relaxation time τ* has a
much weaker T-dependence than its Arrhenius T-dependence established at lower

temperatures with Eσ,b¼ 1.16 eV. Its apparent activation energy is significantly

smaller than 1.16 eV, but still a bit larger than Ea� 0.52 eV and 0.63 eV from light

scattering [93]. Therefore, the activation energy of 0.68 eV found by Tarancón

et al. is due to τ* not long compared with tc� 1 to 2 ps in the temperature range of

simulations, consistent with the existence of the crossover from many-ion relaxa-

tion to independent ion hop in the CM discussed in Chap. 4.

Similar molecular dynamics simulations of YSZ were carried out by Devanathan

et al. with the same potential [96] also at high temperatures from 1125 to 2500 K.

The diffusion coefficients of oxygen obtained over this range have activation

energies of 0.59, 0.60, and 0.73 eV for YSZ with 6, 8, and 10 mol% Y2O3

respectively. Again, τ* is close to tc� 1 to 2 ps in the measurement temperature

range, and the activation energies obtained by Devanathan et al. are the actual

energy barriers opposing oxygen hopping consistent with the values deduced by

the CM.

Mean square displacements of oxygen in YSZ were obtained by Chang et al. [97]

over the temperature range, 873
 T
 1473 K for times up to 500 ps in another

molecular dynamics simulation using the same potential. For the YSZ with 7 mol%
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Y2O3, we obtain the activation energy of about 0.5 eV. For the same reason as

discussed in the above, the proximity of τ* to tc� 1 to 2 ps in the simulation

temperature range justifies interpreting the deduced activation energy of 0.5 eV

as the actual energy barrier of oxygen vacancy hopping.

Another similar molecular dynamics simulation by Lau and Dunlap [98] up to

2.5 ns reported d.c. conductivity of single crystal YSZ with 8 mol% Y2O3 having

Arrhenius temperature dependence over about 15 orders of magnitude in the wide

temperature range from 300 to 1400 K, and have activation energy of

0.59� 0.05 eV. This activation energy is similar to Ea� 0.52 eV and 0.63 eV

and is consistent with the interpretation of actual energy barrier as long as temper-

ature is higher than say 1000 K. However, the results of Lau and Dunlap at

temperature below say 800 K are at odds with the much larger activation energy,

Eσ,b¼ 1.16 eV, of d.c. conductivity observed by experiments of single crystal YSZ

with 8 mol% Y2O3.

There is a finite-temperature dynamical simulations of the oxygen vacancy

dynamics in bulk cubic zirconia by Pennycook et al. [79, 82], where the oxygen

vacancies were generated by applying 7% strain to change the oxygen sublattice.

At high temperatures the oxygen structure becomes disordered. The mean-square-

displacements were calculated up to 6 ps, and hence the diffusion coefficients of

oxygen in the strained structure were obtained from the simulations. The activation

barrier extracted from an Arrhenius plot of the diffusivities is 0.4� 0.1 eV, iden-

tical to Ea� 0.50 to 0.52 eV within the error estimated. Since the simulations were

carried out only up to 6 ps and close to tc� 1 to 2 ps, this activation energy from

simulation of strained bulk cubic zirconia can be taken as another source of

information on the actual energy barrier for oxygen diffusion. The effect of strain

has been also recently examined by using static atomistic simulations, based on

empirical pair-potentials (EPP) [82] to determine the energetic barriers for oxygen-

vacancy migration in a fluorite-structured lattice without considering ion-ion inter-

actions. Authors of that work find a migration activation enthalpy of 0.59 eV in

unstrained material (in good agreement with the estimates using the CM). They

further propose that strain may account for large increases (up to 6 orders of

magnitude) of the oxygen conductivity and that increased migration entropy (pre-

serving the fluorite structure) may account for an additional order of magnitude

conductivity increase.

6.4 Nanoionics for Energy

As already mentioned, nanotechnology and nanostructured materials are expected

to have a strong impact on the next generation of energy conversion and storage

devices. There is no doubt of the relevance of the scientific and technological

challenge of finding new, low-cost, and environmentally friendly, alternatives to

current fuel cells, batteries and supercapacitors for energy applications. For exam-

ple, lithium batteries are currently reaching their limits in performance, and it is
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necessary to develop alternative technologies for commercially competitive hybrid

electric vehicles. We will mention here recent developments in the design and

fabrication of energy devices based on the use of nanoionics to improve their

performance [99].

Concerning the use of nanostructured materials in battery’s electrodes, it is

expected that they could result in a longer cycle life since they accommodate

better the strain of ion insertion and removal during charge and discharge cycles.

Nanostructured electrodes can also lead to shorter charging times due to higher

electrode/electrolyte contact area. Several authors have demonstrated improve-

ments in cycling response of lithium batteries, avoiding cracking after repeated

cycles by using nanocomposites based on Si-C, or on glasses containing tin oxide

or different tin alloys, as anodes [100–104]. It has been also shown an improve-

ment of capacity retention on cycling by using TiO2 nanowires of only 40–60 nm

in diameter, which can accommodate up to Li0.91TiO2 (305 mA h/g) at 1.5–1.6 V

vs Liþ(1 M)/Li [105]. It is worthwhile to remark that electrochemical reaction

paths may be radically different when dealing with nanoscale particles. This is

for example the case of haematite, which shows an irreversible phase transfor-

mation when using large particles (1–2 μm) that avoids its use as anode material,

but shows remarkable properties for Li insertion in the form of nanoparticles

(20 nm) [106]. Another route to enhance electrode capacities is the use of porous

materials to increase the surface-area of the electrodes. V2O5 aerogels have

shown better performance as cathodes in lithium batteries than polycrystalline

non-porous powders of the same composition [107, 108]. Another example is the

greatly improved electrochemical response of phospho-olivine LiFePO4 in the

form of carbon-coated nanoparticles, since the formation of inactive regions in

the bulk form of this electronically insulating material is thus prevented

[109]. The search of new electroactive materials in lithium batteries has been

strongly fostered by the use of nanotechnology, since we have realized that it is

not necessary that the materials show high electronic conductivity, nor high

lithium diffusivity, since these demands can be circumvented by the use of

smart designs at the nanoscale. The performance of supercapacitors can also be

enhanced by using nanostructured electrodes. Supercapacitors are somehow

similar to batteries but are designed to have longer cycle life and power (dis-

charge rates) at the expense of lower energy density. Their operation is based on

surface charge accumulation at the electrode/electrolyte interface instead of

inserting and removing ions in the electrodes, and therefore the electrode require-

ments are less demanding than for batteries. Several studies have already shown

how the use of nanostructured carbons can indeed improve the capacitance and

the cyclability of supercapacitors [110–112].

Similar achievements have been made in the improvement of the electrolyte

transport properties in lithium batteries. The use of nanocomposites have led to

large increases of the lithium ion conductivity in polymer electrolytes, particularly

by using polymer-in-salt nanostructures [113] and ionic liquids [114]. It has been

well established for many years that ionic conductivity in polymer electrolytes

occurs only in the amorphous phase above the glass transition, and crystalline
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polymer electrolytes were considered to be insulators. However, recent studies have

demonstrated high ionic conductivity in the crystalline 6:1 complexes PEO6:LiXF6
(X¼ P, As, Sb) on reducing the chain length to the nanometer range, opening new

pathways to the optimization of electrolytes [115]. The use of nanostructured

materials in order to increase the ionic conductivity of electrolytes is also very

relevant in the case of fuel cell devices [116]. The inclusion of small amounts of

SiO2 nanoparticles inside the membrane have been shown to help retaining the

water produced in the electrochemical reaction [117], which promotes proton

conduction at operation temperatures in the range 130–150 �C at low humidity

[118]. Intermediate-temperature solid oxide fuel cells (IT-SOFCs) have also

benefited from the use of nanostructured ceramic materials. YSZ and ceria-based

(YDC, SDC, CGO) nanocrystalline powders allows a reduction in the sintering

temperature of the membrane (electrolyte), and nanocrystalline ceria, characterized

by mixed electronic-ionic conduction, enhances charge transfer at the electrode/

electrolyte interface [25].

A different scenario where nanoionics has recently shown their potential for

energy applications, is oxygen exchange. It is usually found in current solid oxide

fuel cells that if the conductance of the electrolyte is increased, either by increas-

ing its conductivity or by reducing its thickness, electrode polarization losses

become the dominant cause in limiting the device performance [119]. This is

mostly due to the slow kinetics of the thermally activated oxygen reduction

reaction at the cathode and results to be one of the critical factors limiting the

operation of SOFCs at lower temperatures [120]. Epitaxial strain has been shown

to be very effective in accelerating oxygen exchange [121–123], and its role on

surface chemistry and ion exchange needs to be further investigated. First princi-

ples calculations have shown that epitaxial strain favors oxygen vacancy forma-

tion and enhanced oxygen mobility in LaCoO3 [124, 125], a well studied material

used as fuel cell cathode. Sase [126] have shown that oxygen surface exchange in

heterointerfaces La0.6Sr0.4CoO3/(La, Sr)2 CoO4 is increased by three orders of

magnitude as compared to single cobaltite surfaces, and they interpreted this result

in terms of local strain effects at the interface. It has been also shown that quite

significant chemical modifications occur at the surface of La0.7Sr0.3MnO3 epitax-

ial films resulting from strain, namely Sr enrichment and enhanced oxygen

vacancy formation [127]. Kubicek et al. [128] have performed tracer diffusion

experiments with isotopically in tensile strained La1�xSrxCoO3�δ layers grown on

SrTiO3 as compared to compressively strained ones grown on LaAlO3 substrates.

They interpret these results as due to enhanced oxygen diffusion through reduced

activation barriers for diffusion and/or energy for oxygen vacancy formation. Also

very recently, an increase in the oxygen surface exchange coefficient of single-

crystal YSZ has been reported on optimizing the dopant concentration at the

surface with the help of atomic layer deposition of a 5–10 nm YSZ layer

[129]. All these results demonstrate the potential of nanoionics to optimize the

performance of batteries, supercapacitors, fuel cells, as well as other electrochem-

ical devices.
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6.5 Outlook

An interesting new field, nanoionics, is emerging in connection with nanostructured

ionically conducting materials. In particular, the enhanced ionic conductivity found

at heterostructures involving solid electrolytes may impact the performance of

energy generation, conversion, and storage devices. They could provide an avenue

to optimize the performance of solid state batteries as well as to reduce the high

operation temperatures of current solid oxide fuel cells, which imposes severe

constraints to materials selection and to conditions and durability of devices.

Critical (limiting) factors are the ionic conductivity through the electrolyte and

the exchange rate at the electrodes, and both of them could be drastically improved

by using nanostructured materials, engineering interfaces, and designing smart new

concepts based on nanoscale characteristic lengths of the device. Epitaxial growth

of heterostructures seems to play an important role in determining the increase of

the ionic conductivity at interfaces, but the ultimate reason behind the enhancement

remains to be elucidated. As described in this text, different scenarios have been

proposed as relevant to explain experimental data, namely charge transfer and

space charge effects, the effect of epitaxial strain in opening diffusion paths, and

the influence of atomic reconstruction at the interface in stabilizing new phases with

increased carrier concentration.

Apart from its application for energy conversion and storage devices,

nanoionics has been proposed to be used in other relevant technology, the design

of future non-volatile memories [3]. Some metal–insulator–metal (MIM) systems

show ion-migration induced resistive switching that has been proposed as an

alternative to current solid state memory devices. The ion-migration effects are

coupled to redox processes which cause the change in resistance [5]. One example

is based on transition metal oxides, and operates through the migration of mobile

oxygen ions towards the anode, with a subsequent change of the stoichiometry and

a valence change of the cation sublattice associated with a modified electronic

conductivity (see Fig. 6.12). If the cathode blocks ion exchange reactions, an

Fig. 6.12 Three terminal solid electrolyte switch. The electrochemical reaction forming and

breaking a metallic filament between source and drain electrodes is controlled by the applied

gate voltage. Reproduced from Ref. [5] with permission
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oxygen-deficient region starts to build and to expand towards the anode. Transi-

tion metal cations accommodate this deficiency by trapping electrons emitted

from the cathode. In the case of TiO2 or SrTiO3, for example, this results in

a reduction reaction which is equivalent to filling the Ti 3d band. The presence of

Ti3þ gives rise to enhanced electronic conductivity and eventually to a metallic

behavior. This ‘virtual cathode’ moves towards the anode and will finally form a

conductive path [130]. At the anode, the oxidation reaction may lead to the

evolution of oxygen gas or the anode material may be oxidized. The actual

electroforming conditions depend on the MIM system. The total charge has

been found to control the electroforming [131], and once the electroforming is

completed, bipolar resistive switching occurs by forming or breaking the conduc-

tive pathway between the virtual cathode and the anode. By controlling the charge

transfer during the switching, the resistance of the system can be established at

intermediate levels, which might help in creating memristive behavior and

multibit storage in a single memory cell [132].

Much research effort is still needed to explore the potential of nanoionics-based

resistive switching and to exploit this potential in commercial memory devices. In

particular, it is needed to understand the microscopic mechanism of the switching,

the ion migration and coupled redox process, and optimize the materials selection

and fabrication technology [5, 133].

Finally, we want to mention the possibility to use nanoionics devices to dynam-

ically control interfacial oxidation state, allowing the control of interface electronic

properties, with an electric field. A relevant example is the voltage control of

magnetic properties in a Co/metal-oxide bilayer by inducing oxygen migration to

and from the interface (see Fig. 6.13) [134]. The interfacial magnetic anisotropy

energy can be reversibly toggled by >0.75 erg cm�2 by applying just 2 V. In the

virgin state (Fig. 6.13a), the coercive field Hc is uniform across the measured area.

After applying a gate voltage Vg¼�4 V for 240 s and then setting Vg¼ 0 V, Hc

exhibits an abrupt step at the electrode edge (Fig. 6.13c) and increases to �340 Oe

beneath the electrode. This is attributed to oxygen migration near the electrode

perimeter, where ionic transport is typically most efficient. This would locally

reduce the magnetic anisotropy energy by over-oxidizing the Co interface, creating

potential wells at the electrode edge (Fig. 6.13d) that trap propagating domain walls

and increase the coercive field. Since voltage-induced oxygen ion migration is

thermally activated, voltage application at elevated temperature should result

in exponentially higher drift velocities, and activation of bulk oxygen migration

on an observable timescale. S. D. Beach et al. proposed that relatively small

changes in temperature and gate voltage can improve device response times by

orders of magnitude, and that by simply varying the thickness and morphology of

the gate oxide and electrode, the magneto-ionic switching time drops from hun-

dreds of seconds to hundreds of microseconds. Considerable further improvements

in performance and functionality can be anticipated by examining oxides with

higher ionic conductivity such as yttria-stabilized zirconia, or by designing

304 6 Nanoionics



gate-oxide heterostructures that include separately optimized oxygen storage and

ion conducting layers. These results suggest a new avenue in the nanoionics field

towards the implementation of voltage-programmable materials based on solid-

state switching of interface oxygen chemistry.

Fig. 6.13 (a) Topographic map of the coercivity (Hc) in the virgin state, in the vicinity of a gate

electrode. (b) Schematic view of gate-electrode structure. (c, d) Hc and magnetic anisotropy

energy landscape, respectively, after applying a gate voltage Vg¼�4 V for 240 s at room

temperature (RT). (e, f) The same as in (c, d) after applying Vg¼�4 V for 155 s at 100 �C.
(g–k) Polar MOKE hysteresis loops measured at room temperature at the centre of the gate

electrode showing the device in its virgin state (g), after applying Vg¼�4 V at 100 �C for 1 s

(h), 150 s (i) and 230 s (j), and after applying Vg¼þ4 V at 100 �C for 270 s (k). The Kerr signal
intensity in (i) is reduced by a factor of 2 and in (j) by a factor of 16, as indicated by inset number.

Reproduced from Ref. [134] with permission
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Novel experimental results in the emerging field of nanoionics are growing

exponentially, together with a theoretical effort aimed to understand the conduc-

tivity enhancement. Ultimately, understanding the mechanism underlying

enhanced ion diffusivity at nanostructured ionically conducting materials should

help in selecting the suitable materials and designing the appropriate nanostructures

for future nanoionic devices.

In closing this Chapter, it is beneficial to point out the enhancement of mobility

of ions at surface and in nanometer thin films of ionic conductors have analogues in

the structural α-relaxation of non-ionic glass-formers [135, 136], as well as similar

explanation by the Coupling Model [137, 138]. This is another example of the same

physics governing the dynamics of ions in ionic conductors and sructural relaxation

in non-ionic glass-formers.
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Chapter 7

Ionic Liquids: Physics Bridging Two Fields

7.1 Introduction

When considering the ionic liquids (ILs) in general, and especially the room temper-

ature ionic liquids (RTIL), the interest is naturally focused on the ionic conductivity

and ion dynamics. Nonetheless, many ionic liquids are glass-formers, and undergo

glass transition at Tg on cooling at ambient pressure or at Pg on elevating the applied

pressure at constant temperature. In the supercooled liquid state, both the structural

relaxation and the ionic conductivity relaxation are present and observable. Thus

glass-forming ILs confer the bonus of studying ionic conductivity relaxation and

structural relaxation in the same material. If the two processes are decoupled, the

relation between the structural relaxation on the conductivity relaxation and possible

effect of the former on the latter is of interest in basic research as well as in

applications. Some general and interesting properties of the two relaxation processes

are brought out in this chapter. The challenge to theory is the explanation of not only

the properties of the conductivity relaxation but also the structural relaxation, and their

relations. As it turns out, the properties of the two relaxation processes are similar, in

dynamic properties indicating that they stem from some common physics that bridge

the two fields. Proposed specifically for ionic conductivity relaxation and diffusion,

some theory or model may run into difficulty in adapting it to explain the similar

property of structural relaxation and viscosity of glass-formers. This problem casts

doubt on the physics of the theory because it is common to the two fields, and should

be easy to adapt it to address the other field. Therefore it is beneficial for those engaged

in research of ionic conductivity relaxation and particularly in ionic liquids to be aware

of the wealth of properties of glass-forming systems and the explanations.

The purpose of the following sections is to bring out the general and fundamental

properties of ion dynamics that should have great impact on the two research fields.

The similarity of the properties in the two fields are made clear by presenting each

found in the non-ionic glass-formers to be followed immediately by the same in

ionic conductivity relaxation.

© Springer International Publishing Switzerland 2017
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7.2 Invariance of the Structural α-Dispersion to Various
Combinations of T and P with τα Kept Constant

Studies of changes of relaxation dynamics of glass-formers with temperature at

ambient pressure (0.1MPa) have traditionally been the way to study glass transition.

This practice is due largely to experimental convenience in varying temperature.

Most of the experimental data of structural α-relaxation in the literature are ambient

pressure measurements carried out at different temperatures. From the experimental

data, it is well established that the time dependence of the correlation function of the

α-relaxation is well described by the Kohlrausch function. Recently, the technique

of applying high pressure in various spectroscopy has been greatly improved. By

now, pressure from 0.1 MPa up to several GPa can be routinely employed as an

experimental variable in light scattering, neutron scattering and broadband dielectric

relaxation to probe the dynamics of the glass-formers. Consequently, experimental

measurements can be made at different combinations of P and T over wide ranges of

both variables. The specific volume V corresponding to any combination of P and

T can be inferred from P-V-T measurements made separately. Elevated pressure

increases τα, but the increase can be compensated by raising temperature. Hence,

various combinations of P and T can be chosen for which the α-loss peak frequency
να and the corresponding relaxation time τα are the same.

By examining the large amount of experimental data from combined pressure

P and temperature T studies of many different glassformers in various classes, an

important experimental fact has emerged since 2005 [1, 2]. At any chosen constant

value of the structural relaxation time τα or frequency να, the frequency dispersion

of the structural α-relaxation is invariant to different combinations of P and T. The
frequency dispersion of the α-relaxation usually is well fitted by the Fourier

transform of the Kohlrausch function, ϕ tð Þ ¼ exp � t=τα T;Pð Þ½ �1�n T;Pð Þ
n o

, hence

the general result can be restated as the invariance of the Kohlrausch exponent, 1-n
(T,P), to different combinations of P and T that keep τα(T,P) constant. In addition to
the large collection of glass-formers in the 2005 and 2006 publications, since then

many more glass-forming systems have been found showing this property. Some

combinations of T and P with contrasting values entail large differences in specific

volume V and entropy Swhich follows from the thermodynamic relation, ∂S=∂Pð ÞT
¼ ∂V=∂Tð ÞP [3]. Thus the frequency dispersion or n(T,P) at constant τα(T,P) is
independent of thermodynamic condition. In all the glass-formers having this

property, the intermolecular potential is unchanged on varying T and P. Glass-
formers with hydrogen bonds dominating the structure are excluded because high

temperature associated with high pressure breaks hydrogen bonds and alters the

structure and interaction.

Some examples of data published after the 2005 and 2006 papers [1, 2] are given

here to show this spectacular property continue to hold in more glass-formers

investigated up to date. The systems studied by dielectric spectroscopy at ambient

and elevated pressure are mixture of 25 wt% of 2-picoline with tri-styrene [4], and
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mixture of 10 wt% of quinaldine with tri-styrene [5]. Since the dipole moments of

picoline and quinaldine are much larger than tri-styrene, the observed spectra are

contributed effectively by the motions of picoline or quinaldine. Both picoline and

quinaldine are rigid molecules without any internal degree of freedom. In each

mixture, the shape of the α-loss peak of picoline or quinaldine is invariant to T and

P when τα is held constant. The invariance of the shape was found to hold for more

than one constant τα value. Examples of superposed spectra from the two mixtures

are shown in Figs. 7.1 and 7.2. In Fig. 7.3, the α-relaxation of the polar rigid

molecule benzonitrile with 10 wt% in mixture with polystyrene with molecular

weight of 370 show perfect superposition at all frequencies for several combina-

tions of P and T [6].

Moreover, the data show not only the dispersion of the α-loss peak, but also the

Johari-Goldstein (JG) β-relaxation time τJG(T,P) of picoline or quinaldine in the

mixtures are invariant to different combinations of T and P while keeping τα
constant, like the neat glass-former benzoin-isobutylether (BIBE) shown here in

Fig. 7.4.

The primitive relaxation time τ0 of the Coupling Model (CM) presented in

Chap. 4 is calculated from the CM equation,

τα T;Pð Þ ¼ tcð Þ�n T;Pð Þτ0 T;Pð Þ
h i1= 1�n T;Pð Þð Þ

; ð7:1Þ

Fig. 7.1 Comparison of

two spectra of 2-picoline in

25 wt% mixture with

tri-styrene having the same

α-relaxation frequency but

measured at different

thermodynamic conditions

(see labels in figure). The

open circles are obtained by

shifting the data at 0.1 MPa

vertically by a constant. The

arrow indicates that JG

β-relaxation frequency

remains practically

unchanged. Data from Ref.

[4] are replotted here
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with the values of τα(T,P) and n(T,P) determined by the Kohlrausch fit, and tc¼ 2 ps.

In all three figures, the calculated τ0(T,P) is in good agreement with τJG(T,P), which
is one of the predictions of the CM [7–10]. This means that τα, τ0 (or τJG), and the

frequency dispersion (or n) of picoline, quinaldine or benzonitrile in the mixtures

and BIBE are co-invariants to changes in T and P while keeping either τα or

τβ� τ0 constant, exactly as prescribed by the CM Eq. (7.1).

10-3 10-2 10-1 100 101 102 103 104 105 106 107

0.02

0.2

βKWW=0.5

ν [Hz]

ε''

10% wt.QN/3STyr

FWHM

0 100 200 300 400
220

240

260

280

T [K]

P [MPa]

τα(T)=0.7 sτα = 0.7 s

n0≈nJG

Fig. 7.2 T-P superposition of loss spectra for 10% QN in tristyrene measured for different T and

P combinations shown in the inset but the same τα¼ 0.67 s. The line is a Fourier transformed of the

Kohlrausch function with βKWW� (1-n)¼ 0.5. The results demonstrate the co-invariance of three

quantities, τα, n, and τJG, to widely different combinations of T and P. Data from Ref. [5] and

redrawn

Fig. 7.3 Superposition of

loss spectra for 10% BzNtr

in PS370 measured for

different T and

P combinations but the

same τα. Reproduced from

Ref. [61] by permission

314 7 Ionic Liquids: Physics Bridging Two Fields



7.3 Invariance of the Conductivity α-Dispersion of ILs
to Various Combinations of T and P with τσα Kept
Constant

In this section we shall show ionic conductivity α-relaxation in ionic liquids (ILs) in
general has its frequency dispersion invariant to variations of the T and P while

keeping the conductivity relaxation time, τσα, constant. This is the exact analogue of
the property of the structural α-relaxation in non-ionic glass-formers discussed in

the previous Sect. 7.2.

7.3.1 0.4Ca(NO3)2-0.6KNO3 (CKN)

We start with the T and P dependence of the conductivity relaxation in the

canonical ionic glass-former 0.4Ca(NO3)2-0.6KNO3 (CKN) [11] discussed in detail

before in Chap. 4 (see Figs. 4.3, 4.4, 4.5 and 4.6 therein). Measurements at ambient

pressure were presented in terms of frequency dependent complex electric modulus,

M*( f )¼M0( f )þ iM00( f ). The M00( f ) loss peak narrows on lowering temperature

or increasing τσα, towards Tg¼ 333� 2 K. The trend on lowering T (cooling) or

elevating pressure (squeezing) is reflected by the increase of βσ(T,P)� [1�nσ(T,
P)], acquired from fits of the spectra to the Fourier transform of the Kohlrausch

function, ϕσ tð Þ ¼ exp � t=τσα T;Pð Þ½ �1�nσ T;Pð Þ
n o

, as shown in Fig. 7.5. This plot

10-2 10-1 100 101 102 103 104 105 106

10-2

10-1

100

 P=1 bar,T=221 K
 P=1 bar,T=223 K 
 P=1 bar,T=226 K

 P=5165 bar, T=288 K
 P=4507 bar, T=288 K
 P=4234 bar, T=288 K
 P=3699 bar, T=288 K
 P=3502 bar, T=288 K
 P=3699 bar, T=278 K
 P=3202 bar, T=278 K 
 P=4666 bar, T=298 K

BIBE

ε'
'

ν [Hz]

Fig. 7.4 T-P superposition of both α- and JG β-relaxation of benzoin-isobutylether (BIBE)

showing invariance of the ratio τJG/τα at constant τα for widely different combinations of P and

T. Note that when the 1 bar data are near coincident with the data at elevated pressures, the former

are hidden and cannot be seen
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shows that for any fixed τσα(T,P), the value of βσ(T,P) or nσ(T,P) is the same

independent of the different combinations of T and P. Examples are shown by the

superposition of theM00( f ) loss peaks at several fixed values of the peak frequency,
fσα(T,P), and the Kohlrausch fit with βσ¼ 0.77 for the two combinations of

T¼ 318 K and P¼ 0.1 MPa, and T¼ 353 K and P¼ 450 MPa. This general

property, shared by structural α-relaxation in non-ionic glass-formers and ion

conductivity relaxation in IL, is remarkable.

The secondary β-conductivity relaxation of CKN is not resolved but its presence

is suggested by the excess wing at higher frequencies than α-conductivity loss

peak frequency fσα(T,P). The CM relations for ionic conductivity relaxations are

given by

τσα ¼ tσcð Þ�nσ τσ0½ �1= 1�nσð Þ
; ð7:2Þ

and

τσ0 � τσβ ð7:3Þ

where τσ0 and τσβ are respectively the primitive and secondary conductivity relax-

ation times. and tσc is typically about 1 ps [9, 10]. From Eq. (7.2) and relation (7.3),

it follows that

Fig. 7.5 Plot of βσ versus logτσα. Circles and squares are obtained from fitting the isobaric and

isothermal M00( f ) loss peaks in Fig. 7.1a, b, respectively. The inset presents the comparison of

dielectric spectra recorded at different temperature and pressure conditions and at the same

conductivity relaxation time. Solid red line is the fit to the KWW function with β¼ 0.77
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logτσα � logτσ0½ � ¼ nσ
1� nσ

� �
log

tσc
τσ0

� �
� logτσα � logτσβ

� � ð7:4Þ

The coupling parameter nσ¼ (1�βσ)¼ 0.23 of CKN from the fit in the inset of

Fig. 7.5 is small. Hence the separation between α- and the β-relaxation times on the

log-scale, logτσα�logτσβ, from Eq. (7.4) is not large. The primitive frequency,

fσ0¼ 1/(2πτσ0), with τσ0 calculated by Eq. (7.2) is indicated by the arrow in the

upper panel of Fig. 7.6. The proximity of fσ0 to fσα is the reason why the β-conduc-
tivity relaxation is not resolved and instead showing up as an excess wing. Never-

theless, the entire frequency dispersion, including the α-conductivity loss peak and

the excess wing representing the unresolved β-conductivity relaxation, superpose

perfectly. This fact suggests that τσα, τσ0 (or τσβ), and the frequency dispersion (or nσ)
of CKN are co-invariants to changes in T and P while keeping either τσα or

τσβ� τσ0 constant, exactly as predicted by the by the CMEq. (7.2) and relation (7.3).

Fig. 7.6 M00( f ) spectra of
CKN (panel a) and ε00( f )
spectra of KDE (panel b)
recorded at different

temperature and pressure

conditions while

maintaining the relaxation

time constant. A small

horizontal shift of 0.05

decade to lower frequencies

of the ε00( f ) data is applied
to have its maximum at the

same frequency asM00( f ) of
CKN. Solid lines are the fits
to the KWW function with

βσ and βα¼ 0.77. The arrow
indicates the primitive

relaxation frequencies, fσ0
and fα0 calculated by

Coupling Model
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Analogue of the conductivity relaxation in CKN can be found from the structural

α-relaxation ofmany non-ionic glass-formers. The lower panel of Fig. 7.6 presents the

structural α-relaxation of the non-ionic glass-former, cresolphthalein-dimethylether

(KDE), which has almost the same frequency dispersion of its dielectric loss, ε00( f ) as
that ofM00( f ) of CKN, i.e. nσ¼ nα¼ 0.23. Data of ε00( f )/ε00max from KDE were taken

at two combinations of T and P, (T¼ 325 K and P¼ 0.1 MPa) and (T¼ 363 K and

P¼ 137 MPa). The primitive f0¼ 1/(2πτ0) of KDE indicated by the arrow is also too

close to the peak frequency, and hence the β-relaxation is not resolved. LikeM00( f ) of
CKN, the frequency dispersion of ε00( f ) is the same for two different combination of

T and P, including the α-loss peak and the excess wing of KDE.
Presented in Fig. 7.7 are the isothermal and isobaric τσ of CKN. The change of

τσ in T-dependence isobarically seen in the left panel is due to crossing the

glass transition temperature Tg at P¼ 0.1 MPa. The data and the change are the

same as that found by Howell et al. [12] in CKN reproduced in Fig. 7.8.

The change of τσ in P-dependence in the right panel is due to it crossing the

glass transition pressure Pg at constant temperature of 353 K. The broken line

indicates that τσ has the same value at the two ways of reaching glass transition,

and the frequency dispersion is the same or nσ has the same value. The ratio, τα/τσα
is the same at Tg and Pg, independent of whether glass transition occurs

isobarically or isothermally. This indicates that the decoupling of the conductivity

relaxation from the structural relaxation, discussed in Chap. 4, is also independent

of thermodynamic factors, and is determined by nσ.

Fig. 7.7 Isobaric and isothermal dielectric measurements of conductivity relaxation time of CKN.

The ratio, τα/τσ is the same at Tg and Pg, independent of whether glass transition occurs

isobarically or isothermally. Data from Ref. [11] replotted
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7.3.2 Narrowing of the Conductivity Relaxation Dispersion
of CKN on Decoupling: An Observation Challenging
for Explanation

In most glass-forming ionic conductors including CKN [12, 13], CdF2-LiF-AlF3-

PbF2 (CLAP) [14], and the room temperature ionic liquid, 1-butyl-3-

methylimidazolium hexafluorophosphate (BMIM-HFP) [15–17], ion conduction

or diffusion involves either the most mobile ionic part, while the structural

α-relaxation involves the motion of all parts of the structural units. More generally,

the translation of ions and structural α-relaxation are different modes of relaxation.

For these reasons, the correlation function of ionic conductivity can be different

from that of the structural α-relaxation. Due to this difference, the ion-ion interaction
and correlation is less effective in slowing down the ionic conductivity relaxation

than the molecular-molecular interaction and correlation in slowing down the

structural α-relaxation. In the context of the Coupling Model (CM), the difference

means that the coupling parameter nσ of conductivity relaxation is smaller than n of
structural relaxation. Two CM equations govern the structural relaxation time, τα,
and the conductivity relaxation time, τσα, which are Eqs. (7.1) and (7.2) respectively.
If n>nσ, the two relaxations are decoupled, and τσα has a weaker temperature

dependence than τα. On the other hand, if the two are fully coupled, then n¼ nσ
and τσα¼ τα.

Phenomenologically, in CKN and the other glass-forming ionic conductors, the

decoupling of conductivity relaxation from structural relaxation starts in the
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equilibrium liquid state when temperature falls below Ti (see the right panel of

Fig. 7.8). At temperatures above Ti, Rτ(T )�<τα(T)>/<τσα(T )>¼ 0 since

<τα(T )> and <τσα(T )> are equal, and structural and conductivity relaxations are

essentially the same process, and hence τσ0(T)¼ τ0(T ) and nσ(T )¼ n(T). In other

words, the two are fully coupled together to appear as one and the same process. As

temperature decreases below Ti, there is separation of <τσα(T )> from <τα(T )>.

The decoupling of the conductivity relaxation is caused by nσ(T) to start falling

below n(T ). Further decrease in temperature leads to monotonic decrease of nσ(T).
This continues until Rτ(T ) becomes large enough for complete decoupling of the

conductivity relaxation from the structural relaxation. At this point and beyond, the

values of nσ and τσ0 in Eq. (7.2) are for the optimally decoupled conductivity

relaxation. This is a possible explanation of the narrowing of the α-conductivity
relaxation dispersion on increasing decoupling. The idea was sketched out in a

paper published many years ago [18, 19]. The data of CKN from Howell et al. [12]

was used to demonstrate the decrease of nσ(T ) with increasing decoupling on

decreasing temperature, and how it determines τσα(T ) according to Eq. (7.2). As

shown for temperatures below Tg in the left panel of Fig. 7.8, nσ(T ) is constant

while the temperature dependence of τσα(T ) is Arrhenius. By applying Eq. (7.2), the
Arrhenius temperature dependence of τσ0(T) is determined. Assuming that this

Arrhenius dependence of τσ0(T ) holds above Tg, applying once more Eq. (7.4)

with the values of nσ(T ), we have calculated τσα(T ). The results are in agreement

with the experimental data (see left panel of Fig. 7.8).

Hasz et al. [14] had reviewed the explanations given by others than that of the

CM of the narrowing of the α-conductivity relaxation dispersion on increasing

decoupling from structural relaxation in various systems, and found them not

capable to explain the experimental data including CKN. They also expressed

reservation on the explanation for CKN sketched out before by Ngai and Mundy

in Ref. [19], and elaborated here in the above. The main point made by Hasz et al. is

based on the comparison of the decoupling of CKN with that of CdF2-LiF-AlF3-

PbF2 (CLAP) and alkali silicates. For CLAP melt, Rτ is 10
7.1 at Tg (¼277 �C) and

decreases with increasing temperature to a value of 105.2 at 325 �C. Hasz

et al. pointed out the similarity as well as difference between the decoupling

found in CLAP and CKN. The similarity is that Rτ exhibits the same type of

temperature dependence, and βσ decreases with increasing temperature. The dif-

ference is that Rτ in CLAP remains much greater than unity, and the electrical and

structural relaxation processes remain highly decoupled in the temperature range

where the CLAP melt βσ decreases with increasing temperature. In other words, in

CLAP, the conductivity relaxation remains highly decoupled and yet there is

broadening of the dispersion or βσ values decreasing with increasing temperature,

while in the CKNmelt the conductivity relaxation has gone from decoupled from to

fully coupled with the structural relaxation. What Hasz et al. forgot is to compare

the size of the change of the βσ values in CLAP and in CKN. In CLAP the change is

from 0.77 to 0.69. On the other hand, the change in CKN is from 0.74 to 0.52, which

is much larger. Also the corresponding change of the conductivity relaxation time,

τσα, from one limiting value to another is much larger in CKN than in CLAP
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according to Eq. (7.2). Hasz et al. also considered the alkali silicate melt above Tg as
an even more extreme case than CLAP because of larger Rτ. However the βσ values
they used to show the decrease with increasing temperature for the melt near Tg
were obtained by very long extrapolation of data taken deep in the glassy state [20],

and hence the conclusion cannot be considered as definitive or valid.

After the publication of the paper by Hasz et al., Moynihan [21] reexamined the

problem of decoupling. He proposed a dynamic heterogeneity model for structural

relaxation in glassforming liquids which assumes that the non-exponential structural

relaxation kinetics are due to a distribution of independently relaxing nanoregions

which relax at different rates. From the model, he gave an estimate of the contribu-

tion of microscopic heterogeneity to the non-exponentiality of the conductivity

relaxation in ionically conducting glasses. For ionically conducting inorganic

glasses with large Rτ near Tg such as the alkali silicate glasses, the microscopic

heterogeneity makes at best a very minor contribution to the non-exponentiality of

the electrical relaxation. From this he concluded that the source of this

non-exponentiality is primarily correlations among the mobile ions, which is con-

sistent with the CM applied to ionic conductors in general [10, 22, 23]. However for

CKN, his result indicates that microscopic heterogeneity should make increasing

contributions to non-exponential electrical relaxation in melts as the temperature is

increased above Tg, in accord with the decrease of βσ. It should be noted that

heterogeneous dynamics is consistent with the CM as made clear in Refs. [24, 25],

although this property is not emphasized when Eqs. (7.1) and (7.2) are employed.

Thus the two approaches, one by Moynihan and the other by the CM, can be

considered to be closely related, as expressed by Moynihan in the statement “It

should be noted that this account of the temperature dependence of βσ for the CKN
melt is not phenomenologically inconsistent with that proposed earlier by Ngai and

Mundy”, and “The main difference between the treatment of Ngai and Mundy and

that suggested in the present manuscript is the assumption made here that micro-

scopic heterogeneity continues to be a prime contributor to non-exponential struc-

tural relaxation in very fluid melts at high temperatures.”.

The ambient pressure data of CKN in Fig. 7.7 are within errors the same as found

earlier by Howell et al. [12]. The glass-liquid transition temperature Tg is around
60 �C. The M00 vs frequency data at a number of temperatures from 25.3 to 93.2� C
are well accounted for at each temperature by Fourier transform of a Kohlrausch

function. As mentioned above, the frequency dispersion narrows on cooling from

93.2� C down to Tg, but becomes constant at temperatures below Tg. This trend is

represented by the temperature dependence of nσ(T) in Fig. 7.8 where [1-nσ(T )]
is the fractional exponent of the Kohlrausch function,

ϕσ tð Þ ¼ exp � t=τσα Tð Þ½ �1�nσ Tð Þ
n o

, used to fit the dispersion. Plotted in the left

panel of Fig. 7.8 are the conductivity relaxation times, τσα(T ), from the fits. The

change from Arrhenius T-dependence of τσα(T ) in the glassy state to a stronger

temperature dependence in the liquid state is apparently correlated with the change

of nσ(T) from the constant and small value of 0.26 in the glassy state to a

monotonically increasing function of T above Tg. According to the CM Eq. (7.2),
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this T-dependence of nσ(T ) can contribute to the T-dependence of τσα(T ), as

discussed in Ref. [18].

7.3.3 Analogy from the IL, 1-Butyl-3-Methylimidazolium
Hexafluorophosphate (BMIM-PF6)

The decoupling of the conductivity relaxation from the structural relaxation in CKN

and CLAP in the liquid state was found also in the supercooled liquid state of the

room temperature IL, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-

PF6), by Ito and Richert [15], and the data analyzed by the CM [17]. The conduc-

tivity relaxation time, τσα(T ), determined from the Kohlrausch fits ofM00( f ) (shown
by one example in the inset) are shown in Fig. 7.9. The Kohlrausch exponent

βσ¼ (1�nσ) is equal to 0.60 or nσ¼ 0.40.

The structural relaxation times were deduced from the response of BMIM-PF6 in

the solvation of the solute molecule Quinoxaline (QX) at a probe level concentra-

tion of around 10�4 mol/mol. The solvation dynamics monitored as a function of

time and the result was fit by the Kohlrausch function, C tð Þ ¼ exp � t=τsolð Þβsol
h i

,

The characteristic solvation time, τsol, was obtained for 15 different temperatures

between 194 and 205 K. The exponent, βsol, is temperature independent and equal

to 0.30� 0.03, or nsol� (1�βsol)¼ 0.70� 0.03. The rotational motion of the probe

molecule QX in BMIM-PF6 also was measured. The orientational correlation

function of the probe molecule, r(t), was fit by the Kohlrausch function,

r tð Þ ¼ r t ¼ 0ð Þexp � t=τrotð Þβrot
h i

, with βrot temperature independent and equal to

0.37� 0.05, or nrot� (1�βrot)¼ 0.63� 0.05. Thus, within experimental error, nsol
and nrot are about the same. Plotted against reciprocal temperature, Fig. 7.9 shows

that τsol and τrot are nearly the same, indicating that both are good estimates of the

structural relaxation time of the BMIM-PF6. The decoupling of τσα(T ) from τsol and
τrot is evident by inspection of Fig. 7.9. Moreover, nsol and nrot are larger than

nσ¼ 0.40. Thus the characteristics of the decoupling in BMIM-PF6 is the analogue

of that found in CKN, and explained in the same way by the CM equations (7.1) and

(7.2) through the difference in the coupling parameters of structural relaxation and

conductivity relaxation [17].

The decoupling of conductivity relaxation from structural relaxation in ionic

conductors is similar to the decoupling of self-diffusion coefficient D from rota-

tional relaxation time τc or viscosity η of non-ionic glass-formers. In fact, in BMIM-

PF6 τσα(T ) follows a fractional Stokes-Einstein law, τσα(T) / η0.73/T, similar to the

relation between self-diffusion coefficient D and viscosity, D/T/ηξ with ξ<1,

observed in many non-ionic glass-formers. The latter is commonly referred to as

breakdown of Stokes-Einstein (SE) relation or Debye-Stokes-Einstein (DSE) rela-

tion, i.e. the products Dη and Dτc increase as the temperature is lowered towards Tg.
This was seen in 1,3-bis-(1-naphthyl)-5-(2-naphthyl)benzene (TNB), ortho-
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terphenyl, sucrose benzoate and other glass-formers [26–32]. For a long time,

explanation of the breakdown of the SE and DSE relations was based on spatial

and dynamic heterogeneity of the structural α-relaxation. By now it is recognized

[33] that this explanation is contradicted by other experiments and hence is defunct.

On the other hand, the CM explanation based on the coupling parameter of

diffusion, nD, being smaller than that of viscosity, nrot, continues to hold [31, 32],

Fig. 7.9 Temperature dependence of various measured and calculated relaxation times of BMIM-

HFP. Solid circles are the electric loss modulus peak time constants τσα measured by Ito and

Richert [15], and the plus signs are the τσα values from them, the dotted line is a VFTH fit to τσα(T ).
Open circles show the solvation times (τsol) based on QX, crosses represent the probe rotation

times τrot(T ) for QX in BMIM-HFP. Solid triangle represents logarithm of viscosity, log(η/P),
after 10.3 has been subtracted from it to match the log(τ/s) scale. The inset are the electric loss

modulus data at 182, 188, 190, and 192 K of Ref. [17] The dashed line is the fit to the Fourier

transform of the Kohlrausch function with nσ¼ 0.40. The calculated primitive frequencies fσ0 at
the four temperatures are indicated by the arrows. Apparently, the nearly constant loss is present at
higher frequencies than fσ0
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and more generally when comparing different dynamic variable with different

correlation functions [34]. The physics behind this explanation is fundamentally

the same as for the decoupling of conductivity relaxation from structural relaxation

in CKN and BMIM-PF6 discussed in Sect. 7.3.2 and 7.3.3, as well as the explana-

tion of the difference of ion dynamics in glassy ionic conductors probed by

conductivity relaxation and NMR in Chap. 5. The correlation function of ion

dynamics probed by NMR is conducive to enhanced ion-ion correlation than

conductive relaxation, leading to the coupling parameter of NMR, nNMR, being

larger than nσ. The primitive relaxation time and its activation energy is the same

for NMR and conductivity. This together with the CM equation for NMR

τNMRα ¼ tσcð Þ�nNMRτNMR0½ �1= 1�nσNMRð Þ
and the companion Eq. (7.2) for conductivity

relaxation, the difference between τσα and τNMRα found by experiments [35–40] and

simulations [41, 42] was explained [42–45].

The ability of the CM to explain with the same physics the decoupling phenom-

ena between different processes and in diverse systems is worth notice.

7.3.4 1-Butyl-1-Methylpyrrolidinium Bis[Oxalato]Borate
(BMP-BOB)

Dielectric relaxation measurements were reported on the ionic liquid, 1-butyl-1-

methylpyrrolidinium bis[oxalato]borate (BMP-BOB), over wide temperature

(123–300 K) and pressure ranges (0.1–500 MPa) [46]. The measured complex

dielectric susceptibility ε*(ν) was presented in terms of the electric modulus M*

Fig. 7.10 (Left) Electric modulus relaxation spectra (M00) of the ionic liquid BMP-BOB at

ambient pressure and 231 and 245 K are plotted as solid lines. High pressure M00 data (0.5 GPa)

at the temperatures that yield relaxation times similar to those of the ambient pressure data,

283 and 308 K, are included in the figure as squares. Data at 0.5 GPa data are slightly shifted in

frequency to match perfectly the atmospheric peak frequencies. Long and short dashed lines are

fits to a Kohlrausch relaxation function with β� (1-n)¼ 0.56 and 0.50, respectively. (Right) The
figure shows the co-invariance of β and the relaxation time at different temperatures and at

atmospheric pressure and at elevated pressure of 0.5 GPa. Data from Ref. [46] are replotted here
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(ν)¼ 1/ε*(ν). The frequency dependence of the imaginary part of M*(ν), M00(ν), is
shown in the left panel of Fig. 7.10. Data at ambient pressure were taken at 231 and

245 K. At the high pressure of 0.5 GPa, the M00 data were taken at 283 and 308 K,

which were chosen such that the loss peak frequencies fσα match those at ambient

pressure. The prominent loss peak comes from the conductivity α-relaxation.
Shown by the dashed lines are fits to the frequency dispersions by the Fourier

transforms of the Kohlrausch functions. The loss peak observed at high frequencies

does not shift much with temperature and its intensity is suppressed by pressure. It

is not the conductivity β-relaxation and comes from some intramolecular relaxa-

tion. The conductivity β-relaxation of BMP-BOB is not resolved, and appear as the

excess wing loss over and above that the Kohlrausch fit in the left panel of Fig. 7.10.

Dielectric study of another IL, BMIM-BMSF [16, 47], at ambient pressure have

found two secondary relaxations, with the slower secondary relaxation proposed as

the JG β-conductivity relaxation. The authors of Refs. [16, 47] made this conclusion

based on its relaxation time having an activation energy Ea¼ 24RTg obeyed by JG

β-relaxation in some non-ionically conducting glass-formers. However this crite-

rion for JG β-relaxation is loose because it has been shown that non-JG β-relaxation
in some glass-formers also obey the relation Ea¼ 24RTg, and there is a large spread
in the ratio of Ea/RTg for genuine JG β-relaxations [48]. The critical test was made

by applying pressure to BMIM-BMSF, and it was found that the purported JG

β-relaxation does not shift in frequency on elevating pressure, and thus the resolved
secondary relaxations of BMIM-BMSF have nothing to do with the β-conductivity
relaxation, which is not resolved.

The width of the frequency dispersion of the α-loss peak broadens with increase

of τσα on lowering temperature or by elevating pressure. Remarkably, at constant

fσα or τσα, its shape is the same whether the pressure is 0.1 or 500 MPa, as

demonstrated in Fig. 7.10. The trend on lowering T or elevating P is reflected by

the decrease of βσ(T,P)� [1-nσ(T,P)] with increase of τσα as shown in the right

panel of Fig. 7.10. Within experimental errors, the values of βσ(T,P) at constant τσα
are the same whether at 0.1 or 500 MPa.

7.3.5 1-Hexyl-3-Methylimidazolium Chloride

The invariance of the shape of the M00(ν) loss peak to P and T combinations that

maintain τα constant was also found in another room temperature ionic liquid,

1-hexyl-3-methylimidazolium chloride (or bromide), by M. Mierzwa

(unpublished). The data shown in Fig. 7.9 were not published due to some technical

difficulty that cannot determine exactly the value of the applied pressure, and hence

the values of pressure given in Fig. 7.11 may not be the actual applied ones.

Nevertheless, the data are adequate for demonstrating the invariance of the fre-

quency dispersion of the conductivity α-relaxation to changes of T and P at constant

fσα or τσα in 1-hexyl-3-methylimidazolium chloride.
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7.3.6 1-Methyl-3-Trimethylsilylmethylimidazolium
Tetrafluoroborate ([Si-MIm][BF4])

The conductivity relaxation dynamics of room temperature ionic liquid, 1-methyl-

3-trimethylsilylmethylimidazolium tetrafluoroborate ([Si-MIm][BF4]), have been

studied by broadband conductivity relaxation measurements at ambient pressure

and elevated pressures up to 600 MPa by Jarosz et al. [49] For the first time, several

novel features of the dynamics have been found in a room temperature ionic liquid.

Data of conductivity relaxation in most ionic conductors when represented by the

electric loss modulus, usually a single conductivity α-loss peak is observed in the

electric modulus loss M00( f ) spectra. However, in [Si-MIm][BF4] found addition-

ally is another well resolved loss peak at higher frequencies at ambient pressure as

shown in Fig. 7.12, analogous to the presence of the Johari-Goldstein (JG) -

β-relaxation accompanying the structural α-relaxation in many non-ionic glass-

formers. The analogy of the β-conductivity relaxation in [Si-MIm][BF4] with JG

β-relaxation in non-ionic glass-formers goes further by the finding that its β-
conductivity relaxation time τβ shifts on applying pressure in concert with the

relaxation time τα of the primary α-conductivity relaxation. The measurements

were made at fixed T¼ 253 K and varying pressure, starting at the ambient pressure

of 0.1 MPa and increasing up to 600 MPa (see Fig. 7.11). Naturally the analogy

leads to the naming of the slower and faster processes resolved in [Si-MIm][BF4] as

the primary conductivity α-relaxation and the secondary β-conductivity relaxation

respectively. The fits to the frequency dependence of the conductivity α-loss peak
can be found at two temperatures in Fig. 7.12 and two pressures in Fig. 7.13,

whereby the Kohlrausch exponent, βσ� 1�nσ¼ 0.57 is determined. Utilizing the

CM Eqs. 7.2–7.4, the primitive relaxation frequency, fσ0(T ), were calculated.

Fig. 7.11 Invariance of the

shape of the electric

modulus M00(ν) loss peak to

P and T combinations that

maintain τα constant in the

room temperature ionic

liquid, 1-hexyl-3-

methylimidazolium

bromide. Courtesy of

M. Mierzwa
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The arrows in Figs. 7.12 and 7.13 indicate the locations of the logarithm of logfσ0.
The agreement of logfσ0 with the most probable β-conductivity relaxation frequen-

cies within a factor of about 2, and thus validates the prediction of the CM on the

evolution of ion dynamics from caged ions to the primitive or β-conductivity
relaxation, and finally to the α-conductivity relaxation and d.c. conductivity. It

further proves that the β-conductivity relaxation is the precursor of the α-conduc-
tivity relaxation, and the two are inseparable when considering the dynamics of

ions. The spectrum taken at 600 MPa (closed inverted triangles) in Fig. 7.13 is in the

glassy state. On aging the sample after 12 h while keeping pressure at 600 MPa and

T¼ 253 K, the entire data (closed inverted triangles) shifts to lower frequencies

(open inverted triangles). The shifts are not uniform, higher the frequency lesser is

the shift. The shift of the β-conductivity relaxation on aging is indication that it is

sensitive to density, and like the α-relaxation.
TheM00( f ) loss peak at ambient pressure in Fig. 7.12 and at elevated pressure in

Fig. 7.13 do not have exactly the same height. For comparison of the frequency
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Fig. 7.12 Imaginary part of the complex electric modulus, M00( f ), of [Si-MIm][BF4] versus

frequency at ambient pressure and temperatures in the range 243–173 K, spanning across Tg.
The spectra were measured at interval of 5 K each. The data represented by symbols range from
243 to 213 K. Data from 208 to 173 K are not shown by symbols for otherwise they overlap and the

features cannot be clearly discerned. To avoid this undesirable situation, the data are interpolated

by black lines to show the shift of the secondary β-conductivity relaxation on decreasing temper-

ature. The red lines are fits to the slower primary α-conductivity relaxation loss peak at two

temperatures by the Fourier transform of the Kohlrausch function. The secondary β-conductivity
relaxation are resolved above and below Tg. The arrows indicate the locations of the logarithm of

the primitive conductivity relaxation frequencies, logf0, which are in agreement with the most

probable β-conductivity relaxation frequencies within a factor of about 2. This figure has been

shown before in Chap. 4 to emphasize the utility of the electric modulus
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dispersion of the α-relaxation at P¼ 0.1 MPa and T¼ 213 K with that at

P¼ 600 MPa and T¼ 253 K, we normalize both spectra by the maximum loss,

and the normalized spectra are shown in Fig. 7.14. There is a small difference in the

frequencies of the loss maxima in the two spectra, and hence the relaxation times τα
are not exactly the same. Ignoring this small difference in τα, it can be seen from the

data and the fits by the KWW function with the same exponent, (1�n), in Fig. 7.14
that the frequency dispersion of the α-conductivity relaxation is the same for these

two combinations of P and T. Both are well fitted by the Fourier transform of the

stretched exponential correlation function with the same n¼ 0.43. Furthermore, the

resolved secondary relaxation remains at the same location, and hence τβ is

practically unchanged. Hence, the properties observed can be summarily stated as

co-invariance of the three characteristic quantities, τσα, τσβ, and nσ, to changes in

pressure and temperature.

Also shown in Fig. 7.14 is the α-loss peak at ambient pressure of 0.1 MPa and

T¼ 253 K. There is shift of more than 7 decades of τα on elevating ambient pressure

to 600 MPa at T¼ 253 K. Since the JG β-conductivity relaxation is located at higher
frequencies than the α-loss peak at P¼ 0.1 MPa and T¼ 253 K, we can infer there is

a shift of more than 2.5 decades of τβ on elevating pressure from 0.1 to 600 MPa.

Fig. 7.13 Imaginary part of the complex electric modulus, M00( f ), of [Si-MIm][BF4] versus

frequency at fixed T¼ 253 K and variable pressure, starting at the ambient pressure of 0.1 MPa

on the far right (open circles) and at elevated pressures from 100 (open diamonds) to 600 MPa

(closed inverted triangles) with increment of 100 MPa each in going from right to left. The open
inverted triangles are the data at 600 MPa and T¼ 253 K after aging the sample for 12 h while

keeping pressure temperature constant. The arrows indicate the locations of the logarithm of the

primitive conductivity relaxation frequencies, logf0, which are in agreement with the most

probable β-conductivity relaxation frequencies within a factor of about 2
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This estimate demonstrates the high sensitivity of τβ to pressure. The inset in

Fig. 7.14 shows the co-invariance of τα, τβ, and n holds at two other situations

with different values of these parameters, and thus the co-invariance is general.

7.3.7 Caged Ion Dynamics in Ionic Liquids

The β-conductivity relaxation of [Si-MIm][BF4] continues to be observed at temper-

atures below Tg as shown by a few examples in Figs. 7.12 and 7.13. ItsM00( f ) spectra
at temperatures within the range 163�T�123 K and deep into the glassy state in

Fig. 7.13 show the β-loss peak gives way at higher frequencies to the power law

dependence of M00( f )/ ( f )-0.1. This feature at higher frequencies of the loss, is
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Fig. 7.14 Normalized M00( f ) spectra at different combinations of P and T to show co-invariance

of τα, τβ, and n at constant τα. Red open triangles (P¼ 600 MPa, T¼ 253 K). Blue circles
(P¼ 0.1 MPa, T¼ 213 K). Green open squares (P¼ 0.1 MPa, T¼ 253 K). Blue and red lines
are fits by Fourier transform of stretched exponential correlation function given by Eq. (7.2) with

n¼ 0.43. The inset show co-invariance at two more constant values of τα. Blue triangles are data at
ambient pressure and T¼ 218 and 208 K from right to left. Red filled circles are data at constant
T¼ 253 K and P¼ 300 and 500 MPa from right to left. There is not a perfect match of the peak

frequency of data taken at T¼ 218 K and P¼ 0.1 MPa with that taken at T¼ 253 K and

P¼ 300 MPa. The comparison is made by shifting the ambient pressure data to higher frequencies

by a factor of 1.5. Note that the width of the α-conductivity relaxation loss peak increases slightly

on increasing τα towards glass transition. The arrows indicate the locations of the logarithm of the

primitive conductivity relaxation frequencies, logf0, which are in agreement with the most

probable β-conductivity relaxation frequencies within a factor of about 2
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appropriately called the nearly constant loss (NCL) because of the small exponent in

the power law, and is commonly observed in many glass-formers, and ionic conduc-

tors [9, 50] of different types. The NCL of procainamide HCl was shown before in

Figs. 4.8 and 4.10 of Chap. 4. It is the manifestation in susceptibility of caged ions at

times before the onset of the primitive or the β-conductivity relaxation. Its properties,
fundamental importance, and relation to the β-conductivity relaxation have been

discussed in detail in Chap. 4.

Finding the NCL from conductivity relaxation in [Si-MIm][BF4] is particularly

rewarding because the β-conductivity relaxation is resolved, and thus the termina-

tion of the NCL by the onset of the β-conductivity relaxation predicted by the

Coupling Model can be checked. This property is clearly observed as shown in

Fig. 7.15, and hence the prediction is directly verified. The NCL was found in other

ILs including BMIM-PF6 [16] (see Fig. 7.9 inset), and in 1-alkyl-3-

methylimidazolium ionic liquids, (EMIm)2[Co(NCS)4] and (BMIm)2[Co

(NCS)4] [51].

7.3.8 Protic Ionic Liquids

In Chap. 4, the isothermal electric loss modulus M00( f ) and σ0( f ) spectra of the

protic ionic liquid, procainamide HCl, at ambient pressure were shown in Figs. 4.9

10-2 100 102 104 106

10-3

Isobar at 0.1 MPa

frequency [Hz]

M
''

slope=0.1

Fig. 7.15 Imaginary part of the complex electric modulus, M00( f ), of [Si-MIm][BF4] versus

frequency at ambient pressure and constant temperature with temperature in the range 163–123 K,

way below Tg. The spectra, measured at every 5 K, show the presence of the slower and well resolved

secondary β-conductivity relaxation and the nearly constant loss (NCL) at higher frequencies
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and 4.10 therein as a demonstration of the advantage of M00( f ) in revealing the

presence of the β-conductivity relaxation, while the same data represented by σ0( f )
fail to do so. In Figs. 4.9 and 4.11 of Chap. 4, demonstrated is the good agreement

between the β-conductivity relaxation time, τσβ, and the primitive conductivity

relaxation time, τσ0, calculated by Eq. (7.2) with the nσ and τσα determined by the

Kohlrausch fit [52]. The agreement was also found in procaine HCl and lidocaine

HCl [53], and hence it is a general property.

Here we add the property of invariance of frequency dispersion of the

α-conductivity relaxation in procainamide HCl to different combinations of T and

P while keeping τσα constant. This feature is presented in Fig. 7.16. The β-conduc-
tivity relaxation shows up as a shoulder in this plot, and its shape does not seem to

change on varying T andP, suggesting that not only nσ but also the β-relaxation time,

τσβ, is also invariant, like in the case of [Si-MIm][BF4] shown in Fig. 7.14.

Fig. 7.16 Comparison of electric loss modulus spectra for different temperature and pressure

combinations at constant loss peak frequency of procainamide HCl. The secondary β-conductivity
relaxation is seen at higher frequencies. The solid line is the fit by the Fourier transform of the

KWW function with (1-n)¼ 0.64 to the main peak of the data (black circles) taken at 308 K and

0.1 MPa. The upper arrow indicates logf0 calculated by the CM equation with (1-n)¼ 0.64. The

main peak of the data taken at 323 and 160 K (blue open triangles) is slightly narrower, and the

best fit by the KWW function requires (1-n)¼ 0.66 (dashed line). The lower arrow indicates logf0
calculated by the CM equation with (1-n)¼ 0.66. The inset shows the chemical structure
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7.4 Thermodynamic (TVγ) Scaling of α-Relaxation Time
and Viscosity of Non-ionic Glass-Formers

We shall consider another general property of the dependence of the dynamics on

thermodynamic parameters, temperature T and specific volume V, which is shared

by non-ionic glass-formers and glass-forming ionic conductors. For the former,

the dynamics are the structural α-relaxation (or viscosity) and the primitive or

the JG β-relaxation, while for the latter the dynamics include the structural

α-relaxation (or viscosity), the conductivity α-relaxation and the conductivity

primitive/β-relaxation. This property of thermodynamic scaling of dynamics with

the product variable TVγ, or alternatively T/ργ, for non-ionic glass-formers is

introduced first.

If intermolecular potential V(r) for liquids is a repulsive inverse power potential
(IPP), U(r)¼ ε(σ/r)q where r is the intermolecular distance, q is a constant, and ε
and σ have respectively the dimensions of energy and length, it was shown by

Hoover et al. [54, 55] and Hiwatari et al. [56] that the canonical partition function

and hence also all thermodynamic properties depend on a single density-

temperature variable, ρ(ε/kT)1/γ with γ¼ q/3, rather on T and density ρ
(or volume V ) separately. If distance is scaled by ρ �1/3, and time scaled by the

characteristic time ρ �1/3(m/kT)1/2, Hoover and Ross pointed out that the scaled

equations of motion of the particles are simplified to show that the forces depend

only on the density-temperature product variable ρ(ε/kT)1/γ with γ¼ q/3. Hence, for
a fixed value of ρ(ε/kT)1/γ with γ¼ q/3, the dynamics variables of the system when

expressed in terms of the scale distance and time at any density or temperature are

the same. In other words, all dynamical quantities can be cast in the forms that

depend on the single combined variable ργ/T or alternatively T�1V�γ with γ¼ q/3
[56]. Experimentally, the dependence on ργ/T was demonstrated by the dynamic

structure factor of OTP from quasielastic neutron scattering (QENS) being invari-

ant when measured over several combinations of T and P, subject to the condition

that the quantity TVγ with γ¼ 4 remains constant by T€olle and coworkers [57].

Dynamic light scattering α-relaxation times for OTP, measured at various T and P,
were shown to superpose when plotted as a function of ρ4/T or 1/TV4 by Dreyfus

et al. [58] A related but different approach to examine temperature, density, and

pressure dependence of relaxation times in supercooled liquids was proposed by

Alba-Simionesco et al. in 2002 [59], and Tarjus et al. [60] The influence of density

on the α-relaxation time τα or the viscosity η is simply described via a single

parameter, an effective density-dependent interaction energy E1(ρ) characteristic
of the liquid in the high-temperature, short relaxation time, or low viscosity regime.

The scaling hypothesis is simplified by writing τα and η (represented by x) in the

following forms, log x ρ; Tð Þ½ � ¼ Ψ E1 ρð Þ=T½ �, where Ψ(x) is a material specific

scaling function. As explained in Ref. [61], thermodynamic scaling by E1(ρ)/T
can be considered as based on the primitive relaxation of the CM, which has

the E1(ρ) as activation energy at high temperatures/short relaxation times, as

discussed in Chap. 4.
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Casalini and Roland [62–65] investigated possible TVγ scaling of other

glassformers mainly by broadband dielectric spectroscopy, and their effort was

joined in by Alba-Simionesco et al. [66] Treating the exponent γ as a material-

specific constant, the α-relaxation times τα from different combinations of T and

P for various molecular and polymeric glass-formers can be expressed as a unique

function of ργ/T, with the exponent varying in the range 0.13� γ� 8.5. The scaling

of some of the glass-formers investigated [64, 65, 67] are shown in Fig. 7.17.

Here we show by experimental results that the JG β-relaxation time τJG also

depend on the variable T�1V-γ with the same γ as that of τα. Let us first consider the
small molecular glassformers that have narrow α-loss peak and an excess wing on

the high frequency flank (but otherwise no other resolved secondary relaxation in

their dielectric spectra). There are experimental evidences indicating that the excess

wing is an unresolved JG β-relaxation. The glassformer, phenylphthalein-

dimethylether (PDE) is an example with its τα obtained at different T and

P successfully scaled to become a function of ργ/T with γ¼ 4.4 as shown in

Fig. 7.18. The inset shows in the liquid state, the entire dispersion including the

α-loss peak and the excess wing or the unresolved JG β-relaxation is invariant to

various combinations of T and P at constant τα. This property immediately implies

that τJG must also be a function of ργ/T with the same γ.
Next we consider glass-formers that have a resolved JG β-relaxation in the liquid

state. Experimental data of these glass-formers (see Sect. 7.2 and Figs. 7.1, 7.2, 7.3

and 7.4) have shown that τJG is invariant to changes in T and Pwhile maintaining τα

Fig. 7.17 (Left) Dielectric α-relaxation times of molecular liquids as a function of the reciprocal

of temperature times the specific volume, with the latter raised to the indicated power of γ
[65]. (Right) Dielectric α-relaxation times of polymers as a function of the reciprocal of temper-

ature times the specific volume, with the latter raised to the indicated power of γ [62–64]. Data

from publications are collected together and replotted in the two figures here
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constant. Hence, for these glassformers, τJG must also be a function of ργ/T with the

same γ. Here we show the invariance of the co-invariance of τα and τJG in a different

way by Fig. 7.19a, b for diglycidyl ether of bisphenol-A, Mw¼ 380 g/mol, also

known as EPON 828. In Fig. 7.19c, the simultaneous scaling of τα and τJG to become

a function of ργ/T with γ¼ 3.5. It follows directly from Eq. (7.1) of the Couping

Model and the property that n is invariant to variations of T and P at constant τα that
the primitive relaxation time τ0 is a function of ρ

γ/Twith the same γ as τα. The figure
also displays the values of the primitive relaxation times τ0(ρ

γ/T) at several state
points calculated by the Coupling Model Eq. (7.1) with the stretch exponent

βK� (1�n)¼ 0.52 obtained by fitting the frequency dispersion of the α-relaxation
by the Fourier transform of the Kohlrausch function. The CM relation, τ0 � τJG, is
also verified.

Written by their dependence on ργ/T with the same γ, the CM relations between

τα and τ0� τJG become

τα
ϱγ

T

� �
¼ t�n

c τ0
ϱγ

T

� �� �1= 1�nð Þ
� t�n

c τJG
ϱγ

T

� �� �1= 1�nð Þ
ð7:5Þ

This is a CM prediction that both τα and τJG (or τ0) depend on the same variable T�1

V-γ, but their dependences are different and related by the equation above.
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Fig. 7.18 Shown in the inset is perfect superpositioning of the dielectric loss spectra of a van der

Waals glass-former, PDE, at different combinations of P and T for two given values of constant τα.
Consequently, ργ/T-scaling of τα holds as shown in the main figure
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Fig. 7.19 Logarithm of characteristic time of dielectric loss maximum of DGEBA (diglycidyl

ether of bisphenol-A, Mw¼ 380 g/mol, also known as EPON 828) for α-relaxation and

JG-relaxation in isobaric condition versus reciprocal temperature (a), in isothermal condition

versus pressure (b), and an overall plot of the same data versus ργ/T (c). When not shown, error

bars are smaller than symbol size. Black asterisks in panel (c) indicates the values for log10(τ0) at
several state points calculated by the Coupling Model Eq. (7.1) with the stretch exponent

βK� (1�n)¼ 0.52 obtained by fitting the frequency dispersion of the α-relaxation by the Fourier

transform of the Kohlrausch function. Density data in the glassy state have been extrapolated from

the values of glass compressibility and expansivity
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7.4.1 Causality Implies the ργ/T-Dependence Originates
from That of the Primitive or JG β-Relaxation

The experimental evidences given above have clearly shown that τJG (or τ0) depend
on the same variable ργ/T as τα. From this and the fact that the JG β-relaxation or the
primitive relaxation have transpired long before the α-relaxation, it follows from
the principle of causality that the dependence of τα on the variable ργ/T originates

from the same of τJG (or τ0).

7.4.2 No Correlation Between γ and the Characteristics
(n,mP, ξhet) of the α-Relaxation: Another Support of Its
ργ/T-Dependence Originating from That of τ0 or τJG

The discussions in the above summarized by Eq. (7.5) suggest that the ργ/T-
dependence originates from that of τ0 or τJG, and the stronger dependence of τα
on ργ/T is due to the slowing down of the α-relaxation by the many-body effects.

In the context of the CM, τα(ρ
γ/T) is obtained from τ0(ρ

γ/T) in Eq. (7.5) by

raising the τ0(ρ
γ/T)-dependence to the superlinear power of 1/(1-n), i.e. τα(ρ

γ/T)
/ [τ0(ρ

γ/T)]1/(1-n). From this relation, it is clear that the nonexponentiality index n of
the α-relaxation and γ are independent parameters and they bear no obvious

correlation with each other. This relation also indicates that the isobaric fragility

index mP (say at ambient pressure) of the α-relaxation is determined by both n and

γ, and therefore like n, mP bears no correlation with γ.
The values of γ and mP of many glassformers have been given in Tables 2 and

3 in Ref. [67]. In some glassformers, different values from more than one source are

given. We use exclusively the data from Ref. [67], and by Alba-Simionesco

et al. [66], and whenever there is a choice between the two we take the data from

the works of Casalini, Paluch, and Roland [62–65, 67] for the sake of consistency

with the results from the same group of collaborators. Added are new dielectric data

of vitamin E (γ¼ 3.9, n¼ 0.35, mP¼ 63, mV¼ 41.6) [68], diphenyl-vinylene car-

bonate (DPVC) (γ¼ 3.3, n¼ 0.29, mP¼ 92, mV¼ 61) [69], heptapropylene glycol

dimethylether (7PGDE) (γ¼ 3.1, n¼ 0.52) [70], benzoin-isobutylether (BIBE)

(γ¼ 3.8, n¼ 0.39, mP¼ 78.4, mV¼ 44.3) [71], decahydroisoquinoline (DHIQ)

(γ¼ 3.95, n¼ 0.65, mP¼ 156) [72, 73], Squalene, (γ¼ 4.2, n¼ 0.58, mP¼ 77)

[74, 75].

In Figs. 7.20 and 7.21 we plot n against γ, and mP against γ to test if there is any
correlation between γ and n or mP, which are the characteristics of the α-relaxation.
Since DHIQ and squalene stand out among other small molecular glass-formers in

having large n values, they are picked out in the figures. It is clear from the plots that

neither there is any correlation between γ and n, nor between γ and mP. Thus, the

observed ργ/T-dependence of τα bears no relation to fragility mP and

nonexponentiality of the structural α-relaxation even if glycerol and sorbitol in
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Fig. 7.20 Plot of n against γ, where the closed red circles are data of small molecular van der

Waals glassformers, the open blue diamonds are polymeric glassformers, and the two closed
purple squares are data of glycerol (smaller n value) and sorbitol (larger n value)

Fig. 7.21 Plot of isobaric fragility index, mP, against γ. The symbols stand for the same

glassformers as in Fig. 7.20, and the two closed squares are data of glycerol (smaller n value)

and sorbitol (larger n value). There is neither any correlation between n and γ, nor betweenmP and γ

7.4 Thermodynamic (TVγ) Scaling of α-Relaxation Time. . . 337



the figures are excluded from consideration. The results indicate that γ in the ργ

/T-dependence of τα is unrelated to the characteristics of α-relaxation, and hence the
ργ/T-dependence of τα does not originates from structural α-relaxation itself.

Instead the ργ/T-dependence originates from τ0 or τJG, which is passed onto the

α-relaxation by Eq. (7.1). This is unsurprising because the JG β-relaxation and its

relaxation time τJG is density and entropy dependent as evidenced by the pressure

dependence [8] and the detection of a secondary glass transition at Tgβ by positro-

nium annihilation lifetime spectroscopy (PALS) [76–78] and calorimetry [79–84]

when τJG(Tgβ) reaches a long time [85–87]. The dependence of density and entropy

of τ0 as well as the ργ/T-dependence of τ0 automatically follows from the depen-

dence of τα according to the CM because of the relation between τ0 and τα by

Eq. (7.1). Thus, from either the properties of τJG, or the relation of τ0 to τα, we are
assured that the origin of the ργ/T-dependence of τα is at the level of τ0 or τJG.

In the next section, we shall show that ργ/T-scaling applies also to the

d.c. conductivity and the conductivity relaxation time τσ in ionic liquids. The

same physics govern this property shared by τα (viscosity) and τσ (conductivity).

7.5 Thermodynamic (ργ/T) Scaling of Conductivity
α-Relaxation Time and Viscosity of IL

Studies of the dynamics of some ILs at isobaric and isothermal conditions carried

out by some groups had enabled them to test if ργ/T-scaling also applies to the

d.c. conductivity, σdc, and conductivity relaxation time, τσ. Their data confirms that

ργ/T-scaling works for σdc and τσ in several ILs. Moreover in some ILs, the viscosity

also obeys ργ/T-scaling. The similarity of scaling properties of σdc and τσ in ILs to

that of the structural α-relaxation in non-ionic glass-formers implies the same

physics and same explanation for both systems. In the following we present some

examples of the experimental findings.

7.5.1 RTIL [C8MIM][NTf2]

Paluch and coworkers [88] made broadband dielectric studies of the IL, 1-octyl-3-

methylimidazolium bis[(trifluoromethyl) sulfonyl]imide [C8MIM][NTf2]. Electrical

conductivity of the supercooled IL was determined as a function of temperature

and pressure. The σdc measured as a function of temperature over nearly

11 decades of magnitude exhibits a change from one VFT temperature depen-

dence at lower temperatures to another VFT dependence at higher temperatures

(see right panel of Fig. 7.22). The crossover from one VFT dependence to another

at TB is well-known in low molecular van der Waals liquids [28, 89–94], but now

it has been found in one of ILs.
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The cause of the crossover at TB was traced to the corresponding change of the

magnitude as well as the T-dependence on crossing TB of the stretch exponent

βK(T )� [1�n(T )] of the Kohlrausch function used to fit the frequency dispersion of
the α-relaxation, and explained by the CM [93]. Based on a single primitive VFT

temperature dependence of τ0, the change of n(T ) on crossing TB when substituted

into Eq. (7.1) was shown to explain the two VFT dependences of τα. This expla-
nation was reinforced by the observation of the relaxation time τα associated with

the change in dynamics is found to be invariant to using either temperature T or

pressure P to see the crossover at TB or PB respectively. That is, the relaxation time

τα(T,P) determines the onset of strong intermolecular cooperativity at temperature

below TB or pressure above PB and the accompanying dynamical changes, but not

T and P. Already in Sect. 7.2 we have demonstrated that the frequency dispersion of

the α-relaxation or n(T,P) is the same for the same τα(T,P). Thus, the coupling

parameter n(T,P) determines the crossover of τα(T,P) at TB or PB. Although nσ(T,P)
of conductivity α-relaxation in [C8MIM][NTf2] are not available, the possibility

remains that the cause of the crossover of T-dependence of τσα(T) from one VFT

dependence to another is the same as τα(T,P).
Thermodynamic scaling with the variable T�1V�γwas performed on the isobaric

and isothermal d.c. conductivity data of [C8MIM][NTf2] by Paluch et al. [88] In the

operation, these authors separately scaled the high above (i.e., for T> TB) and low

conductivity (i.e., for T< TB) data. The results of the two regimes are presented

altogether in Fig. 7.22. All isothermal and isobaric curves collapsed into a master

curve using a common value of the scaling exponent γ¼ 2.40� 0.05. As pointed

out by Paluch et al., the most interesting outcome of this analysis is that the two sets

of σdc data, above and below TB, were both successfully scaled by T�1V�γ with the

same value of γ, while two different VFT functions are needed to fit the entire

Fig. 7.22 (Left) The electrical conductivity data for [C8MIM][NTf2] plotted versus T�1V-γ with

the scaling exponent calculated herein as γ¼ 2.4. The inset shows the scaling exponent determined

from the linear regression of the logarithmic dependence of glass transition temperature on

volume. The solid lines denote the regression lines. (Right) Arrhenius plot of d.c. conductivity
and the two VFT equations needed to fit the data over the entire range
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temperature dependence of σdc(T ). This means that the T�1V�γ-dependence of σdc
or τσα is insensitive or unrelated to the crossover of T-dependence of σdc or τσα. This
interesting fact is analogous to total lack of correlation between γ in the T�1V�γ-

scaling of the structural α-relaxation time τα and the Kohlrausch’s
non-exponentiality parameter βK� (1�n) and fragility index mP, found in

non-ionic glass-formers (see Figs. 7.20 and 7.21). Likewise, this can be taken as

evidence that the T�1V�γ-dependence originates in the primitive relaxation time,

τσ0, or the secondary β-relaxation time, τσβ, of the IL.
Paluch et al. mentioned that the value of the scaling exponent γ can also be

determined from model independent analysis. At a given value of σdc the product

Tσ V
γ
σ¼ const, which follows directly from the density scaling law. Some specific

value of σdcwas chosen to define Tg and the volume Vg at Tg can be taken as the pair
satisfying Tσ V

γ
σ ¼ const. This leads to the relation, logTg ¼ const: � γlogVg, and a

simple method for determining the scaling exponent γ. From the linear regression to

the data of logTg vs. logVg shown in the inset of Fig. 7.22, they found γ¼ 2.4

exactly the same value obtained by scaling the isothermal and isobaric data of σdc.

Fig. 7.23 (a) Isothermal

and isobaric data for

[C4mim][NTf2] plotted as a

function of volume. (b) The
molar conductivity data

plotted against T�1V-γ with

γ¼ 3.05. The inset shows
the scaling exponent

determined from the linear

regression of the

logarithmic dependence of

glass transition temperature

on volume. The solid lines
denote the regression lines.

Data from Ref. [95]
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7.5.2 RTIL [C4mim][NTf2]

Wojnarowska et al. [95] studied the room temperature ionic liquid 1-butyl-3-

methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C4mim][NTf2], which

differs from [C8MIM][NTf2] in having a shorter alkyl chain. They performed

thermodynamic scaling of d.c. conductivity σdc data by the variable T�1V-γ and

determined the value of scaling exponent γ as shown in Fig. 7.23. The value of the

conductivity scaling exponent γσ¼ 3.05� 0.01 obtained from the numerical fitting

procedure corresponds perfectly well to the one determined in an alternative, model

independent way by using the simple linear regression of the relation,

logTg ¼ const: � γlogVg. The results are presented in the inset of Fig. 7.23.

For [C4mim][NTf2], thermodynamic scaling with T�1V�γ has been performed

on viscosity η of by López et al. [96] The value of the viscosity scaling exponent, γη,
has the value of 2.89, which is practically the same as γσ¼ 3.05. We do not think

this happens by accident. Rather, the T�1V�γ-scaling of σdc and η having the same

γ is once more telling us that the T�1V�γ-dependence originates at the primitive

relaxation time level. Although conductivity (/1/τσα) and viscosity (/τα) have

different coupling parameters, nσ and nη, they all inherit the T�1V�γ-dependence

of the primitive relaxation because of the respective Eq. (7.1) and Eq. (7.5) for

τσα and τα.

Fig. 7.24 Scaling of isothermal and isobaric BMP-BOB data of τσα. The inset shows the scaling
exponent determined from the linear regression of the logarithmic dependence of glass transition

temperature on volume. The solid line denotes the regression line, and the dashed lines outline its
95% confidence band. Reproduced from Ref. [75] with permission
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7.5.3 RTIL BMP-BOB

The invariance of the frequency dispersion, or nσ, of the conductivity α-relaxation
in the room temperature ionic liquid, 1-butyl-1-methylpyrrolidinium bis[oxalato]

borate (BMP-BOB) to variations of T and P at constant τσα was presented in

Sect. 7.2. Paluch et al. [97] took the isobaric and isothermal data of BMP-BOB

and plotted them against specific volume. From there they performed thermody-

namic scaling of ionic liquids by plotting logτσα as a function of TVγ shown in

Fig. 7.24. The optimal value of exponent γ¼ 3.7 was determined from a linear

regression of logTg on logVg, as shown in the inset. The glass transition Tg and Vg

are defined as the temperature and volume, respectively, in which the relaxation

time τσα assumes the value of 1 s. The rescaled experimental data shown in Fig. 7.24

do not all collapse into a single master curve, with the isothermal data measured at

the lowest temperature slightly deviate from it.

For BMP-BOB, Paluch et al. [97] found good agreement between Tg’s deter-
mined from calorimetric and conductivity relaxation measurements. Consequently

the dc-conductivity mimics the structural relaxation process. For this reason, Paluch

et al. used the term of dielectric structural relaxation time in the paper.

Fig. 7.25 Superpositioned viscosities of the ionic liquids. (Left) 1-methyl-3-octylimidazolium

tetrafluoroborate (γ¼ 2.25), 1-methyl-3-octylimidazolium hexafluorophosphate (γ¼ 2.4), and

1-butyl-3-methylimidazolium hexafluorophosphate (γ¼ 2.9), from Ref. [75] and redrawn.

(Right) from Pensado et al. [98]
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7.6 Thermodynamic Scaling of Viscosity of RTILs

Although there is only one IL, namely [C4mim][NTf2], for which thermodynamic

scaling with T�1V�γ had been performed for both viscosity η and conductivity

relaxation of ILs, it is worthwhile to cite the works of T�1V�γ-scaling of the

viscosity of other ILs. If the T�1V�γ-scaling of conductivity of these ILs becomes

available in the future, we can check if the scaling exponents γσ and γη are the same

or not. Moreover, by showing the T�1V�γ-scaling of viscosity we are assured that

the ILs are no different from non-ionic glass-formers.

The isothermal and isobaric viscosity of three RTILs were successfully scaled to

function of T�1V�γ by Roland et al. [75] as shown in the left panel of Fig. 7.25. The

value of γη is 2.25 for 1-methyl-3-octylimidazolium tetrafluoroborate ([OMIM]

BF4). The value of γη is 2.4 for 1-methyl-3-octylimidazolium hexafluorophosphate

([OMIM]PF6). The value of γη is 2.9 for 1-butyl-3-methylimidazolium

hexafluorophosphate ([BMIM]PF6). Shown also in the right panel are the super-

posed viscosity data of several ILs taken from Pensado et al. [98].

Independently López et al. reported T�1V�γ-scaling of the viscosity of more ILs

[96]. The values of γη they obtained are 2.83 for [C4C1im][BF4]; 2.34 for

[C6C1im][BF4]; 3.25 for [C4C1im][PF6]; 2.54 for [C6C1im][PF6]; 2.28

for [C8C1im][PF6]; 2.89 for [C4C1im][NTf2]; 2.36 for [C6C1im][NTf2]; and

2.43 for [N(C4H9)4][B(C4H9)4]. The notations of the ILs used by López et al. is

different from others. For example, [C4C1im][NTf2] in López et al. is [C4mim]

[NTf2] in Paluch et al. [88], and [C8C1im][PF6] is [OMIM]PF6 in Roland

et al. [75].

7.7 Scaling of Other ILs

To show the generality of thermodynamics T�1V�γ-scaling of the α-conductivity
relaxation time τσα of ILs, two more examples from pharmaceuticals are

presented here.

The first is the protic ionic liquid verapamil hydrochloride by Wojnarowska

et al. [99] The results are shown in Fig. 7.26 in the same manner as in Fig. 7.24. The

value of the scaling exponent γσ is 2.45.
The other is the supercooled and glassy states of the protic ionic liquid lidocaine

hydrochloride monohydrate [100]. The results of the T�1V�γ-scaling of the

α-conductivity relaxation time τσα are shown in Fig. 7.27 in the same manner as

in Fig. 7.24. The value of the scaling exponent γσ is 2.69.
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Fig. 7.26 The thermodynamic scaling vs the quantity T�1V�γ with γσ¼ 2.45 of verapamil

hydrochloride. The inset presents the double logarithmic plot of Tgvs Vg. The thermodynamic

scaling exponent γσ obtained from the slope of this curve is equal to 2.448 [99]
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7.8 Molecular Dynamics Simulations of Thermodynamic
Scaling of EMIMþ-NO3

�

Molecular dynamics (MD) simulations were performed by Habasaki et al. [101] over

wide temperatures and pressures ranges to study the scaling of dynamics by ργ/T near

the glass transition regime of ionic liquid, 1-ethyl-3-methylimidazolium nitrate

(EMIM-NO3). Diffusion coefficients of the cations and anions are well described by

master curves with γ¼ 4.0� 0.2 and 3.8� 0.2 respectively. Here we present the

results of the anions and show them in Fig. 7.28. The complete results will be

shown in the Chap. 11 on molecular dynamics simulations.

The potential used is a sum of bond, angle, and dihedral deformation energies,

pairwise standard p¼ 12 and q¼ 6 L-J potential, and Coulomb interactions

between atoms with charges. To explain the scaling, Habasaki et al. [61, 101]

have suggested the use of the concept of the potential of mean force (PMF), rather

than the bare potential parameters. This is because they found that the

corresponding states on the master curve obtained after the scaling have similar

pair correlation functions of ion-ion pairs, especially for the first coordination shell,

and these functions bear correlation with the PMF.

The PMF, Wij(r), was introduced by Kirkwood [102], and is used in statistical

mechanical theories of liquids. Wij(r) is obtained from the ion-ion pair correlation

function gij(r) by,

Wij rð Þ ¼ �kBTlngij rð Þ ð7:6Þ

The functions gij(r) obtained by simulations were accurate enough for the calcula-

tion of Wij(r) directly by Eq. (7.6). In Fig. 7.29, Wij(r)s for the cation-cation pair

(blue dashed-dotted curve), anion-anion pair (red dashed curve) and cation-anion

pair (green solid curve) obtained at 400 K are shown with the corresponding pair

Fig. 7.28 Scaled plots

against 1/TVγ of the

diffusivity for the cation and

anion. Diffusion

coefficients of cation are

plotted against 1/TV4 by red
marks. Blue marks are for
anion. Both temperature

dependence and pressure

dependence are included.

The scaling behavior for the

anion is similar to that of

cation but its γ is 3.8� 0.2
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correlation functions, gij(r). As a first approximation, it is probable that the g(r) of
cation-anion pair having the shortest distance is important for the scaling The

results show that Wij(r) for the cation-anion pair, EMIMþ-NO3
�, has power law

dependence of r�λ with λ¼ 11 (red dotted curve) at distance rλ less than the

separation between the ion pairs. Dividing the value of this slope λ for the cation-

anion pair by 3, the result is 3.7, which is near the value of the exponent γ¼ 4.0 for

cations, and 3.8 for anions that were used to scale their diffusion coefficients. Based

on the short distance in the repulsive part of the potential that determines the scaling

exponent γ, [10, 61] we conclude that the dependence of the diffusivity of the ionic
liquid on ργ/T starts at the local level, i.e. at the primitive conductivity relaxation or

the β-conductivity relaxation.

7.9 Molecular Dynamics Simulations of Thermodynamic
Scaling of 2Ca(NO3)2	3KNO3 (CKN)

Ribeiro et al. [103] performed MD simulations on the ionic glass-former, 2Ca

(NO3)2	3KNO3 (CKN), at various T and P. The non-polarizable pairwise potential
was given by a Born-Mayer function. Diffusion coefficient, D, relaxation time of

the intermediate scattering function, τα, and NO3
� anion re-orientational time, τr,

Fig. 7.29 Upper panel: Potentials of mean force, Wij(r)s, for the cation-cation pair (blue dashed-
dotted curve), anion-anion pair (red dashed curve) and cation-anion pair (green solid curve)
obtained at 400 K for EMIM-NO3. A fitted curve in the power law form (r-λ with λ¼ 11 (red
dotted curve)) is shown for cation-anion pair. Lower panel: Corresponding pair correlation

functions, gij(r)s. The power law region ends at distance rλ, where Wij(r) ~ 0 and gij(r) ~ 1 [61]
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were obtained as a function of T and ρ. All these three dynamical properties of CKN

scale as ργ/T with a common value γ¼ 1.8� 0.1. They have shown that effective

potential V(r) of interaction between Ca2þ, and oxygen atoms of NO3
� can be

represented by a sum of a term proportional to r�1 for long-range attraction due to

Coulomb interaction, and another term proportional to r�p to account for repulsion

at short distance. The best fit to V(r) gives the repulsive exponent p̂¼ 4.7. Once

again p̂ /3¼ 1.6 is close to γ¼ 1.8 obtained from thermodynamic scaling of CKN

dynamic properties. This finding is consistent with our conclusion that the scaling

parameter γ is determined by the exponent of the repulsive part of an effective

intermolecular potential between the atoms of the cation and anion at distance

shorter than that of the first peak of the radial distribution function of Ca–O

correlations, and hence dependence on ργ/T of dynamic properties starts with the

local process or the primitive relaxation of the Coupling Model. This point was well

recognized by Ribeiro et al. from their own study. They also cited the Coupling

Model [104] result that the ργ/T scaling of viscosity or τα is a consequence of the

more fundamental ργ/T scaling of the primitive relaxation time τ0 with the same γ.
Most experimental or simulation studies of ργ/T scaling of dynamic properties

consider only a single property to demonstrate the scaling. The simulations by

Ribeiro et al. were able to consider scaling of four different dynamic quantities: the

diffusion constants D of Ca2þ and NO3
�, the relaxation time τα of intermediate

scattering function of NO3
�, the reorientational time, τr, of NO3

�, and the ionic

mean squared displacement <u2> at short time of 10 ps of each species, Ca2þ, and

Fig. 7.30 Fit byx ¼ F ργ=Tð Þ ¼ Aexp Bργ=Tð ÞCto three dynamic quantities and plotted against ργ/T
with γ¼ 1.8 for NO3

� in CKN obtained by simulation at 0.1, 0.5, 1.0 and 2.0 GPa. Data are not

shown. Black line is for the relaxation time τα of the incoherent intermediate scattering function of

anions, and the parameters are A¼ 30.2 ps, B¼ 202.5, and C¼ 4.3.Dashed red line is for T/D, and
the parameters are A¼ 584.4 K.10�8 m2 s�1, B¼ 487.1, and C¼ 1.6.Dashed-dotted blue line is for
the product of temperature and reorientational relaxation time, Tτr, and the parameters are

A¼ 402.2 K.ps, B¼ 408.5, and C¼ 1.4
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NO3
�. Ribeiro et al. found all these dynamic properties obey ργ/T scaling with the

same γ¼ 1.8, albeit in different functions Fx(ρ
γ/T) for different properties x. In the

present case, x stands for any of the quantities, τα, Tτr, and T/D. This remarkable

feature of the simulation results are shown in Fig. 7.30, where Fx(ρ
γ/T ) that fitting

the data for different properties, τα, Tτr, and T/D, of NO3
� are shown without

the actual data themselves. Note that the axis is ργ/T with γ¼ 1.8 common to all

three properties. Also density scaling holding for more dynamic properties with the

same γ has been demonstrated by computer simulations of binary LJ particles in

Ref. [105]

The fact that the same γ¼ 1.8 applies to several dynamic quantities of CKN

implies the different scaling functions stem from one fundamental scaling function,

which can be the primitive process of the Coupling Model [104]. All the primitive

processes of the different dynamic properties obey ργ/T scaling with the same γ.
This is because the primitive processes of all properties x are local and their

primitive relaxation or diffusion times, τ0x, have the same γ is determined roughly

by the slope bp of the repulsive part of the potential. As discussed by Ribeiro et al.,

in the framework of the Coupling Model, different dynamic properties can weigh

differently the many-body cooperative dynamics, and hence can have different

coupling parameters [25, 28, 31, 32, 34]. This is already found before in the

simulation of CKN by Signorini et al. [106] and also by Ribeiro [103] at ambient

pressure. The correlation functions of the reorientation of the NO3
� described by

the first order and second order Legendre polymers have different Kohlrausch

exponents, βK, or different n because βK� (1�n). The same is true for the different

properties x studied for ργ/T scaling by Ribeiro et al. [103] The exponent γ in the

dependences on ργ/T of the primitive relaxation/diffusion/reorientation times, τ0x,
are the same because it is determined by the same slopebp of the repulsive part of the
potential. Notwithstanding, the Kohlrausch stretch exponents, βKx, of their corre-
lation functions and hence the coupling parameters, nx, can be different. These

different values of nx appearing in the Coupling Model Eq. (7.5) for different

dynamic variable x,

τx
ργ

T

� �
¼ tcð Þnxτ0x ργ

T

� �� � 1
1�nx

; ð7:7Þ

readily explains why different dynamic properties τα, Tτr, and T/D are functions of

ργ/T with the same γ, but the functional forms of τx ργ=Tð Þ are different because nx
are different.
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7.10 Molecular Dynamics Simulation: Indication
of T�1V�γ-Dependence Originating from
the Primitive or JG β-Relaxation

Before ending this chapter, we cite the results from other studies that support the

T�1V�γ -dependence of dynamic quantities actually originate from that of the

primitive relaxation of the CM or the JG β-relaxation. Earlier it was found is that

the static structure factor and the local structure in non-associated liquids are

sensitive to the repulsive part of the potential at short distance [107–109] but not

the nature of the attractive potential extending to longer distance. Recently,

Coslovich and Roland [110] simulated binary Lennard-Jones liquids with

intermolecular potential U rð Þ / σ=rð Þm � σ=rð Þ6
h i

, with the attractive exponent

fixed at the value of 6, and the repulsive exponent m varied over the values of 8, 12,

24, and 36. In agreement with experimental results of various glassformers, the
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Fig. 7.31 Reduced diffusion coefficients D as a function of 1/(TVγ) for different values of the

repulsive exponent m at different pressures: P¼ 5 (squares), P¼ 10 (circles), and P¼ 20 (tri-
angles). For m¼ 36 (γ¼ 13.4), m¼ 24 (γ¼ 9.1), m¼ 12 (γ¼ 5.0), and m¼ 8 (γ¼ 3.5). The

estimated uncertainty on γ is �0.1 (�0.2 for m¼ 36). Reproduced from Ref. [110] by permission
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diffusion coefficients for the simulated Lennard-Jones liquids in normal and

moderately supercooled states are a unique function of the variable ργ/T as shown

in Fig. 7.31.

The magnitude of the exponent γ is always larger than m/3 due to the contribu-

tions of the attractive term, but not far from it. For m¼ 36 (γ¼ 13.4, and m/3¼ 12),

m¼ 24 (γ¼ 9.1, and m/3¼ 8), m¼ 12 (γ¼ 5.0, and m/3¼ 4), and m¼ 8 (γ¼ 3.5,

andm/3¼ 2.7). Thus γ is determined by the steepness of the repulsive part ofU(r) in
the region bounded by rc and r1/2, which are respectively the closest approach
distance between the particles and the separation corresponding to half-height of

the radial distribution functions between large particles g11(r) in the supercooled

regime. This is illustrated in Fig. 7.32.

The distance within the range rc< r< r1/2 is smaller than the average separation

between the large particles corresponding to the first peak of the pair distribution

function g11(r). At such small distances the primitive or the JG β-relaxation is more

directly related to the repulsive part of V(r) than the cooperative α-relaxation which
involves more particles and longer length scale. Thus, this can be taken as evidence

that the dependence of dynamic quantities on ργ/T originates in the primitive

relaxation of the CM or the JG β-relaxation. This original dependence of τJG
(or τ0) on T�1V�γ is passed onto τα and magnified in τα of the structural

α-relaxation at later times through action of the many-body dynamics. The stronger

dependence of τα on T�1V�γ than τJG (or τ0) also follows directly from the CM

Fig. 7.32 Top panel: Radial distribution functions between large particles g11(r) at P¼ 10 for

T¼ 1.50 (dotted line), T¼ 1.00 (dashed line), and T¼ 0.84 (solid line).Middle panel: g11(r) at the
lowest equilibrated T: T¼ 0.75 at P¼ 5 (dotted line), T¼ 0.84 at P¼ 10 (dashed line), and
T¼ 1.05 at P¼ 20 (solid line). Bottom panel: Pair potential U11(r) (solid line) and the intermediate

power law, rq, (dotted line) that fits U11(r) in the range from rc¼ 0.95 to r1/2¼ 1.01. This range is

bounded by the two vertical dotted lines in all panels. The extreme right column of the table lists

the values of q of the fits. The exponent γ that scales the diffusion coefficient in Fig. 7.31 given in
the third column are close to q. Redrawn from data of Ref. [110]
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Eq. (7.1) by raising the dependence to the superlinear power of 1/(1�n). The
remarks made in the above for non-ionic glass-forming model systems applied as

well to ionic liquids and melts, in particular to the simulation data of CKN by

Ribeiro et al. In Sect. 7.9 we have mentioned the potential V(r) they used gives the

repulsive exponent ¼ 4.7. Once again 4.7/3¼ 1.6 is close to γ¼ 1.8 obtained from

thermodynamic scaling of CKN dynamic properties. Thus the scaling parameter γ is
determined by the exponent of the repulsive part of an effective intermolecular

potential between the atoms of the cation and anion at distance shorter than that of

the first peak of the radial distribution function, and hence the dependence on ργ/T
of dynamic ionic properties originates from the local ionic process or the primitive

ionic relaxation of the Coupling Model.

7.11 Conclusion

Ionic liquids (ILs) differ from glassy and crystalline ionic conductors in the

opportunity of studying the dynamics not only how it changes with temperature

T but also at elevated pressure. One of the most remarkable properties found in

some of the ILs is the invariance of the frequency dispersion of electric modulus,

M*( f ), of the primary or α-conductivity relaxation to variations of T and P that

maintain the α-conductivity relaxation time τσα constant. This is exactly the prop-

erty generally established in the structural α-relaxation in the non-ionic van der

Waals glass-formers, i.e. the frequency dispersion of the structural α-relaxation is

invariant to variations of T and P that maintain the structural α-relaxation time τα
constant.

In some of these ionic conductors appearing together with the α-conductivity
relaxation in M*( f ) is a resolved secondary or β-conductivity relaxation with

relaxation time τσβ. In these ILs, the separation in time scale between the two

relaxations given by logτσα � logτσβ
� 	

is constant to variations of T and P that

maintain τσα constant. Putting the two properties together, we have the remarkable

overall property that τσα, τσβ, and the frequency dispersion of the α-conductivity
relaxation are co-invariants to variations of T and P. Since the Fourier transform of

the Kohlrausch function fits well the frequency dispersion of M*( f ), and

the exponent, 1-nσα, of the Kohlrausch function defines the frequency dispersion,

the overall property can be restated as co-invariance of τσα, τσβ, and 1-nσα. This
property is exactly the same found in non-ionic glass-formers of the co-invariance

of τα, τβ, and 1-nα. Thus the physics behind these analogous properties in the ion

dynamics of ILs and molecular dynamics of non-ionic glass-forming liquids must

be the same. The same physics bridging the two fields require for explanation a

theory that is applicable to both fields. The Coupling Model is one such theory.

Moreover, the isothermal and isobaric α-conductivity relaxation time τσα(T,P)
and d.c. conductivity σ(T,P) of ILs obey thermodynamic scaling to master curve as

function of the product variable T�1V�γor ργ/T. For those ILs having a resolved
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β-conductivity relaxation, both τσα(T,P) and τσβ(T,P) are scaled by ργ/T with the

same γ. Again this scaling property of conductivity relaxation in ILs is exactly the

analogue of τα and τβ of non-ionic glass-forming liquids, and the CM gives a

consistent explanation for both.
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Chapter 8

Molecular Dynamics Simulations

8.1 Molecular Dynamics Simulations in Ionic Systems

8.1.1 Purpose and Goals of the Molecular Dynamics
Simulations

Molecular dynamics (MD) simulations are one of the methods of the computational

science. One can study the structure and dynamics of the system in the computer by

solving the equation of motion. Utilization of MD simulations has spread over

many fields, such as biophysics, drug designs, as well as fundamental research areas

in chemistry and physics. Systems and materials covered include proteins, liquid

crystals, colloidal systems, polymers, glass-forming liquids.

The purpose of the simulation is not necessarily the faithful reproduction of the

real system. Simulation is also used to examine the essential part of the dynamics
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and/or structures of the model, and such a simulation is not required to be fully

realistic. Therefore, it is necessary to understand the possible limitations of the

methods and judging them according to the purpose. As already mentioned, MD

simulations can treat the dynamics, because the equation of motion is numerically

solved. For other properties such as equilibrated structures, the results of MD

simulations are compatible with those by the Monte Carlo (MC) method.

Some of possible purposes, for which MD simulations are favorable or useful,

are given as follows.

1. Simulation can be used to examine some commonly recognized as the essential

parts of the dynamics and/or structures, such as the mechanism of ion diffusion

and conductivity, the glass transition, the mixed alkali effects, the

non-exponentiality and dynamical heterogeneity of the ion dynamics.

2. Simulations can be used for the prediction of the properties of systems not

previously known by experiments. Simulations can provide properties not easily

accessible by experiments such as the spatial information from wave number

(q)-dependence of the intermediate scattering function.

3. Simulations can be used to examine systems under more extreme conditions

including high pressures and high temperatures, which might be difficult to

reach by experiments.

4. Sometimes, real experiments bring environmental pollution by the emission of

heat, effusion of materials, and they might be hazardous. Simulations can

examine the systems without environmental pollution or such danger.

5. Simulations can be used for screening various systems in the search for desired

properties. In such cases, crude levels of the simulations are not necessarily a

drawback, particularly if the time required is short.

6. Simulations can be used to treat changes of properties of systems when the

structure, composition, mass, size, and/or other parameters, is modified.

7. Simulations can be used systematically to design new materials with improved

performance in applications.

8. Of course, simulations can be used for comparison with the results obtained from

experiments, and for validation of predictions from theory. Recently, they are

also used to be a basis of construction and/or refinement of theories and models.

In the field of ionics, they are also applied for understanding dynamics and

structures of new materials as well as composites or functional materials such as

solid state batteries, actuators, and nano-machines in recent works and will be more

applied in future works. It is expected that applicability of MD simulations will

spread over wider fields of both fundamentals and applications.

8.1.2 History of MD Simulations in Ionics

Applications of MD simulations to ionics have a long history, and some early

developments are introduced here. As far as we know, the first MD work for ionic
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system seems to be that by Woodcock in 1971 [1], in which alkali chlorides in the

liquid state are treated by using the empirical potentials by Tosi and Fumi

[2, 3]. Soon after, Rahman et al. [4] examined the structure and motion in liquid

BeF2, LiBeF3 and LiF, assuming purely ionic interactions. It is worth to mention

that the former two systems can be regarded a model of silica and silicate, because

of comparable size ratio of constituent atoms. After these works, vitreous state for

silica was examined by Woodcock et al. [5], where even individual motions of Si

and O atoms were examined. Soules also examined the structure and dynamics of

glasses including silicate [6]. These pioneer works of MD and/or Monte Carlo

Simulation (for example see Ref. [7]) take important roles to understand the

structure and dynamics of ionic systems including those in the glassy states.

Although the formal charge models used in almost of early works can pick up

some essential character of the ionic motion or structures, still they were not good

enough for comparison with experimental ones. A large discrepancy can be found

in formal charge model. For example, the glass transition temperature, Tg, tends to
be extremely different, and/or pressure becomes several orders larger or smaller

than the ambient pressure. Therefore, the history of classical MD simulations is also

a history of developments of reliable potential parameters, when used for compar-

ison with experiments. The system size and time scale covered were limited in early

works due to the limited power of computers. Furthermore, treatment of Coulombic

force needs larger cost of calculation than with repulsive force of short length scale.

As a result, the simulation times of early works on ionic systems were of the order

of several pico seconds and the system size was also small (~several hundreds).

This limitation of size and time scale caused several problems such as undesirable

effect of periodic boundary conditions, insufficient equilibration time and insuffi-

cient sampling of rare events. In spite of such limitations, many new insights had

been brought forth.

Empirical potential model for MD was usually derived from the information on

crystal structures and related information such as compressibility, expansivity,

structure of polymorphs. Although the models enable important tasks to be carried

out by simulations, more realistic potential models have been sought after, since the

quality of the available models was not necessarily good enough for some purposes.

Many researchers have tried the determination of better potential parameters for

different systems. Modeling by ab-initio quantum mechanical potential surfaces

has been used for calculations in physics by several authors. In 1988, the simple pair

additive potential derived from the quantum mechanical calculation was shown to

be effective enough to reproduce polymorphs of silica by Tsuneyuki et al. [8, 9]

(hereafter referred to as TTAM). Effective parameters used to reproduce the several

Mg silicates were also derived by them using the potential energy surfaces of model

clusters of both SiO2 and MgO. Their method for the silicate is applicable only

when the condition qM¼�qO is a good approximation, where q is the charge

number. In 1990, the progress of the modeling methods in mineralogy has been

reviewed by Catlow and Price [10]. Thus far, many MD works have been done for

ionic systems for both molten [11] and glassy states using several kinds of potential

parameters.
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Although alkali silicates are typical glass-forming materials and a study of the

structures and properties is important not only for industrial use but also for the

fundamental understanding of minerals, ceramics and glasses, an adequate potential

model for predicting the unknown properties had not yet been established for a long

time. In 1992, Habasaki and Okada derived parameters for some alkali silicates [12],

which have a different stoichiometry from Mg silicates, based on the ab initio MO

calculation (see Sect. 9.1), by using the method similar to the approach in deriving

TTAM. Because of the additivity of the different atomic species, the parameters are

suitable for the study of the mixed alkali effect as well (see Chap. 10). The effect was

reproduced by MD simulations successfully and jump paths (ion channels) for ionic

motion were visualized for the first time as far as we know [12–14] and elaborated

further in Refs. [15, 16]. Dynamic heterogeneity in the ionically conducting glass is

observed in the motion of Li ions in lithiummetasilicate [17, 18]. (See Sects. 9.5 and

11.5 for details.) This characteristic property is shared by structural relaxation of

glass forming liquids, and the commonality has drawn attentions in the relation with

the mechanism of the glass transition. Nowadays, the potential parameters are

widely used by several other groups [19–22].

MD simulations have been used to examine a variety of nature of ionic systems.

Using small angle X-ray diffraction and MD simulations, Greaves [23] has shown

the clustering of alkalis in mixed alkali disilicate. By Jund et al. [24] and by

Horbach and Kob [25], channel diffusion of sodium in silicate glass and melt was

examined, and the relationship with the mode coupling theory also was discussed

[26, 27]. Details of structures and dynamics are also examined in related systems.

Recently, ionic liquids are actively examined by MD simulations and many com-

mon views with glass forming liquids are reported (see Chap. 11 for details).

With rapid developments of computer and technology for acceleration of calcu-

lations, the classical MD can now cover wider range of materials, compositions,

temperatures, pressures and time scales. In recent years, ab initio molecular orbital

(MO) calculation or calculation by density functional theory (DFT) can be done for

the relatively larger systems [28, 29]. Furthermore, works using ab initio MD went

the dawn, although some cautions might be necessary for the treatment of it,

especially for the case of the slow dynamics as discussed in the next section.

Using ab initio MD methods, Tilocca [29] has examined the phosphosilicate

glass, which is bioactive material. Recently, Payal and Balasubramanian [30] have

performed the ab initio MD of dissolution of cellulose in ionic liquids. Such works

will increase the importance and reliability with further development of computer

technology in enabling the larger size and longer time scale calculations.

8.2 Methods in Molecular Dynamics Simulations

Nowadays, many MD programs are available and researchers are not necessarily to

be programmers themselves. However, the contents of programs aimed for general

purposes tend to be too complicated and often they seem to be a black box. In this
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section, the essence of methods used in the molecular dynamics simulation is

explained, enabling the reader to understand the outline of it, and what is done in

the programs. Our attention is mainly focused on the treatment of ionic systems by

classical MD. In Chap. 12, practical introduction for MD simulations is given with

some examples of the treatments of MD data.

For planning research using MD, the researcher is recommended to consider

the characteristics of the problem to be examined as well as requirements of system

size and time scale carefully. Then one can choose the most suitable method within

the available resources, because classical and ab-initio methods as well as other

methods all have their own advantage and limitation. Although needless to say, for

a meaningful comparison of methods, reasonable choices of initial configurations,

equilibration, suitable choice of conditions such as cooling schedules as well as

good statistics are required. Therefore careful judgment for the usefulness and

limitations of them is required. Even in the classical method, the covered space

and time region might not be large enough, and consequently the results are

problematic in such cases. This problem appears remarkably in ab initio MD,

which requires larger calculation cost and also the “real time” required for the

calculations. The problem will be discussed in the following section.

8.2.1 Classical and Ab Initio Methods

Here we compare classical and ab initio methods in the study of ionics briefly,

although mainly the former method is treated in the present book. In classical MD

simulations, equations of motion are solved numerically, based on a given potential

model. When large scale simulations of long time are necessary, classical MD using

empirical force field or effective force field derived from the ab initio molecular

orbital calculation or density functional calculations are the practice because of

lower calculation costs and time. For realistic simulations comparable to experi-

ment, potential parameters with good quality are required; however, researchers of

classical MD often encounter a problem of “missing parameters”. Situation

becomes worse in the complex systems with many interactions. In such works, it

is difficult to find out suitable parameters and their combinations for the system to

be examined. Although there are several approaches to treat general parameters

and/or combination rules, careful judgement for the quality of the potential model

is necessary. In such cases, derivation of suitable parameters for each problem is

expected. Thus, in the classical MD simulations or hybrids of quantum and classical

methods, one needs to critically examine the quality of the potential parameters,

and the functions used, as well other conditions. Of course, more realistic simula-

tions are better for some purposes. Ab initio MDmethods such as the Car-Parrinello

(C-P) methods [2] are contributing to recent developments of the computational

science. In C-P, electrostatic states of the system are calculated using the

density functional theory (DFT) with solving the equation of motions, at the same

time. The method is particularly applicable if there are the time dependent changes
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of electronic states during the simulation as in the case of occurring chemical

reaction. It is useful to examine the structures and dynamics in details, provided

suitable conditions are fulfilled. Considering above situation, one may consider that

the ab initio method is always the best choice. However, tractable ab initio methods

have serious limitation in the following situations. In the case of ion dynamics in

ionically conducting in molten and glassy states or in ionic liquids, dynamics

observed are slow, similar to the super cooled liquids near the glass transition

temperature [31], and therefore long time simulations as well as large size are

required. Unfortunately, it is not easy to perform ab initio MD in suitable condi-

tions, because of huge calculation resources and time required. For example,

activation energy obtained from the short time ab initio MD seems to be used as

a guide of material designs such as lithium batteries [32]. Although such

approaches are useful, one should note that the obtained short time activation

energy is for each jump motion and is not the same as that for diffusion (and/or

conduction) of long time scale (see Sect. 9.4.2), in the case of densely packed

materials such as supercooled liquids, crystals and glasses. That is, long time scale

is required to examine transport properties in low temperature regions or in high

pressure regions. In recent works in ab initio MD, typically system containing tens

to hundreds particles during several ps ~ several tens of ps are examined.

In contrast, in classical MD simulations of ionic systems, typically several

thousand ~ several tens of thousands particles during ns ~ several tens of ns are

examined. This situation of ab initio MD is similar to that in the beginning of the

classical MD, where many problems were found due to the limited system sizes and

the limited simulation time. Because of such limitations of ab-initioMD, the result

obtained for slow dynamics in some systems may not be reliable, although chal-

lenges to larger system and longer time scale are continuing. The difference of

several orders of magnitude in time scales and system size of the two methods are

non-negligible and it will not be removed easily even by the further development of

the computational technology. Nowadays, such limitation of ab initio MD seems to

begin to be recognized well and many kinds of hybrid methods or combinations of

methods tend to be used for each targeted problem. For the treatment of slow

dynamics, classical MD simulation using the potential (force field) based on the ab

initio MO calculation or DFT is a one of the suitable approaches for covering longer

time region and larger system size with a relatively low cost. Our and related works

using the approach will be explained in the Chaps. 9–11. When the potential curves

or surfaces are not time dependent, classical MD simulations using reliable poten-

tial are good enough to examine the structure and dynamics of systems. Thus when

applied to model systems, this method is capable of generating a “computational

experiment” to uncover the principles of structure formation and/or the mechanism

of the dynamics under well controlled conditions. In the studies of ionics in glasses

[33–35] and ionic liquids [36], comparisons of ab initio and classical methods are

reported. Pópolo et al. have argued that the local structure around the cation

obtained from ab initio MD in dimethyl imidazolium chloride [DMIM][Cl] shows

significant differences compared to both the classical calculations and the neutron

results [36]. The author suggests ways in which the classical potentials may be
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improved. Recently, Carré et al. [37] derived the effective potential for silica based

on the C-P MD [38] amenable for the larger and longer scale simulations. On the

other hand, classical MD can also provide initial configurations for ab initio MD

simulations, MO and DFT calculations, after long time equilibration. In this sense,

both methods are complementally each other. Other approaches to cover the long

time and large system size are also in progress. In the case of ionic liquids which

have inner structures, coarse-grained models [39, 40] are the possible choices to

extract the essential part of the structure or dynamics besides the fully atomistic

simulations.

8.2.2 Models Used in MD Simulations

Potential functions and their parameters are the main “input” of the MD simulation,

which determine the characteristics of the system. Here typical models used in the

classical MD are summarized. Several functional forms of potential (force field) are

used for MD simulation. Soft-sphere and Lennard-Jones are frequently used as

model systems for examining liquids, crystals and glasses including the problem of

the glass transition. They are also used as a part of ionic models having more

complicated form. For the simulation of realistic systems, unknown parameters can

be determined from the experimental data such as expansibility, compressibility,

structures and/or from quantum mechanical methods.

8.2.2.1 Soft-Sphere Model

The model consists of the repulsive term in the following form [41–47] is tradi-

tionally called as soft-core (SC) model.

φij ¼ ε
σ
rij

� �n

; ð8:1Þ

where the rij is the distance between particle i and j. The parameter ε, and σ
determine the depth and the size of the potential well, respectively. The

reduced units are often used for describing general properties and for

comparison with results. For example, the reduced unit of length, l (¼ (V/N)1/3),

and time τ (¼l(m/ε)1/2(l/σ)n/2) are used, so that the equation of the motion becomes

simple. Here V, N and m stand for system volume, total number and mass of

particle, respectively.

Recently, this functional (inverse power law) form is considered as a basis for

understanding the thermodynamic scaling (TVγ scaling) of dynamical properties

known for many systems including ionic liquids [48] and ionically conducting

systems and importance of the model seems to be increasing (see Chap. 7). In the
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scaling law for the inverse power law (SC) potential, exponent n in Eq. (8.1) is

connected to γ value of the system.

The SC system satisfies “dynamical scaling law” [44, 45], which is an extension

of the scaling law of the hard sphere (HS) system. For the HS system, one considers

N hard spheres of radius σ in the box of volume V (¼L3) and starts to move with

given initial coordinates and velocities. If the initial coordinates, velocities, L, and σ
are multiplied by a constant C (>0), the trajectory in the configuration space of 3N
dimension is similar to that of the original one. If only the initial velocities are

multiplied by C, the trajectory is unchanged through time intervals between colli-

sions and is reduced by the factor of 1/C. This is the dynamical scaling law of the

HS system. In a similar manner, in the SC model, dynamic scaling law holds

exactly and even a non-equilibrium relaxation can be represented by analytical

expression.

In experiments, going back to the early days, several one component systems

such as glycerol and/or ethanol are known to be excellent glass formers [49–51] and

the simplicity of the one component system was recognized in the study of the glass

transition problem. However, in early MD works around 1970, one-component SC

system was found to crystallize within a short run, and hence binary system tends to

be used for the study of glass transition [52–54]. In spite of this historical situation,

one-component SC system can be a good model to study glass transition due to its

simple theoretical treatment, if the crystallization is suppressed. Fortunately, when

the system size is large enough (>500), the crystallization seem to be suppressed at

long time and almost systems become metastable ones after non-equilibrium

relaxation [45]. Actually, in many runs in the system larger than 2000 particles,

one-component SC model with n¼ 12 shows non-equilibrium relaxation towards

metastable states (called as a glass branch), which can be regarded as the (stabi-

lized) glassy states, from both structural [45] and thermodynamical [46] properties.

In the metastable glassy state, different local structures (face-centered cubic (fcc)

like and body-centered cubic (bcc) like) are found to be mixing. Because of the

mixing of different local structures, disordered structures can be formed without

introducing different kinds of particles to form binary systems. Thus the glass

transition can be mapped on a phase-diagram using the compressibility factor

plotted against reduced density. When the system is rapidly quenched along the

liquid branch of the phase-diagram, the system tends to be trapped on the midway

towards the glass branch.

Recently, several one component systems including the ones with special types

of potential functions are examined to understand the glass transition [55, 56].

8.2.2.2 The Lennard-Jones Model

The Lennard-Jones (LJ) model [57] has the following form.
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ϕ rij
� � ¼ 4ε

σij
rij

� �12

� σij
rij

� �6
" #

; ð8:2Þ

The function becomes 0 at rij ¼ σ and the minimum is observed at rij ¼
ffiffiffi
26

p
σ, where

the function becomes �ε. The former is regarded as the size of the particle, and

therefore, σ is used as a unit of length r.

The parameters for argon, σ¼ 3.405 Å and ε/kB¼ 119.8 K, where kB is the

Boltzmann constant, have been used in many theoretical works [58]. Several new

parameters are proposed for argon (or other materials). The values σ¼ 3.345 Å and

ε/kB¼ 125.7 K bring a better agreement between theory and experiment for ther-

modynamic behaviors of the system [59]

Generalized forms of LJ model [60, 61] consists of repulsive and attractive terms,

ϕ rij
� � ¼ 4ε

σij
rij

� �n

� σij
rij

� �m� �
ð8:3Þ

with powers n and m replacing the 12 and 6 respectively are also used in recent

studies of the dynamics of glass-formers.

Binary LJ System

In recent years, starting from the study by Kob and Andersen, binary systems of LJ

systems have been used as a model system exhibiting the glass transition and there

are accumulated numbers of MD works based on these systems [62–65]. Bordat

et al. have compared three different interaction models [63, 64], where the struc-

tures and dynamics of the system composed of 1500 particles (1200 for species A

and 300 for species B) are discussed related to the glass transition problem. General

forms of the binary LJ used in their work are represented by

V rð Þ ¼ E0

q� pð Þ p
r0
r

	 
q
� q

r0
r

	 
ph i
; ð8:4Þ

where E0 and r0 are respectively a parameter for energy depth and position of the

minimum of the potential well. In the model I, q¼ 12 and p¼ 11. In the model III,

q¼ 8 and p¼ 5. The parameters for q¼ 12 and p¼ 6 for model II corresponds to the

Kob-Anderson model [62], which has been extensively examined as a model of

glass transition (see Table 8.1).

The anharmonicity of the potential for A-A interaction is increasing in the order

of I (12-11), II (12-6) and III (8-5). The ‘fragility’ obtained from several methods

is increasing in order of I, II and III. It parallels to the change of stretching exponent

β of I, II and III, which are 0.69, 0.65 and 0.60, respectively. That is, the capacity of
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intermolecular coupling and anharmonicity of the potential has the effect in

increasing fragility and the non-exponentially parameter (1�β), which is the

same as the coupling parameter, n, in the coupling model.

Even for the binary LJ systems, one may expect the existence of some mixing

effect for the dynamics and structures. This is because the glassy system like

silicates shows a large non-linear change of the dynamics by mixing of different

kind of alkali ions, known to be “mixed alkali effect” (see Sect. 4.8 and Chap. 10).

In this case, it was well established that the mixing of different sizes of alkali metal

ions causes the mutual interception of jump paths in a certain time scale and

suppression of the cooperative motion which enhances the effect [65]. For example,

in the case of lithium potassium silicates, mutual interception means that the Li ion

cannot enter the site previously occupied by K ion, while K ion cannot enter the site

previously occupied by Li ion. Similar situations are found in the generalized LJ

mixtures [66, 67]. The ionic liquids also can be regarded as the binary system of

cation and anion. Comparison of generalized binary Lennard-Jones (LJ) systems

with different potential parameters is helpful to understand the dynamics of ionic

liquids, especially for the physical meaning of the coupling of the anion and cation

or the role of charges [31].

Other functional forms used in inorganic materials especially for Ionics will be

introduced hereafter.

8.2.2.3 Huggins-Mayer Potential

Fumi and Tosi [3, 68] developed potential parameters for alkali halide such as

NaCl, by fitting the Huggins-Mayer dispersive energy to crystallographic data. The

function form is as follows.

φ rij
� � ¼ Aije

�rij
σij � Cij

r6ij
� Dij

r8ij
þ qiqj
4πε0 rij

; ð8:5Þ

where the exponential term is for repulsive interaction, while inverse power-law

terms represent the attractive interaction. Aij is called the Pauling factor, defined by

1þZi/niþZj/nj, where ni is number of electron of the most outer shell of the ion i

and Zi is for electric charge on species i. The second and third term is for dipole-

dipole and dipole-quadrupole interactions, respectively. The fourth term for the

right hand side is for Coulombic interaction term with charges q.

Table 8.1 Parameters of the Lennard-Jones potentials in the Kob-Andersen model, where

(σ ¼ r0
21=6

) in Eq. (8.4)

Interaction A-A B-B A-B

E0 1.0 0.5 1.5

σ 1.0 0.88 0.8
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Several functional forms for ionic systems are suggested so far, and both

empirical and ab initio based potential parameters are developed.

8.2.2.4 Born-Mayer-Huggins Potential

The following similar in form to the previous one is called as Born-Myer-Huggins

model.

φ rij
� � ¼ Aije

σiþσj�rij
ρ � Cij

r6ij
� Dij

r8ij
þ qiqj
4πε0rij

ð8:6Þ

The first term on the right-hand side represents the Born-Myer repulsive term. The

value of r represents the distance between atoms, and σi is a size of i ion. Here, ρ is
the softness parameter.

8.2.2.5 Gilbert-Ida Type Potential

Gilbert-Ida type [69, 70] repulsive potential combined with Coulombic force has been

successfully used for silica [8] and lithium, sodium and potassium silicates

[12]. It is given by

ϕ rij
� � ¼ qiqj

rij
þ f 0 bi þ bj

� �
exp

ai þ aj � rij
bi þ bj

� �
� cicjrij

�6 ð8:7Þ

The first term on the right-hand side represents the Coulombic interaction. The

value of rij (Å) represents the distance between atoms, and ai (Å) and bi (Å) are the
effective radius and the softness parameter, respectively, of atom i. the value f0 is a

constant (¼1 kcal mol�1 Å�1). The parameters cicj (kcal Å
6 mol�1) are for the

correction of the curvature for the interaction of pairs including oxygen atom, and

therefore may be treated as a part of repulsive potential term. Units in the function

are as in original papers [8, 12], to avoid the loss of numerical accuracy by changing

units. This potential form is additive for pair as well as atomic species. The latter

property enables us to treat the mixed alkali system while keeping consistency with

the single alkali systems. Therefore it is useful to study the “mixed alkali effect”

(see Chap. 10). Examples of MD simulations of silicate crystals and glasses using

this kind of potential will be shown in Chap. 9.

8.2.2.6 Potential Including Inner Structures

The following potential forms for representing both intermolecular and intramo-

lecular interactions are frequently used for organic systems as well as ionic liquids

[31, 71–73].
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U Rð Þ ¼
X
bonds

Kr r � req
� �2 þ X

angles

Kθ θ � θeq
� �2 þ X

dihedrals

Vn

2
1þ cos nϕ� γ½ �ð Þ

þ
Xatoms

i<j

Aij

R12
ij

� Bij

R6
ij

 !
þ
Xatoms

i<j

qiqj
εRij

ð8:8Þ

The model uses a sum of bond, angle, and dihedral deformation energies, a pairwise

standard (6,12) Lennard-Jones potential, and Coulombic interactions between

atoms with charges qi and qj.
Our and related works for ionic liquids using MD simulations are shown in

Chap. 11.

8.2.2.7 Reactive Force Field

Reactive force fields, such as ReaxFF, have been used in several related works

[74, 75], where the charge on the atom changes with the position. Such approaches

will be useful in the investigation of the details of reactions on the surfaces of

colloids, gels or related systems.

OtherMO or DFT based potential model may be applicable for representing bond

breaking of reconnection even if the charge seems to be fixed in the simulation.

Actually, Habasaki and Ishikawa have observed that the clusters or gels can be

formed in silica colloid-water-salt system [76] using the silica model by Tsuneyuki

et al. [8] with a fixed charge. This is because the charge is fixed in the fitted

parameters but not in the quantum mechanical calculations used for derivation of

it. Therefore the model allows reconstruction of bonds.

8.2.2.8 Other Models

Models for Water

Many kinds of water model such as SPC, SPC/E [77, 78], TIPS3P, TIPS4P, TIPS5P

[79, 80] are proposed so far. Comparison of some properties among different water

models was reported in Refs. [81, 82]. Each model has both drawback and advan-

tage and therefore researcher should select suitable one by any particular purpose.

It may be useful for the researchers of glasses to mention that the structure and

phase diagram of water is analogous to the silica due to network formation by

hydrogen bonds in many points. Therefore, comparison of related systems will be

useful for studies in both research fields.
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8.2.3 Units Used in MD and Combination of Potential
Models

It is recommended to use International System of Units (SI) in many fields;

however, potential parameters or functions for MD simulations found in literatures

are not necessarily given in SI. This is probably because values used in SI are not

always appropriate for numerical treatments in order of magnitude. Many different

units appear in MD programs and papers. Furthermore, reduced units are also used

by physical reasons. Therefore, careful treatment of units is necessary. Because

simulated systems are sensitive for the given potential parameters, it is better to

avoid repeating conversions of units to keep numerical accuracy.

Quality of the potential parameters (for example, the size of the basis set used for

derivation if it were based on ab initio MO calculation) should be good enough and

comparable when one uses the combination of parameters taken from different

sources. Sometimes, one may encounter the difficulty to combine the parameters

because of different potential forms. In some cases, it is possible to change from one

to the other. Gilbert-Ida type parameters can be easily changed to the Born-Mayer-

Huggins form, although the merit of the additivity of the parameters is lost. The

parameters in LJ form can be changed into those for Gilbert-Ida type, by a

requirement of having the same energy minimum separation, depth and the same

behavior for the large r region [83].

In treatment of ionic system (similar situation may happen in other systems),

careful treatment of the term “mole” is required. For example, the system “Li2SiO3”

is the same composition as “xLi2O-(1�x)SiO2” with x¼ 0.5. The former expression

may be used to compare the different phases such as glass and crystal. The latter

expression is often used for glasses to include composition dependence of the

system. However, the system energy “per mole” for these system becomes different

due to the different definition of “mole”, because it is defined by the weight

(represented by grams) of the Avogadro numbers of “specified groups of particles”.

In an MD program, the former expression may be chosen for mole because the

smallest number of species (Si in this case) being an integer is preferred. In a certain

MD program, ions included in a basic MD cell seem to be used as a group to define

“mole”. In ionic liquids, ion pair seems to be used as the group by many researches

at least for simple systems. For comparison of works, it may be necessary to

mention what unit is chosen for the definition of “mole” or changing the units to

adjust it to conventional ones.

8.2.4 Solving the Equation of Motion

In principle, MD simulations describe the motions of particles (ions or atoms) by

solving the equation of the motion. That is, the position of the particle is predicted

from the previous and present ones by adding the forces acting from other particles.
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In the case of classical MD, it would not be an exaggeration to say that potential

functions and its parameters (force fields) determine the fate of the particles, if other

conditions are reasonably selected.

The equation of the motion for i-th numbered particle can be written as,

d2ri
dt2

¼ Fi

m
, i ¼ 1, 2, . . .N ð8:9Þ

8.2.4.1 Algorithm

In classical MD simulations, the equation of the motion is solved numerically. In

other words, the next position of i-th particle is calculated based on the position at

t and that of one or several steps before. Several algorithms to solve the equation of

motions have so far been proposed. Here we explain the Verlet algorithm [84],

which is simple and known to be symplectic [85, 86]. This method is suitable for

calculation of motion including sudden changes of displacements (jumps or hops)

found in melts and glasses, because it is not affected by the information of many

steps before. The Gear’s method, which is one of predictor-corrector methods with

several steps, is also used for MD simulation [87]. In this case, slow dynamics by

jump motions might be affected by the several steps before the motions. In other

words, the method is not necessarily suitable when the sudden change occurs in the

system. Although the method is known to be accurate in other cases and useful at

least for a short time scale, drift of the motion might be non-negligible during long

runs because of its non-symplectic nature.

In the Verlet method, the positions of i-th particle after Δt and that before Δt are

ri tþ Δtð Þ ¼ ri tð Þ þ Δtr
•
i tð Þ þ Δtð Þ2

2

Fi tð Þ
m

þ O Δtð Þ3
	 


ð8:10Þ

ri t� Δtð Þ ¼ ri tð Þ � Δtr
•
i tð Þ þ Δtð Þ2

2

Fi tð Þ
m

þ O Δtð Þ3
	 


: ð8:11Þ

From the sum of Eqs. (8.10) and (8.11), one can obtain the following relation.

ri tþ Δtð Þ þ ri t� Δtð Þ ¼ 2ri tð Þ þ Δtð Þ2 Fi tð Þ
m

þ O Δtð Þ4
	 


; ð8:12Þ

On the other hand, from the difference of Eqs. (8.10) and (8.11), one can obtain the

following equation,

ri tþ Δtð Þ � ri t� Δtð Þ ¼ 2Δtr
•

i tð Þ þ O Δtð Þ3
	 


; ð8:13Þ
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That is, new position is,

ri tþ Δtð Þ ¼ 2ri tð Þ � ri t� Δtð Þ þ Δtð Þ2 Fi tð Þ
m

þ O Δtð Þ4
	 


; ð8:14Þ

and a new velocity is,

r
•

i tð Þ ¼
1

2Δt
ri tþ Δtð Þ � ri t� Δtð Þf g þ O Δtð Þ2

	 

; ð8:15Þ

A numerical error in solving equation of motion thus depends on the time of each

step, Δt.

8.2.4.2 Periodic Boundary Conditions (PBC)

Periodic boundary condition (PBC) is frequently used in typical MD simulations of

bulk systems. Schematic description of the periodic boundary conditions used in the

simulations is shown in Fig. 8.1, where the basic cell containing particles is

surrounded by the periodically repeating image cells infinitively.

The figure is for the two dimensional case; however, similar conditions are also

used for three dimensional cases. (One should be careful to use 2D system for

comparison with experiments except for a special purpose, because motions of

atoms might be affected by the dimensionality of the space.) For a particle within

Fig. 8.1 Schematic

description of the periodic

boundary conditions used in

the simulation. Image cells

continue infinitively. When

a particle moves out the

basic cell of the MD

simulation, another particle

moves in from the image

cell as shown by orange
arrows
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the basic cell, interactions from particles within the sphere with a certain cutoff

length (typically chosen to be L/2, where L is a length of basic cell) are taken into

account including ghost particles (images of the same particle found in the basic

cell) in image cells.

By this treatment, we have the following benefit.

1. Properties of the bulk can be simulated by the limited number of particles. That

is, effect of the surface can be removed.

2. If the particle moved beyond the boundary, the ghost particle comes into the

basic cell. Therefore, in the case of constant number simulations such as NVE or

NPT ensembles, the number of the particles is kept constant.

3. The periodicity like crystals makes it possible to calculate the long ranged

Coulombic force using the Ewald method or related ones, even in the case of

liquid or glasses. In many cases, minimum image (within 2/L ) is used for

calculation of short range forces (and for real part of the Ewald summation

explained later).

Following characteristics of the system should be kept in mind when one uses

PBC. Even when we considered the infinitive system using PBC, the wave number

accessible by the simulation is limited by the size of the simulation box. Further-

more, when one considered the motion of particle in the system with PBC, it is

repeated as well and some artificial waves or vibrations in the particle motions will

be formed. If the system size is too small, the particle might be affected by its own

ghost in an image cell, which is moving in the same directions. Especially in the

case of crystals, basic box of the MD is formed by several repeating basic lattices of

the crystal and therefore the number of repetition of them in each axis direction will

affect the periodicity of the motions. To reduce such effects, the system size used

has to be large enough to the possible extent while ensuring the practical usability.

It is useful to change the system size to check the effect.

For the study of glasses, further caution is required to avoid crystallization in the

system. If only a small number of particles were contained in each basic box of the

simulation, system may easily crystallize and/or behaves like crystals because of

PBC. In the case of network glasses, long ranged oscillation tends to be formed and

continued by PBC.

8.2.5 Treatment of Coulombic Force

Coulombic force is a long ranged force and has essential importance to consider in

the ionic systems. The repulsive force is usually a short ranged force, and for it in

MD simulations, using a certain cutoff length is a reasonable choice. Corrections by

shifted force can also be used. The cutoff length should be chosen, so that the wave

like structures of g(r) for ion-ion converge (typically 8–15 Å). When the ion

370 8 Molecular Dynamics Simulations



(molecule or residue) has an inner structure, the distance among the center of unit

structures can be considered as that for ionic structures.

As well known, the Madelung energy of simple crystal is represented as

EMadelung ¼ �Nα 0Z2e2=r0, ð8:16Þ

where α’ is known to be Madelung constant [88]. The system energy is affected

from the ions located at long distances. For isolated system such as small clusters or

nano-crystals, one can use the direct sum or multipole expansion [89] of it.

If parameters and functions are given in SI, the Coulomb’s constant is defined
and given by k ¼ 1= 4πε0εð Þ, where the constant ε0 is the permittivity of free space

and ε is a relative permittivity for the material concerned. The Coulombic potential

formed by N ions around an ion is given by

ϕ rð Þ ¼ 1

4πε0

XN
n¼1

qn
r � rnj j: ð8:17Þ

Convergence of the long range force for the Coulombic term needs a large cost in

calculation. The calculation cost of direct sum of N particle is N(N�1) when all

combinations are counted, and is of the order of N2 (i.e. O(N2)). Order of N2 means

that, if the system size (particle number within the basic cell) is 100 times larger, the

calculation cost is 10,000 times larger.

Coulombic force is treated by several methods in MD simulations as shown

below.

8.2.5.1 The Ewald Method

The Ewald method [90–92] is a standard method for calculation of Coulombic term

used in the MD simulations, which mimics the periodicity of the crystal structure by

using a PBC of the MD cells. Many methods to reduce the cost have been developed

and still are developing. Recently, particle-particle-particle-mesh (P3M) Ewald

[93, 94], particle mesh Ewald method (PME) [95], and multipole expansion method

are also used. These methods will be explained in the following subsections.

In MD simulations of bulk system, all forces from the particles in the basic cell

and those from image cells at infinitive distances are taken into account to eliminate

surface effects. The Ewald method is applicable to both crystalline and

non-crystalline materials such as liquids, super-cooled liquids and glasses. In

non-crystalline systems, the method is used with the periodic boundary conditions

(PBCs), where the system has a periodic charge distribution similar to crystals.

With this condition, Coulombic potential of the system is represented by
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φC ¼ 1

2

X
n

X
i

X
j

0 QiQj

4πε0

1

jri � rj þ Lnj , ð8:18Þ

where L is a vector to represent the size of basic cell of MD simulations and n is a

vector consists of integers such as (1,1,1) to represent the image cells.

The summation for n is taken to consider the contribution of all image cells. The

vector (0,0,0) mean a basic cell for the simulation and the term (i¼ j) in the cell is

excluded and this restriction is represented by Σ0 in the summation.

The Ewald method takes into account infinitive numbers of ions using PBC

without considering all image cells in the real space. In the method, Coulombic

potential is separated into three parts, which is the real, the reciprocal and a constant

(self) part as shown in the following equation.

φC ¼ φreal þ φrecip � φself : ð8:19Þ

The First Term of the Ewald Method, φreal

Here we considered the j point charges around an ion “i”. The first term φreal is the

sum of the real part for point charges around an “i” ion and the Gaussian distribu-

tions having the opposite sign for the system. The term for the real space is given by

φreal ¼
1

2

X
i

X
j

0 QiQj

4πε0

erfc
�
α ri � rj

�����
ri � rj

���� : ð8:20Þ

Here the summation is taken for the sphere within a cut-off length, typically

radius of L/2 from “i” particles, and not for all image cells. In the expression

for φreal, “erfc()” stands for the complementary error function defined by,

erfc xð Þ ¼ 1� erf xð Þ ¼ 2ffiffiffi
π

p
ð1
x

e�t2dt ð8:21Þ

The term α in the expression is a setting parameter to determine the shape of the

Gaussian distribution of the charge and also determines convergence of the term.

The Second Part of the Ewald Summation, φrecip

A part not sufficiently taken into consideration in real space is compensated by the

reciprocal lattice term φrecip, which includes the Gaussian distributions having the

same sign as the point charges considered, and is given by

372 8 Molecular Dynamics Simulations



φrecip ¼
2π

V

X
G 6¼0

exp � G

���� 2

4α2

� �
G
���� 2

X
i

X
j

QiQj

4πε0
cos G � ri � rj

� ��  ð8:22Þ

Here G is a reciprocal lattice vectors. This summation can be done for one half of

the vectors, because terms (h, k, l) and (�h,�k,�l ) in the reciprocal space have the
same values. The Gaussian distribution introduced guarantees the convergence of

the summation in the reciprocal lattice vectors.

The Third Term of the Ewald Summation, φself

In the reciprocal term, φself, extra electrostatic potential by the ion “i” having a

Gaussian distribution is included and the following term should be subtracted off.

φself ¼
X
i

QiQi

4πε0

αffiffiffi
π

p ; ð8:23Þ

Setting of the Ewald Method

The error in the Ewald summation is determined by the choice of α and L values.

The optimal choice can be done by several methods [96]. For example, when

L ~ 20 Å is used, 125 vectors are necessary to carried out the simulation with a

tolerance of 10�5 in the energy of the Ewald sum. In several software of MD, the

combination can be selected automatically or set by the choice of a value of

tolerance.

The reciprocal lattice term has the factor 1/|G|2, which diverges at G¼ 0. To

avoid the divergence of the second term, G¼ 0 is omitted and this procedure is

justified by the condition of the charge neutrality of the system. Thereby the method

does not hold exactly in system with defects. It may be better to consider the charge

redistribution to fulfill the neutrality in such a case, or to use other method such as

the multipole expansion.

8.2.5.2 Particle Mesh Ewald (PME) and Particle-Particle-Particle-

Mesh (P3M) Ewald Method

Instead of the Ewald method with the O(N3/2) character [90, 92], particle-particle-

particle-mesh (P3M) method was developed as the O(N ) method [93, 94]. In the

case of P3M, interaction of short length is treated by particle-particle, while the long

ranged interaction was treated by particle-mesh interaction. To obtain the O(N )
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condition in this method, real space region is more limited than the optimized one

for the Ewald summation, and the calculation times of real space and reciprocal

space are set to be comparable. Particle-Mesh Ewald [95], which is an O(NlogN)
method, is a special case of P3M method, although it was independently developed.

8.2.6 Multipole Expansion and Tree Method

Usually, the force from particles located at the long distance is weak. One of the

possible ways to reduce the calculation cost is to handle some numbers of particles

together. The group can be represented by the sum of multi-poles. To distinguish

the distant particles from the particles close by, the “tree method” has been

proposed. The “multipole method” with a multipole expansion is typically used

with the “tree method” or “hierarchy tree method” [97–99, 100], which can separate

groups by a distance effectively, without calculating the distance among particles.

For example, the “Quad tree code” (for 2D case) repeats the division of the system

into four until each region contains less than a certain number of particles (0 or 1)

(see Fig. 8.2). “Oct tree code” is for the case of 3D.

If both the particles acting and those being affected on are treated as groups, it

is called “fast multipole method (FMM)” and is shown to be an O(N ) method.

The method using multipoles is effective for extremely large system and also for the

system without a periodic boundary, since one can consider the force acting from

the sub-regions or grids (cells) of the system instead of individual particles. Now we

considered a case of interaction from M particles in a sub-region to the outer point

Fig. 8.2 Schematic

description of the “Quadtree

code” for the 2D structure,

which can separate group of

particles without calculating

the distance
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P to understand the merit of using multipoles. Here the center of the cell is

represented as rc and the relative positions of particles k (k¼ 1, 2----M) to the center

are taken as rk. A Coulombic potential formed at the point P is represented as,

φC rð Þ ¼
XM

k¼1
φC rk�Rj jð Þ ¼

XM

k¼1

qk
rk�Rj j; ð8:24Þ

The vector R is a relative position of P from the center of the sub-region and qk is a
point charge. At the arbitrary chosen position r, the potential function can be

approximately represented as follows.

φC rð Þ ¼ Z

R
þ μαRα

R3
þ QαβRαRβ

R5
þ � � �; ð8:25Þ

In the right hand side of the equation, Z is a sum of charge within a grid, Z ¼
X
k

qk,

μα is a dipole moment, μα ¼
X
k

qkrkα, and Qαβ. is a quadrupole, given by Qαβ¼X
k

qk
m
2

3rkα � δαβr2k
� �� 

.

The strength of the charge decreases with 1/r, while that of dipolar decreases ~1/r2

and so on. In this expression, μαRα is for a sum of α¼ x,y,z; while rkα is a α¼ x,y,z
component of vector rk. This treatment, which dividing the basic cell into sub-regions,

is also useful for the parallel computing.

8.2.7 General Description of the Multipole Expansion

One can represent any charge distribution by using multipole expansion and this

kind of treatment is also applicable for 1/rm type potentials besides the Coulombic

term. Therefore, more general treatment using spherical harmonics [101] will be

useful in some situations. Outside of the ionic system, one assumes that the

electrostatic potential ϕ(r) satisfies the following Laplace equation,

∇2ϕ rð Þ ¼ 0 ð8:26Þ

Under the condition that “at the long r limit, φ(r) becomes 0”, the solution of the

equation can be expanded as follows.

ϕ rð Þ ¼ 1

4πε0

X1
l¼0

Xl
m¼�l

4π

2lþ 1
qlm

Ylm θ;φð Þ
rlþ1

ð8:27Þ

Here the terms Ylm(θ,φ) are the spherical harmonics (i.e., the angular part of the

solution). One may be familiar with the graphical representation of the spherical
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harmonics, because it is frequently used to represent the shape of orbital of

electrons such as π-orbitals or d-orbitals. For example, one can see the shape of

the spherical harmonics. [For example, see Wolfram Demonstration Project, Spher-

ical Harmonics, http://demonstrations.wolfram.com/SphericalHarmonics/ (The

address was confirmed to be valid on 14th Feb., 2016.)]. The function is also

used to characterize structures of bond ordering, local or intermediate structures

in super-cooled liquids, glasses or crystals [66, 102].

The Eq. (8.27) as well as (8.25) is called a multipole expansion of the electro-

static potentials, where the qlm is a multipole moment, which is related to the

distribution of the density ρ(x’) as shown in,

qlm ¼
ð
Ω
Y*
lm θ0,ϕ0ð Þr0lρ r0ð Þdr0: ð8:28Þ

When the total charge is denoted by q and the dipole moment is denoted by

p ¼
ð
Ω

x0ρ x0ð Þdx0, then the following relations are obtained.

q00 ¼
1ffiffiffiffiffi
4π

p
ð
Ω

ρ x0ð Þdx0 ¼ qffiffiffiffiffi
4π

p ð8:29Þ

ql,�1 ¼ �
ffiffiffiffiffi
3

8π

r ð
Ω

x0 � iy0ð Þρ x0ð Þdx ¼ �
ffiffiffiffiffi
3

8π

r
px � ipy
� � ð8:30Þ

ql0 ¼
ffiffiffiffiffi
3

4π

r ð
Ω

z0ρ x0ð Þdx ¼
ffiffiffiffiffi
3

4π

r
pz ð8:31Þ

Here l¼ 0 is for point charge (m¼ 0), l¼ 1 is for dipole moment(m¼�1, 0, 1),

l¼ 2 corresponds to quadrupole (m¼�2, �1, 0, 1, 2), and l¼ 3 corresponds to

8-pole moment and so on. The concept of multipoles is useful not only for

calculations of Coulombic terms during simulation but also for understanding the

force affecting the ions.

8.2.8 Multipoles as an Origin of Nearly Constant Loss (NCL)
of Caged Ion Dynamics

Usually, interaction of neighboring ions or atoms is directly summed up in MD;

however, it is possible to consider the multipole expansion of interaction from

surrounding particles as a cage. Let us consider the cage formed by oxygen atoms

around Li ions as in silicate or related systems. Each Li ion is trapped inside the

cage formed by oxygen atoms and rocked. Instead of direct interaction between Li
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ion and oxygen atoms, the same potential (Coulombic term) can be represented as

the sum of multipoles up to lmax. Here the accuracy becomes better if the lmax is
larger, where the first term (charge-charge interaction) is considered for the center

of mass position of oxygen atoms. As already mentioned, contribution of the dipole

(~1/r2) decays faster than that of point charge (~1/r), while contribution of quad-

rupole (~1/r3) decays faster than that of the dipole. Thus the potential of the cage,

consisting sum of these terms, is anharmonic. In previous chapters, we have shown

that anharmonic potential acting on the ions causes caging of the ions at short times,

and observed experimentally in susceptibility as the nearly constant loss (NCL).

Here we do not exclude the contribution of repulsive terms, and note that

representation by the multipoles is also applicable to the repulsive part.

Represented by the multipoles and their time dependence, the anharmonic potential

is effective in caging the ions, and the loss from motion of ions confined within the

cages is manifested as the NCL in susceptibility (See Sects. 4.5, 4.7 and 9.4.2.).

Previously, Dieterich and Maass considered the asymmetric double well potential,

and/or random dipole interaction as an origin of NCL [103]. If the total charge in

the caging region is 0, then the main term will be dipole (if it is not 0). Although this

might be a good approximation in some cases, further terms will be necessary to

represent the situation more precisely. In the ionic structures, alternative oscillation

of positive and negative charges are observed at longer length scales than neigh-

boring distance and this means that the charge neutrality does not hold within the

neighboring distance. When the total sum of q is not 0, point charge term cannot be

neglected. Actually, we have previously shown that the motion of Li ions in the

lithium metasilicate system is well correlated with the motion of center of mass

position of polyhedral formed by caging oxygen atoms [3, 68]. Contribution of

further terms also will not be negligible especially in the short distance region. We

also note that the cage is moving in NCL region and therefore its motion is

characterized as dynamic anharmonicity as discussed in Sect. 9.5.2.

Generally, the nature of cages is also related to the problem of glass transition

[104, 105], because the rigidity or softness of the cages determines the motion of

ions, atoms, or molecules trapped within [106].

8.2.9 Treatment of Rotational Motion

8.2.9.1 Euler Angles

When ions or molecules of the system have internal structures, methods to include

consideration of rotational motion are necessary in MD simulations. In such cases,

motions of ion or molecule are regarded as a combination of translational motion of

the center of mass position, P, and rotational motion around it. The rotational

motion is represented by the Euler’s equations [91, 107] named after Leonhard

Euler using Euler angles, where the coordinates (P-exeyez) fixed on body, centered at

P are used.
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The coordinate (P-exeyez ) is transformed from the space coordinate (O-xyz) as
follows, where P and O are overlapped. There are several notations and definitions

for the treatment of angles. Here we used ones by Goldstein [108]. In these

procedures, the rotation is counterclockwise and is in three steps as shown in

Fig. 8.3.

1. The coordinate (O-xyz) is rotated around z axis with angle φ (see Fig. 8.3a).

2. A resultant coordinate (O-x0y0z0) is rotated around x0 axis with angle θ (see

Fig. 8.3b).

3. A resultant coordinate (O-x00y00z00) is rotated around z00 axis with angle ψ (see

Fig. 8.3c). The final coordinate after the rotations is O-x000y000z000 (¼P-exeyez ) in
Fig. 8.3c.

Rotational transformation of the vector A in (O-xyz) coordinate to B in P-exeyez
coordinate is represented as follows.

B ¼ AR: ð8:32Þ

Here R is a transformation matrix shown below.

R ¼ RφRθRψ

¼
cosψ cosϕ� cos θ sinϕ sinψ cosψ sinϕþ cos θ cosϕ sinψ sinψ sin θ

� sinψ cosϕ� cos θ sinϕ cosψ � sinψ sinϕþ cos θ cosϕ cosψ cosψ sin θ

sin θ sinϕ � sin θ cosφ cos θ

0B@
1CA;

ð8:33Þ

where Rϕ ¼
cosϕ sinϕ 0

� sinϕ cosϕ 0

0 0 1

0@ 1A

Fig. 8.3 Orientation of rigid body is represented by the Euler angles, ϕ, θ and ψ. Definition of

Euler angles by Goldstein is shown here. The rotation is measured in counterclockwise direction.

In this example, ϕ, θ and ψ used are 0.92, 0.67 and 0.87, respectively
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Rθ ¼
1 0 0

0 cosϕ sinϕ
0 � sinϕ cosϕ

0@ 1A

And Rψ ¼
cosψ sinψ 0

� sinψ cosψ 0

0 0 1

0@ 1A:

A transformation from B to A is by using transpose matrix,

A¼tRB ð8:34Þ

8.2.9.2 Euler’s Equations

Kinetic energy, KR of the rotational motion of rigid body is represented as follows

by using the inertia tensor.

KR ¼ 1

2
Ixxω~x

2 þ Ixyω~xω~y þ Ixzω~xω~z þ Iyzω~yω~x þ Iyyω
2
~y
þ Iyzω~z þ Izxωzω~x

h
þ Izyω~zω~y þ Izzω

2
~z

i
:

ð8:35Þ

If the P-exeyez is chosen to be coincident with the principal axes of inertia, inertia

tensor is simplified to be represented by the diagonal elements, and time depen-

dence of the angular momentum can be represented by the Euler’s equations.
Time derivative of the angular momentum LR in O-xyz coordinate is,

dLR

dt
¼ TR; ð8:36Þ

here TR is torque vector and total angular momentum of the rigid body (molecule,

ion, etc.) consists of N particles can be obtained by LR ¼
X
i¼1,N

miri � dri=dt:

While the angular momentum LP in the P-exeyez coordinate is represented by

LP ¼
L
Pex

L
Pey

L
Pez

0@ 1A ¼
I1 0 0

0 I2 0

0 0 I3

0@ 1A ω
Pex

ω
Pey

ω
Pez

0@ 1A ¼
I1ωPex
I2ωPey
I3ωPez

0@ 1A; ð8:37Þ

where I1, I2, I3 are the components of the principal moment of inertia in the P-exeyez
coordinate andω

Pex ,ωPey andωPez are the components of angular velocity about these

principal axes.

Euler’s equations can be derived from the transformation of time derivative of

angular momentum dLR/dt inO-xyz coordinate to that (dLP/dt) in P-exeyez coordinate,
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dLP

dt
in P� exeyez coordinateð Þ ¼ dLP

dt

�
in O� xyz coordinate

�þ ω� LP: ð8:38Þ

Taking each component along principal axis of Eq. (8.38) for left hand side, Euler’s
equations are given as follows.

I1
dω

Pex
dt

� ω
PeyωPez I2 � I3ð Þ ¼ T

Pex ð8:39aÞ

I2
dω

Pey
dt

� ω
PezωPex I3 � I1ð Þ ¼ T

Pey ð8:39bÞ

I3
dω

Pez
dt

� ω
PexωPey I1 � I2ð Þ ¼ T

Pez ð8:39cÞ

8.2.9.3 Relation Between Angular Velocity and Euler Angles

The derivatives of angles φ
•
, ϕ

•
and θ

•
; are z0, x00 and z000 components of angular

velocity vectors ω 0
ϕ, ω00

θ and ω000
ψ in the P-x0y0z0, P-x00y00z00 and P-x000y000z000(¼P-exeyez) coordinates, respectively. Therefore, the following relation holds.

ω ¼ RϕRθω
0
ϕ þ Rϕω

00
θ þ ω000

ψ ð8:40Þ

By solving Eq. (8.40) for each derivative of angle, the following results

θ
• ¼ ω~x cosψ � ω~y sinψ ,

ϕ
• ¼ 1

sin θ
ω~x sinψ þ ω~y cosψ
� �

,

ψ
• ¼ ω~z � cos θ

sin θ
ω~x sinψ þ ω~y cosψ
� �

;

ð8:41Þ

are obtained.

8.2.9.4 Relation Between Quaternion and Euler Angles

Since the temporal derivative of the Eulerian angle contains singular point (the term

1/sin θ in Eq. (8.41) becomes1 and �1, at 0 and π, respectively.), the Quaternion
parameters [109] are used to avoid it. Quaternion parameters (ξ, η, ζ, χ) are

connected to Goldstein’s Euler angles θ,ψ ,ϕ as follows.

ξ ¼ sin θ=2ð Þ • sin � ψ � φð Þ=2�

380 8 Molecular Dynamics Simulations



η ¼ sin θ=2ð Þ • cos � ψ � ϕð Þ=2�
ζ ¼ cos θ=2ð Þ • sin � ψ þ ϕð Þ=2�
χ ¼ cos θ=2ð Þ • cos � ψ þ ϕð Þ=2� ð8:42Þ

Because of the relation, ξ2 þ η2 þ ζ2 þ χ2 ¼ 1, these four parameters are not

independent and therefore, the degree of freedom does not change with the

transformation.

8.2.10 Ensembles Used for MD Simulations

Several ensembles are used in MD simulations including extended ones. Some

typically used ensembles are introduced here.

8.2.10.1 Constant Energy Condition

Constant number of atoms, volume and energy (NVE) ensemble (micro-canonical

ensemble) is achieved without modification of system, while extended ensemble

such as NPT, NVT (P: pressure, T: temperature) requires additional parameters to

control the pressure and/or temperatures.

8.2.10.2 Constant Pressure Condition (Andersen Method)

Andersen [110] developed the method to control the pressure by introducing the

wall (a three dimensional piston) in the MD cell. This treatment is explained here

for the case of soft-core (SC) model.

The Hamiltonian of the SC system interacting pair-wise force is

H p; rð Þ ¼
X
j

p2j =2mþ
X
i<j

ε σ=rij
� �n � K þ U; ð8:43Þ

where the m and σ are the mass and a size parameter of the particle, respectively.

Hamiltonian in the extended system can be written as follows,

H s;π;V;Πð Þ ¼
X
i

πi •πið Þ= 2mV2=3
	 


þ U V1=3s
h i	 


þ 1

2M
Π2 þ PexV; ð8:44Þ

where s
�¼ six, siy, siz

�
, πi ¼ ∂L

∂s •i

	 

and Π ¼ ∂L

∂V
• ¼ MV

•
	 


are normalized (ri ¼ Lsi)

coordinates, momentum of particle i and momentum of the wall respectively, and
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PexV is a potential energy by the wall. Here we consider the isotropic system with

L¼V1/3. The system is conservative.

In the equilibrated system with a constant pressure, the term 1
2MΠ2 becomes

negligibly small, where M has the dimension of [mass][(length)�4]. Then one can

use the reduced mass M0 which is given by the relations [91]

M0 ¼ Mσ4=m: ð8:45Þ

The system under the constant pressure condition is controlled by the difference of

external pressure and internal pressure.

From Eq. (8.9), equations of motions are obtained as follows.

dsi
dt

¼ ∂H
∂πi

¼ 1

miV
2=3

πi ð8:46aÞ

dπi

dt
¼ �∂H

∂si
¼ ∂U

∂si
, i ¼ 1, 2, 3, . . . ,N ð8:46bÞ

dV

dt
¼ ∂H

∂Π
¼ Π

M
; ð8:46cÞ

dΠ

dt
¼ �∂H

∂V
¼ Π

M
¼ 1

3V
V�2=3

X
i

π• i •π
•
i

mi
� V1=3 ∂U

∂ V1=3
� � !

� Pex ð8:46dÞ

These equations of motion for the scaled system are solved numerically to give the

time development of coordinates and momenta.

The correspondence between the scaled system and the original system is taken

into account through the following relations.

ri ¼ Lsi ð8:47Þ
pi ¼ L�1πi: ð8:48Þ

dri
dt

¼ pi
m
þ ri

3V

dV

dt
; ð8:49aÞ

dpi
dt

¼ ∂U
dri

� Pi

3V

dV

dt
; ð8:49bÞ

dV

dt
¼ Π

M
; ð8:49cÞ

dΠ

dt
¼ 1

3V

X
i

pi
2

mi
�
XN�1

i¼1

XN
j>i

ϕ rij
� �
drij

rij • rij

rij

 !
� Pex ð8:49dÞ

The first term in Eq. (8.49d) represents the instantaneous internal pressure. When

the internal pressure equals to the external pressure Pex,
dΠ
dt ¼ 0 and then the system

volume becomes constant. In other cases, the instantaneous pressure (and volume)

382 8 Molecular Dynamics Simulations



fluctuates around the Pex set in the simulations. This situation can be regarded as the

thermally equilibrated state, with the use of a suitable M. Time average of any

function (which corresponds to NVH ensemble), F, can be calculated from the

trajectories obtained by the Eq. (49).

8.2.10.3 Constant Temperature Condition (Nosé Method)

For controlling temperature, thermostat using a fictive time with a new degree of

freedom, (s, ps), is introduced by Nosé [86, 111–114]. Here, s and ps correspond to

the coordinate and its canonically conjugate variable, momentum, of the new

degree of freedom having mass represented by Q. The coordinate and its canoni-

cally conjugate variable, momentum, in the extended (fictive) system are

represented by r0 and p0, respectively.
The Hamiltonian of the extended system is defined by

H p0, r0, ps, sð Þ ¼
X
i

�
pi

02= 2ms2
� �þ U r0ð Þ þ ps

2

2Q
þ gkBTlns; ð8:50Þ

where g is a parameter used to represent the degree of freedom.

In this case, T is a parameter to give the targeted value of the temperature, and

Nosé has proved that the microcanonical ensemble of the extended system corre-

sponds to the canonical (NVT) ensemble in the real system if one choose

g¼ 3Nþ 1.

The values in the real and extended systems are assumed to be connected by

ri ¼ ri
0, pi ¼

pi
0

s
, t ¼

ðt dt0
s
, dt ¼ dt0

s

The last two equations represent the relation between the time in the extended

system, t0, and that in the real system, t.
Then the velocity of these systems are connected by,

dri
dt

¼ dri
dt0

dt0

dt
¼ s

dri
0

dt0
: ð8:51Þ

The Hamilton’s canonical equations for the extended system are derived from

(Eq. 46) are given by,

dri
0

dt0
¼ ∂H

∂pi0
¼ pi

0

ms2
; ð8:52aÞ

dpi
0

dt0
¼ � ∂H

∂ri0
¼ � ∂U

∂ri0
; ð8:52bÞ
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ds

dt0
¼ � ∂H

∂ps
¼ ps

Q
; ð8:52cÞ

dps
dt0

¼ �∂H
∂s

¼ �∂W sð Þ
∂s

¼
X

i

pi
02

ms3
� gkBT

s
: ð8:52dÞ

In Eq. (8.52d), W(s)
� ¼ K

s2 þ gkBTlns with K ¼Pi
pi

02
2m

�
corresponds to the poten-

tial energy relating to the giving and receiving the heat.

From Eq. (8.50), the equation of motion in the real system is derived as

[91, 111],

dri
dt

¼ pi
m
; ð8:53aÞ

dpi
dt

¼ �∂U
∂ri

� pspi=Q; ð8:53bÞ
ds

dt
¼ s

ds

dt0
¼ sps=Q; ð8:53cÞ

dps
dt

¼ s
dps
dt0

¼
X

i

pi
2

mi
� gkBT: ð8:53dÞ

The equations of motion in the real system are slightly modified to

dri
dt

¼ pi
m
; ð8:53a0Þ

dpi
dt

¼ �∂U
∂ri

� ζpi; ð8:53b0Þ

dζ

dt
¼ 2

Q

X
i

p2i
2m

� gkBT

2

� �
; ð8:53c0Þ

where ds/dt¼ sζ. Under the conditions, xs¼ lns and ζ ¼ x
•
s ¼ ps

Q
, these equations

are equivalent to Eqs. (8.53a–8.53d).

This form of the thermostat, which is by eliminating s, is called the Nosé-Hoover
thermostat [112], and it can reproduce the canonical distribution in the coordinate

space.

Because the variable s for the scaling of time of whole system is eliminated, the

friction coefficient ζ can be defined for each substructure of the system and it is

useful for the controlling temperatures in complex systems. Sampling of data

intervals used in a virtual system in the Nosé algorithm corresponds to the unequal

sampling of that in the real space. The Nosé-Hoover algorithm also removes

this difficulty, although the resulting system is not Hamiltonian. Recently, the

Nosé-Poincaré method [86, 114] was introduced to solve this problem.
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8.2.10.4 Combination of Conditions

Nosé generalized the work to include both thermostat and barostat. Nowadays,

many kinds of extended ensembles are introduced and used [87, 91, 115].

In Sect. 8.5.3, our attention will be focused on the problem of the choice of

ensembles to study structures and dynamics in super-cooled liquids or glasses

including non-equilibrium situations. Some other problems concerned with the

system showing slow dynamics will be also discussed there. Dynamics in crystals

are also slow process and similar treatment seems to be required.

8.2.11 Parrinello-Rahman Methods

It is useful for the simulation of the crystal and its transformation, additional degree

of freedom is taken into account. In the Parrinello-Rahman (and Parrinello-

Rahman-Ray) methods [116–118], angles as well as axis lengths in the basic cell

(with parallelepiped structure) can be changed during the MD runs. Practically, it

seems to work in several conditions after the equilibration, although it is known that

the collapse of the parallelepiped structure occurs in some cases. It may be helpful

to consider the geometrical degree of the freedom [119] of the basic cell of MD to

treat this problem.

8.2.12 High Performance Computation

If one would like to treat large system and for long times in a straightforward

manner, acceleration of the calculation is desired, as well as the developments of

computer technology itself. Another possible way is to reduce the amount of

calculation itself. Coarse-graining by several methods and scaling concepts are

effective for estimation and prediction of long time behavior of the system, and may

save the calculation times. Here we mention the means for accelerating the

calculations.

8.2.12.1 Parallel Computing, Acceleration Boards, and Graphic

Processing Unit (GPU)

In MD simulations, each particle moves by the sum of forces from other particles.

This calculation is the most time consuming part for the simulations. Many particles

can be treated by several kinds of parallel computing, using Message Passing

Interface (MPI), graphic processing unit (GPU), etc. Several methods for parallel

computing both by manipulating software and hardware can be applied.
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The GRAPE (Gravity Pipe) board was developed for solving the ‘Gravitational
Many-Body Problem’, where the common algorithm with molecular dynamics is

used. Then, MDGRAPE [120] chip was designed for acceleration of MD

simulation.

Recently, graphic processing unit (GPU) pioneered by NVIDIA in 2007 [http://

www.nvidia.com/object/what-is-gpu-computing.html (The address was confirmed

to be valid on 14th Feb. 2016).] is widely used for acceleration of computation

including MD and is called GPGPU (General-purpose computing on graphics

processing units) (see also Appendix 8). GPU boards named Tesla and/or GeForce

are included in many computing systems, not only super-computers but also in

personal computers. Because of its generality and relatively lower cost, the meth-

odology is rapidly spreading. Such developments will make an MD simulation

suitable for personal use in the near future. An example of coding for the main loop

of MD by Fortran using Compute Unified Device Architecture (CUDA) is shown in

the Appendix A.8.1.

There are several problems for each technology. Sometimes, heat released on the

boards causes many problems such as instability of the system. Noises coming from

the fan for cooling may cause another problem. Therefore, controlling the heat

release is an important problem for using acceleration boards. If the board is

occupied by a job in an exclusive manner, it will prevent the execution of parallel

computing jobs. Parallel calculations are effective to use for large system but not

necessarily being effective enough for long runs. This is because the MD run of

slow dynamics is essentially sequential to cover the different time regions. There-

fore the technology different from the parallel computation may be desirable.

Parallel computing of completely independent runs (of different conditions) is

one of the alternative approaches. “Array job” can be used in some systems for

parameter survey.

8.2.12.2 Difference in Numerical Results Using Parallel Computations

If one uses the symplectic integrator, the drift of the energy can be avoided in the

equilibrium system. Nevertheless, drift may occur due to different origins such as

the overlaps of non-equilibrium relaxations and/or aging. When calculated values

in parallel calculations are accumulated into one, resultant data will have larger

numerical errors compared with calculation on the single machine. Besides these

problems, in the case of slow dynamics in supercooled liquids or glasses, further

caution seems to be required for the deterministic nature of the motion.

Ionics in the glassy state is dominated by jump motion of ions and it has

intermittent and sporadic nature related to chaos. Consequently, each motion is

quite sensitive for the small difference of the initial value. Each ionic motion tends

to show the different trajectory by this. This situation occurs regardless of single

precision or double precision of the calculation and therefore it is not a problem of

the number of significant digits. It is not a problem of the quality of GPU itself as

well, although it occurs when the calculation is just moved from CPU to GPU.
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This is because similar situation also occurs just by changing the order of the

calculation within a Do loop [The view discussed here is obtained by the assistance

of the staffs of the project of acceleration of the program using GPU in the Global

Scientific Information and Computing Center in Tokyo Institute of Technology.

Here we appreciate it]. Sometimes one needs extremely long time runs for calcu-

lation of properties such as transport coefficients and their fluctuations, and one

may have to worry about the propagation of errors during the run. Fortunately, the

dynamic properties of long time, such as transport coefficients, tend to converge to

certain values during a long run (for example, diffusion coefficient of ionic motion

converges within 10 ns runs at 800 K in lithium disilicate) and this is also

represented by using the local expansion rate [121], which can be a measure of

the propagation of the error in non-linear dynamics [122, 123] (see also Sect. 8.4.2).

It means that the short time fluctuation of motions does not affect the structure of

the attracter for the long time dynamics. In other words, characteristics of the ion

channels are not changed by the local motion in the caging region. In our opinion,

the short time discrepancy does not necessarily affect the long time behavior of the

mean dynamics and that is why we can use a long time run of MD simulations for

the calculation of transport properties. Of course, each researcher has responsibility

to check it for the result of MD runs in each system when parallel computation

and/or long runs are used.

8.2.12.3 Perspective of Computational Technology in MD Simulations

During a long run of MD, one may encounter the situation of run being stopped by

the problem of the machine or supply of electricity. To avoid such troubles, further

developments for acceleration of long time runs will be helpful. One may also

encounter the problem of coding in calculations for adjusting available resources.

Although some compilers have an option for parallel computing, still it requires

some modification of the code for efficient treatment. When a new hardware is

developed, a new coding might be necessary. To improve the performance, devel-

opments of machine independent coding seem to be desirable. Recent development

of “Xeon Phi co-processor” by Intel seems to show one of the promising ways for

this direction, because it does not require the special coding.

8.3 Physical Quantity and Properties Obtained from MD
Simulations

In typical classical MD simulations, input of the MD simulations is the “potential

parameters” and the output is essentially the “time series of coordinates of particles

(and velocities)”, that is the “trajectories”. Typical input files in the MD simulations

of glasses contain the following items:
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1. Setting of potential parameters and functions,

2. Setting of ensemble (NPT, NVE, etc.).

3. Preparation of initial configuration (and velocity) (system size).

4. Setting of runs (step time and steps for equilibration and those for analysis)

In the case of study of glasses or glass transition, cooling schedule is also

required.

In typical output files, fundamental information such as temperature, energies,

pressure, pair correlation functions are included in most of MD programs for

checking the data and/or further treatment.

From the trajectories, further analyses can be done. Available information is

concerned with the structures, dynamics and thermodynamics. Researcher can

define any functions to obtain specific information suitable for their purpose.

Visualization of the structures, motions, vectors is also useful. Furthermore, poten-

tial functions or parameters can be artificially modified if necessary. For example,

mass, ionic size, and functional forms can be changed to examine the effects of each

factor. These methods are useful to separate possible mechanisms responsible for

the problem treated, and to check the results or prediction from models or theories.

The model of the system can be tuned up for desired properties and hence MD

simulations are applicable for material designs. In this sense, MD simulations are a

tool of experimental investigations as well as of theoretical treatment. Some typical

functions or properties obtained from MD are summarized in the next subsections.

We hope that from the example of the research on silicate systems and ionic liquids

in Chaps. 9–11, readers can have a good idea of how to use MD simulations.

8.3.1 Structural Properties

8.3.1.1 Pair Correlation Function: g(r)

Liquids have homogeneous structure at longer length scales and characteristics of

them can be well represented by the pair correlation function [87, 91], where the

structure is represented by a function of r only. This can be also used for charac-

terizing super-cooled liquids and glasses, although further terms might be required

in some circumstances.

Pair correlation function among different kind of particles i and j is obtained by

gij rð Þ ¼ V

Ni •Nj

XNi

i¼1

ni r � Δr=2, r þ Δr=2ð Þ
4πr2Δr

* +
; ð8:54Þ

where V is a volume of the system, Ni and Nj are the number of the species i and
j and ni r � Δr=2, r þ Δr=2ð Þ is the number of j particles within the shell with width
Δr at distance r from particle i. The term 4πr2 is for the surface area of the sphere.
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When the species i and j are the same one, the function is,

gii rð Þ ¼ V

Ni • Ni � 1ð Þ
XNi

i,¼1

ni r � Δr=2, r þ Δr=2ð Þ
4πr2Δr

* +
; ð8:55Þ

where now ni r � Δr=2, r þ Δr=2ð Þis the number of i particles within the shell with

width Δr at distance r. Practically, it can be calculated during the MD run and it is

useful to check the status of the calculation. In this case, distances among i and
j particles appeared are not ordered and this may prevent the effective coding for

parallel computation. A part using random access may be better to put it out of the

loop of the calculation of force, if necessary. The Ni � 1ð Þ term is the number of

surrounding particles, which does not include the central particle i.
For example, in the case of ionic liquids with internal structures, the function

g(r) for each pair can be determined for the center of mass position (or center of

charges) of each ion. Alternative arrangement of cation and anion in ionic system

tends to neutralize structure at a certain length scale. This behavior is regarded as

screening in the strongly-coupled system such as NaCl [124, 125] and charge radial

distribution in the following form is suggested.

q rð Þ ¼ A

r
exp �r=λDð Þ sin 2πr=d þ φð Þ; ð8:56Þ

where A/r is the amplitude, φ is the phase shift and d is the period of the oscillations.
In ionic structures, one can consider the charge distribution function Q(r) and

the density distribution function G(r) defined by the following equations [124–

127] by assuming that the charge is simply on the center of mass (or charge)

position,

Q rð Þ ¼ Qþ rð Þ þ Q� rð Þ ¼ gþþ rð Þ þ g�� rð Þ � 2gþ� rð Þ� 
e ð8:57Þ

G rð Þ ¼ Gþ rð Þ þ G� rð Þ ¼ gþþ rð Þ þ g�� rð Þ þ 2gþ� rð Þ� 
=4 ð8:58Þ

The former is related to the structures of layers of charges (charge density wave,

CDW), while the latter is related to structures of ionic positions regardless the

charges (density wave, DW). Typical length scales for these functions are infor-

mative due to the difference of the main factors controlling them. These functions

become 1 when the value becomes the mean density of species of the surrounding

particles.

If the plots of ln|Q(r)r| against r have a straight line when the maxima of the

peaks (envelopes) are connected, the characteristic length λQ, which corresponds to
the Debye length for the screening of the Coulombic term in the simple dilute ionic

systems, can be determined from the slope, �1/λQ. However, the values in dense

ionic systems are not necessarily the same one as in a dilute system. The interaction

observed is a renormalized one by the interactions from the other ions.
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In the theory of liquids, the pair correlation function is fundamental to under-

stand their structure [128, 129] and we note that the function can be obtained with

good statistics in MD because it can be averaged in many steps.

8.3.1.2 Structure Factor and Intermediate Scattering Functions

Comparison of structures with experiments can be done through the structure factor

S(k). The function is a Fourier transform of g(r) [128–132].

S kð Þ ¼ 1þ 4πρ

ðrmax

0

r2 g rð Þ � 1f g sin kr

kr
dr: ð8:59Þ

Obtained by X-ray diffraction, the function is modified by the weight of atomic

scattering factor, f(k) [131, 132], while for neutron diffraction it is modified by

scattering length, b. Details of the treatment of data is slightly different by different

researchers. For example, the following form was used in some X-ray diffraction

works, where I(k)¼ S(k)�1.

kI kð Þ ¼
X

i

X
j
xixjf i kð Þf j kð ÞX
i
xif i kð Þ

n o2
�
ðrmax
0

4πρ0 gij rð Þ � 1
n o

sin krð Þdr ð8:60Þ

Here ρ is the number density of the system and ρ0 is the average of it.
For comparison of the structural details of glasses (such as Qn where n is the

number of bridging oxygen in the SiO4 unit, the distributions or statistics of rings)

from simulations with experiments, one should be careful to consider not only the

cooling rate, but also the history of the system on the PVT phase-diagram (see Sect.

9.2). Otherwise, the results of the MD simulations might deviate from the experi-

mental ones. This is because the partial structure (such as Qn structure) has its

specific partial volume [133, 134].

The formation of three dimensional networks is observable directly in MD

simulations.

8.3.1.3 Running Coordination Numbers

To examine the coordination shells of other particles or solvent, the pair correlation

function is accumulated as represented by the running coordination numbers,

Ncoord(r). The function for the species j around species i is defined as follows.
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Ncoord rð Þ�ρj

ð r
0

4πr2g rð Þdr: ð8:61Þ

This function also can be calculated during the MD runs.

Coordination number is often defined by the cutoff values corresponding to the

distance of the first minimum position of g(r). The function also can be used to

obtain the fractal dimension of the structures in different length scale regimes.

8.3.1.4 Angular Distribution Function

Distribution of angles in the structure can be examined by MD simulations. The

angular correlation function may be defined by using the number of particles, dN,
located between θ�dθ/2 and θþdθ/2, within a certain distance r.

P θð Þ ¼ CdN=sin θ dθ: ð8:62Þ

C is a normalization constant so that the integration over 2π becomes 1.

When the data points are uniformly spreading, the number of points on the polar

is smaller than that of points on the peripherals. The term sinθ is used to take into

account this situation. Namely, such correction is used, when the distribution in a

three dimensional (3D) space is a target of the problem. The absence of the

modification by the sine term is also found in literatures, such as the case when

the frequency of the appearance of the angle (for example, that among bonding) is

the problem to be examined.

8.3.2 Dynamic Properties

8.3.2.1 Mean Squared Displacement (MSD) and Diffusion Coefficient (D)

The Mean Squared Displacement (MSD) of species a is obtained by the expression
[87, 91],

<ra
2 tð Þ>¼

XNa

i¼1

rai tð Þ � rai 0ð Þð Þ2
( )�

Na

* +
: ð8:63Þ

Here the angled brackets represent the average for different initial times or

independent runs.

Using a sequence of particle positions during a run of T1 period, we prepared

N arrays of data sequence with slightly shifted initial time t0 values and the data for
N arrays were averaged. Wide time window covering fluctuation of dynamics is
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required in the case when dealing with heterogeneous dynamics. In the case of

equilibrated system, it is the same as the ensemble average. However, in the case of

non-ergodic system, it is not necessarily the same.

For each species, the MSD starts to become proportional to time t at times longer

than tdif. From the slope of the MSD at times longer than tdif, the diffusion

coefficients, D, can be obtained using the Einstein relation [135].

D ¼ 1

6
lim
t!1

d

dt
< ri tð Þ � ri 0ð Þ½ �2> : ð8:64Þ

The onset time of steady state diffusion, tdif, is a characteristic and fundamental

time of the dynamics. Here the denominator 6 is used for the case of diffusion in

three dimensional systems.

In slow dynamics of super-cooled liquids near the glass transition regimes,

quasi-diffusive regime, where the MSD is proportional to time, can be found before

the fractional power law regime, if one closely examine the data (see Sect. 9.4.2 for

details). Therefore, it is necessary to distinguish it from the true long term diffusive

regime, particularly if the observation time is limited. If the system has hierarchy

structures, diffusive regime is not be easily attained. For example, particles might

be located in different domains with different sizes, when observation is started.

Diffusion coefficients can also be obtained from the velocity autocorrelation

function.

D ¼ 1

3

ð1
0

v tð Þ • v 0ð Þh i: ð8:65Þ

This equation is known as the Kubo formula [136].

The function may seem to be converging at a short time (several ps) at a first

glance even in glasses. However, this is not for a true diffusive regime. Thus, to

ensure correct result for D, the times for the integration should be long enough to

cover steady state diffusive motion.

8.3.2.2 Conductivity

Conductivity is connected with the complex frequency dependence of the ion

dynamics and is related to the time dependence of the MSD by the relation

[136, 137],

σ* ωð Þ ¼ �ω2 Nq2

6HRkBT

ð1
0

<r2 tð Þ> e�iωtdt; ð8:66Þ

where N is the number density of mobile ions, q the ion charge, kB the Boltzmann

constant, HR the Haven ratio [138] and T the temperature.
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In MD, the Haven ratio, HR¼Dt/Db, is obtained from the tracer diffusivity, Dt,

and the bulk (or charge) diffusivity Db. Its time dependency is defined by [136],

HR tð Þ ¼
X
i

<vi 0ð Þ • vi tð Þ> = <
X
i

vi 0ð Þ •
X
j

vj tð Þ> ð8:67Þ

Typical value of the Haven ratio is at around 0.2–0.5 for ionically conducting glasses

and therefore the correction by this is not so large although the value gives useful

information formechanism of the transport properties. The value is known to decrease

in increasing content of alkali metal, in alkali silicates or related materials

[139, 140]. The ratio represents the geometric correlations in the case of single particle

motion, while it is also affected by the collective or correlated motions of particles

(ions) [141]. Doliwa and Heuer [142] argued that the value is an inverse of the number

of particles (ions), which moves in cooperative manner. That is, typical Haven ratio

means that 2–5 ionsmove in cooperativemanner. Direct calculation of conductivity or

Haven ratio from MD simulation runs were performed in some works [143, 144].

For single particle properties, statistics can be improved by taking the average of

large number of particles or ions, while for collective properties such as conduc-

tivity or Haven ratio, it is not easy to obtain good statistics, especially when dealing

with heterogeneous dynamics. In taking average of heterogeneous ionic motions,

the use of large time windows covering different initial situations is recommended.

In principle, electric conductivity can be calculated directly from the electric

current of ions, J(t) defined by

J ¼
X
i

Qi _ri tð Þ; ð8:68Þ

where Q is the charge of the species and ri is a displacement vector of the ith-ion.
From the linear response theory [136], frequency dependent conductivity is given by

σ ωð Þ ¼ 1

3kBTV

ð1
0

J tð Þ • J 0ð Þh iexp iωtð Þdt; ð8:69Þ

and the direct current conductivity at the low frequency limit is given by

σ 0ð Þ ¼ 1

3kBTV

ð1
0

J tð Þ • J 0ð Þh idt: ð8:70Þ

If one compared this expressionwith Eq. (8.66), it is easily found that the time region

for this limit corresponds to the long time limit of the MSD and/or the displacement

of bulk diffusion. In themolten salt or in ionic “liquids”, the time region is usually far

beyond the ps region except for extremely high temperature region. At a first glance,

the velocity auto-correlation function or that of the electric current might appear as if
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it has converged at short time (ps) region as already mentioned. Even if apparent

convergence of the auto-correlation function in a short time was found, it does not

mean that the motion corresponds to low frequency limit of Eq. (8.70). Careful

sampling of the data is required with considering above situations. Similar situations

will be found in many systems, liquids, glasses and crystals. Some further problems

for the sampling of heterogeneous and intermittent dynamics near the glass transi-

tion regimes will be discussed in Sect. 8.5.7.

8.3.2.3 Viscosity

Viscosity, η, can be obtained from the Stokes-Einstein relation [135, 145] from the

diffusivity. The relation for 3D liquids is given by

D ¼ kBT=cπηR; ð8:71Þ

where R is the effective diameter of the particle and c is a constant. The value c is
known to be 2 and 3, in slip and stick hydrodynamic boundary condition,

respectively.

Near the glass transition temperature, the deviation from the Stokes-Einstein

relation is often found (see Sect. 7.3.3) and fractional power law relation between

D and η can be a better description (Several fractional power laws are suggested.

For example, D ¼ A0 kBT
η

	 
γ
was assumed in Ref. [67].).

The viscosity η can be calculated from the Green-Kubo formula

η ¼ V

kBT

ð1
0

dt < Pαβ 0ð Þ •Pαβ tð Þ > ð8:72Þ

where αβ stands for xy, xz, yx, yz, zx, or zy, and

Pαβ ¼ 1

V

"X
i

miviαviβ þ
X
i

X
j>i

ðriα � rjαÞFijβ

#
: ð8:73Þ

Non Equilibrium Molecular Dynamics (NEMD) and Reverse Non-Equilibrium

Molecular Dynamics (RNEMD) are also useful to derive such transport properties

(see Sect. 8.6).

8.3.3 Space-Time Correlations

8.3.3.1 Self- and Distinct-Part of Van Hove Functions

Space time correlation of the particles can be brought out by the self and distinct

part of van Hove functions respectively defined as follows [146, 147],
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Gs r; tð Þ ¼ 1=Nð Þ
XN
i¼1

δ
�
ri tð Þ � ri 0ð Þ � r

� �� ð8:74Þ

Gd
α,β r; tð Þ ¼ 1=Nαð Þ

XNα

i¼1

XNβ

j¼1

δ
�
r� rαi 0ð Þ þ r

β
j tð Þ

D 
E
ð8:75Þ

The former is concerned with a self-motion of a particle, while the latter is for the

mutual motion of different species α and β. Usually, results in figures are shown as a
function of r¼ |r|. If the self-part of the van Hove function is multiplied by 4πr2, the
area under the curve corresponds to the number of particle and therefore 4πr2Gs(r)
tends to be used for the plot.

In the distinct part of the van Hove function, new peak appears at r¼ 0 if the

particle of species β comes into the site previously occupied by a particle of species

α and this feature is useful to examine the jump events. (See Sects. 10.1–10.3.)

During this period, structures shown by g(r) are kept unchanged although at t¼ 0,

the distinct part of the van Hove function is the same function as g(r) of the

α�β pair.

This difference of the time development is due to the fact that the origin of the

coordinate is fixed on the initial position of species α in the space in the former,

while relative positions of α and β species are measured in the latter.

8.3.3.2 Intermediated Scattering Functions: Fs(k,t)

The intermediate scattering function is defined by [147]

Fs k; tð Þ ¼
XN
j¼1

exp ik � rj tð Þ � rj 0ð Þ� �� +
=N

*
ð8:76Þ

The function is useful for comparison with experiments as well as many kinds of

theoretical treatments in the problem of slow dynamics.

8.3.3.3 Fluctuation of the Order Parameter

Lačević et al. defined the overlap susceptibility χ4 (which is related to the four point

correlation function) as follows [148] to investigate the spatial heterogeneity in the

glass forming liquids. A time dependent order parameter Qp(t), which measures the

number of “overlapping particles in two configurations separated by a time interval

t” is defined by
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QpðtÞ ¼
ð
dr1dr2ρðr1, 0Þρðr2, tÞδðr1 � r2Þ

¼
XN

i¼1

XN

j¼1
δðrið0Þ � rjðtÞÞ, ð8:77Þ

where ρ r; tð Þ ¼
X
i

δ
�
r� ri

�
.

The order parameter is related to the distinct-part of the van Hove function by,

Qp tð Þ� � ¼ NGd r; tð Þ, with r¼ 0. In other words, this order parameter is concerned

with the probability of substituting α and β species in Eq. (8.75) (for the case of

single component, it is defined with α¼ β).
The function χp4(t), the fluctuation of the order parameter, is represented by

χp4ðtÞ ¼
βV

N2
½⟨Q2

pðtÞ⟩� ⟨QpðtÞ⟩2�, ð8:78Þ

where β¼ (kBT)
�1.

It is rewritten as

χ4ðtÞ ¼
βV

N2
½⟨Q2ðtÞ⟩� ⟨QðtÞ⟩2� ð8:79Þ

using a modified Q(t) by a substitution of δ ri 0ð Þ � rj tð Þ
� �

in Eq. (8.77) by the

“overlap” function w
�� r1 � r2ð Þ��. The “overlap” function is unity when

�� r1 � r2ð Þ��
	 a and zero otherwise. Here the parameter “a” is for typical amplitude of

vibrational motion. This function can pick up the correlation length concerned

with jumps or jump-like motions.

8.3.4 Thermal Properties

Thermal properties can be also determined from MD simulations. Pressure, tem-

perature, volume, energies, and forces (each component of the kinetic and potential

energies can be separated.), their time dependent behavior, and their derivatives or

integral as well as fluctuations can be analyzed. In several systems such as the SC

model, analytical treatment of the thermodynamic properties is possible [See Refs.

[41–47] and references therein.].

8.3.5 Thermodynamic Scaling and Other Scaling Rules

The system may obey several kinds of scaling rules. Details for the thermodynamic

scaling of the ionic systems are found in Chap. 7 and Sect. 11.10. Application of

such rules will be helpful (see also Sect. 13.2) to predict or interpolate the properties
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of materials to a different condition or state. In this manner, the scaling rules make it

easier to estimate or predict the properties under a different condition, and also

useful to understand the mechanism underlying them.

8.3.6 Further Possible Analyses

There are many other possible analyses of the results from MD simulations. For

example, individual motion of particles (ions, molecules), rotational dynamics, 3-,

4- (or higher order) time correlation functions, details of inner and inter structures

of ions or molecules, correlation among angles and/or distances, can be analyzed

and examined. Furthermore, possible analyses are not limited to the ones mentioned

above. One can define any kind of functions or representations. Simulations also

could be done under extreme conditions such as high pressure, negative pressure,

and extremely high or low temperatures. For the purpose of material designs, or

examination of the mechanism of dynamics, one can change freely the mass,

particle size of the constituents of the system.

8.4 Errors in the Molecular Dynamics Simulations

There are several source of errors that can occur during the MD simulations and

analyses of them [149, 150]. Here we treat three kinds of errors. One is concerned

with the treatment of digits in the computer. Second one is concerned with the

treatment of the numerical integration during the MD runs and of the averaged

quantities. The third one is concerned with the propagation of small error during

MD runs related to deterministic properties of the system especially in the case of

slow dynamics.

8.4.1 Errors Occurred in the Numerical Treatment

In computers, the real number with infinitive digits is approximated by the floating

point numbers having a limited number of digits. There exists a round-off error due

to the limit. There are several standards to treat it such as IEEE 754-2008. The value

xf can be represented by [151],

xf ¼ �f � βm, f ¼ x1
β
þ x2

β2
þ � � � þ xn

βn
; ð8:80Þ

The base for the scaling can be two, ten, or sixteen in almost all cases.
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Here xk (k¼ 1, � � �, n) are integers with 1 	 x1 	 β � 1 and 0 	 xk 	
β � 1 k ¼ 2, � � �, nð Þ.

For example, 3.14159 is represented by 0.314159� 101. In this example,

0.314159 corresponds to the fraction f and 10 corresponds to the base, β, of
the scaling and 1 corresponds to the exponent m. The parameter m is integer within

the range, L 	 m 	 U.

The largest and the smallest values (Fmax and Fmin), which can be treated in the

machine are represented by

Fmax ¼ βU 1� β�nð Þ;
Fmin¼ βL�1 ð8:81Þ

Thus the system can be characterized by β (base), n (number of significant digits),

L (minimum exponent) and U (maximum exponent). These values depend on the

system. For example, β¼ 16, n¼ 14, L¼�64, and U¼ 63 may be used in the case

of double precision for a certain system.

For the treatment of MD simulations, one needs to be careful for the loss of

significant digits and trailing digits. The former situation occurs when the differ-

ence of comparable large values is taken. The latter situation occurs when the sum

or difference of large value and extremely small value is taken.

8.4.2 Numerical Errors Occurred During MD Runs

For example, in Eq. (8.14), the third term in the right hand side of the equation is

much smaller compared with other terms. To avoid the loss of trailing digits,

calculation will be done by preparing the following values for i¼ 1,2 ---N

Δri tð Þ ¼ ri tð Þ � ri t� Δtð Þ

Then Eq. (8.14) was divided into two steps,

Δri tþ Δtð Þ ¼ Δri tð Þ þ Δtð Þ2 Fi tð Þ
m

ð8:14aÞ

and

ri tþ Δtð Þ ¼ ri tð Þ þ Δri tþ Δtð Þ ð8:14bÞ

By this transformation, the values in Eq. (8.14a) become comparable in magnitude

and furthermore, the error in Eq. (8.14b) will not propagate to longer times.

Pressure of the system is usually obtained from the difference of large compa-

rable values and therefore, the loss of significant digits tends to occur. These losses

as well as rounding error may be diminished by changing the order of calculations.
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For example, for averaging of heterogeneous quantities for long runs, small values

are better to sum up before performing the summation that includes large values.

Error of the numerical integration also depends on the algorithm of the integrator

used [152, 153]. For energy conservation of long time scale, symplectic integrator

such as Verlet algorithm is known to be better compared with the method such as

predictor-corrector method, which might be more accurate for short time runs. For

the stability of the calculations, time reversible methods are also favored. Several

methods with symplectic and/or time reversal properties have been proposed.

8.4.3 Propagation of Small Error and Lyapunov Exponent

As will be discussed in the Sect. 8.5 and Appendix A.2, (see also Example 2 in

ESM) deterministic motion of ions causes the large fluctuation of the dynamics and

such characteristics are common to other non-linear systems. Lorenz [154] has

studied a predictability of non-linear dynamics of atmospheric model. In a similar

manner, one can consider a propagation of the small error in MD simulations,

although further problems remain as to be discussed later.

If the time evolution of the system is governed by a function F of the variables,

ri(t),i¼ 1, . . .,N, in N dimensional system (i.e., the positional vectors of MD), and

time evolution is determined by the following equation,

d

dt
ri tð Þ ¼ F r1 tð Þ, . . . , rN tð Þ½ �; i ¼ 1, . . . ,N; ð8:82Þ

The propagation of error in the basic solution, ri(t), beginning with initial time t0
with a small initial error e0i can be approximated by the linear equations by taking

the first term of the Taylor expansions,

d

dt
ei tð Þ ¼

XN
j¼1

∂F
∂rj

ej; ð8:83Þ

in which the coefficient ∂F
∂rj

is time dependent.

Using Jacobian matrix of F at r(t), Jij ¼ ∂F
∂rj

	 

, it can be written as,

d

dt
ei tð Þ ¼ J r tð Þð Þe tð Þ; ð8:84Þ

Integrating Eq. (8.84), we have at the time after τe of initial time,

e t0 þ τeð Þ ¼ M r t0ð Þ, τeð Þe t0ð Þ; ð8:85Þ

The matrix M is called as error matrix and it depends on the r tð Þ during this time

interval.
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Then one can consider the mean expansion rate of error. If initial error is

randomly and spherically distributed in the N dimensional phase space, the distri-

bution of error with size ε is represented by

eT t0ð Þe t0ð Þ ¼ ε2: ð8:86Þ

Here the superscript T indicates the transpose. From Eqs. (8.85) and (8.86), the

distribution of error becomes an ellipsoid after τe, represented by,

eT t0 þ τeð Þ M r t0ð Þ, τeð ÞMT r t0ð Þ, τeð Þ� ��1
e t0 þ τeð Þ ¼ ε2 ð8:87Þ

The amplification rate, α, during this time is given by [123, 155]

α r t0ð Þ, τeð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Γi r t0ð Þ, τeð Þ;
vuut ð8:88Þ

where Γi¼λ1
2, . . ., λN

2 is a N real and non-negative eigen values of the matrix M

r t0ð Þ, τeð ÞMT
�
r t0ð Þ, τe

�
and Γi

1=2 corresponds to the local Lyapunov exponent

[123, 154].

The error doubling time is inversely proportional to the leading Lyapunov

exponent, a common view in the meteorological community [156]. As shown

above, the error propagation in complex systems is related to the Lyapunov

exponent.

There are some further problems concerning it for the above treatment. The first

problem is the non-spherical distribution of the initial error, which is related to the

dimensionality of the jump paths, which can be less than 3. Another problem is that

the functional form of F being time dependent. Especially for slow dynamics at low

temperature regions, the fluctuation of the cage in local region is larger than that for

the whole system. The third problem may be a contribution of neglected terms in

Eqs. (8.83) and (8.84).

8.4.4 Backward Error Analysis of the Averaged Properties

Mathematicians are interested in the numerical integration of ordinary differential

equations. Backward error analysis [150, 153, 157] seems to be an important tool

for understanding the long time behavior of numerical integration methods and

have shown the usefulness of the symplectic integrator used in MD simulations.

Traditional ‘forward error analysis’ describes the difference between the exact

trajectory and numerical trajectory, while in the ‘backward error analysis’, the
difference between the numerical and exact solution is expressed in terms of a

perturbation of the problem or the vector field.

400 8 Molecular Dynamics Simulations



Bond and Leimkuhler [153] have done the backward analysis of the accuracy for

numerically computed averages of MD. The history for the numerical treatment in

MD was also summarized in this reference. Reich [150] has shown the long time

integration of chaotic Hamiltonian systems and discussed the approximation of

time averages along numerically computed trajectories. These works seem to be

encouraging to use in long time MD simulations for obtaining averaged quantities.

8.5 Treatments of Slow and Fast Dynamics in Ionic
Systems

Dynamics of ions in both ionically conducting glasses and ionic liquids are quite

heterogeneous. That is, both fast and slow ions coexists, while the mean of the

dynamics is slow, similar to dynamics of liquids in the glass transition regimes,

where the rare event is not negligible. This situation makes it difficult to treat the

heterogeneous dynamics in molecular dynamics simulations.

In this section, several requirements to observe such dynamics and the resultant

structures will be discussed, although sometime they are difficult to fulfill by a

limited calculation resource. Sampling method of such dynamics or structures is

also a matter of debate here. If the system was trapped in the local metastable state

on the complicated potential well, many runs with independent cooling schedule

might be required. However, for the ionics with a measurable diffusivity within

several ns, delayed time series with many initial times obtained by a long run,

covering the phase-space, is more useful than a limited number of short time runs.

8.5.1 System Size Requirements (Relationship with Fragility
and Confinement)

In MD simulations, periodic boundary condition (PBC) is often used. This is useful

to treat the infinitive size of system and long ranged interactions. However, the

nature of the system might be affected by the size of the basic cell. This is because

the motions of particles are repeated by the periodic boundary conditions, and

consequently the resultant structures also are restricted. Of course, the system size

required in MD simulations depends on the problem to be treated, and researcher

should select suitable size for the purpose and within the restriction of the available

calculation resources. Here, some general requirements for the study of the struc-

ture and dynamics including those in the case of the silicate glasses are discussed.
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8.5.1.1 General Requirements of System Size in MD

The size of the basic cell determines the largest length scale and smallest wave

number accessible by MD simulations. In the case of crystal, motion of particles

including vibrational mode is considerably affected by the cell size and how the unit

crystal structure is repeated in the basic MD cell.

In liquids or glasses, the structure shown by pair correlation function g(r), decays
within a certain length. For ion-ion interactions, the correlation of the structure

(deviation from the line of g(r)¼ 1) is not clear at distance longer than 8–12 Å in

ionic systems such as lithium silicate glass. Therefore, twice this length is a

minimum length of the unit cell for MD simulations to avoid the ionic structure

being affected by the PBC. In the case of ionic liquid, longer correlation is observed

as shown in Fig. 8.4. The correlation is small at around ~18 Å. Therefore the system
size with ~36 Å of L will be a good choice for many purposes. However, larger

system size might be necessary depends on the purpose of the simulations.

Angell has introduced a concept of “fragile” and “strong” to characterize glass

forming materials [158, 159] and the system size required to examine the network

glasses depends on the fragility of it. The fragile system shows a non-Arrhenius

behavior, while the strong system shows an Arrhenius behavior. In the fragile

liquid, the Arrhenius plot of structural relaxation time as a function of Tg/T
increases rapidly near Tg/T¼ 1, and the “fragility” or fragility index m is usually

defined by the slope at Tg/T¼ 1. Fragile (strong) glass-formers have large (small)

value of m. In general, system size effect of the basic MD cell for dynamics is

known to be larger in the “strong” system [160].

Generally, fragility is larger when the alkali content is larger and this affects the

required system size of MD. For lithium silicate, experimental fragility index, m, of

Fig. 8.4 Example of the

structure of ionic liquid

(EMIM-NO3 at 400 K for

system with 512 ions)

examined by the center of

mass positions of ions.

Black: Cation-Anion pair,

Red: Anion-Anion pair,

Blue: Cation-Cation pair.

Correlation of the structures

is diminished but is

continuing ~18 Å
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silica, lithium trisilicate, lithium disilicate, and lithium metasilicate is reported to be

17.9, 26.3, 34.7 and 33.9, respectively [161]. As expected from its fragility, larger

size effect on the network statistics is found in silica rich region than in the lithia

rich region and therefore larger system size is required in the silica rich region.

In a confined system such as thin films, mobility of the mobile species (ions)

tends to be affected by the immobile species or walls (see Sect. 10.7.1). Using the

dependence of dynamics on the distance from the wall, one can obtain a length scale

to characterize it. If the system is smaller compared with this length scale, particle

motion is affected by its ghost particles in the image cells. Therefore this is related

to the minimum size of the system required for the study of the mobile particles.

In the case of more complex systems with several domains, larger system size

may be required to represent regions with different length scales. For example, in

colloid-water-salt systems, domains or clusters, gels are formed by a coagulation

process and the fractal dimension of local regions and connections between them

are different in the cluster or gel [76].

8.5.1.2 System Size Required for the Study of Qn Structures

or Other Network Statistics

For determination of the structures in network systems with long life time, both

system size dependency and cooling schedules play roles. In the case of strong

system, long (and medium) ranged structure at the high temperature may remain in

the system after the vitrification. As a result, the system will show the fictive glass

transition temperature which depends on the cooling rate. Fixing of the high

temperature structure causes a problem of how to get good statistics for the network

structures. One may consider that extremely large number of runs is required to

obtain statistically meaning quantity in a glass.

For the statistics of the networks, required numbers of runs may depend on the

possible sub-structural units to be considered and their combinations. ForQn (where

n is the number of bridging oxygen in the SiO4 unit) distribution in lithium

disilicate, the system size (3456 particles) seems to be large enough to represent

any combinations of structural units of the networks, even when the exchanges

among structural units are slow. If one would like to examine the structures at

longer range such as the connectivity of the Qn units, larger size may be required.

Some differences of the distribution are found by each quenching schedule and

ensemble due to the existence of polyamorphism (see Sect. 9.2 for more details). In

a limiting case of high pressure region, the statistics of the distribution can be well

represented by the binomial distribution as a first approximation [134, 162] and this

resulted in good reproducibility of the structures and dynamics of ions in the glassy

state from the works of different researchers.

Thus the system sizes should be large enough for the purpose of simulations.

However, due to practical reasons such as the calculation time, the required storage

and the cost, extremely large system is not necessarily recommended. One should

consider the balance of several factors to choose the condition of simulations.
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8.5.2 Equilibration and Cooling Schedules in the MD
Simulation of Glasses

Generally, different length scale motions have different time scales and therefore

larger system requires longer equilibration time. Some characteristics observed

near the glass transition of the system can be understood by existence of these

different time scales of substructures.

When the temperature or pressure of the system is changed, shorter length scale

motion of local structure can rapidly follow it, while the longer length scale motion

of long ranged structure occurs after that. For example, formation of glass starts from

short length scale, and spreads to the long length scale [163]. As a result, the system

near Tg shows some cooling rate dependence. Actually, Vollmayr et al. [164] found

that the glass transition temperature Tg in silica is in accordance with a logarithmic

dependence on the cooling rate γ. The rate γ seems to have a much more marked

effect on the radial distribution function, the bond-bond angle distribution function,

the coordination numbers, and the distribution function for the size of the rings, than

density and thermal expansion coefficients. Recently, Forero-Martinez et al. [165]

found the trend such as Tg(vol)> Tg(ene) (vol and ene stand for volume and energy,

respectively.) for the glass transition temperatures in ionic liquids and it was

rationalized in terms of the different relaxation times of energy and volume. It was

pointed out that the volume is an intrinsically N-body property, depending on the

relative position of far-away particles, while energy depends primarily on the local

arrangement of particles, whose relaxation in response to temperature variations is

faster than in the case of volume. As a result, energy provides an estimate of Tg
somewhat less affected than Tg(vol) by fast quenching rates. Thus the cooling

schedule should be designed with considering the different length scales. It is

probable that reproducibility of the glass transition temperature becomes better, if

the systemwasmaintained just above the glass transition regimes for a long time and

then the system was cooled down further. In this condition, long (and medium)

ranged structures are equilibrated enough and glass transition temperature is deter-

mined mainly by the short length scale structures.

8.5.3 Ensembles Used in the Simulations of Super-Cooled
Liquid, Glass, and in the Treatment of Glass Transition

Mostly experiments have been done under constant pressure conditions; while

constant energy condition (micro canonical ensemble) is obtained in MD, as long

as one does not use modification by additional degrees of freedom. Therefore, the

extended ensembles are useful for direct comparison of MD and experiments for

some purposes. However, details of the thermodynamics (and its fluctuation) and

motion of particles near the glass transition regimes depends on the ensemble used.

Therefore suitable conditions should be chosen dependent on the purpose.
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When the system is sensitive for thermodynamic condition in the preparation of

glass, question arises is what condition should be used in the study of glass

transition. So far, many MD works for the glass transition seem to be done in the

fixed volume condition and structures prepared in such a manner are not the same as

that obtained at ambient pressure. There are reasons to select such conditions.

Binder [166] pointed out that “It is essential to carry out simulations for examining

the glass transition at constant density (taken from experiment) and not at constant

pressure, because in the latter case, there is a too strong dependence of the

simulated properties on the cooling rate of the simulation.” It seems to be reason-

able for those with this point of views. Still one may ask how the system depends on

the volume change during the cooling schedule, because the strong dependence can

be characteristics of the glass transition.

As will be shown for the Qn distribution of the network of the silicates (see Sect.

9.2), it depends on the pressure or volume of the system considerably. This is

explained by the fact that a local structural unit has its own specific volume as

already mentioned. Furthermore, the system may show polyamorphism [167] in the

certain region of the phase-diagram [134]. Therefore, the resultant structure of

glasses depends on the path on the P-V-T diagram during the cooling schedules.

Since the different ensemble causes differences in the pathway and direction of

the fluctuation on the phase-diagram during the non-equilibrium relaxation as

shown for SC model [45, 46, 168], caution should be paid to the ensembles used

during the cooling schedules.

Thus, one of the possible choices comparable to experiments may be the

following conditions. The cooling is performed by constant pressure conditions

with temperature scaling or gradual changes in temperatures and the following run

is performed in the NVE condition at each target temperature and under a target

pressure. If the temperature spontaneously increases during NVE runs, it means the

system is under the non-equilibrium relaxation (aging) [45]. Therefore, further

control of temperature may be necessary during this period. An NPT ensemble

will be also useful, if the overlap with the aging is small or distinguished clearly.

8.5.4 Sampling of Structures and Dynamics Near the Glass
Transition Regimes and Glasses

For adequate sampling of the structure of glasses and jump motions including

cooperative ones, long time scale simulations and large system size are required

especially near the glass transition regimes. Here adequate sampling means that the

trajectories cover whole region in the phase space. In other words, the effective

sampling is concerned with the “ergodicity” of the system. For MD performed for a

limited time scale, is this condition achieved? Is the system trapped in a certain

position in the phase space? Fortunately as shown in Sect. 9.9, the transport
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properties of ions obtained MD are comparable to the experimental ones and such

sampling seems to be possible. This is understandable as discussed in the following

subsections.

8.5.5 Non-ergodicity of the Dynamics for Network Former

At first, we consider the case of network former in the silicate glass as an example.

Since the reconstruction of Si-O bonding is a slower process than ionic motion, it

will be more affected by the cooling rate and the characteristics of the structure in

the molten state will remain in the structures of glasses. That is, their structures are

affected by the fictive temperature as known in experiments. Due to this reason,

network structure represented by Qn (n means number of bridging oxygen atoms in

a SiO4 unit) distribution shows large fluctuations in each quenching run. However,

the rearrangement of Si-O bonding is relatively fast process above the glass

transition temperature (for example at 1000 K in lithium disilicate, rearrangement

occurs within several tens ps), in the conventional MD system with a periodic

boundary condition. Thereby one can obtain quasi-equilibrated Qn distribution,

which is approximately represented by the binomial distributions. This means

that the different substructures of the network is mixed well and can be sampled

enough in these systems. (See Sect. 9.2 for more details for the observed Qn

distribution). If one examined the structure of longer length scale (such as rings),

larger system size and longer relaxation time may be required. However, at least for

examining the ionics in the system, non-ergodicity of the network structure does not

cause severe problems. If suitable cooling schedules are used, reproducibility of

dynamics is also good. (See Sect. 9.9 for the comparison of ion dynamics in MD

and experiments.) This fact implies that the effect of rapid cooling rate in MD is

compensated by the system size effect with periodic boundary conditions at least

partially.

8.5.6 Relation Between Ion Dynamics and Chaos

Even for ionic motion, obtaining good statistics in slow dynamics is sometimes a

difficult task due to strong heterogeneity with intermittency of the jump motions. At

first, here we discuss how ion dynamics are related to the deterministic chaos to

understand such characteristics of ionic motions. In the super-cooled liquid states or

in the glass, the motion of ions occurs through jump motions among ionic sites (see

Sect. 2.4 for examples of such motions in ionic systems). Larger fluctuation of the

ion dynamic is observed compared with simple liquids. Similar situation occurs in

the ionic liquids, molten salt, crystals, bio-materials, colloidal systems and so on.

Strong heterogeneity with intermittency mentioned above is related to the

deterministic character of the motion.
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Researchers may encounter such motion even in a simple system such as the SC

model [46] or the Lennard-Jones model [168, 169]. Simonazzi and Tenenbaum

[169] have reported that the kinetic energy fluctuations exhibit an anomalous

behavior in LJ microcrystals at low temperature and attributed them due to weak

chaos. Deterministic nature of the system resulted in the intermittent and sporadic

behaviors [171] frequently observed near the glass transition regimes.

8.5.7 Sampling of Rare Event with Dynamic Heterogeneity-
Ergodicity of Ionic Motion

For ionics in the glassy state, system shows exchanges between vast or laminar

states and cooperative motions of several ions emphasize such a behavior [172]. For

averaging such properties, many independent initial positions and/or wide time

window are required [173], if the calculation resources and times allow it to be

performed. Deterministic behaviors of the system are also found in extended

ensembles. Holian et al. [174] have pointed out that the Toda “demon” is hidden

in the Nosé-Hoover thermostat, which can cause the noncanonical undulations.

Therefore, if one used extended dynamics, it is better to check if the dynamics are

affected by it or not. In the case of slow dynamics, sampling of the rare events such

as cooperative motions of several ions is always problematic [17, 171]. It also

means the difficulty of averaging the heterogeneous dynamics.

How can we cover the wide region of the phase-space and how can we check it?

One possible method to cover the wide phase-space is using a lagged time series as

shown below. To reduce the effect of fluctuation of dynamic heterogeneity related

to the cooperative nature of jumps for statistic treatment of the system, average for

many number of lagged time series, r(t), r(tþ τ00),����� and r(tþ (m�1)τ00), can be

used for the analysis of MD data. Large time windows and many initial times are

required because MD trajectories have correlations between successive motions.

If the time window, mτ00, covered by the many initial times is wide enough, long

correlated motion with strong dynamic heterogeneity can be smoothed out. This

procedure using lagged time series is similar to the “embedding” [175, 176] to find

out the deterministic chaos in the time series. That is, the procedure can cover the

trajectories in the phase-space.

Once sampling time is long enough with wide time windows, results of transport

properties of ions obtained by different runs starting from different configurations

or those by different researchers are comparable when the same potential model and

comparable cooling schedule was used. This suggests that the long time ionic

motion in ionically conducting glasses has “ergodicity” at least approximately,

once the whole phase-space structure can be covered during the observation time.

By this method, one can reproduce well the transport properties such as diffusion

coefficient of ions.
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Exceptional case is observed at quite low temperatures, where the aging

(non-equilibrium relaxation) overlaps the observed dynamics. If permanently

trapped particle exists, non-ergodicity of the dynamics might be found.

Of course, accumulation of independent runs is one of the possible choices for

the sampling method. However, how may runs are required for this kind of

sampling?

In Fig. 8.5, the van Hove functions of cations in the ionic liquid, EMIM-NO3

obtained at 370 K, which shows a medium degree of heterogeneity is compared

with the randomly sampled data from the original curve in (a). The shape strongly

depends on the number of the samples, NS. Many independent samples are required

NS=200,000

NS=2,000,000
NS=2,000

50 000

100 000

150 000

200 000

0

0

0

0

10

20

30

40

0

2

4

6

8

10

0.05

0.10

0.15

0.20

50

100

150

200

0

0 2 4 6 8 10

0 2 4 6 8 10

2 4 6 8 10

0 2 4 6 8

2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

5000

10 000

15 000

20 000

0

500

1000

1500

2000

NS=200

NS=20

a e

f

g

b

c

d

NS=20,000

Fig. 8.5 (a) Distribution curve taken from the self-part of the van Hove functions of cations in

EMIM-NO3 at 370 K at 2.5 ns determined by using many lagged time series. (b)–(g) Reproduc-
ibility of the functional form by random sampling from the original distribution, where Ns data

points are used. Many data points are necessary to reproduce the original functional form
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to reproduce the original curves including power law tail and an exponential

truncation.

In Fig. 8.6, the mean squared displacement at 2.5 ns calculated from reproduced

distributions was plotted against NS. Error bars are for three or four examples with

the same Ns. For obtaining the mean value, ~104 of NS may be enough; while to

reproduce the functional form in details, more than 105 independent samples are

required. More heterogeneous the system, the larger number of samples will be

required. It is not easy to do so many runs and furthermore, independent short time

runs are not necessarily better than the small number of long runs to understand the

dynamics of the system. This is because they cannot cover the low frequency mode,

which is responsible for the transport properties of the glass and they cannot recover

the functional form concerned with the slow dynamics. Long time run is also useful

for sampling of rare events. If the observation time is not long enough, it is difficult

to observe the rare events such as correlated motion of ions of long time scales in

spite of the fact that its contribution to the dynamic properties are non-negligible.

For the single particle motions, sampling for the space can be done by many ions

spread out in the system. Therefore the average can be taken for many ions.

Existence of the large fluctuation is more serious problem for the collective motion

compared with the single particle motion. For example, enhanced heterogeneity

seems to be observed for molecular motion in bio-systems, where a small number of

molecules or units tend to be treated.

The cooling rate dependency of ion dynamics is smaller compared with that of

network [177] due to higher relaxation rate, but still it is non-negligible when it is

accompanied with the relaxation of networks. (See Sect. 9.9.)

Fig. 8.6 Dependence of

mean squared displacement

on number of random

sampling, NS. Error bars are

obtained from three or four

runs using different random

numbers. Distribution is

taken from the same

original function shown in

Fig. 8.5a
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8.6 Non-equilibrium Molecular Dynamics and Reverse
Non-equilibrium Molecular Dynamics

In slow dynamics, it is not easy to attain the region of constant transport coefficient

in MSD or other dynamic properties. In such a case, Non-Equilibrium Molecular

Dynamics, NEMD can be useful. In this method, the system is treated by the

external force such as that giving rise to shear viscosity [178]. Reverse

Non-Equilibrium Molecular Dynamics [179, 180], RNEMD, is also useful for

investigating the transport properties of glass-forming systems, because it provides

faster convergence than the usual numerical non-equilibrium or equilibrium

methods. The RNEMD method is based on the phenomenological relation:

JZ pxð Þ ¼ �η
∂vx
∂z

� �
; ð8:89Þ

where ∂vx
∂z

	 

is the shear, JZ( px) is the transverse momentum flux, and η is the shear

viscosity. In this method, different from the usual techniques, JZ( px) is imposed and

the shear is measured.
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Chapter 9

Molecular Dynamics Simulation of Silicate
Glasses

9.1 Derivation of the Potential Parameters
from Ab Initio Calculations

Modeling techniques using molecular dynamics simulation can contribute to the

design and improvement of materials, and the methods can be used for predicting

properties of them and compare with experiments and theory. Recently, potential

models based on the ab initio MO calculations or DFT are used in many cases.

However, the potential parameters are not necessarily uniquely determined from

the ab initio calculation. To understand the quality of the parameter set, its limita-

tion and applicability of it to each problem, it is useful to learn how it is derived and

how it is checked. Although recently many methods are developing, here we

explain how the parameters for alkali silicates [1], mentioned in Sect. 8.1.2, had

been determined.

At first, the partial structures of Si surrounded by O are treated as follows. For

the charge number of Si, the value obtained for TTAM potential [2] was adopted,

that is qsi¼þ2.40. In their works, Hartree-Fock level calculation using a Gaussian

type basis set (12s8p)/[5s3p] with two d orbitals (α¼ 0.118, 0.424) was used for

silicon, while (9s5p)/[3s2p] with a diffuse function (with α¼ 0.0059) was used for

negative ion states of oxygen. They calculated the total energy of SiO4
4� cluster

surrounded by four positive point charges, which mimic the Madelung potential

from the rest of the crystal. Then the potential energy surface is obtained by

changing Si-O distance or O-Si-O angles with three different modes.

The potential function used in their work is

ϕij ¼
qiqje

2

r
þ f 0 bi þ bj

� �
exp

ai þ aj � r

bi þ bj

� �
� cicjr

�6 ð9:1Þ
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where q is the charge number and e the elementary charge; a, b and c are the

parameter characteristic of each atom, f0 is a normalization constant (1 kcal Å�1

mol�1¼ 4.184 kJ Å�1 mol�1) and r is the distance between the centers of atoms.

The parameters a, b and c, of Si and O of TTAM were used without change,

because the cluster surrounded by point charges seems to be a good model not only

for silica but also for silicates.

The other parameters for silicate is that derived from the Molecular Orbital

calculation of (eþ-O-M-O-eþ)�1 cluster. Total energies of the cluster were calcu-

lated using an ab-initio Hartree-Fock self-consistent-field method using the

Huzinaga-Dunning type [3, 4]. Contractions are [721/31], [631111/6111] and

[4321/421] for Li, Na and K, respectively. The same basis set used by Tsuneyuki

was applied for O. The interaction energies thus obtained with changing M-O

distances in clusters were fitted to the potential function represented by Eq. (9.1).

In addition to the Coulombic terms, the Gilbert-Ida type repulsive function, and an

r�6 term were used, since the potential form of this type is successfully used for

TTAM model.

The partial structures of the alkali metal ions surrounded by oxygen atoms are

treated as follows. From the fitting of the obtained potential energy to the assumed

functional form, several data sets representing the potential surface can be

obtained. In such treatment, the best fitted values for the cluster are not necessar-

ily the best one for the simulation of the bulk structure. This difficulty is coming

from the non-linearity of the functional form and difference between the cluster

and the bulk. To select the best one among these parameter sets to represent the

system, MD simulations of lithium metasilicate (Li2SiO3) in crystalline state at

constant pressure (0.1 MPa) were performed. If the balance of the parameters is

not good enough, the crystal structure will be broken and therefore reproducing

crystal structure under constant pressure (NPT) condition is a severe test of the

quality of the parameters. Several polymorphs should be tested if structures are

known.

Partial charge model was found to be better than the formal charge model.

Among several sets, a set of qLi, aLi, bLi, and cLi reproducing the experimental

density of the crystal within �0.10 g cm�3 was chosen and this parameter set can

reproduce the structures well. The values of the parameters thus obtained are given

in Table 9.1. Behaviors of the systems using these parameters were also checked by

MD simulations in liquid and glassy states starting from the configurations obtained

by the earlier work using an empirical potential model [5, 6]. The structures are

consistent with the results by X-ray diffraction analysis [7]. Parameters for the

sodium and potassium salts are obtained by similar procedures, where the cNa and
cK terms were not necessary. The sets of parameters obtained for the sodium and

potassium salts are also listed in Table 9.1. In MD programs available, many kinds

of units are used including reduced ones. Since conversion of units itself brings

some errors for the result of MD, we show it in the unit appeared in the original

paper in Table 9.1.
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The atomic configurations in the metasilicate crystal obtained by our model are

listed in Table 9.2 together with the experimental values [8, 9]. The atomic

coordinate for the sodium salt and the potassium salt were also shown in Ref. [1].

Some other characteristics for crystal structure of the lithium metasilicate are given

in Table 9.3.

The parameter set shown in Table 9.1 has following characteristics.

In this modeling, it was assumed that the repulsive parameters a, b, and c for the
cluster are applicable for these crystals and that the difference in the parameters

between cluster and bulk is mainly due to the different charges on the oxygen

atoms. Thus the charge of the oxygen atom should be determined by the charge

neutrality in the system even if the composition was different. Recently, the

parameters were also checked for two polymorphs of Li2Si2O5 crystals

Table 9.1 Parameters of the potentials for alkali silicates

Species Q a/Å b/Å c/Å3 kcal1/2 mol�1/2

For lithium silicates

Sia 2.40 0.8688 0.03285 23.18

Oa b 2.0474 0.17566 70.37

Li 0.87 1.0155 0.07321 10.87c

For sodium and potassium silicates (parameters of Si and O are commonly used)

Na 0.88 1.0805 0.08461 0.0

K 0.85 1.4081 0.10070 0.0
aTaken from the TTAM model [2]
bCharge of the oxygen atom should be modified for charge neutrality of the bulk
cFor the term cLicO

Table 9.2 Atomic coordinates for lithium metasilicate (Li2SiO3) crystal

Atomic

coordinates Close packing

Our model (Partial

charge model [1]) Experimental [8] Experimental [9]

Li

x

y

z

0.167

0.333

0.0

0.1722

0.3387

�0.0240

0.160

0.320

0.0

0.170

0.330

0.0

Si

x

y

z

0.0

0.167

0.500

0.0004

0.1653

0.4986

0.0

0.164

0.537

0.0

0.167

0.496

O(1)

x

y

z

0.167

0.333

0.375

0.1389

0.3062

0.4156

0.141

0.321

0.450

0.147

0.310

0.406

O(2)

x

y

z

0.0

0.167

0.875

�0.0002

0.1056

0.8432

0.0

0.100

0.860

0.0

0.108

0.845
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[10, 11]. The assumption seems to work well including these systems. That is, in

MD, the value qO for each composition of crystals or glass is determined according

to the charge neutrality of the system and not to that of clusters. For example,

qO¼�1.38 is used for Li2SiO3 composition. This procedure brings some arbitrar-

iness; however, charges assumed are reasonable when compared with several

experimental works and theoretical work for related systems [12, 13] including

recent ones on related systems. These parameter sets presented here can be appli-

cable for systems with different M2O: SiO2 ratios, and even systems with different

kinds of M only by changing the charge on the oxygen.

It is noteworthy that the potential include the charge transfer effect between

alkali metal ion and oxygen atom. This is because the fixed charges are used in the

fitted parameter sets, but not in the MO calculations of clusters. This also means that

the effect of fixed charge is compensated by other terms in the function.

The parameter thus obtained can be used for the prediction of the unknown

structures. Probably because of the deliquescent character, the crystal structure was

unknown for potassium salt. Therefore, the parameters for the salt were selected to

reproduce the density of the melt under 0.1 MPa (at 1673 K). Crystal structure

starting from that for the sodium is found to be stable for potassium salt. Thus we

can predict the structure of crystal by MD simulation [1].

Densities of these salts in the crystalline, molten and glassy states were also

reported in Ref. [1]. The pair correlation functions for glassy and liquid lithium

metasilicate by our model are quite similar to those obtained from MD simulation

based on the empirical potential parameters in our previous work [5].

The functional form can be easily changed to the following one, which consists

of the sum of a Buckingham potential and a Coulomb pair potential,

U rij
� � ¼ qiqje

2

rij
þ Aij exp �Bijrij

�� �� 	� Cijr
�6 ð9:2Þ

as found in Ref. [14].

There repulsive term can be also easily changed to the Born-Myer-Huggins

form. Therefore, the parameters can be used by many kinds of MD simulations

programs available.

Table 9.3 Structural

parameters of the lithium

metasilicate crystal
Characteristics

Ref.

[8]

Ref.

[9]

Our model (Partial charge

model [1])

a/Å 9.36 9.38 9.55

b/Å 5.395 5.40 5.44

c/Å 4.675 4.68 4.68

Density/g cm�3 2.52 2.52 2.45

Average distance

Si-O/Å
1.60 1.65 1.61

Average distance

Li-O/Å
2.08 2.01 2.00
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9.1.1 Quality of the Parameters

So far, these parameters are successfully applied to silicate systems, and extended

to some related systems for structures and dynamics. For example, diffusive

dynamics of lithium and potassium disilicates were shown to be in semi-

quantitative agreement with experimental ones [15]. Diffusion coefficient and

viscosity in lithium disilicate system is comparable to the experimental values

[16]. (See Sect. 9.9 for details.) Therefore the parameters seem to be good enough

to discuss the mechanism of the dynamics and even to be able to predict properties.

In spite of these successes, caution is required if one would like to use the potential

parameters in the region, which is different from that used for the determination of

the potential parameters. For the lithium and sodium salts, calculated thermal

expansion rate seem to be smaller than the experimental ones. The charge distri-

bution based on the very simple assumption may cause this discrepancy. Differ-

ences of effective charge distributions among crystal, liquid and glassy states were

also neglected in the work. Therefore, applicability of the parameters to other

situations should be checked sufficiently, depending on the purpose of each work.

Recently, Voigt et al. [17] has examined the network and clustering of Li ions in

the silicate systems by both NMR experiment and MD simulations using the same

potential parameters. For the region of low lithia contents (x� 0.17), the NMR data

and the MD simulations were found conceptually to be in excellent agreement.

They pointed out that the clustering found in MD simulations is generally less

pronounced than that indicated by the NMR results, and a significant difference in

the structure is observed for the lithium disilicate (0.333Li2O–0.667SiO2) glass.

Their value of 39% for Q3 content (which is a measure of the distribution) is

smaller than experimental one (~55%). Interestingly, similar results are obtained

from other potential parameters with different origins. Therefore, it is not clear if

the discrepancy is caused by the potential parameters. Recently, Habasaki and Ngai

have shown that there is poly-amorphism related to the different Qn distribution in

lithium disilicate [11]. The Qn distribution observed for the system near

0 (or slightly negative) pressure is not far from the experimental result. It was

also shown that the Qn structure is sensitive for the system volume because each Qn

structure unit has its own specific volume. Therefore, the path during cooling

schedule in P-V-T diagram better has to be taken into account for the discussion

of the distribution (see Sect. 9.2 for more details).

One should note that further developments of long range structures or the

possibility of the phase-separation, and partial crystallization were neglected in

the MD simulations of limited time scale. One of the causes of the discrepancy from

the experiments may be the difference in the cooling rate (or annealing time)

between experiment and simulation, as already been pointed out by several

authors [17, 18].

Although the effect of the cooling rate exists, dynamics in the rapidly cooled

lithium disilicate is comparable to the experimental ones and this suggests that the
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effect of the rapid cooling rate is at least partially compensated for the effect of the

small system size with periodic boundary condition (see, Sect. 9.9).

Of course, further refinement of the parameters is always desirable when more

realistic simulations are required. Actually, for silica, which is the end composition

of the silicate, development of the new potential parameters is still in progress.

TTAM silica is known to give the slightly (~7%) larger density than experimental

ones. Beest et al. [19] have pointed out that the adjustment of short-range param-

eters to bulk properties is inevitable to improve the potential model of silica.

Further efforts for improving the potential of silica are continuing [20–22].

9.2 Characteristics of the Structure

9.2.1 Statistics of the Framework Structures

Molecular dynamics simulations are useful to study the characteristics of the

structures of glasses like the statistics of the framework (3D network) structure.

Here we introduce one of such studies.

Zachariasen [23] assumed a random network structure for oxide glasses. In

1985, Greaves [24] examined the structure of glasses with ionic modifier by

EXAFS. He proposed a modified random network (MRN) model. In this model,

the alkali and non-bridging oxygen ions are micro-segregated to form regions rich

in alkali (i.e., channels) within the network structure, and transport of alkali ions

occurs inside the channels formed. In the case of the silicate systems, the ionic

channels are formed by the network connected SiO4 units. This structure is strongly

related to the ionic dynamics and transport. For example, in mixed alkali silicate

glasses, reduction of ionic diffusion coefficient is caused by mutual interception of

paths by different alkali species [25–29], and this reduction is accompanied by the

loosening of the glass structure [30] as will be explained in Chap. 10.

The MRN model seems to be successful for explaining many features of glasses

and widely accepted. However, still one can ask the question: “Are the structures of

glasses completely random?” and “How can we characterize the disorder?” Rele-

vant to the consideration of the network structure is the presence of Qn, which
stands for an SiO4 tetrahedron with n bridging oxygen linked to the silicon atom,

and in principle n assumes integer values ranging from 0 to 4. The distribution ofQn

is useful to characterize the structure of molten, crystalline and glassy systems in

the studies by experiments [31–34] and simulations [11, 35–39]. Therefore, our

attention was focused on the distribution of Qn structures here, although other

characteristics such as number of rings or of its constituents, connections of Qn

structures can be also used for characterization of the network.

Typical Qn strictures for n¼ 1–4 taken from our MD work is shown in Fig. 9.1.

The coordination number of Si atoms around an Si atom has the same physical

meaning as the n in the Qn structure and can be used as a measure of the networks.
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In alkali silicates, networks consisting of SiO4 units are interrupted by the alkali

metal ions of the network modifiers. Equilibration of Qn species is governed by the

following disproportionation reaction,

2Qn , Qn�1 þ Qnþ1 ð9:3Þ

as well as that for the oxygen species,

2O� , �O�þO2� ð9:4Þ

Here �O� and O� stand for bridging and non-bridging oxygen, respectively.

9.2.1.1 Theoretical Backgrounds

Binomial Distribution and Hypergeometric Distribution of Qn Units

In our previous work [25], distribution of �O� and O� in the lithium

metasilicate and lithium-potassium silicate glasses has been examined and the

mixing is found to be almost random, in the sense that the combinations of oxygen

species around the alkali ions are as expected from the ratio of these species. Some

theoretical models of Qn structures are based on such randomness. Distribution of

Qn structures was derived by the disproportionation reactions [40–42] based on the

mixing of the �O� and O� species with and without some modifications. Qn

distribution obtained by MD simulations is well represented by the binomial distri-

bution, which is the simplest case of the multifractal. (See Appendixes A.4–A.6).

At first, the probability of finding �O� and O� is considered for each SiO4 unit

in lithium disilicate. We assume the oxygen show two states, �O� and O�, and all

Si are in fourfold coordination as observed in the typical glassy state. In this case,

the resultant distribution is binomial and the connection of Qn units also can be

binomial.

In this case, the Qn distribution obtained from a mixing of two states is explained

as follows [43]. When the probability of oxygen being �O� is represented as p1,

Fig. 9.1 Qn structures observed in the MD simulations of lithium disilicate. Neighboring Si atoms

connected with bridging oxygen are also shown. The partial volume of the SiO4 unit is in the order

of Q1>Q2>Q3>Q4, because each bridging oxygen is shared by neighboring units
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the probability of oxygen being O� is p2 (¼1�p1). The probability for finding Q1

species is represented by p1p2
3, where the �O� can be one of the four oxygen

atoms in each unit. Therefore the number of the combination is 4C1¼ 4. In a similar

manner, one can determine the probability and frequency (the binomial coefficient)

for each Qn value, where the iteration number n corresponds to the number of

bridging oxygen atoms. Binomial distribution with equal probability is symmetri-

cal, while we include the probability different from p1¼ p2¼ 0.5, which results in

the asymmetrical distribution. Thus the joint probability of the distribution for Qn

with n¼ 1–4 is,

P Qn, n ¼ 1,Nð Þ ¼ N!

n!m!
p1

np2
m; ð9:5Þ

where, N (maximum number of oxygen atoms for each unit, 4) and m¼ (N-n).
In this case, P(Qn) is a direct function of p1.
Note that the probability p2 is concerned with the oxygen around the Si and

bonding oxygen is shared by two Si. It means that the same oxygen was counted

twice in the Qn distribution, and it also means that the volume of the oxygen is

shared by two units. Therefore, when observed from oxygen atoms, the actual ratio

of �O� to O� ( p1’:p2’) is not p1:p2, but is p1/2:p2. In Fig. 9.2, a schematic

description of the mixing of probability is shown for the p1¼ 0.3.

In the case of SiO4 unit, the maximum step is 4. In general, with increasing

number of mixing steps, the system becomes more heterogeneous. In this sense,

binomial is a limit distribution having the maximum heterogeneity. If one compare

this situation and the Cantor sets used for the explanation of multifractal, it is clear

that the situation means the multifractal mixing of more than one exponent (for

structures or states). A hypergeometric distribution is also possible for the combi-

nation of these species. In contrast to the binomial distribution, where the choice is

Fig. 9.2 Schematic description of binomial mixing of structures in glasses. One can suppose that

p1 is a probability for one oxygen atom being a bridging one. Two lines in the first column show

the probability of the first oxygen (O1) to be bridging (p1) and non-bridging (p2), respectively. In

this case, p1¼ 0.3. In the next line, joint probability for O1 and O2 are shown and so on. The joint

probability for oxygen atoms of SiO4 unit determines the limit distribution of Qn. See explanation

of multifractal in Appendix A.4 for more general cases
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taken with replacement, hypergeometric distribution is a discrete probability

distribution, where the choice is from a finite population without replacement.

Therefore, the distribution is possible in the case when the system is not fully

equilibrated.

9.2.1.2 How Can We Examine the Statistics of Networks?

Here we consider the condition to examine the Qn distribution to compare the result

of MD with experimental values. Conventional procedures to examine the statistics

of structures of glasses are by repeating the preparations of glasses by cooling or

compression of the systems. In each run, the network structures of the system are

almost fixed to one of the configurations at high temperature (or low pressure). Such

procedure corresponds to the use of the “fictive temperature” in the MD simula-

tions. Unfortunately, it is not so clear howmany runs are enough for the sampling of

the structures. It will depend on the system size, length scale of the structures to be

examined and on the cooling schedule employed. It may also depend on the quality

of the potential parameters. When we examined the system under different cooling

conditions, the resultant Qn structure has large standard deviations (i.e., percentage

of Q3 structure PQ3¼ 42.8� 3.1%, here probability of Q3 structure, PQ3 was used

as a measure of the Qn distribution), which means that the resultant distribution in

the quenched system fairly changes in each run.

Another possible ways to study the statistics is to examine the equilibrated or

quasi-equilibrated structures near or above Tg. In Ref. [11], the distribution of the

Qn structures in lithium disilicate was examined near or above Tg, where the

rearrangements of the Qn structure are possible. As a long time averaged value at

1000 K and after the rapid cooling and further quasi-equilibration, the value of

PQ3¼ 39:5� 1:0 % was obtained from 10 regions during 100,000 steps (100 ps)

runs. These values are smaller than the recent experimental value ~55%. The value

PQ3¼ 42.2% is expected from the binomial distribution in lithium disilicate

and therefore this structure of limiting case can be a basis to compare the observed

Qn distribution in MD and that in experiments. To consider the different situation in

MD and experiments, we consider the effect of pressure, volume and history of the

system as shown in the following sections. This is because each Qn structure has

specific volume, as explained in the caption of Fig. 9.1 and in following

subsections.

9.2.2 Changes in the Qn Structure Under Pressure

In following subsections, MD simulations are used for examination of Qn distribu-

tion under pressure is introduced and roles of pressure or volume for determining

the distribution will be discussed. Structural properties of lithium disilicate systems

(0.333Li2O�0.667Si2O) were examined [11], where the presence of Qn with n¼ 2,
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3, and 4 is critical. The system studied consists of 768 Li, 768 Si, and 1920 O atoms

in the basic cell with periodic boundary condition. Structural changes along the

pressure-volume (P-V) diagram of lithium-silicate in the silica rich region have

been examined. The assumption of two states in oxygen atoms nearly hold for

lithium disilicate as found in the experimental observation by X-ray Photoelectron

Spectroscopy (XPS) [44]. For the case of the disilicate composition, thus p2’ for the
disilicate is 0.4, which is expected from the ratio of Li2O:SiO2¼ 1:2, where

2 lithium ions can cut one bond to form 2 non-bridging oxygen atoms, as is well

known from experiments.

Experimentally, Kitamura et al. [45] studied the densification of the lithium

disilicate glass by pressure. The densification was explained as the change of

packing caused by the distortion of the tetrahedral units. The question that arises

is what happened to the Qn with this densification? At first, the experimentally

observed P-V relations were reproduced by MD simulation as shown in Fig. 9.3.

Structural changes found in experiments are reproduced as well.

Then it was confirmed that the Qn structure of the network glasses changes with

densification. Some examples of theQn distributions obtained are shown in Fig. 9.4,

where the distribution depends on temperature, as well as pressures.

In the work shown in Ref. [11], maximum of the Q3 content was found near the

P ~ 0 (or P< 0) region. This result is explained by the following arguments consid-

ering the specific volume of each Qn structure. The relation between density and Qn

structures in alkali silicate glasses was previously suggested by Doweidar [46] by

comparing the densities of systems with different alkali contents. The volume, Vn,

of structural units Qn are related in the order of V2>V3>V4. With decreasing

volume or increasing pressure, more compact structure with larger n value will be

formed (see Fig. 9.1 and its explanation of the partial volume of units). Thus

changes of Qn distribution are driven by the changes of volume (or pressure). As

reported in Ref. [11], some pairs of network structures with equi-volume, but having

Fig. 9.3 Pressure against

volume curves. Red: The
trend obtained from MD

simulation at 1000 K. Blue:
Experimental value by

Kitamura et al. at room

temperature. The curvature

reflect the trend of the

changes in the repulsive

energy in the system
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different distributions of Qn (or different heterogeneity) were found when different

compression (or expansion) schedule on the phase diagram was used, and this is

related to the existence of polyamorphism and also the liquid-liquid phase transition

in the system. This is understandable from the relation among the volumes of

structural units, where the sum of the V2 and V4 is comparable to twice of V3.

9.2.3 Time Dependence of the Qn Distribution After
Compression

It is interesting to learn how fast Qn distribution can follow the volume change. In

Fig. 9.5, time dependence of Qn values is shown after a sudden change of V (in cm3

mol�1) at an initial time (t0) at 1000 K. The initial configuration is the quasi-

equilibrated state with V¼ 22.4. Volume was changed to 18.8 at t0 with temperature

kept constant. The percentages of Q3, Q4, Q2, and Q1 structures are shown from top

to bottom. Changes in Qn distributions occurred in two steps. At the early times

from 0 to 15 ps, Q3 and Q4 increase, while Q2 decreases. For the Q3 structures, the

maximum appears at around 15 ps. After that, the content of Q3 decreases and that

of Q4 increases.

A structural change occurs within a short time even near the (computer) glass

transition temperature.

9.2.4 Comparison with Experimental Qn Distribution

Experimentally obtained Qn values [32–34] and those by MD simulations [36] for

the disilicate by several authors are not necessarily comparable directly, although

the peak value of the distribution has been commonly observed at around Q3.

Fig. 9.4 Example of Qn

distribution obtained at

several conditions. Brown:
V¼ 18.8, Blue: V¼ 20.5,

Purple: V¼ 21.4, Green:
V¼ 24.4 (cm3 mol�1), at

1000 K. Red: V¼ 21.9 (cm3

mol�1) at 1200 K. Black
(dotted) : Binomial

distribution for p2’¼ 0.4,

which is the simplest case of

the multifractality
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Recent experimental works tend to show ~55% of Q3 content, while typical

classical MD simulations tend to show ~40% including the value previously

reported by Vogt et al., using our potential model. Du and Corrales [37, 38] showed

quite similar trends for the distribution of Qn. The results seem not depend on the

details of the potential parameters used. The value ~40% is not far from the

expected value of the binomial distribution with 40% of O�.

What is a cause of this discrepancy? The problem can be solved at least partially

if we take into account of the position of the system in the P-V-T diagram. As

expected from the specific volume of each Qn structure, larger content ofQ3 species

(~48%) was obtained near the P ~ 0 region in our simulation. This value is larger

than the typical value for the binomial mixing, although the value is slightly lower

than the experimental value [34] (~55%). That is, for molecular dynamics simula-

tions of the Qn distributions, it seems to be important to consider the different

cooling schedule on the P-V-T relation and the complex phase behavior including

poly-structures.

Several different causes of the discrepancy have been suggested so far and are

summarized in Ref. [11]. For example, some works emphasize the role of cooling

rate [36].

For the soda lime silicate glass, the Qn distribution (PQ3 is ~63.7%, while

experimental value [34] is 70%) in the formal charged potential with polarization

term was reported [47] and importance of polarization term was suggested. For this

Fig. 9.5 Time dependence of theQn distribution with the compression of the volume (Percentages

ofQ3 (red),Q4 (purple),Q2 (blue) andQ1 (green) structures are shown) after the volume change of

the system from V¼ 22.4 to 18.8 (cm3 mol�1). In this case, changes in Qn distributions occur in

two steps. At the early period, (0–15 ps) The Q3 and Q4 increases, while Q2 decreases. Later Q3

decreases. After the short time relaxation shown here, structures are nearly stable up to several ns

regions
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point, further clarification seems to be required, because the term may be just

compensating for the insufficient quality of the formal charge model.

We note here that the comparison of the experimental and MD value should be

done at the comparable volume and pressure of the system (with modification by

considering the quality of the potential model). This condition is not so obvious for

the non-equilibrium situation under different cooling schedules and different

ensembles.

In some of the MD or MC simulations, the structure seems to be forced to adjust

to the experimental one by modifying the potential parameters; however, this

procedure is not necessarily recommended due to the quasi-equilibrated nature of

the glasses. Careful consideration and treatment of the result of such simulations

seem to be necessary.

9.3 Are the Structures Random or Fractal?

When more species are taken into account, multifractal distributions are formed by

the similar procedure to obtain binomial distribution. That is, binomial distribution

is considered to be just the simplest case of the multifractal. Actually, other species

such as (O2�) can contribute, at high alkali content glasses and the species, SiO5

also contributes at high pressure region. This multifractality of the Qn distribution

can be considered as a measure of the heterogeneity of the network structures and

similar situation is found in the heterogeneous density profile made by ions [48]. In

other words, different structural units (with different exponents) in the glasses form

a multifractal structure rather than random one, which is modified by several

conditions.

9.4 Temporal and Spatial Aspects of the Dynamics

9.4.1 Mean Squared Displacement (MSD) of Li Ions
in Lithium Metasilicate

Experimentally observed complex frequency dependence of the conductivity is a

function of the time development of mean squared displacement (MSD). Therefore,

if we examined each process found in MSD, we can understand the process in

each frequency region. In this section, several distinct time regions of ionic motions

are characterized and then the temporal and spatial aspects of the dynamics

are discussed based on the results of MD simulations [49, 50]. The MSD of the

lithium metasilicate, which is located in the lithium rich region, is shown first in

details.
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The MSD can be obtained from the MD simulations data using the following

relations.

<r2 tð Þ>¼
XNi

i¼1

ri tð Þ � ri 0ð Þð Þ2
( )

=Ni

* +
ð9:6Þ

Here the angled brackets represent the average over initial times. Using a sequence

of particle positions during a run in period T1, we prepared N arrays of data

sequence with slightly shifted initial time t0 values. The data for N arrays were

averaged. The time range covered by chosen t0 values is the time window δt. In a

rapidly decaying system such as a normal liquid, the time window δt. of several tens
pico seconds is long enough to obtain the macroscopic values. However, in the

super-cooled liquid or glassy state, some properties depend on the time scale of

observation, which is determined by the value of δt. A large time window, δt, and
many numbers of initial times, N, are required especially at low temperature (and

also under the pressure). This situation is common for systems showing slow

dynamics.

If one knows the details of the MSD and nature of the motion during each time

regions, then a full understanding of the time evolution of the ion conductivity

relaxation as a function of time or frequency is gained. The ion dynamics changes

with frequency because the complex frequency dependence of the conductivity,

σ0(ω) are related to the MSD by Eq. (9.7) [51, 52].

σ* ωð Þ ¼ �ω2 Nq2

6HRkT

ð1
0

<r2 tð Þ> e�iωtdt; ð9:7Þ

where N is the number density of mobile ions, q the ion charge, k the Boltzmann

constant, HR the Haven ratio and T the temperature.

9.4.2 Several Time Regions in the Mean Squared
Displacement

MD simulations of lithium metasilicate system were performed using our potential

model [53] previously derived on the basis of ab initio molecular orbital calcula-

tions (see Sect. 9.1). Pair potential functions of Gilbert-Ida type [54, 55] and r�6

terms were used. Typical cooling schedule used for obtaining the glass in our early

works is described as follows. The system consists of 432 particles was used in

early works. In more silica rich region, usually larger system size is required. The

system with 3456 particles were used later.

The smaller system was equilibrated at 3000 K for more than 1 ns starting from a

random configuration. The system was cooled to lower temperatures from high
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temperature to low temperature in the order of 3000, 2000, 1673, 1473, 1200, 1000,

900, 800, 700, 600 and 500 K. Typical cooling rate used ranges from 0.2 to 1 K/ps.

At each temperature, the system was equilibrated adequately (~1 ns or longer) by

NPT ensemble, and then the condition was switched to NVE, where the volume was

fixed to the one obtained from the NPT run. The glass transition temperatures

obtained by T-V relation was approximately 830 K.

Here we will show the results of the system with 3456 particles, i.e. the particles

contained in the unit cell are 1152 Li, 576 Si and 1728 O for Li2SiO3. In this case,

similar cooling schedule in the order of 3000, 2000, 1673, 1473, 1200, 1000,

900, 800, 720, 630 and 500 K, but with longer time was used for the equilibration

at each stage. The results are almost the same as previous works for N¼ 432

systems, while the statistics are better [56]. In Fig. 9.6a, temperature dependence

of MSD of Li ions in lithium metasilicate (Li2SiO3) is shown. The temperatures of

the MSD curves are 1600, 1000, 800, 720 and 600 K from top to bottom.

The corresponding MSD for Si atoms are shown in Fig. 9.6b. At low temperature

(<830 K) the motion of Si atoms are negligibly small, so that the system is in the

(computer) glassy state in the sense that the motion of network is essentially

suppressed during the observation time. The MSD of O atoms are slightly (about

twice) larger than Si atoms at each temperatures, but show similar trend as the Si

atoms and hence not shown here. Here we focus our attention only on the motion of

the Liþ ions.

In Fig. 9.7, MSD of Li ions,<r2>, at 800 K is shown from 0.01 ps to a few ns. At

the very short times we see the ballistic motion that has <r2>/ t2 and then a

combination of vibrational and relaxation contribution at longer times. Vibrational

contribution to the MSD becomes constant after about 1 ps. The Liþ time depen-

dence of the MSD can be divided according to differences in properties into four

Fig. 9.6 (a) Temperature dependence of MSD of Li ions in lithium metasilicate (Li2SiO3) in

molten and glassy states. Temperatures are 1200, 1000, 800, 720 and 630 K from upper to lower
curves. (b) Temperature dependence of MSD of Si atoms in lithium metasilicate (Li2SiO3)
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time regimes, I to IV. Each region becomes longer and longer with decreasing

temperature. The four time regimes of the MSD are delineated by three character-

istic times, tx1, tx2 and tdif, and are shown in the figure.

It is useful to examine the van Hove functions and the intermediate scattering

function in conjunction with the MSD to understand the behaviors of ions in each

time regime.

The self-part of the van Hove function for the Li ion is defined by

Gs r; tð Þ ¼ 1=Nð Þ
XN
i¼1

δ tð Þ � ri 0ð Þ � rð Þh i; ð9:8Þ

and the number of ions remaining in the original sites can be also calculated from

N tð Þ �
ðrc
o

4πr2Gs r; tð Þdr; ð9:9Þ

where r is the distance traveled by the Li ion in a time t and r is the corresponding

positional vector. The cut off distance rc was chosen to be 1.7 Å. In Fig. 9.8a, b,

the van Hove function of Li ions at 1673 and 800 K are shown, respectively.

If the motion is Gaussian type with diffusion coefficient D, the van Hove

function is

Gs r; tð Þ ¼ 1

4πDtð Þ3=2
exp �r2=4Dt

� �
: ð9:10Þ

Fig. 9.7 Typical behaviors

of the MSD of Li ions in

silicate glass exemplified by

lithium metasilicate glass at

800 K. Dotted line (black)
means power law

dependence in the region

I. Short dashed line is power
law in the region III.

Dashed curve (red) means a

linear dependence of the

MSD in region

IV. Characteristic times

separating these time

regions are also shown
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In Fig. 9.8a, the smooth curves are the Gaussian type distributions having the same

diffusion coefficient as the simulation data are also shown. The same color is used

to indicate the pair with the same time. At 1673 K, the function at short time region

deviates from the Gaussian but soon becomes comparable to the Gaussian func-

tions. On the other hand, at 800 K near the glass transition temperature in Fig. 9.8b,

the deviation from the Gaussian function is clearly observed as well as slowing

down of the dynamics. The first peak tends to remain for long time by caging and

other peaks due to the jump motions were observed. Existence of the both first peak

remaining long time and the long tail observed here means the heterogeneity of the

dynamics [57] and will be discussed later in details. With the aid of these functions,

each of the four time regimes of MSD is characterized as follows.

I. (The NCL region) An early time regime between approximately 0.2 and 2 ps, a

power law behavior of <r2>/ ctα, with small and positive exponent α (�0.2)

was found. From Eq. (9.7), this MSD corresponds to σ’(ω) / ω1�α and ε”(ω)
/ ω�α by the Maxwell’s relation are also power laws. Thus this early time

region corresponds to a nearly constant loss (NCL) [58–61], since α is small.

Actually from our data we can only say that the increase of MSD is very slow

in the regime. In this region, almost all ions are still in the cage formed by

matrix oxygen atoms. This NCL region ends when the contributions of jumps

to the MSD becomes clear starting at about tx1 (~2 ps at 800 K). Thus, the

regime I exists in the time period of 0.2 ps <t<tx1.
II. (Primitive ion jump region) In the intermediate time regime of about

2<t<20 ps, the MSD rises more rapidly than tα of NCL regime defined by

0.2 ps<t<tx1. In this region, MSD is almost linear when plotted against time,

and the behavior is evidence of independent (i.e. non-cooperative) jumps or

Fig. 9.8 Self-part of the van Hove function of Li ions (a) at 1673 K (for t¼ 16, 32, 64 and 128 ps

from left to right in the curves of long ranged region), and (b) at 800 K (for t¼ 50, 100, 200,

400, 800 ps from left to right in the curves of long ranged region) in lithium metasilicate,

respectively. Smooth curves in (a) are for the Gaussian type distribution having the same diffusion

coefficient as the observed function. Same Colors are used when the time is the same

9.4 Temporal and Spatial Aspects of the Dynamics 431



the primitive relaxation of the Coupling Model of some Li ions. This linearity

is brought by the accumulated number of jumps increasing almost proportional

to time. End of the regime II is denoted by tx2.
III. (Sublinear Diffusion Regime) After 20 ps and up to about 300 ps, the MSD has

a time dependence well described by tθ with θ� 0.77. This is the time regime

III, which corresponds to the ωn power law in ac conductivity for cooperative

ion hopping well described by the stretched exponential time correlation

function of Kohlrausch, φ(t)¼ exp[�(t/τ)1�n], and with β identified with

1�n. The slope θ¼ 1�n here is important to determine the time scale of the

diffusive motion. In this region, jump to the next sites occurs more frequently

and back correlated jumps are also frequently observed. This motion includes

jumps of longer lengths with cooperative characteristics. (See Sect. 9.7 and

Fig. 2.12 in Sect. 2.4.1 for the meaning of long jumps.)

The exponent θ corresponds to 1�n in the coupling model. Experimentally,

it is known for many systems that the near equality exist between Ea and

βEσ, where β is Kohlrausch exponent, Eσ is the activation enthalpies of

conductivity relaxation and Ea is a short time activation energy observed

in the same glasses [62]. Our observations for the single alkali systems mean

that the apparent Eσ in the activation enthalpies of conductivity is a modified

one by the geometrical correlations and not for each jump motion, while short

time activation energy Ea is related to the jump motion.

IV. (Diffusive regime) It starts at time longer than about 300 ps, where the root

MSD,
ffiffiffiffiffiffiffiffi
r2h i

p
, is about 3 Å, the average distance between neighboring Li sites.

In this time regime, the steady state of the cooperative ion hopping has been

established after coarse graining heterogeneous motions and the MSD corre-

sponds to the frequency independent dc conductivity. The onset time of this

regime, tdif (about 300 ps at 800 K), is not exactly the same as the characteristic

time scale, τ, in the stretched exponential correlation function but equal in

order of magnitude. Thus approximately, regime III is defined by tx2<t<tdif,
and regime IV correspond to t> tdif. Even in the regime IV, still the motion is

heterogeneous, but is coarse-grained gradually by exchange of slow and

fast ions.

Heuer and coworkers [63] also have performed molecular dynamics simulation

on lithium metasilicate using the similar potentials based on our potential model. In

many ways their results are similar to ours [49, 50]. One major difference is that

long and/or successive jumps are missing in their representation of trajectories.

We note that such motions are rare but the contribution to the MSD is large,

because the distance is squared in MSD. Existence of such a motion, explains the

functional form with a long tail of the self-part of the van Hove function well

(see Sects. 9.5, 11.5, 11.10 and Appendix A.2 for more details). Many experimental

findings are also comparable to the results of MD [64].
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9.4.3 Intermediate Scattering Functions

The signature of cooperative ion hopping motion in time regime III also can be

inferred from the time dependence of the self-part of the Li ion density correlation

(or intermediate scattering) function defined by

Fs k; tð Þ ¼
XN
j¼1

exp ik � rj tð Þ � rj 0ð Þ� �� �* +�
N ð9:11Þ

In Fig. 9.9a, the wave number dependence of the function of Li in lithium

metasilicate at 800 K is shown for k¼ 2π/0.8, 2π/1.0, 2π/1.5, 2π/2.0, 2π/3.0, 2π/
5.0, 2π/10.0 and 2π/15.0 Å�1. A faster decay is observed for larger wave number

(short length scale motion) at short time scale, while the decay of the smaller wave

number (long length scale motion) start at longer time scale. Corresponding plots of

log[-ln(Fs(k,t))] against logt are shown in Fig. 9.9b. In this plot, stretched exponen-
tial form shows a straight line. Curves with small wave numbers in Fig. 9.8b have

straight portion that starts at about 10 ps. The lines for 2π/5.0, 2π/10.0 and 2π/
15.0 Å�1 are also shown in the figure. Obviously, the stretched exponential region

corresponding to the region III of the MSD is clearly found in the Fs(k,t) with
smaller k or at longer length scale. This means that the stretched exponential decay

function and power law dependence of MSD are contributed mainly by ionic

motions longer than neighboring distance. The time scale tdif in MSD is comparable

Fig. 9.9 (a) Wave number dependence of the intermediate scattering function of Li in lithium

metasilicate at 800 K is shown for k¼ 2π/0.8, 2π/1.0, 2π/1.5, 2π/2.0, 2π/3.0, 2π/5.0, 2π/10.0 and

2π/15.0 Å�1 from bottom to top. (b) log[�ln(Fs(k,t))] against log t plot of the same data. The color

of the curve for each wave number is the same as in (a). In such a plot, stretched exponential form
looks like lines. Note that the stretched exponential decay is clearer in the small wave number

regions
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to the effective time scale, τ, of the stretched exponential decay in the intermediate

scattering function.

It is to be noted that the stretch exponent in the stretched exponential time

dependence of Fs(k,t) is k-dependent. For k¼ 2π/10 Å�1 the stretch exponent of

Fs(k,t) determined from the slope for t> 20 ps is not too different from the exponent

in the t1�n dependence of the MSD in time regime III. On the other hand, for larger

k¼ 2π/3.0 Å�1, the stretched exponent of Fs(k,t) is noticeably smaller than that of

the MSD. This difference as well as the dependence of (1�n) on k may originate

from the stronger effect of ion-ion interaction in slowing down the dynamics at

shorter distances (larger k). An analogy of these findings is the difference between

the ion dynamics probed by nuclear magnetic resonance and d.c. conductivity

[65, 66] which had been explained by the same reasoning (see Chap. 5). In any

case, the stretched exponential time dependences of Fs(k,t) for several values of
k are further indications of the onset of cooperative ion hopping motion at about

20 ps. The value of the onset time seems to become shorter for larger wave numbers

and the change in the slope becomes less clear. Such plots of Fs(k,t) were used to

also determine the onset of cooperative ion hopping at other temperatures.

The starting point of stretched exponential decay at 1200 K and at 1000 K

(both not shown) was found to be equal to approximately 1 and 2 ps, respectively.

The change of van Hove function at 1200 K with time in the time regime of

0.2–2.2 ps is similar to that observed at longer times between 2 and 20 ps,

i.e. regime II (tx1< t< tx2) at 800 K.

9.4.4 Time Regions Found in Lithium Disilicate Glass

Li ions in the lithium disilicate system in more silica rich region show the compa-

rable regions for MSD but with smaller diffusivity. MD simulations have been also

done for the lithium disilicate system with 3456 particles. The particles contained in

the unit cell are 768 Li, 768 Si and 1920 O for Li2Si2O5. Time regions found in the

lithium disilicate at 800 K are shown in Fig. 9.10. Behaviors of MSD of Li ions in

the lithium disilicate glass are summarized as follows.

Region I (NCL): An early time regime between approximately 0.2 and 2 ps

where the MSD increases with time as tα with α� 0.07, and the ions are caged.

Region II (primitive jump region): In the intermediate time regime of about

tx1< t< tx2, the MSD rises more rapidly than tα of regime (I). MSD is nearly

proportional to time here.

Region III (Power law region) MSD depends on tθ. Both fast and slow ions are

found here and the slope is affected by the back-correlated motion of jumps.

Region IV (Diffusive region): At time longer than about 2 ns, the MSD assumes

the linear t dependence, where MSD reaches to the square of the typical neighbor-

ing distance of ion sites.
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Comparison with Figs. 9.7 and 9.10 reveals that there is a quite similar feature

but with different time scales. Namely, the time scale of each region becomes

longer with decreasing LiO2 content. (See Sect. 9.9 for the composition dependence

of the diffusion coefficient.)

Common features of development of MSD are also seen in other compositions

and are related to the decay of the cage, and the gradual transition (or broad

crossover) at longer times to ion hopping ac conductivity and the terminal transition

to the dc conductivity region.

9.5 Dynamic Heterogeneities

Dynamics of ions are found to be quite heterogeneous. To illustrate the heteroge-

neous dynamics of the Liþ ions, the ions were divided into two groups in some

works [57, 67]. The particles showing a squared displacement less than the square

of the distance equal to the first minimum of the Li-Li static structure factor g(r) is
defined as type A. Namely, the ion is located within neighboring sites during a

given time, tlocal. Particles showing a squared displacement greater than the square

of the distance equal to the first minimum of g(r) are defined as type B, which can

contribute to the long time and longer range dynamics.

The criterion used is consistent to the trend observed in the self-part of the van

Hove function. As shown in Fig. 9.8b, change of the height of the second peak is

small for a certain time period. The decreases of the initial peak seem to be balanced

with the development of the third and further peaks and the latter is found after the

saturation of the second peak. In other words, particle moved to the next shell tends

to be localized within the neighboring sites, and after that further peaks are

Fig. 9.10 Typical

behaviors of the MSD of

Li ions in lithium disilicate

glass at 800 K
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developed due to the longer scale motion. That is, the dynamics have hierarchical

structure consisting of localized motion and forward correlated motions. This

feature is different from the behavior at high temperature, where the peak position

itself moves from left to right with elapse of time.

For example, types A and B particles are distinguished by MSD using time

window, δt of 80 ps (100 points of initial t) during tlocal of 920 ps (~2tdif) at 700 K in

Ref. [57]. The MSD of all Li ions shown in Fig. 9.6 is the weighted average of

MSDs for type A and type B particles, i.e.,

r2 tð Þ�  ¼ �
NA rA

2 > þNB rB
2

� �
=N;

� ð9:12Þ

where <rA
2> and NA are the MSD and number of type A ions respectively. Similar

definitions apply to the quantities for the type B ions.

In the first jump, the jump distance is nearly the same for both types A and

B. The MSDs of the ions of both types are almost the same until tx2 is reached. Both
A particles (with high probability of backward correlated jumps) and B type

particles (with high probability of forward correlated jumps) behave as if they

jumped freely or independently before tx2. Even if we start the observation from any

jump, the first jump looks like a free jump, since the displacement is not modified

by jump angles. In this sense, the first jump is a special jump that the influence of

the other ions is not detected for the single particle motion, and microscopically this

is the origin of the region II. At time tx2 there is the change from primarily apparent

free independent jump to the correlated jump process with modified jump angles.

This fact is consistent with the independent ion jump relaxation time (i.e. the

primitive relaxation time of the Coupling Model) τo being about the same as tx2
(see Figs. 9.7 and 9.10), because we expect the jumps are independent for t� τo and
more or less independent for t< τo. After tx2, slow and fast ions contribute to the

MSDs with time dependences tp with p< 1, and tq with q> 1, respectively. The

“mean” squared displacement is less than the distance of the first minimum of g(r)
at tdif, however the fast ions moves longer distance as found in the self-part of the

van Hove functions. Type A and type B ions show dynamics with different wave

number dependences, naturally because mainly type B ions contribute to the long

time diffusion. Both fast and slow dynamics have been observed in the stretched

exponential region. The cause of the fast dynamics of type B ions in the stretched

exponential region and in the longer time region is the cooperative jump motion.

This property has been deduced from the observation of a tracer ion, where we find

that the angle of the next jump is affected by the other ions.

Although some arbitrariness always exist for the definition, we note that the

existence of the localized and accelerated motions corresponds to the laminar and

burst states as observed in the deterministic chaos [68] caused by external field.

Such dynamics with a length scale distribution has a characteristic of Lévy flight

[57, 69] dynamics (see Sect. 11.2 and Appendix A.2.2–A.2.4). For each ionic

motion, the force from other ions plays roles as an external force, which causes

anomalous diffusion.
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Recently, Montani et al. [70] have analyzed the same system using our potential

model, by using the concept of the propensity. Isoconfigurational Method (IC) and

the associated concept of particle propensity introduced by Widmer-Cooper

et al. [71]. Highest propensity particles (HPPs) are taken as those particles that at

time t* (It corresponds to tx2 in our definition) have a displacement greater than one

half of the distance of the first maximum of the pair correlation function. The result

shows the existence of the cluster of the high-propensity and this is consistent with

our results. Some differences are observed due to different definition of the fast and

the slow categories. In their definition, the localized ions within neighboring sites

are included as the fast ions. It was also shown that the distinction of fast and slow

ions already starts at the early time region. The overall behaviors observed are

consistent with our findings.

9.5.1 The Non-Gaussian Parameter

The non-Gaussian (N-G) parameter [72],

α2ðtÞ ¼ ð3=5Þ < r4ðtÞ> = <r2ðtÞ> 2�1, ð9:13Þ

characterizes the deviation of Gs(r,t) from the Gaussian form. We have evaluated

α2(t) of the Li
þ ions from their displacement distribution function of time at several

temperatures. In Fig. 9.11, the N-G parameters of Li ions for lithium metasilicate at

Fig. 9.11 Non-Gaussian parameters of Li ions in lithium metasilicate at 800, 700, 600 and 500 K

from bottom to the top. Peaks are found at tx2. The parameter tends to decreases at 800 K towards

0. The parameters become plateau values at several times longer than tdif ~τ at 600 and 700 K,

while the plateau is not attained at 500 K during the observation time. In the glassy state the plateau

value is greater than 1
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800, 700, 600 and 500 K are shown. For each temperature, the α2(t) starts out from
small values at short times, increases throughout regimes I and II and attains the

maximum value. The value α2(t) of Li
þ ions in metasilicate peaks near tx2. At

higher temperatures, the maximum of α2(t) of Li
þ moves to shorter times and it is

also located near tx2 and τo.
The maximum of α2(t) observed near the tx2 is due to the some ions having

jumped out to just the neighboring sites. Therefore it does not mean that the largest

heterogeneity due to coexistence of slow and fast ions is observed at tx2. The
parameter tends to decreases at 800 K or higher temperatures towards 0. In a time

scale longer than tdif, fast ions are changed to slower ones and vice versa, and after

several times of tdif, mixing of the dynamics is observed as an average.

The parameter reaches a plateau value at several times longer than tdif ~ τ at

600 and 700 K, while at 500 K the plateau has not been attained during the full

observation time. From the trend at 800 and 500 K, one may expect that the

dynamics becomes Gaussian at long times and the non-Gaussianity it merely

the problem of the limiting time scale of observation. However, there is no reason

to assume that the situations at 800 and 500 K are entirely the same. In the glassy

state at 700 and 600 K, plateau value is greater than 1 and the value increases with

decreasing temperature. It suggests that the non-Gaussianity ion dynamics remains

at long times in the glassy state. This scenario with non-ergodic character is

possible when the permanently localized ions remain in the system. With decreas-

ing temperatures, the value of α2 at tdif increases and the value at the plateau also

increases. Therefore it is probable that the value of α2 in the long time limit deviates

from 0 at the quite low temperature.

Even the long time limit behavior is Gaussian, one should note that the dynamics

of the system are always heterogeneous. This is because one can observe the

heterogeneous dynamics always by using an arbitrary chosen initial time in the

MD simulations after equilibration.

9.5.2 Some Characteristics of the Dynamics in NCL Region

So far we have considered the motions of the Li ions in Regime I and relate them to

caged ions dynamics and the NCL in susceptibility loss. However, in the NCL

region, matrix atoms, oxygen and silicon, are moving at the same time. Their mean

square displacements are smaller than that of Li and do not contribute to the NCL

directly. Instead their motions cause deformation of the cages, which in turn affect

the trajectories of Li ions. In particular, the Li ions having large displacements

experience what we call “dynamic anharmonicity” originating from the fluctuating

cage potential. After a large amplitude motion and a back correlated jump, the

Li ion may not necessarily return to the original position because of changes

in positions of surrounding atoms accompanying the cage drift. In turn, the

dynamic anharmonicity causes dissipation or relaxation of the Li ions in the form

of the NCL.
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In fact, without the influence from the motions of the matrix atoms, the

slightly positive slope of MSD in NCL of the Li ions does not appear in our

simulations [73]. This was shown by the component analysis with the results

presented in Fig. 9.12.

Mean square displacement of the Li ions from a simulation at 700 K, wherein all

oxygen atoms are frozen, was shown by an orange dotted curve. It is clear by

comparing this result with the normal <r2> (blue solid curve) that the NCL is no

longer there. Subtracting<r2> of fixed cages from<r2> of mobile cages, the result

(dashed blue curve) exhibits the t1.0-dependence (black part of the curve) of jump

contribution in the region tx1< t< tx2 of Li ions. Subtracting once more this term,

the final result shown by red solid curve should be the mean square displacement

corresponding solely to the NCL and oscillation (related to the boson peak). Hence,

the origin of the NCL, though from Li ion motions within their cages, is indirectly

related to the motion of the matrix atoms since it disappears when the motions of the

matrix (deformation and drift of the cage) are frozen out. Thus the result in Fig. 9.12

demonstrates that the NCL involves the correlated motions of the caged Li ions

with the matrix atoms, and originates from the dynamical anharmonicity incurred

during such motions.

Effect of correlated motion in NCL region is also clear from the fractal dimen-

sion analysis of trajectories of ions. In the method, complexity of the trajectories is

measured by NT, how many times are required to cover the trajectory using the ruler

of length Lr. Further details of the method are described in Appendix A.1. For the

Fig. 9.12 In short time region including NCL, components of the MSD for Li in Li2SiO3 at 700 K

are separated. Blue solid curve: MSD of Li ions. Orange dotted curve: MSD of Li ions in a cage,

where the motion of all oxygen atoms are frozen. Difference of the above two curves is shown by

blue dashed curve. Black part of this curve is for contribution of independent jumps. The t-linear

contribution shown by the black curve was subtracted from the difference. The final red curve is
due to the oscillation (boson) and the relaxation (NCL)
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frozen oxygen atoms case, the plot for NT against Lr for the trajectories of Li ion has

an exponential form, for Lr less than about 2 Å. This is in contrast to the fractal

character in the normal case of mobile oxygen atoms. Therefore it is also clear that

the power law dependence usually found is caused by the perturbation by the

surrounding matrix atoms.

In ionic system, interaction among Li ions and with other surrounding atoms is

dominated by the ion-ion interaction. Therefore it is interesting to consider the

electrostatic field around each ion. As shown in Sect. 8.2.8, the field can be

represented by the summation of the multipoles but with moving cages.

9.5.3 Characteristics of Jump and Separation of Temporal
and Spatial Term

9.5.3.1 Definitions of Jump Motions

Jump like character of the motion is found even at high temperature regimes and it

becomes clearer at lower temperatures. This is a natural result of the motion among

the clearly separated peaks in the g(r) or the van Hove functions. Among several

possible definitions of jumps, we used the following one in some of our works

[27]. Because of the existence of these peaks, the motion with a displacement

greater than 1/2 of the distance of the first maximum, g(r)maxM-M, can be used as a

criteria of jumps. Algorithm used in this analysis is simple and is summarized as

follows. Large scale motion was picked up by using a critical velocity, vc. The
region with Δjrj/Δt	 vc can be regarded as jumps, while that with Δjrj/Δt< vc can
be regarded as waiting times. Time interval Δt and a critical velocity vc determine

the magnitude of coarse graining of the fine motions. The values of vc and Δt were
chosen so that the characteristics of the displacements are well reproduced

(Δt¼ 0.8 ps and vc¼ 1.7 Å/ps in the analysis of that presented here). It is useful

to separate the contribution of temporal and spatial terms of the dynamics as

shown next.

9.5.3.2 Separation of Temporal and Spatial Term

Jump motion of ions can be characterized by the temporal (jump frequency)

term and spatial term (geometrical correlation among successive jumps)

[See Sect. 2.4]. Here it will be shown how we can distinguish these two

contributions [74].

The MSD is considered as a product of the “number of jumps against time plot”

and the “MSD against number of jumps plot”. The former is concerning with the

temporal characteristic of the jump motion, while the latter is for the spatial

character of the jump. For the MSD of Li ions in metasilicate system shown in
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Fig. 9.6, both terms were separated at four selected temperatures as illustrated in

Fig. 9.13. The method is applicable for both the jump motions in the slow dynamics

and the jump-like motion at higher temperatures. In Fig. 9.13a, the mean values of

the accumulated jump number,Njump, per ion are plotted against times. In Fig. 9.13b,

the MSD is plotted against the mean accumulated number of jumps. In Fig. 9.13b,

curvatures of the function comparable to the time dependence of the MSD, includ-

ing a power law exponent are observed. Therefore, changes of the slope of the time

dependence of the MSD are due to those in the spatial term, that is, geometrical

correlation among successive jumps. Small MSD found at the low temperature is

clearly in the region where a mean number of jumps is less than 1 for Li ions. That is

the changes in the “regions” and the “slopes” in the time dependence of the MSD

and corresponding power law exponent is caused by the spatial term.

For the temporal term, one may consider the possibility that the long time

trapping in the glassy state can affect the slope. However, it is not the case for

the equilibrated or quasi-equilibrated state. Almost linear relation (slope ~ 1 in

log-log plot) is found at all temperature examined. This means that the number of

jumps in each time interval is unchanged during the observation time at each

temperature. In fact, this is quite natural because one can start the observation at

any arbitrary chosen time. In other words, jump motions of ions are renewal

process, which can start again from the next ion site, and the number of the

jumps per unit time is kept unchanged. In Fig. 9.13b, the mean displacements of

ions reaches the typical neighboring distance (~3 Å) at tdif. This situation is attained

Fig. 9.13 Separation of temporal and spatial terms in MSD of Li ions in lithium metasilicate.

Temperatures are 1200, 1000, 800 and 630 K from top to the bottom. Colors are the same as in

Fig. 9.6. (a) Accumulated numbers of jumps were plotted against time. (b) MSD is plotted against

accumulated number of jumps. The plots in (a) are almost linear functions for all temperatures

examined. Therefore, the curvature found in the MSD is due to spatial term (geometrical

correlation among successive jumps)
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not by single jumps but after several motions among the neighboring sites. Here the

time scale, tdif is much longer than the time sale of each jump motion especially at

low temperatures. In both kinds of plots, the absolute values decrease with decreas-

ing temperature. Both the number of jumps per unit of time and the effective

distance per each jump change with temperature, while the curvature of the plot

and the change in the slope is controlled by the spatial term. The diffusive motion is

modified by the back correlated motions and not only determined by the jump rate.

Furthermore, the power law exponent of MSD can modify the dynamics by many

orders of magnitude. Such characters of the temporal and spatial terms seem to be

quite common for a variety of systems including bio-systems.

9.5.4 Heterogeneity Shown by Fractal Dimension Analysis
of Trajectories

Generally, geometrical character of the jump motions can be directly examined

from the trajectories of ionic motions obtained fromMD simulations [73, 75]. Frac-

tal dimension of the random walk, dw [76], is one of the measure of the complexity

of the trajectories (see Appendix A.1).

The power law dependence ~tθ of the MSD, is characterized by dw from the

relation θ¼ 2/dw [77] when the geometrical term governs the slope. For free

random walk, one can expect that dw¼ 2. The values of dw larger than 3 mean

that the trajectories are folded many times by backward correlation. On the other

hand, strong forward correlation reduces the values of dw.
The fractal dimension of random walk, dw, is defined by

NT ¼ ALr
�dw ; ð9:14Þ

where Lr is a length of the divider and NT is how many times are required to cover

the trajectories. Thus the value can be determined from the slope of the NT against

Lr plot in a double logarithmic scale.

When this kind of analysis was applied in the results of MD simulations, two

different length scales were found in the trajectories in single alkali silicates. In the

case of ionic motion in lithium metasilicate [75, 78, 79], the slope of the plot is

found to change at about 3 Å, the distance between neighboring Li sites. At 700 K,

dw¼ 3.09 for Lr <3 Å and dw¼ 2.61 for Lr >3 Å. On the other hand, at 500 K,

dw¼ 3.57 for Lr <3 Å and dw¼ 6.75 for Lr >3 Å. From these results, we find the

motion in the NCL regime has fractal character up to large lengths. The dimension

>3 means a strong localization. The large value found for dw at 700 K is consistent

with the motions at 500 K having larger backward correlation. Thus exponent dw is

a parameter that characterize the motions of caged Li ions as well as diffusive

motion. Existence of more than one exponent means the presence of multifractality

of the dynamics.
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9.5.5 Different View for the Temporal and Spatial Terms

In above discussions, we have explained the origin of the power law dependence of

MSD by the geometrical correlations among successive jumps. However, different

views might be found in literatures.

From the concept of the continuous time random walk (CTRW) [80, 81], one

might expect that jump rate decrease gradually, when the residence time has some

distribution with a tail [82, 83]. Then the power law behavior of the MSD might be

explained by the existence of waiting time distribution with a power law. Actually,

the existence of the waiting time distribution of jump motion is directly observed in

several systems using the molecular dynamics simulations [84–88] both in real and

configurational spaces. However, existence of the waiting time distribution does not

mean it is a cause of the power law dependence of the MSD (see also Sect. 2.4.2).

This situation will be discussed in the present section.

In the case of waiting time distribution, further behaviors of the ion (or particle)

are not considered after that the marked ion is moved out the initial site. This

situation is not the same as the measurement of MSD, where the ion moved out the

initial site returns back to the previous site or continues further jumps. That is, jump

motion is a renewal process in the quasi-equilibrated situation and in MSD,

successive motions of ion (or particle in general) should be taken into account

again after the jump to the neighboring site [87]. Therefore, the motion is affected

by the angles between successive jumps. Furthermore, the time dependence of

MSD in Fig. 9.6 is observed from any arbitrary chosen initial times. It means that

mean behavior of many ions in ionically conducting glasses in the quasi-

equilibrated state are kept constant, because ions with long residence time can

change into the one having a short residence time and vice versa. Similar change

also occurs for different length scales of motions.

That is, only when one observe a jump of the ion marked at time 0, but do not

observe the motion of it after that, the waiting time looks like a time dependent one.

Lammert et al. [88] have determined the ion sites (or the cluster containing them)

and tried to characterize the ionic motion from the property of them. Different

impression may be acquired when the observers’ view point is on the ion sites

instead of ions themselves. In their analysis, characteristics of cooperative or

successive motions as well as single jumps are divided into sites without consider-

ing the renewal of the process [87]. In the analysis shown in Fig. 9.4 in Ref. [88],

both the waiting time and back correlation probabilities are represented as a

function of time. Thus the apparently different view from Lammert

et al. originates from the different observation method but not necessarily

contradicting ours. Further differences due to the different definitions of sites and

jumps are discussed in the Sect. 10.3. Caution has to be exercised in accepting their

characterization of the ionic motions by division into sites because this way

obscures the role of cooperative dynamics by successive jumps, although in some

cases such coarse-graining may be useful.
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Situation with the non-equilibrium relaxation is different from that discussed

above. If non-equilibrium relaxation towards the more localized state occurs during

the observation time, one can expect increase of the number of the particles trapped

in the specific sites with time. This situation is revealed by the dependence of the

MSD on the absolute observation time. Such situation is found for the early work of

ionic system by Soules and Busbey [89] and also observed in the non-equilibrium

relaxation in the SC system [90].

This kind of behaviors can be observed during equilibration in the MD runs of

ionically conducting glasses or during a long time run in a quasi-equilibrated

situation.

The KWW relaxation observed in many kinds of experiments can be explained

by the distribution of relaxation times in several theories. It is noteworthy that the

relaxation time discussed there does not correspond to each jump motion, but to the

time scales modified by the geometrical correlation among successive jump

motions.

9.6 Comparison with Other Systems

It is interesting to point out the same properties, such as several time regimes found

in the MSD of lithium ions in lithium silicate glass, are found in the MSD of

colloidal particles, reported by Weeks et al. [91]. Time regions observed here can

be divided into four regimes, demarcated by tx1, tx2, and τ, in exactly the same

manner as for the MSD of the Li ions. In the time regime tx1< t< tx2, the cage

correlation function decays faster than when t< tx1. The decay is even faster when

t> tx2. The similarity between the Li ion dynamics in Li silicate glasses and

colloidal supercooled liquids goes further than their MSD. The maximum of α2(t)
at a time near tx2 is found also in the colloidal supercooled liquids. The analogous

properties have been shown for colloidal suspensions with volume fractions

ϕ¼ 0.56 in Fig. 4.55 of the Chap. 4.

Similar time and temperature dependences of α2(t) were found in molecular

dynamics simulation of a supercooled binary Lennard-Jones liquid as well as ionic

liquids. For the binary L-J liquid, the time dependence of the mean square dis-

placement <r2(t)> of the A particles and the non-Gaussian parameter α2(t) at

several temperatures are taken from the work of Donati et al. [92], and shown in

Fig. 9.14. The heterogeneous dynamics in colloidal suspension and Lennard-Jones

supercooled liquids are thus quite similar to the ionics in the ionically conducting

system. The common dynamics governing these interacting systems are consistent

with the universal dynamics predicted by the Coupling Model by one of the authors

[93]. Moreover, based on the view point obtained from MD simulation, it is

probable because all these systems show the jump motion which has rather common

deterministic characters.
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9.7 Cooperativity of the Motion and Vacancy Dynamics

One of the possible methods to examine the ionics is based on the analysis of sites

and paths of ions. Lammert et al. have characterized the alkali ion sites in lithium

silicate glasses by MD from the probability density of ions accumulated during MD

runs using our potential model [88]. They found the number of sites is only slightly

bigger (~2 or 3%) than the number of ions, when a certain cut off value is used to

pick up sites or clusters. For a coarse-grained description of the dynamics, such

analysis is useful.

Existence of the limited numbers of sites is natural in the glassy state, because

almost all the free volume in the molten state is lost when the system is vitrified.

This character of the sites affect a waiting time distribution and back correlation

probability of the jump motion; that is, in a dense material, ions or atoms must wait

until destination becomes empty before it can jump over. If the neighboring sites

are occupied, ion tends to be bounced back to the original sites. When the neigh-

boring sites tend to be occupied by other ions, it is difficult for ions to move

independently. Therefore, it is closely related to the occurrence of the cooperative

motion of ions.
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Fig. 9.14 (a) Mean square displacement <r2(t)> of the A particles of binary L-J liquid versus

time for several values of T. (b) Non-Gaussian parameter α2(t) vs time for the same values of T as

in (a). From Ref. [92] and reproduced by permission
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In a longer time scale, exchange of fast and slow ions occurs. Exchange of

mobile and immobile ions requires~several ns in the case of lithium metasilicate at

700 K [94], which is several times longer than tdif. Therefore, accumulation time

used for the analysis of sites and paths by the density profile should be long enough

to cover the exchanges of fast and slow ions, otherwise, only the sites for strong

localization of ions will be found.

Qualitatively, the small number of sites discussed above are reasonable. Not-

withstanding, if we counted all possible sites visualized, more sites (~10%) were

found [95] for the same system, in spite of the fact that the same potential model is

used. This difference of the result is coming from the multifractal character of the

density profile (see Ref. [76] and Appendixes A.3–A.5) formed by the mixing of

localized and accelerated motions with different exponents. Characterization of

such sites and paths can be done using the multifractal analysis of the density

profile. By this analysis, the fractal dimension of the structure is represented by the

singularity ( f(α)) spectrum where the densest part (αmin) is related to the localized

sites, while the rare part even near αmax is related to the diffusive motion. In this

situation, small sites (in size) mean that the ion visit the site for only short period

and moves to the different sites soon. Such sites can contribute to the diffusive

dynamics significantly. This description of jumps by vacancy is closely related to

the cooperativity of ionic motions. Example of cooperative jumps of three ions is

shown in Fig. 2.11 of Chap. 2. In this example, the first ion shows a long jump

(~twice of the typical distance among ion sites) without a clear trapping. The

second ion is found to be located between the sites for a while, until the vacant

site is available. Thus availability of the vacancy is closely related to the cooper-

ative jumps. Compared with single jump, which tends to return to previous site,

cooperative jumps of several ions are rarer events but they form ion channels

[33, 85–87].

As mentioned above, the small number of ion sites reasonably explains a long

waiting time of the jump motions and the successive motions of ions using the same

vacancy. As easily understood, the motion of vacancy means that the atommoves in

the opposite direction of it. If the cv of vacancies diffuses with the diffusion

coefficient Dv, the diffusion coefficient of atoms, D is represented by cvDv which

is well known. Therefore, it is possible to map the ion dynamics by vacancy

dynamics [96] using effective back correlation probability of ions. In this case,

the probability includes the effect of cooperative motions. Of course, the apparent

vacancy dynamics is a result of particle-particle interactions because usually in the

molecular dynamics simulations the interactions between a particle and a vacancy

or that among vacancies are not included.

With the measure of the cooperativity at t defined by

Ncoop tð Þ ¼

X
ij

Xi tð ÞXj tð ÞX
i

Xi tð ÞXi tð Þ
; ð9:15Þ
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where XiðtÞ � ðriðtÞ � rið0ÞÞ2� <r2ðtÞ>, Heuer et al. observed [62] that Ncoop is

about 2–5 in the lithium metasilicate from 1200 to 600 K. These values are

consistent with our findings [57, 67] and also with the expected value for the

Haven ratio (¼1/Ncoop) [97]. It is known that the Haven ratio decreases with

concentration of alkali ions and the ratio is ~0.3 in high alkali content glasses

[98, 99]. The number of Ncoop is relatively small as a value but it does not mean the

cooperative motion is negligible.

Comparison of the role of vacancies in glasses and crystals [10] is briefly

mentioned here and will be discussed in details in Sect. 9.10. In the perfect

crystalline lithium disilicate, diffusion coefficient of Li ions is several orders

smaller than the glasses, although the situation remarkably changes by introducing

vacancies. Although the vacancy mechanism is common for glasses and crystals,

the mechanism in the glass is different from that in the crystal. In the latter, the

characteristics of sites are rather homogeneous and the dynamics is more

Gaussian like.

Importance of available volume as revealed by the vacancy is consistent to the

validity of thermodynamic scaling (see Chap. 7 and Sect. 8.3.5). Interestingly, the

thermodynamic scaling represented by the TVγ, where V is the specific volume and

γ is a material constant is found to hold in substructure of ion channels in the

ionically conducting glasses [100] and it means the importance of the available

volume for the motion, which affects the complexity of trajectories of ionic motion.

In this sense, the concept of “free volume” still works.

9.8 Mixing of Heterogeneity and Its Life Time

The fast and slow dynamics tend to mix with each other, and the behavior becomes

more the averaged one governed by the law of large number. That is, mean value of

the sample u1,u2,--- uN¼ (1/N )(u1þ u2þ ---þ uN) converges to a certain value

<u> by the law, if the events occur randomly at longer time scale than tdif. Even if

the deviation from the mean behaviors is large as found in the glass or super-cooled

liquids, one can expect the existence of distribution of fluctuation represented by the

following equation [101], based on the large deviation theory (The above law of large

number resulted in the Gaussian form in the case of small deviation of order N�1/2.

If the deviation is order N, it obeys the large deviation theory).

S uð Þ ¼ � lim
N!1

1

N
ln PN uð Þ ð9:16Þ

where PN(u) is a probability density of the mean value of u. Thus the long time limit

behavior after the mixing of fast and slow motions is not necessarily a Gaussian

form. This is consistent with the non-zero value of the non-Gaussian parameters of

long time, at least in the long time accessible in our MD simulations.
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Mixing behaviors of fast and slow dynamics are common with other glass

forming materials. Recently, three or four time correlation functions or related

experiments are used to extract life times of heterogeneity and/or mechanism of it

[102, 103] related to the glass transition problem. If the slowest motion of some

species (i.e., the immobile ones) does not change to the fast one, the behaviors of

ions (or atoms or molecules) cannot be averaged. Therefore, the life time of the

heterogeneity is determined by the slowest species and existence of permanently

localized component makes the system non-ergodic one. To consider this mixing, it

is interesting to learn how the temporal change is being correlated with the spatial

change, while the conventional multi-time correlation function does not distinguish

these two terms. For the ionic system, direct determination of the life time of the

components was performed [85–87]. It was also examined how the temporal

heterogeneity correlate with spatial heterogeneity. In lithium metasilicate, temporal

term and spatial term are found not necessarily being correlated [94], although

some correlations might be assumed in theoretical treatment. Similar analyses are

possible in other systems.

9.9 Comparison of Dynamics Obtained
by MD and Experiments

Direct comparison of MD data with experiments is important to make in order to

guarantee the applicability of the MD simulations for some problems. In the

beginning of the history of MD simulations, comparison of the dynamics obtained

with experimental values was not easy because of limited time scales of observation

and/or of poor quality of the potential parameters. Furthermore, in the study of

glasses or glass transitions, one may consider that the extremely rapid cooling rate

used in MD might cause a problem when one compares them with experimental

values. Nowadays, direct comparison becomes easier. In this section, it will be

shown that the diffusion coefficients obtained from a rapid quench in MD using the

reasonable potential parameters are comparable to experimental values. This obser-

vation suggests that smaller system size with a periodic boundary condition has

compensated for the effect of rapid cooling. For this purpose, comparison of MD

data and experimental values in lithium disilicate is made. In MD simulation shown

here, our potential parameters (see Sect. 9.1) are commonly adopted by other

researchers and by us.

9.9.1 High Temperature Region

So far, several authors have compared the experimentally obtained transport

properties and those by MD simulations in the high temperature regime. For the

lithium disilicate composition, many experimental data have been reported.
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Kawakami et al. reported the experimental electrochemical determination of cation

interdiffusivity [104]. Diffusion coefficients obtained from MD simulations by

Gonçalves and Rino [105] were consistent with the experimental result of the

diffusion of Si atom in the molten state. In Fig. 9.16, their MD data (open circles,

blue) are plotted against inverse of temperature. The data for oxygen atoms are also

shown (open diamond, pink). Their viscosity data obtained by the Maxwell relation

[106] using τα of intermediate scattering function of Si were also found to be

consistent to the experimental values [107] at least for the high temperature region

T> 2000. They also compared the diffusion coefficient for Si with the viscosity

obtained from a relaxation and that obtained from experiment via Eyring relation

[108]. Even nowadays, calculation of viscosity at lower temperature region is not

easy, however, they suggest that the Stokes-Einstein (or the Eyring) relation seems

a reliable measure except for near the glass transition. Diffusion coefficients of Li

ions at high temperatures acquired by them (open squares, red) are comparable to

experimental data by Bockris et al. [109], where conductivity data at high temper-

atures were used to calculate the diffusion coefficient of Li ions.

9.9.2 Low and Medium Temperature Region

Self-diffusion coefficients of Li ions represented by inverse triangles in Fig. 9.15

were obtained from the interpolation of our MD simulations data using a power law

dependence of composition as to be explained later. Corresponding our MD data

directly obtained for the disilicate composition (open inverse triangles, purple) with

a high cooling rate (~10 ps/K) are also plotted in Fig. 9.16. They are in good

agreement with each other. Approximate values (black line) of the experimentally

obtained diffusion coefficients gathered from literatures by Nascimento et al. [111]

are also shown in Fig. 9.16, for the sake of comparison. It is worth to note that they

are comparable to each other, in spite of the different conditions of preparations of

the sample. Our MD data obtained by the interpolation of other compositions seem

to connect smoothly at low temperature data, while there seems to be a gap between

our data thus obtained and those by Gonçalves and Rino, although they are located

in a different temperature region. Therefore, we added the data between these

values in Fig. 9.15.

9.9.3 Role of Different Cooling Rate

MD data obtained by interpolation were obtained by a rapid quench (10–100 K/ps),

while the data in Ref. [105] were obtained by using relatively slow cooling rate of

~1 K/ps. In the case of slower cooling rate in Ref. [105], the results seem to be

negatively deviated from the rapidly cooled cases. It suggests that a different

behavior is introduced by the different cooling rate. To clarify it, we re-examined
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Fig. 9.16 Power law

composition dependence of

the diffusion coefficients

[65] of Lithium silicate

system (Li2O)x-(SiO2)1�x

700 K: open squares, green;
800 K: filled circles, blue;
1000 K: open circles, red

Fig. 9.15 Comparison of diffusion coefficients of lithium disilicate system obtained from exper-

iments and MD works by several authors. Rapid cooling case: Open reverse triangles (purple) are
for the MD data, while filled reverse triangles are obtained from interpolation based on the power

law composition dependence of the MD obtained by rapid cooling of several systems. These

values seem to be smoothly connecting experimental values ( filled and open triangles) in

Ref. [110] and the line (black) representing an approximate position of experimental data gathered

in Ref. [111]. Slower cooling case: Open squares are taken from the data of MD [105], which is

comparable to the experimental values (not shown) of melts by Bockris [109]. Open circles and
open diamonds are MD data for Si and O in Ref. [105], respectively, where the data for Si is

comparable to the experimental values (not shown) in Ref. [104]. MD data using the slower

cooling rate than those in Ref. [105] are also shown (Li: Filled squares, red; Si: filled circles, blue;
O: filled diamond, pink). The data show a concave shape and it accompanied with the decreases of

system volume even in the super-cooled liquid regime (~1000 K). Errors in our MD data are within

the size of marks. For errors for other data, see references
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the diffusion coefficients of Li ions in a slower cooling rate. MD data for Li ions

obtained by slower cooling rate of 0.2 (K/ps) were also plotted (filled squares, red)

in Fig. 9.15.

As shown in this figure, the data at the high temperature region are comparable to

the values given in Ref. [105] and the negative deviation was reproduced. The value

decreases with decreasing temperature and deviation from the rapid cooling case

increases in the medium temperature region. The deviation becomes smaller at low

temperature region and the value becomes only slightly lower than the experimental

value at T ~ 600 K. At the low temperatures, the diffusion coefficient might be

affected by the non-equilibrated nature of the system even after quasi-equilibration

of several ns, and it contributes to the curvature of the temperature dependence.

In other words, the values obtained by slower cooling rate have a concave shape

in the medium temperature region.

We confirmed that the slower cooling rate accompanied the decrease of the

system volume at around 1000 K, namely it occurs by annealing of the silicate

frameworks during the slow cooling schedule [100]. It is in contrast to the fact that

the volume change in the rapidly quenched system is negligibly small below

1000 K. Interestingly, thermodynamic scaling of the diffusion coefficient seems

to hold well [100], i.e., the diffusivity is a function of the volume including the

cases with different cooling rates.

Observed larger volume change in the slow cooling case is reasonably

explained by the relatively smaller system size with periodic boundary condition

of MD simulations, and effective cooling rate in this case is even slower than the

experimental one. That’s why we mentioned that the effect of the smaller system

size with a periodic boundary condition has compensated for that of rapid

cooling rate.

9.9.4 Composition Dependence of the Diffusion Coefficient
of Li Ions in Lithium Silicate

Maass [112] has predicted that the activation energy of DC conductivity decreases

logarithmically with increase of alkali contents from critical path analysis, that is,

this dependence is explained it by percolation of jump sites.

As shown in Fig. 9.16, the power law relation holds well for the composition

dependence of diffusion coefficient of Li ions in lithium silicate systems by MD

[95] and this is a basis of the interpolation used for the estimation of MD data in

Fig. 9.15. We note that this dependence is accompanied with the contributions of

cooperative jumps, especially in lithia rich region [95].

Recently, Bauer et al. [110] have reproduced the trend of composition depen-

dence in lithium silicate experimentally and their data are in good agreement with

our MD data. Interestingly, composition dependence seems to vanish [113, 114] in

tempered samples (at 500 K) as pointed out in Ref. [110].
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9.10 Comparison of Dynamics in Crystal and Glass

Dynamics in the glassy and crystalline states are markedly different, although

coexistence of fast and slow ion dynamics is commonly observed in the same

composition of the materials. The difference is worth a close examination in this

subsection.

Comparison of the diffusion coefficient (or conductivity) in crystal and glass of

the same composition reveals that the diffusivity of the glass is several orders

of magnitude higher than the crystal [10, 115–117]. In lithium disilicate,

Küchler et al. [115] have shown that conductivity in the glass is larger than the

corresponding crystal. Similar trends are experimentally known for other systems.

In the case of LiNbO3, the conductivity in the glass is many orders of magnitude

greater than that of the single crystal of the same composition [116]. The same trend

is also reported [117] for the conductivity in the glass formation region in

AgI-Ag2O-P2O5 system compared with the crystal of the same composition.

This trend found in experiment is well reproduced by the MD simulations in the

comparison of lithium disilicate crystal and glass [10]. In the lithium disilicate

crystal, both heterogeneity and anisotropy of the ionic motion are found. Because of

small diffusion coefficient in the crystal, the motion was examined in a high

temperature region.

In Fig. 9.17, trajectories of Li ions in the lithium disilicate crystal (stable form) at

1400 K are shown by projections onto the A-B and B-C planes, where the trajec-

tories are overlapping because the motion started at (0, 0) position at t¼ 0. Both

localized jumps within neighboring sites and longer jumps are observed there. In

this figure, dense part of the plots near (0, 0) position for all ions means the strong

localization within neighboring sites as exemplified by a trajectory in blue color.

The dynamics of all the ions are anisotropic and the motion along the C-axis

through zigzag paths exists as shown by an example of trajectories in light green

color. Such zigzag motion is also found in other crystals. In the study of colloidal

crystal, Derks et al. has argued [118] that such motion is an effect that arises via
interaction with particles in the neighboring layers. At the same time, the long

length scale motion contribute to diffusive motion is found shown by a trajectory

colored purple, and thus the contribution from this rare event is non-negligible.

In Fig. 9.18, self-part of the van Hove Function of lithium ions in lithium

disilicate crystal at 1400 K for 5
 2
 5 system (1800 particles) in the stable

form is shown. In this case, diffusive regime is attained after ~10 ns. Distinct

peaks and overlaps of curves in the second peak are respectively evidence of the

clear jump character and strong localization within neighboring sites. Although the

motion is non-Gaussian even at the longest time (the non-Gaussian parameters is

0.6 at 64 ns), the power law tail of the van Hove function is not clearly developed.

In the crystals, the existence of heterogeneity in the dynamics is related to the

anisotropy of the crystal structure as shown in Fig. 9.18. Naturally, the motion in the

crystal is highly cooperative since the simulated crystal is a perfect one without

defects. Anisotropic motion is closely related to the dynamic heterogeneity in the
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crystal. However, the diffusive motion in the glass is not merely the average of

anisotropic motion of the corresponding crystal. Stronger deviation from the

Gaussian dynamics in the glass is a proof of the contribution of the interactions

from other ions (and atoms) in the system.

The difference of ion dynamics in glass and crystal has been brought out

experimentally in a.c. impedance spectroscopy by Munro et al. [119] and in 7Li-

NMR spectroscopy by Franke and Heitjans [120]. They studied both the glass

Li2O�Al2O3�4SiO2 and its crystalline counterpart β-LiAlSi2O6, (β-spodumene) by
7Li-NMR. The frequency dispersion of the a.c. conductivity or the electric modulus

of the crystalline samples is narrower than that of the glassy counterpart. The

Fig. 9.17 Trajectories of Li

ions in the lithium disilicate

crystal in the stable form,

during 32 ns at 1400 K for

5
 2
 5 system. Upper
panel is projection onto the

A-B plane, bottom panel is a
projection onto the B-C

plane, respectively. Dark
green: all Li ions. The
motion of arbitrary chosen

three ions (one shows the

largest mobility) are shown

by different colors. Motions

of ions are overlapped so

that the motion start from

(0,0) positions at t¼ 0. This

kind of plot with a common

origin for many particles is

comparable to the self-part

of the van Hove functions.

One can imagine how the

peaks of the function are

formed by both localized

and accelerated motions.

Contribution of long jumps

is found as in the glass
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difference indicates that the degree of cooperativity of ion dynamics is less in the

crystal than in the glass. The spin lattice relaxation (SLR) time T1 of
7Li in the glass

and the crystal shows a diffusion-induced peak in T1
�1(T ). Comparison of the

positions of the maxima and the slopes of the low-T sides of log T1
�1 vs 1/T curves

shows that the Liþ jump rate in the glass is higher and the activation energy is lower

than in the crystal. These results are consistent with the MD simulations.

Comparison of the caged ion dynamics in polycrystalline and glassy

Li2O�Al2O3�4SiO2 has been made by dielectric relaxation measurements at fre-

quencies higher and temperatures lower than the conductivity relaxation by Rizos

et al. [121]. The data show the near constant loss (NCL) is present in both the

polycrystalline and glassy states of Li2O�Al2O3�4SiO2. Further, its magnitude and

temperature dependence is comparable in both forms of the same substance. Again

these experimental findings are consistent with MD simulations.

9.10.1 Role of Defects in the Crystal and Glass

By introducing defects in the crystal, diffusivity of ions drastically increased. This

trend is also reproduced byMD [10]. It was found that the ion dynamics observed in

the crystal with defects are more Gaussian-like as compared with the corresponding

glass of the same composition. It means that the mechanism of the diffusion is not

Fig. 9.18 Self-part of the van Hove Function of lithium ions in lithium disilicate crystal at 1400 K

for 5
 2
 5 system in the stable form. From upper to bottom curve in the first peak corresponds to
3.2, 6.4, 12.8, 22.4, 44.8 and 60.8 ns, respectively. Distinct peaks and overlaps of curves in the

second peak means that the clear jump character and strong localization within neighboring sites,

respectively. Although the motion is non-Gaussian even the longest time, the power law region is

not clear
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the same as in the glass as revealed by the different degree of non-Gaussianity.

The motion in the glass is more heterogeneous than the crystal with or without

defects, and the result again brings out that the ion dynamics in the glass is

accelerated by the fast ions in the heterogeneous dynamics. One problem remains

to discuss the dynamics of ions in the crystals by MD is that the number of jump

events observed is too small during the observation time. Therefore high temper-

ature tends to be used to examine it. This condition might cause a change of the

mechanism of the ionic motion. Therefore further examination of long runs at low

temperature regions is desired.

9.11 Conclusion

Structure and dynamics of ionically conducting glass are examined by MD simu-

lations. For structure, importance of the history of the system in PVT relations is

pointed out to explain the Qn distribution, where n is a number of bridging oxygen

atoms in SiO4 units. This also suggests the existence of polymorphs in the lithium

disilicate. Relation between the concept of the multifractal and Qn distribution was

discussed.

Jump motions of ions and characteristics of several functions can be also

analyzed by MD. As discussed in Chap. 2, distinct time regions in MSD corre-

sponds to the frequency dependent regions of the conductivity. The existence of

the near constant loss (NCL) of caged ions has been established from the molec-

ular dynamics simulation results of Li metasilicate glass. In the next or second

time regime, tx1< t< tx2, the change of 4πr2Gs(r,t) with time is more rapid,

indicating the inset of the jump motions to the neighboring sites. Concurrently

an increasingly more rapid increase of <r2> is found in this time regime, but its

time dependence is not a fractional power law until after tx2. In the third time

regime, tx2< t< tdif, <r2> has the time dependence of a power law, t1�n, with a

fractional power. Here tdif is a beginning of the diffusive regime, approximately

the time after which <r2> is proportional to t. In this third time regime, a second

and further peaks at a distance between Liþ ion sites develop in 4πr2Gs(r,t) and
grows with time, indicating significant number of Li ions have jumped out of their

cages to neighboring and further sites to participate in cooperative motion to

longer distances. Still many ions are localized and therefore the motion is

heterogeneous.

The self-part of the Liþ ion density correlation function, Fs(k,t), in the same time

regime is a stretched exponential function of time, which also is the signature of

cooperative or collective dynamics.

Generality of the dynamics is suggesting the common physics governing the

relaxation and diffusion of interacting systems. Displacements of ions at tdif are not

for the first jumps of ions but that several jumps as shown in Sect. 2.4.1. Therefore,

the relaxation rate is affected by angles among successive jumps.
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Generally, temporal and spatial contribution in MSD can be separated by the

analysis of jump motions of ions. Some different views brought out by other

workers using the same potential models were compared and the causes of the

apparent differences were explained.
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Chapter 10

The Mixed Alkali Effect Examined
by Molecular Dynamics Simulations

10.1 Overview and Brief History

When more than one kind of mobile ions are mixed in ionic conducting glasses,

crystals and melts, there is non-linear decrease of conductivity or diffusivity, which

can be as large as several orders of magnitude compared with the transport

coefficient of either kind of ions. What is a cause of such a large effect? The

phenomenon is known as mixed mobile ion effect or Mixed Alkali Effect (MAE)

[1–4]. MAE is also known as common properties for ionic conductors including fast

ion conductors such as β”-aluminum systems [5] and is considered as a key feature

of the common physics governing the dynamics. Molecular dynamics simulation is

useful to study the complex ion dynamics giving rise to the MAE in ionically

conducting glasses. Many researchers tackled this problem for a long time and it

was called as “permanent challenge” [6] during nearly over one century. The

problem is still unsolved in the sense that “ a common view among researchers

has not established yet”, although many features have become clearer in recent

years. The experimental aspects of MAE are covered in details in Sect. 4.8. The

difficulty of the problem is to solve all the following properties and features

consistently.

The slowing down by MAE is larger at lower temperatures.

The effect is larger when the size difference of the two alkali ions is larger.

The effect is larger in the systems with higher concentration of alkali ions, and

vanishes at extremely dilute concentration, suggesting that the effect is enhanced by

the suppression of the cooperative motions of like ions in the mixture.

In the dilute foreign alkali region with small concentration x of foreign ions, the

MAE is known to be the largest [7], and log(D(x)/D(0))¼�E/kBT exhibits a

curvature [8–10]. In the reference [8], it was pointed out that the large MAE in

the dilute foreign-alkali region is one of the most critical tests for any explanation of

MAE, where large numbers of majority ions are immobilized by a single

foreign ion.
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The viscosity of the mixed alkali system is smaller than the single alkali systems.

This suggests that the loosening up of the network by the presence of different kinds

of alkali ions.

The effect is larger at low frequency than at high frequencies [11]. That is, the

effect is remarkable in DC but not found or weak in AC at higher frequencies.

Several authors [12, 13] pointed out that the maximum of the Haven ratio exists

in the mixed alkali systems. Namely, Haven ratio of the mixed alkali system tends

to be larger than the single alkali systems. In other words, the effect is larger in the

conductivity than in diffusivity.

MD simulations have been taking as the means to understand the MAE for a long

time. Vessal et al. [14] have visualized the structure of the mixed alkali system. The

changes in the activation energy by mixing were observed as well as a segregation

of ions from the frameworks. Existence of nearly independent jump paths for

different alkali species in the molten state or in the glassy state was found by

Balasubramanian and Rao [15, 16], and by Habasaki et al. [17, 18], independently.

In these works, distinct-part of the van Hove functions was used to study the motion

of ions among different kind of ion sites. This short time observation needs further

examination of the long time behavior, unless the connection between short and

long time behavior is established. This is because the peak observed at r ~ 0 of the

van Hove function includes the localized jumps and hence it is not necessarily for

the diffusive motion if the observation time was too short. In early works, time

scales, system sizes and compositions covered, were limited because of the limita-

tion of the power of the computer. Mixed alkali effect is known to be remarkable in

high alkali content glass where the ion dynamics is decoupled with the motion of

the matrix. Therefore, we have chosen the meta-silicate glasses. The system is more

fragile than silica rich systems and this allows one to treat a relatively small system.

Actually, the system size effect is reported to be larger in strong system than in

fragile system [19]. With a rapid development of computers or methodology, such

as parallel computing, this situation changed considerably. Later, researches of the

MAE were expanded to longer time scales and/or different composition including

lower alkali content glass [20, 21].

In this section, our attention is focused on the results of MD simulations for

metasilicate composition, where the mixed alkali effect is remarkable.

MD simulations were performed for (Li1-x,Kx)2SiO3 (x¼ 0, 0.1, 0.25, 0.5, 0.75,

1.0.) Contained in the unit cell are 1152 M, 576 Si and 1728 O for M2SiO3, where

M¼Li or K. The smaller systems with 432 particles used in early works are still

useful for graphic representation and some other treatments. The volume was fixed

as that derived by NPT (constant pressure and temperature) ensemble simulation

under atmospheric pressure and the results of NVE ensemble are analyzed. Pair

potential functions of Gilbert-Ida type [22, 23] and r�6 terms were used. The

parameters of the potentials used were previously derived on the basis of ab initio
molecular orbital calculations [24] (see Sect. 9.1). The glass transition temperatures

obtained by the T-V relation for the Li2SiO3 was approximately 830 K. The runs for

(Li1�x,Kx)2SiO3 systems at 600, 700, 800 and 1673 K were analyzed.

460 10 The Mixed Alkali Effect Examined by Molecular Dynamics Simulations

http://dx.doi.org/10.1007/978-3-319-42391-3_9


The MAE observed in the diffusivity reproduced by MD for the mixture of

lithium and potassium metasilicate glasses of several compositions is shown in

Fig. 10.1 [17, 21]. The top curve for each Li and K is for the molten state, where the

effect is small. At lower temperatures, the effect becomes clearer. In a low K

concentration region, large decrease of the diffusivity of Li ions was observed,

which means the one K ion causes the suppression of many Li ions. Thus, known

features including an effect in a dilute foreign region can be reproduced well in our

model. Different from other models used in the beginning of such works, our model

can reproduce MAE effects at reasonable temperature regions with a reasonable

glass transition temperature of the system.

10.2 Evidence of the Interception of Jump Paths Among
the Ion Sites of Different Kinds of Alkali Ions:
Distinct-Part of the Van Hove Function

The distinct part of the van Hove function [25] is useful to understand the different

behaviors of ions among different kind of ion sites.

The function is defined by,

Gd
α,β r; tð Þ ¼ 1=Nαð Þ

XNα

i¼1

XNβ

j¼1

δ
�
r� ri

α 0ð Þ þ rj
β tð Þ� �i ð10:1Þ

where in the summations the self-term i¼ j is left out if α ¼ β. Nα and Nβ are the

number of particles of species α and β, respectively. In the function, if the ion

Fig. 10.1 Mixed alkali

effect reproduced by MD

simulations. Isotherms of

diffusion coefficients of in

the mixtures of lithium

metasilicate and potassium

metasilicate, at three

temperatures, 1673, 800 and

700 K from upper to lower.
Green marks are for Li ions
and Blue marks are for K
ions. Curves are for a guide
of eyes
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species β comes into the site previously occupied by species α at an initial time t0, a
new peak developed at around r¼ 0.

The function for (Li1-x,Kx)2SiO3 with x¼ 0.5 at 700 K is shown in Fig. 10.2.

The peaks at r ~ 0 in the Li-Li and K-K pairs mean the occurrence of such jumps.

For the Li-K and K-Li pairs, they were not observed until 192 ps in Ref. [17]. That

is, the jump to the site previously occupied by a different kind of ion site is rare. In a

longer time scale, contribution of jumps is found [21] as shown in Fig. 10.2. From

this result, one can say that in the mixed alkali system, the motions among different

kinds of ion sites are suppressed. This means the characteristic of each site remain

in the system and the path for each ion are nearly independent. This suppression is

clearer at lower temperatures. The MAE effect and its temperature dependence is

Fig. 10.2 Distinct part of the van Hove functions at 700 K in lithium-potassium metasilicate

((Li1-x,Kx)2SiO3 with x¼ 0.5) for Li-Li, K-K, Li-K and K-Li pairs, respectively. The red curves
are the function at t¼ 0, which corresponds to g(r) by the definitions. Orange, green, pale blue and
blue curves are the function at t¼ 320, 640, 1600 and 2880 ps, respectively
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explained by such characteristics. By introducing fictive mass for Li ions, it was

confirmed that the effect is essentially caused by a size difference of Li and K ions

and not by the difference of masses [17]. The function for Li-K is the same as the

function for K-Li and at t¼ 0, it is the same as the pair correlation function g(r),
from the definition.

By reverse Monte Carlo methods, it was shown that mixed mobile ion effect in

silver-sodium phosphate glasses are weak [26], where both ions used common jump

paths. This can be explained by the comparable ionic radii for silver and sodium

ions. For the former, the radii 1.0 or 1.02, while for the latter the value 0.99 (in Å),
both for the monovalent 4 coordinated ions were reported by Shannon [27, 28].

Considering the size difference of alkali metal ions, it is easy to understand why

the larger ion cannot enter the site for the smaller ion, while the opposite case is not

so obvious. From the many body configurations during MD run, activation energies

of jumps have been estimated. A Li ion in a fully relaxed site is found to be more

stable (about 200 kJ mol-1) than the one put in the site previously occupied by

K. Large distortion energy for the rearrangement of the environment is required to

induce the jump to unlike ion site due to the large site mismatch [9, 15, 16, 18]. This

explains why the jumps among unlike ion sites are rarer than the jumps among like

ion sites.

10.3 Composition Dependence of the Mixed Alkali Effect

One can determine the exact number of ions moving among dissimilar or similar

kinds of ion sites. The function, Rd(r,t) defined by

Rd rc; tð Þ �
ðrc
o

4πr2Gd r; tð Þdr; ð10:2Þ

represents an accumulated number of M2 ions at t within the distance r observed
from the original sites (r¼ 0) at t¼ 0 of the M1 ion. By using a suitable distance rc,
the number of the M2 ions coming into the original site of M1 ion can be obtained.

The function Rd(r,t) for the mixed alkali system was examined for longer time

scales and different compositions. From this analysis, the following findings were

reported to explain the trend observed in the isotherms [21]. In these systems, the

number of events for Li-Li and K-K is obtained by the product of the number

densities of both species concerned, that is, the probability of the meeting. The

number of events for Li-K and K-Li are exactly the same in the (Li1-x,Kx)2SiO3 with

x¼ 0.5. The equality of the number is necessary to keep the system stable. This

conclusion is different from results by other MD work [20] for disilicate system,

where asymmetry of the motions was observed. This difference of the explanation

seems to be coming from the different treatment of jump sites. In their work, the site
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was defined by the dense part of the density profile using an arbitrary chosen cut-off

value, while in the function Rd(r,t), the minimum position of g(r), which is common

for Li-K and K-Li pairs, was used for rc.
In the case of (Li1-x,Kx)2SiO3 with x¼ 0.1, asymmetry of the motion is observed

even using Rd(r,t) because of different number of ions; that is, number of jumps of

Li ions into the site previously occupied by a K ion is larger than the opposite case

because of the larger contents of Li ions. In the opposite case, where the potassium

ions are the major component, the decrease of the dynamics of potassium ions is

weaker, because of larger size of the potassium ions. This result explains the

asymmetry found in the isotherm of the MAE and is related to the mechanism of

the large MAE effect in a dilute foreign region (see Sects. 10.5.3 and 10.7).

10.4 Visualization of the Ion Trajectories and Paths
in the Mixed Alkali System

Li ion cannot enter easily the site previously occupied by K site and opposite is also

true. Therefore path for each ionic species is nearly independent and thereby cut

each other. Existence of independent paths and trajectories of ions were visualized

by several methods from MD simulations. Trajectories for the mixed alkali system

have been shown in several papers [18, 21].

In Fig. 10.3, trajectories of atoms and ions of (Li1-x,Kx)2SiO3 with x¼ 0.5 for

lower temperature and longer time scale (at 600 K during 8 ns runs) are shown.

During the runs, Si atoms are essentially immobile, while local motions of oxygen

atoms are observed. It is clearly found that the trajectories of Li and K ions are

almost independent. Both localized clusters and overlap of trajectories along the

path are observed. Such complicated motions form the heterogeneous (multifractal)

density profile of ions. In our previous work, structure of the paths and ion sites can

be visualized by using a density profile [29] and multifractal analysis (Appendixes

A.3–A.5) has been done for such structures. Accumulated positions of ions during

1 ns runs for (Li1-x,Kx)2SiO3, x¼ 0.5 at 700 K was shown in Fig. 10.4 by the contour

map for a slice of the MD basic cell of the smaller system.

In the left column, the profile for Li ions is shown. In the middle column, the

profile of K ions within the same plane is shown. In the third column, the sum of

both contributions is shown. In these figures, red color corresponds to the concen-

trated part (localized ions) and blue color means the rarified regions. In other words,

region accessible by each species are restricted within the substructure of ion

channel by the volume fraction of M2O. This suggests the validity of the thermo-

dynamic (TVγ) scaling in each substructure (see Ref. [30] for the validity of the

scaling in silicate glass. We also obtained preliminary results to support the validity

of it in substructures.). In some cases, positions of Li and K ions overlap (not

exactly the same because of the size difference) and this may be regarded as

common sites, although this may depend on the definition of them [31].
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Fig. 10.3 Trajectories at 600 K during 8 ns for a slice of 5 Å projected on x-y plane for (a) Si
(Purple), (b) O (Red) (c) Li (dark pink) and K (blue) ions in the ((Li1-x,Kx)2SiO3 with x¼ 0.5)

Fig. 10.4 Contour plots of density profile for (Li1-x,Kx)2SiO3 with x¼ 0.5 at 700 K for the slice of

the MD cell. The positions of ions during 1 ns of MD run are accumulated with an interval of

400 fs. Left panel: Li ions, Middle panel: K ions and Right panel: Sum of Li and K ions. The red
part corresponds to a concentrated part while and blue one corresponds to a rarified part of the

profile. The profile shows a multifractal nature. That is, substructures such as ion sites, ion paths

have different fractal dimensions. The substructures for Li and K ions is nearly independent and

hence intercepting each other



10.5 Quantitative Characterization of the Slowing
Down of the Dynamics

As shown in Fig. 10.1, in the mixed alkali metasilicate with x¼ 0.5, the diffusivity

of Li ions is one order of magnitude smaller than that of the single alkali system.

Even if one half of the paths for an ion is intercepted by the other kind of alkali

metal ion or its site, the possibility of finding the way is nearly one half. Therefore a

change of the transport property is not linear to the number of available sites nor

volume of possible occupation regions for each ion. Non-linear character of the

dynamics is an important feature of the MAE that needs to be explained. To

understand this non-linearity, it is expedient to consider the fractal dimension of

random walks and that of the paths.

10.5.1 Combination of Fractal Dimension of Paths
and Walks

In Table 10.1, the fractal dimensions of the random walks and the jump paths for

single and mixed alkali systems are compared [32]. These values are relative

ones obtained from the same period of runs (1 ns) for all systems. Both the

increase of dw and the decrease of df were observed in the mixed alkali system.

The method to determine these exponents are described in the following sub-

section (see also Appendix A.1 for dw.). The mechanism of MAE, where both the

change in fractal dimension of the random walks and the change in the fractal

dimension of the jump paths was observed, is easily understood by the concept

similar to the “fracton” discussed by Alexander and Orbach [33]. Generally, the

number of visited sites by an ion during N steps, V(N ), of a simple fractal system

is given by

V Nð Þ � RDf � Nds=2; ð10:3Þ

where the fracton dimension ds is defined by

Table 10.1 Fractal dimensions of the jump path and that of random walk calculated from the

accumulated (1 ns) density around ions and trajectories for Li ions, respectively

Systems in the glassy states Temperature dfc dw

Li2SiO3 700 K 2.98 2.71

LiKSiO3 700 K 2.21 3.25

800 K 2.47 2.94

K2SiO3 700 K 2.78 2.31

For K2SiO3, values are for K ions
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ds ¼ 2df =dw; ð10:4Þ

where df is a dimension of the jump path and dw is a fractal dimension of the random

walk, and R is a distance from the original position of the ion after N steps and Df is

a dimension of the space.

The probability <P0(t)> of finding the particle at the origin at time t is given by

<P0 Nð Þ>� V Nð Þ½ ��1 ð10:5Þ

when the particle was located at the origin at time t¼ 0. Here we use N instead of

t to remove the effect of the waiting time distribution of jump motions. From these

relations, it is clear that the increase in the fractal dimension of the random walk and

the decrease in the dimension of the jump path resulted in a localization.

10.5.2 Fractal Dimension of Jump Path and Walks

As shown in the previous subsection, dimensionality of paths and walks determine

localization of ions. Therefore, method to characterize the jump paths and trajec-

tories is explained here [17, 32, 34]. Fractal dimension of the path can be deter-

mined from the number of surrounding ions in the accumulated position of ions.

In Fig. 10.5, an example of such analysis is shown. From the slope of the power

law region, one can estimate the dimension for the possible connections of the path

Fig. 10.5 An example of fractal dimension analysis of jump path. Number of Li ions (accumu-

lated during 1 ns) around Li ions within the distance r is plotted against the distance r for LiKSiO3

glass at 800 K (Red curve). Blue curve is for the self-term (that is for localized ions). The plot was

normalized, so that the number of centered ion is 1. The slope is 0.31 for local region and 2.47 for

clustering region
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during a certain time of MD runs. Time scale (several times) longer than tdif is
necessary for accumulation to judge the percolation of the path.

Fractal dimension of the random walk, dw, was determined from the trajectories

of each ion by using a divider method (see Sect. 9.5.4 and Appendix A.1). This

dimension represents the complexity of the trajectory and is defined by the follow-

ing equation as already mentioned.

NT ¼ A0Lr�dw : ð10:6Þ

In this analysis, trajectories were obtained by the MD simulation during a run of

time trun. For determination of saturated value of dw for both fast and slow ions,

long run is better to be used, if calculation resources allowed it. For example

trun¼ 4 ns at 700 K for x¼ 0, which is about 8 times longer than tdif, was used in

Ref. [34]. The time scale covers exchange between fast and slow ions or saturation

of the relative intensity in the density profile related to it.

In the lithium metasilicate, the slope of NT against Lr plot was found to change at

around 3 Å at lower temperatures. The dw for shorter length scale (<3 Å) was
named dw1 and dw2 for longer length scale (3�Lr< 10 (Å)).

In Fig. 10.6a, changes of the dw1 and dw2 of Li ion by mixing with K ions at

700 K are shown. It was found that dw1 for the short scale motion and dw2 values for

Fig. 10.6 (a) Changes of 2/dw compared with power law exponent θ of MSD. The fractal

dimension of random walk in single alkali system shows two values (2/dw1 and 2/dw2) for shorter
and longer scale regions, while such difference was not observed for the mixed alkali system. That

is, accelerated motion observed in the Li2SiO3 system is missing in the mixed alkali system. (b)
Singularity spectrum of Li ions in (Li1-x,Kx)2SiO3, (squares: x¼ 0., triangles: x¼ 0.25, diamonds:
x¼ 0.5) obtained from 1 ns runs at 700 K
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longer scale motion are non-distinguishable in the mixed alkali system. This means

that the fast ionic motion with cooperative characters are suppressed by an addition

of small amount of foreign alkali metal ions.

The value 2/dw is compared with the exponents, θ, in the power law dependence,

tθ, of the MSD. As well known, the decrease in the value of θ represents the slowing
down of the dynamics. From the comparable trends found in θ and 2/dw, the main

cause of the slowing down with increasing potassium content is inferred as origi-

nating from the geometrical correlation of the successive motions, that is spatial

term. In contrast, in the usual theory of fractal [35], θ correspond to 2/dw’, where the
dw’ is considered to be more general one including both temporal and spatial terms.

Thus it is proved [36] that the origin of the remarkable slowing down in the mixed

alkali system is related to the suppression of the cooperative motions and changes

of the complexity of the trajectories. Naturally, the changes of the slope in the

“power law” dependence of the MSD due to complexity of the trajectories explains

“the large non-linear effect of the slowing down” in the mixed alkali system.

We note that the β in the Fs(k,t) is comparable to θ and from this relation, we can

expect the decrease of β with mixing of foreign alkali ions for the single particle

motion. It is noteworthy that this mechanism of the slowing down through θ and/or
β by mixing does not necessarily require the direct modification of activation

energy of each jump motion.

In the conductivity of the mixed alkali system, the relation in β and θ is not

simple, because both kinds of ions and cooperative motions of them are affected by

the mixing, as discussed in the next section for the motion in the dilute foreign

alkali region and in Sect. 10.6 for the Haven ratio.

Related changes are found in the variation of the exponent β with x obtained

from fits using the Kohlrausch function to the electric modulus of data. Ngai and

coworkers [8] have argued for the mixed alkali silicate glasses [xK2O(1�x) Na2O]–

3SiO2 that the increase of β� (1-n) of the Kohlrausch function with x and a

maximum at some intermediate composition are expected based on the coupling

model.

10.5.3 Rapid Decrease of the Diffusivity in the Dilute
Foreign Alkali Region

The difference of 2/dw1 and 2/dw2 becomes negligibly small in mixtures and this

trend already exists in a dilute foreign region. Therefore, the suppression of the fast

ions (in the diffusivity) by addition of foreign ions is responsible for the rapid

decrease of the dynamics at dilute foreign region. As discussed in Sect. 10.3, in the

x¼ 0.1 case, the motion of K ion to the site previously occupied by Li ion needs a

motion of a plural number of Li ions in the dilute foreign ion region. We also note

that the strong localization of K ions is found with x¼ 0.1. Therefore, cooperative

motion of like ions is affected by introducing the larger ions considerably and rapid
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increase of dw2 is observed by mixing with a small amount of foreign alkali ions. As

discussed later in the Sect. 10.7.1, such effects propagate to longer distances and

this explains the immobilizing the dynamics of majority ions found in a dilute

foreign alkali content region.

Thus changes in the diffusivity are dominated by the change in the geometrical

correlation between successive jumps and not by the change in the relaxation rates

in the high frequency region, and the motion less than 1 ps is not affected by the

mixing as it is easily confirmed by MSD. Experimentally, Jain [11] has examined

the low temperature ac conductivity in xNa2O-(1-x)Rb2O-4GeO2 glasses and found

that the mixed alkali effect is essentially absent at high frequencies. This feature is

consistent to our findings.

10.5.4 Multifractality of Jump Path and the Percolative
Aspect of MAE

Here we make the importance of the geometrical structure of the pathway clearer.

In a single alkali glass, large fluctuations in the heights of the density profile, due to

the hierarchy dynamics of fast and slow ions [37, 38], were found [29]. Different

fractal dimension is found for each substructure (ion sites or paths connecting them)

or the mixture. Therefore, multifractal analysis using singularity spectrum, f(α),
(see Appendix A.5) is useful to characterize the changes in the profile by mixing

with foreign alkali metal ions. Singularity spectra of the Li ions in the mixed alkali

systems (Li1-x,Kx)2SiO3 (x¼ 0., 0.25, 0.5) is shown in Fig. 10.6b, where the run of

4 ns at 700 K was analyzed [21]. Each singularity spectrum, f(α) shows a convex

shape, which indicates the multifractal character. The f(α) value at the maximum

corresponds to the capacity dimension of the percolated jump paths and the value

decreases with the increasing foreign alkali metal ions (the threshold value in 3D is

known to be ~2.53). The largest value of α corresponds to the most rarified part of

the density profile, which corresponds to the accelerated (long ranged) motion,

while the left part is concerning with the localization. Therefore, the smooth convex

curve means the smooth mixing of the localized motion and accelerated motion to

form the density profile. Changes in the dynamics forming the density profile can be

also found in the spectra. With increase of K ion content, the right hand part of the

spectrum is suppressed accompanied with the decrease of the capacity dimension.

This means the motion becomes more localized one.

When the heterogeneity of the dynamics is weaker, it is expected that the

spectrum becomes narrower.

The capacity dimension with x¼ 0.5 is near the percolation threshold (~2.53)

at 700 K.

Generally, singularity spectra are representative of the density profile formed by

both fast and slow dynamics and are useful to examine different systems on the

same basis.
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For example, for the lower alkali content glass such as Li2SiO3-3SiO2, similar

change in the spectrum f(α) showing slowing down of the dynamics was found

[20]. This is a direct evidence to show that the situation of each ionic species in

mixed alkali system is similar to the low alkali content glass.

10.5.5 Self-Part of the Van Hove Functions

The self-part of the van Hove function is also useful to characterize the difference

or similarity of the single alkali and mixed alkali systems. The function for ions is

defined by

Gs r; tð Þ ¼ 1=Nð Þ
XN
i¼1

δ
�
ri tð Þ � ri 0ð Þ � r

� �i; ð10:7Þ

where r is the vector to show the travel by the ion in a time t.
Figure 10.7a, b show the comparison of the evolution of 4πr2Gs(r,t) for Li ions in

single alkali metasilicate and that of the mixture with potassium metasilicate at

700 K. In the plot, the function is shown as a function of r with time, where r is
k r k. The different functional forms in the mixed alkali systems (for x¼ 0.1 and

0.5) are found as shown below.

In the single alkali glass, the curves are the functions for 80, 160, 320, 640, 1280

and 2240 ps from top to the bottom of the first peak. With a decrease of the height of

the first peak, peaks at larger r develop. In Fig. 10.7a, the brown and red curves are

Fig. 10.7 Comparison of the self-part of the van Hove function of Li ions in Li2SiO3 glass and that

in Li1-xKxSiO3 glasses both at 700 K. Blue curves are for single alkali system (80, 160, 320, 640,

1280 and 2240 ps from top to the bottom for the first peak. (a) Brown and red curves are the

functions for the mixed alkali system with x¼ 0.1 at 320 ps and 1280 ps. (b) Red curve is for the
mixed alkali system with x¼ 0.5 at 1600 ps
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the functions of the mixed alkali system for x¼ 0.1 at 320 and 1280 ps, respec-

tively. These two curves cross each other at around 2.5 Å. Similar behavior in the

single alkali system, at 160 and 640 ps are shown by the thick curves. The time scale

for developing of the function becomes about 2 times longer by the addition of

10 mol % of potassium salt. For x¼ 0.1, the scaling of the dynamics by an effective

time will hold because of the similarity of the functional forms. The situation is

slightly changed in the case of x¼ 0.5. In Fig. 10.7b, the red curve at 1600 ps for the

mixture is comparable to that at 320 ps of the single alkali system shown by the blue

thick curve in the long r region. However, the red curve at small r region is fairly

different from that of the blue thick curve. The function is broader and the height is

lower in the mixed alkali system. Moreover, the dip between the first and second

peaks are not as clear. These results suggest that additional motion such as jump

toward ion site previously occupied by a different kind of alkali ion or increased

number of localized jumps contributes to the functional form.

10.6 Haven Ratio in the Mixed Alkali System

The complex conductivity σ*(ω) is related to the MSD by the following

equation [39, 40],

σ* ωð Þ ¼ �ω2 Nρqc
2

6HRkT

ð1
0

< r2 tð Þ > e�iωtdt; ð10:8Þ

where Nρ is a number density of mobile ions, qc is a charge of ion, k is the

Boltzmann constant, HR is Haven ratio , and T is temperature. Using this relation,

the σ*(ω) spectra in frequency domain can be connected to the motion in each

stage in MSD [41]. The Haven ratio [42] is experimentally obtained from the

ratio of tracer diffusion and conductivity. It is represented by the ratio,X
i

< vi 0ð Þ • vi tð Þ > = <
X
i

vi 0ð Þ •
X
j

vj tð Þ > as shown the linear-response the-

ory by Kubo [39]. Since the cross terms is included in the denominator, the Haven

ratio is another indicator of the cooperativity in the ionic motions.

Experimentally, the change of the Haven ratio (HR) is found by mixing of

foreign alkali and a maximum is found as some intermediate value of the mixing

ratio [11, 43]. This is in contrast to the expectation of decreasing ratio by mixing

when one considered the geometrical correlation of motions only. This problem is

solved if we considered the cooperative motion of ions [18].

In the MD simulation of Mg-stabilized Na-β” aluminum, Hafskjold and Li [44]

have pointed out that a smallHR value corresponds to highly correlated velocities of

different conducting ions, indicating that ions move in the same direction simulta-

neously. In their work, the ratio was obtained using the tracer diffusion coefficient

and bulk diffusion coefficient at f¼ 0, where f is frequency.
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They are defined by

Dt fð Þ � 1

zN

ð1
0

dtei2πf t
XN
i¼1

vi tð Þ � vi 0ð Þ
* +

and

Db fð Þ � 1

zN

ð1
0

dtei2πf t
XN
i¼1

vi tð Þ �
XN
i¼1

vi 0ð Þ
* +

; ð10:9Þ

where z is the dimensionality of the system. In the case of the β”-alumina, the value

2 was used.

Such cooperative jumps are found in both lithium (see Fig. 2.12) and potassium

metasilicate glasses, and the maximum of the Haven ratio in the mixed alkali

system is explained by the suppression of the cooperative motion found in the

mixed alkali system [17]. Therefore, the term “cooperativity blockage” is appro-

priate to represent such situation and was used in Ref. [45].

In the single alkali glass, the value is known to be 0.2–0.5 and this value is

inversely correlated with the cooperatively of the mobile ions [46]. Therefore, 2–5

ions move cooperatively. On the other hands, the ratio is larger in the mixed alkali

glasses than the single alkali systems [11, 43], indicating that the cooperative

motions of same kinds of ions are suppressed in the mixture.

Recently, Voss et al. [47] has shown the relationship between activation

enthalpy of the ionic conductivity and the mean separation distance of cations,

<dion> in Na- and Rb-oxide, and also that the Haven ratio decreases with the

decreasing <dion>/<dnetwork>. The relation was confirmed by the Monte Carlo

simulations including single and collective jumps on the random field and impor-

tance of cooperative motions was also argued.

10.7 MAE as a Cooperativity Blockage

Suppression of the cooperative jumps and resultant propagation of the blockage

effect is found to be essential in MAE and this has been identified as the origin of

the rapid decrease of the mobility in the diluted foreign region or the large

magnitude of the mixed alkali effect. Namely, suppression of motions propagates

to longer distances [35, 45, 48]. Prof. C.T. Moynihan suggested to us to describe the

mechanism as “cooperativity blockage”. These features are consistent with the

results in the fractal dimension analysis and explanation of Haven Ratio, with

considering the cooperativity. This mechanism is related to the dynamics in the

confined materials as discussed in the next subsection.
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10.7.1 Relation with Confined Systems

Recently, many kinds of confined systems draw attentions. This includes water in

gel, molecule in the tube, systems with fixed walls. Some effect of fixed particles

introduced artificially to block the paths of the mobile ions [48] is remarkably

similar to the mixed alkali effect [21]. Such blockage effect is found to be

emphasized on the cooperative jumps as shown by the Monte Carlo Simulation

[49], where Lennard-Jones particles (i.e. argon like ones) were used instead of ions.

As far as the mechanism of blocking of the path, there is no difference between

ionic system and non-ionic system. This mechanism is not limited for ions and is

rather general for interacting systems.

In Fig. 10.8, changes of the intermediate scattering functions of the majority of

lithium ions in lithium metasilicate glass, where the 10% of block particles (fixed

Li ions) [45] has been introduced, are shown. As shown by the blue dotted curves,

the decay of the function is slowed down by the small number of block particles.

The effect is observed for all wave numbers examined but seems to be larger for

smaller wave number at the long time region. In this case, one can consider both the

block of the path and suppression of the cooperative motions. Effect of the fixed

wall can be used to distinguish these effects. MD simulations of the binary Lennard-

Jones (L-J) system by Scheidler et al. [50] have shown that the fixed wall affects

dynamics of confined particles considerably and over longer distances from the

Fig. 10.8 Changes of self-part of the intermediate scattering function, Fs(k, t) by introducing

block particles are shown. Black, large dotted curve: Fs(k, t), in Li2SiO3 as a standard for k¼ 2π/n
(Å–1) (n¼ 10, 5, 3, 2, 1.5, 1.0, 0.8 from top to bottom) at 700 K. Blue, dotted curve: Fs(k, t), of
mobile Li (a major part) ions in Li2SiO3, where randomly chosen 10% of Li ions are fixed. Wave

numbers and temperatures are the same in both cases. Slowing down of the majority ions is caused

by the small number of fixed ions
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wall. Here the walls are formed by frozen L-J particles. The dynamics shown by the

intermediate scattering function become more stretched by the continuously chang-

ing mobility with distance. In this case, the fraction of paths for the majority of

mobile particles was not changed by the fixed ions. Therefore, their effects cannot

be explained without a propagation of the effects for other particles. Similar result

showing the propagation of effect was obtained for the motion of Li ions affected by

the frozen ions in the wall [45]. This interesting property was fully explained by the

Coupling Model [51, 52].

Maass et al. [9, 10] reproduce the behaviors of mixed alkali systems including

dilute foreign region by considering the propagation of the mismatch effect with

direct modification of barrier height with foreign character of the site. The mech-

anism has some similarity to that discussed here, because it includes the propaga-

tion of the effect, but not entirely.

Interestingly, fixing particles can cause the slowing down of dynamics, without

changing structures [45]. Recently, effect of the pinned particles in LJ system was

used to study the “true glass transition temperature” by their definition at higher

temperature [53].

10.8 Motions Among Unlike Ion Sites

In spite of the fact that the interception of the jump path among the unlike alkali ion

sites in a short time scale is observed well as clarified from MD simulations, jump

motions among unlike ion sites were observed in a longer time scale or at higher

temperatures near Tg [17, 18, 54]. Namely, Li ion can enter the site previously

occupied by K ion and opposite is also true as confirmed for LiKSiO3 system during

a long time run or at high temperature region near Tg. These motions are rarer event

compared with the jumps using like ion sites. However, it can contribute to the long

time behaviors or more macroscopic behaviors such as viscosity. Details such as

composition dependence of the number of events examined by MD seem to be

helpful to understand this issue better.

10.8.1 Loosening of the Structure in the Mixed Alkali System

Ingram [3, 4] pointed out that mixing of different kinds of cations leads both to a

loosening of the structure and, at the same time, to immobilization of cations. This

seems to occur concurrently with the large change in the diffusivity in the dilute

foreign region. There are several models explaining such phenomena. The mixed

alkali defect model by LaCourse [55] has considered that the exchanges of ions

with different sizes cause a relaxation of the whole system. The model postulates

that the type A ions can enter the site for type B ions and vice versa, and the number

of both events are the same. The structure of this site commonly used both kinds of
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ions is called the mixed alkali defect and this causes mechanical and electrical

distortion of the local structures. Mutual ionic motion observed in MD simulations

supports the existence of the common site for both kinds of ions, which has been

often assumed to explain the friction peak and/or MAE itself. Ingram and Roling

[56] suggested the concept of matrix mediated coupling and MAE have been

explained to be caused by that the stress due to the jumps among unlike ions. In

their model, attention is focused what happens when the cation moves into the

“wrong” sites.

So far, following key features are confirmed in the mixed alkali system from

MD, for the motion of network accompanied with the mutual jumps of the alkali

ions to unlike sites.

1. In the mixed alkali glass, the size difference among unlike cations causes the

successive and/or simultaneous relaxation of network structure, and therefore

the relaxation time due to jumps among unlike sites is comparable to that for the

network. In other words, jumps among unlike ion sites make the network looser.

2. The number of jumps among unlike sites becomes larger at high temperature or

long time scale and these numbers can be quantitatively counted by MD.

3. Equality of the amount of motions among unlike sites holds for 1:1 mixture but

does not hold for other compositions.

10.8.2 Internal Friction Peak in the Mixed Alkali System

These motions among unlike ion sites discussed in the previous subsection can be

related to the experimental fact that the internal friction peak [57] in the mixed

alkali system shows some peculiar behaviors. The intensity of the so called ‘mixed

alkali peak’ is known to become quite large when mixing with only a small amount

of the foreign alkali. Maass et al. [9, 10] argued that the small number of ion sites is

essential to explain the observed ratio of the intensity of single and mixed alkali

internal friction peak. In their model, jumps among unlike ion sites are considered

to be the origin of the mixed alkali friction peak. The strong intensity of the “mixed

alkali peak” at the dilute foreign alkali region is considered to be caused by small

number of vacancy, which makes the number of ion-vacancy jumps being compa-

rable to that of unlike ion pair.

These explanations [55, 56] of the mixed alkali peak and its property have the

common problem of not able to simultaneously explain the large decrease of

conductivity or diffusion coefficient in the dilute foreign alkali limit. On the other

hand, the explanation of the MAE and its various properties including the large

decrease in this limit by the immobilization of a large number of host ions by a

single foreign ion [8] provides a natural explanation of this mixed alkali peak by the

elastic dipoles formed by the immobilized host and foreign alkali ions. Details of

this explanation and many other properties of the MAE can be found in the Chap. 4.

Although, direct observation by MD simulations has not been done yet for the

origin of the mixed alkali peak, localization of majority ions caused by small
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number of foreign ions and its propagation were confirmed from MD as well as the

strong localization of foreign ions [21]. Further examination of the roles of the

motion among unlike sites might be necessary with considering the different time

scales of these processes.

10.9 Temporal and Spatial Aspect of MAE

For understanding of details of transport properties in MAE, analysis of individual

jumps is useful [38]. Analysis of each jump has been done by picking up that having

displacement greater than 1/2 of the distance of the first maximum of the pair

correlation function g(r)maxM-M by checking the data with elapsed time for every

interval of Δt¼ 0.8 ps. The algorithm used in this analysis is simple and summa-

rized as follows. Large scale motion was picked up by using a critical velocity, vc.
The region with Δjrj/Δt� vc can be regarded as successful jump, while that with

Δjrj/Δt< vccan be regarded as waiting. Time interval Δt and a critical velocity vc
determines the magnitude of coarse graining of the microscopic motions, The

values of vc and Δt were chosen so that the characteristics of the displacements

are well reproduced (Δt¼ 0.8 ps and vc¼ 1.7 Å /ps). Based on the jumps defined by

this velocity category along the trajectories, we examined the mechanisms for the

mixed alkali effect. Both the increasing backward correlation of jumps with the

suppression of accelerated dynamics and the decreasing jump rate can be related to

the reduction in the transport properties. The former property is related to the

geometrical correlation of the jumps (spatial term), while the latter is concerning

with the waiting times (temporal term). The changes in the spatial terms are

dominant in the mixed alkali effect, although changes in the waiting time also

exist. Similar conclusion (but much weighted by the temporal factors) has been

obtained by Lammert and Heuer for a related system [20]. Some differences of

explanations were caused by the definitions of jumps. Their jumps are the coarse-

grained ones compared with that obtained directly from the trajectories of ions,

since density profile they considered does not distinguish localized motion and

strong localization directly. In their treatment, time spent for localized motion

around the clusters is regarded as residence time. That is, the spatial factors in the

short length scale regions are transformed into the temporal factor in such treat-

ment. If larger region is defined as a site, it resulted in a longer waiting time, since

the back-correlated motion tendency becomes larger in the mixed alkali glass as

shown by the fractal dimension analysis of the trajectories.

Namely, in a course-grained description, it is possible to treat the strong back-

correlated motions as the long residence time. However, arrest of motion in a deep

trap is not necessarily the same as the localized motion within a cage, when we

consider the mechanism of the ionic motion.

The difference of the definition of the jump motion affects the explanation of

MAE as follows. When foreign alkali metal ions are mixed, the change in fractal
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dimension of the random walk, dw, in a shorter region can be a cause of the apparent
longer residence time.

10.10 Role of the Motion of Matrix Oxygen Atoms

Propagation of the dynamics through matrix oxygen atoms is also expected,

because the motion of ions is cooperative with oxygen atoms in the NCL region.

The jump motion of Li ions is accompanied with changes in the coordination

number of surrounding oxygen atoms, which have the characteristics of a

pre-jump motion. Previously, motion of Li ion was linked to the movement of the

center of mass of the coordination polyhedron formed by surrounding oxygen

atoms [58], where the vector for the center is determined by the summation of the

positional vectors of surrounding oxygen atoms. This observation means that

the motion of Li is cooperative with surrounding oxygen atoms. Naturally, if the

motion of the oxygen atoms are suppressed, the motion of Li ion is also suppressed

as found in Refs. [45, 59]. In this sense, the local fluctuations of oxygen atoms are

necessary for the Li ion dynamics. However, the correlation at short distance does

not necessarily mean that the long time and longer range dynamics of the Li ion is

also governed by the oxygen motion. By using the steepest descent methods of

Stillinger and Weber [60], we have shown that [18] the activation energy of the

cooperative jumps are different from the one for the single jump.

This conclusion is consistent with the Coupling Model. This is another evidence

that although the short time and short length scale motion of oxygen is necessary for

the ion jump motion, but it is not enough to explain the long time and long range

dynamics. For the same reason, the large MAE concerning conductivity and

diffusion observed in the high alkali content glass is expected when the motion is

decoupled with the relaxation of the matrix chain motion.

10.11 Comparison with Other Methods

Interception of the jump paths in the mixed alkali system we found was also

confirmed for phosphate glasses by Swenson and Adams [59] using the bond-

valence technique to Reverse Monte Carlo (RMC) produced structural models.

They have visualized the pathway of Li and Rb ions with several composition of

LixRb1-xPO3. In the mixture, the paths are mutually intercepted and the trend

observed is essentially the same as ours, although some details including the shapes

of the ion sites and paths seem to depend on the assumptions (such as geometric

constraints) used in the technique. The following relation was found by Adams and

Swenson [61–63]
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They have also shown that the activation energy of the conductivity in the mixed

alkali system is related to the cube root of the pathway volume fraction F,
multiplied by the square root of the mobile cation mass M. In these observations,

non-linear decrease of the dynamics is related to the cubic root dependence of the

pathway volume. Therefore, the observations by them seem to be consistent with

the changes in the fractal dimension of path and walks in our findings, at least

qualitatively. It suggests that general characteristics of the percolation paths such as

the volume fraction can be used for estimation of dynamics, irrespective for the

detailed shape of the pathways. However, if one compared the examples of struc-

tures of paths obtained by MD and RMC, quite different impression might be

brought. For example, please compare the left panel of Fig. 4.31 of Chap. 4 and

Figs. 10.3 and 10.4.

For more detailed comparison, it is interesting to see how the pathways or ion

sites and other related structures can be correctly reproduced by the technique.

Recently, Mueller et al. [64] have examined the quality of structural models

generated by the RMC method applied to the structure obtained MD of lithium

metasilicate as input. It was found that the RMC modeling can reproduce well the

short ranged structures such as the coordination numbers and bond angles, while,

medium range order such as ring size distribution were not captured well and

affected by initial configurations used in the method. In their work, MD simulation

was used as a standard for the comparison. In such a case, it is not necessarily

required to be more reliable than the structures obtained by other methods. This

seems to be a good example how MD simulation can be used.

A volume change of substructure causes a change in the complexity of trajectory

as suggested by the thermodynamical scaling, where the quantities of the dynamics

obey scaling by the product variable TVγ. Therefore, it will be helpful to consider

that the transport property changes with TVγ with a certain γ, which is a character-

istic of the system even for the partial structures in the mixed alkali system.

10.12 Conclusion

Using molecular dynamics simulations, improved understanding of the mixed

alkali effect has been obtained. In the mixed alkali system, the long range motion

tends to be suppressed and the contribution of the local motion increases. Both

increased complexity of the motion and decreased dimension of the paths cause a

slowing down of the dynamics. Power law exponent of MSD is determined mainly

by geometrical correlation between the jumps, and the change of it in mixed alkali

glasses governs the slowing down of ionic motion in a non-linear manner. There-

fore, the percolative aspects of the jump paths play roles in the MAE.
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These descriptions are supported by the time dependence of the self-part and

distinct part of the van Hove function of the Li ion, Gs(r,t) and Gd(r,t), in single and
mixed alkali systems as well as fractal dimension analysis of the system for both the

paths and the walks. Many majority ions are immobilized by the “cooperativity

blockage” by the minority ions, while the motion among different kinds of ion sites

weakens the blockage effect.

Involvement of the dynamics of the matrix oxygen atoms is expected in NCL

region because of coupling of the ion motion with oxygen atoms. Thus the caged

ion dynamics is important property of the system to be examined. Naturally, if the

motion of the oxygen atoms is suppressed, the motion of Li ion is also suppressed.

In this sense, local fluctuations of oxygen atoms are necessary for Li ion dynamics,

although the cooperative nature of the motions among like ions should not be

forgotten.

Dynamical heterogeneity and “cooperativity blockage” originating from ion-ion

interaction and correlation are fundamental for understanding the observed ion

dynamics and the MAE. Structural disorder such as in glasses is not essential in

causing the MAE since these features of ion dynamics are common to other ionic

conductors, which have not glassy networks and yet they all exhibit the MAE.
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Chapter 11

Molecular Dynamics Simulations
of Ionic Liquids

11.1 Brief Introduction and History

Typical ionic salts such as NaCl have high melting point. However, different from

the classical salt, some newly developed molten salts are liquids even at room

temperature. They form a new class of chemical compounds, and are now called the

room-temperature ionic liquids (RTIL) or simply ionic liquids (ILs). Typical ILs of

interest are salts each of which is constituted by an organic cation and an inorganic

anion, and their melting points are below or near the room temperature [1–4].

Sometimes they are defined by the melting point <100 �C. Recently, the term

“ionic liquids” might be used to include traditional “molten salts” with higher

melting points and is distinguished from “room temperature ionic liquids” in

that case.

We note that there was a class of room temperature molten salts before devel-

opments of ILs; however, the new class of ILs have attracted much attention in the

research community because they possess many desirable properties. The proper-

ties include high thermal stability and a good solvent action for many substances

with negligible vapor pressure, making them ideal replacements for volatile organic

solvents in various applications. For example, cellulose was shown to be solved up

to 25 wt% with 1-butyl-3-methylimidazolium chloride, [bmim]Cl, at 100 �C, where
the cellulose can be cracked or modified [5]. Therefore ILs are expected to take a

role for making biomass fuel effectively and many technology concerning with it is

developing. In such cases, the process in preparation will be also important in its

contribution to green chemistry [6]. The ILs also have high ionic conductivity

values suitable for use as electrolytes. Moreover, the ILs are designable to suit the

need because of the many possible combinations of cations and anions with

different structures and properties including the bulky ones, and therefore are

expected to play roles for various applications in many fields. The system tends

to be viscous, because the situation is similar to liquid near the glass transition

regimes, and therefore the system has the general characteristics of glass-formers to
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study the glass transition. Molecular dynamics (MD) simulations are useful

methods to learn more about the mechanism of the ionic transport properties as

well as structural glass transition macroscopically and microscopically. The knowl-

edge of the microscopic mechanism slowing down the dynamics in ILs will be

useful for the application of them in many branches of science. The models of ionic

liquid systems used in MD simulations are in most cases realistic enough to

compare the results with experimental findings.

The following potential form is frequently used in MD simulation studies of ILs

by different groups [7–12],

U Rð Þ ¼
X
bonds

Kr r � req
� �2

þ
X
angles

Kθ θ � θeq
� �2

þ
X

dihedrals

Vn

2
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þ
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i<j
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R12
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 !
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qiqj
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The model potential is composed of a sum of bond, angle, and dihedral deformation

energies, a pairwise standard (6,12) Lennard-Jones potential, and Coulombic inter-

actions between atoms with charges qi. Used by Lopes et al. [13], and by Wang

et al. [14], they were able to reproduce by simulations the domain structures,

suggested by the results from experiments [15]. Some researchers pointed out the

importance of the polarization term to explain the deviations of MD simulations

result from experimental dynamics in ionic liquids [16]. Viscosity of 1-ethyl-3-

methylimidazolium nitrate (EMIM-NO3) system in the polarizable model at 400 K

is in better agreement with the experimental values than non-polarizable model

[17]. Bagno et al. [18] have compared the interaction energy of two clusters of the

1,3-dimethylimidazolium tetrafluoroborate made of four and eight ions by DFT of

B3LYP/6-311G(d,p) level and have shown the importance of the many body

effects. They also discussed the role of polarizability.

In most of classical MD simulations of IL, partial charge had been used for each

atom based on the MO calculations, while the formal charge had been assumed for

each ion. Sometimes, polarization term was used just for improving the formal

charge potential, when the deviation from the experiments was found. Importance

of using a partial charge for each ion in more realistic MD simulations is pointed out

by several authors including us [19, 20]. Actually, it is known that the partial charge

model is good for reproducing other ionic systems [21]. Nowadays, parameters
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using partial charges have been proposed for several ILs and seem to be good

enough without the polarization terms [20, 22, 23]. Yasaka et al. have pointed out

that scaled charge in an ionic liquid is effective to reproduce the rotational dynam-

ics found in experiment by NMR [24]. Employing the Quantum Theory of Atoms In

Molecules (QTAIM) approach, recent theoretical work by Beichel et al. [25] have

obtained the charge density of [C1MIM][C1SO4]. Integrated QTAIM charges of the

experimental (calculated) charge density of the cation and anion resulted in

non-integer values of �0.90 (�0.87) e. Therefore revision or further study of

importance of the polarization term may be necessary. In either case, the role of

the polarization term is considered to be just shifting the position in the phase

diagram [17] and it is not necessarily required for the discussion of general property

of ILs such as the mechanism of the glass transition. This is because such properties

are common to materials with and without polarization terms.

Several kind of coarse-grained models are also used for simulation of

IL. Attempts including the replacement of the long range electrostatic potential

energy by the short range effective potential have been reported so far for ILs and

related materials. One of the successful approaches is damped shifted

(DS) potential [26] having the following form

VDS rð Þ ¼ erfc αrð Þ
r

þ P r � Rcutð Þ
� �

ð11:2Þ

In the approach in Ref. [27], inverse-power law type potential has been applied for

water and NaCl by the force matching method. In this approach, interaction

potential is obtained for each interaction and therefore the information for the

structure of the atomic level is kept.

Another possible approach is to use the concept of the potential of mean force

(PMF) [28] for the coarse-graining of the potential. Pair-correlation functions, g(r)
of the pairs of ions or part of the ions derived from atomistic simulations can be

transferred to the coarse-grained model, because the force is a function of g(r).
Caution is necessary because the force is essentially having a collective property

including multi particle effects. Namely, if one uses the PMF as an effective force

in a conventional MD program, the forces from other particles may have been

counted twice. Therefore, modification of the program or further refinements of the

parameters using some cost functions are useful.

One of the problems for studying of ionic liquids may be the rapidly increasing

numbers of papers and data. This makes it difficult in catching up to understand the

system. Combination of different cation and anion and more complex systems

introduced are increasing with time. IUPAC prepared the data base named

“ILThermo” [29] where data are now being gathered. Recently, extensive investi-

gation of [Tf2N
�] ILs have been done including experimental, molecular modeling

of their structure, thermodynamics and transport (self-diffusion coefficient, viscos-

ity, etc.) properties, because IUPAC has selected bis(trifluoromethylsulfonyl)imide,

[Tf2N
�], as a benchmark anion in ILs (for example, see Ref. [30]). Such
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standardization of the system is helpful for comparison of systems and understand-

ing them. However, caution is required for understanding the nature of the MD

simulations among these works, because the purpose of the simulation is not

necessary to faithfully reproduce the real system. One should choose proper

model depending on the purpose of the work, and one needs to understand correctly

the type of simulations.

11.2 MD Study of 1-Ethyl-3-Methyl-Imidazolium
Nitrate (EMIM-NO3)

Habasaki and Ngai studied the dynamics of the IL, 1-ethyl-3-methyl-imidazolium

nitrate (EMIM-NO3) by using the potential functions of the same form as Eq. (11.1)

[19, 31–33]. In these works, formal charge had been used for each ion. The

parameters for the IL were taken from the General Amber Force Field and the

system can be regarded as a useful model system for considerations of structures,

dynamical properties, glass transitions, and dynamic heterogeneity. Optimized

structure of ion pair obtained by ab initio MO calculations is shown in Fig. 11.1.

The imidazolium ring is rather bulky and the cation is larger than the anion, while

the iso-electrostatic potential surface seems to have comparable sizes.

Our attention was focused on the heterogeneous dynamics and changes of

dynamics near the glass transition. The general Amber potential field used is

good enough to understand what kind of microscopic dynamics is responsible for

the slow dynamics near the glass transition. Although the slow dynamics in the

Fig. 11.1 Optimized

structure of ion pair of an

ionic liquid (EMIM-NO3)

obtained by ab initio MO

calculation (using a double

zeta + p + d basis).

Electrostatic potentials

(iso-surface 0.05) are shown

486 11 Molecular Dynamics Simulations of Ionic Liquids



ionic liquids have similarities to that of molecular glass forming materials, caution

is needed in examining the slow and fast categories of the heterogeneity. In the

present work, “fast and slow” is concerned with the transport properties of long

times, rather than short times and short length scales behavior, while the fast and

slow categories are also used for the relaxation time in the discussion of the glass

transition problems.

MD simulations were performed using this force field on smaller systems having

64 EMIM+ and 64 NO3
�, and on a larger system having 256 EMIM+ and 256 NO3

�

with a total of 5888 atoms. PBC were imposed, and Coulomb interactions were

calculated using the particle mesh Ewald method. The system was equilibrated at

3000 K and the temperature was gradually decreased. The time step was either 1 or

2 fs, and the simulations of NVE ensemble were carried out up to 2.5 or 10 ns at

temperatures of 0, 250, 300, 350, 370, 400, 500, 600, 800 and 1000 K after

equilibration with a more than 1 ns run of NPT ensemble at each temperature.

The equilibrated density was found to be 1.206 at 400 K. We found that the system

size dependence of the diffusivity of the system is small, and hence we use results of

both systems for discussion.

11.2.1 Heterogeneity in the Structure of Ionic Liquid,
EMIM-NO3

Instantaneous structure of EMIM-NO3 at 400 K is shown in Fig. 11.2. Structure

represented by balls and sticks can be found in Fig. 11.2a, while in Fig. 11.2b,

imidazolium rings are shown by tubes and other structures are shown by wire

frames. Clustering of imidazolium rings with several sizes can be clearly seen in

the figure. Clustering of anions with several sizes is also found. Some of the pairs of

cations (i.e. parallel imidazolium rings) within 5 Å are found and this corresponds

to the shoulder found in the g(r) of the EMIM+-EMIM+ correlation shown later.

So far there are several reports for the heterogeneous structures of ionic liquids

related to the segregation of the chain part of the cations [15, 34] and it is suggested

to be important for characterizing the ionic liquids as a solvent. As found in

Fig. 11.2, heterogeneous structure already exists for the system with a cation having

a short chain like EMIM+ ions, and therefore it is not necessarily based on the

specific character of the chains. We also note that the heterogeneity discussed here

depends on temperature strongly.

11.2.2 Pair Correlation Functions

Pair correlation function, g(r), of ionic liquid at 400 K is shown in Fig. 11.3a.

Those of at 600 K, 370 K, and 250 K (glassy system) are shown in Fig. 11.3b.
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MD simulations for the same system had been done previously by Del Popolo

and Voth [11] and the behaviors at 400 K were examined. The pair correlation

function of center of mass, g(r) and the diffusion coefficient of both cation and

anion at 400 K shown here are comparable to those obtained by them. The quality of

Fig. 11.2 Instantaneous

structure of an ionic liquid

(EMIM-NO3) at 400 K.

(a) In ball and stick

representation. (b) In wire

representation, where the

imidazolium rings were

emphasized by the tubes.

Clustering of structures

with several sizes are found
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the potential parameters used seems to be comparable to the ones used by them.

Pair correlation functions also are comparable with those of a similar system,

DMIM+Cl� (1,3-dimethyl imidazolium chloride), obtained by neutron diffraction

experiments [35].

Increases in the coordination number in these pairs with lowering temperatures

are found by integrating the peaks. Coordination number for EMIM+-EMIM+ pair

within the first coordination shell (determined at 7.5 Å) is increasing from 6.4 to 7.7

when temperature is decreased from 400 K to 250 K. Coordination number of anion

around anion also increases from 6.6 to 8.1. The change of coordination number

from 7.0 to 8.4 is found for the EMIM+-NO3
� pair. The first peak of g(r) of the pair

tends to be sharper and narrower with decreasing temperature. Except for bumps

and sharpness, the structures at low temperature seem to keep the liquid like

structure from the appearance of g(r) at a first glance. (For more discussions of

the structural (topological) change of the system, go to Sect. 11.11.)

11.3 Several Time Regions in MSD

Mean squared displacement (MSD) of ionic liquids shows different behaviors in

several time regions. The behavior of the MSD indicates changes from caging at

short times to diffusive motion at long times through power law time dependence

regime caused by back correlated motion within neighboring sites.

Fig. 11.3 (a) Pair-correlation g(r) of EMIM-NO3 at 400 K for anion-anion (purple solid), cation-
cation (blue dashed) and cation-anion (red dot-dashed) pairs, respectively. (b) Temperature

dependence of the pair correlation functions of ionic liquids and its vitrified system. Temperature

examined was 600 K (pink), 370 K (blue), and 250 K (green)
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Typical MSD of EMIM+ ion at 400 K is shown in Fig. 11.4a.

In the Region I (NCL), t< tx1, the relation ln<ri
2>¼�0.38 + 0.38ln(t) was

obtained.

In Region II, tx1< t< tx2, quasi-linear relation due to independent jumps was

obtained <ri
2>¼ 1:14þ 0:048t.

In region III (power law region), tx2< t< tdf, ln<ri
2>¼�1.86 + 0.77ln(t), the

fractional power law was obtained.

Power law exponent is proportional to tθ, where θ¼ 2/dw for the mean behavior

of fast and slow ions, if temporal term can be neglected. Here dw is a fractal

dimension of random walks. (See Sect. 9.5.4 and Appendix A.1.)

In region IV (diffusive region), tdf< t,<ri
2>¼ 7.02 + 0.032t was obtained.

(Here t is in ps and MSD is in Å2 ps�1.)

These situations are comparable for the ionics in the ionically conducting

glasses [36] except for larger slope in the NCL region in the IL, which is related

the motion of bulky ions. The qualitatively identical dynamics of the IL and the

glassy ionic conductors is a special case of the universal dynamics of interacting

systems predicted by the Coupling Model and supported by experiments in different

fields [37–39].

Fig. 11.4 (a) Time regions in mean squared displacement for the center of mass motion of cations

in ionic liquid (EMIM-NO3) at 400 K. Regions observed are comparable that in the lithium ions in

the lithium silicates. The slope in the NCL region is larger than the ion in the glass due to the larger

local motions of bulky ions. (b) Temperature dependence of MSD for cations (blue) and anions

(green). 1000, 600, 500, 400, 370, 300 K from top to bottom
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11.4 Temperature Dependence of the Dynamics

Temperature dependence of the MSD of ions in EMIM-NO3 was shown in

Fig. 11.4b at several temperatures. Behaviors of cation and anion in the present

system are similar and it is probably due to comparable effective sizes. The

difference will become larger if the size difference is larger. Tokuda et al. [40]

have reported the physicochemical properties of the nine ILs with varying ionic

structures. In their works, the microscopic ionic diffusion is found to be signifi-

cantly influenced not only by the relative cationic and anionic size but also by the

geometric shape.

11.4.1 Origin of the Fragile Behaviors Characterized by
the Temperature Dependence of the Diffusivity

From the slope of the MSD in diffusive regimes, the diffusion coefficient can be

obtained by the Einstein equation. Slowing down of the dynamics on decreasing

temperature is well characterized by the change of the diffusion coefficients. At

high temperature regimes, the diffusive regimes are rapidly attained. With decreas-

ing temperature, each region in Fig. 11.4a becomes longer and longer. At the lowest

temperature of 300 K, in the short time region, the MSD increases weakly with time

because the EMIM+ or NO3
� ions are caged, and it corresponds to the nearly

constant loss (NCL) [41–44] regime observed by dielectric loss in a conductivity

relaxation experiment or MD simulations of ionically conducting glasses. NCL

has been found experimentally in conductivity relaxation data of a room tempera-

ture ionic liquid, 1-methyl-3-trimethylsilylmethylimidazolium tetrafluoroborate,

([Si-MIm][BF4]) [45]. This caged regime extends to longer times and the diffusive

regime was not attained up to the longest time of the simulation. For more

discussion of NCL, go to Chap. 4.

Although ILs are liquids over wide temperature ranges, they can be vitrified at

sufficiently low temperatures or elevated pressures. In this simulation, at tempera-

tures less than 260 K, the system is in the glassy state deduced from the change of

the temperature dependence of the density. Between 260 K and about 360–370 K,

the system can be regarded as being in the super-cooled liquid state.

In general, dynamics of ions in disordered materials show large dynamical

heterogeneity in both the temporal terms (waiting time distribution of jumps) and

the spatial terms (geometrical correlation among successive motions) [46, 47]. Tem-

perature dependences of diffusion coefficients are shown in Fig. 11.5a and in b,

where semi-logarithmic plot and double-logarithmic plot are used, respectively.

Diffusivity above 800 K seems to show the Arrhenius type temperature depen-

dence. Below this temperature the system shows the slowing down by following the

Vogel-Fulcher-Tammann-Hesse (VFTH) dependence;
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D ¼ D0 exp
E

T � T0

� �
: ð11:3Þ

In several ionic liquids so far, diffusivity as well as conductivity can be well fitted

[38, 48] to the VFTH equation [49–51]. The VFTH fit to the MD simulation data is

shown by the curve in Fig. 11.5a.

11.4.2 Fragility Characterized by the Different Slopes
of Two Regions

For cations and anions, T0 obtained from the fits for EMIM-NO3 are 243.2 and

256.5 K, respectively. The value of T0 in Eq. (11.3), at which the diffusion

coefficient is practically 0, is slightly lower than the glass transition temperature

obtained from the density-temperature plot. The relation T0< Tg is also known for

the viscosity η, which was also fitted toη / exp DT0= T � T0ð Þ½ � [49–51]. The results
in the present work are consistent with the analysis in previous works using VFTH

type equation; however, the T0 value is not necessarily a true characteristic tem-

perature of the system for the following reasons. Although the VFTH relation holds

approximately, data for both high and low temperature regions can also be well

fitted by power laws as shown in Fig. 11.5b. Thus the VFTH fit is not necessary the

best fit in both the high and low temperature regions and existence of T0 is due to a

Fig. 11.5 (a) VFTH fit of the temperature dependence of diffusivity for cation (red circles) and
anion (blue squares) in ionic liquid (EMIM-NO3) obtained by MD simulations. (b) Double-

logarithmic plot of the same data used in the VFTH plot. Inflections of the plots are found at

around 410 K for both cations and anions. Lines are fitted ones for the power law in each region.

Slowing down of the dynamics near the glass transition can be characterized by the different slopes

and not necessarily mean the rapid decrease near T0
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choice of the functional form. In both fits using exponential functions and in those

using power law functions, we have observed an inflection point at around 410 K.

From the observation of the inflection, the rapid slowing down of the dynamics at

lower temperature region is attributed to the coexistence of a gentle slope at higher

temperature and a steeper slope at lower temperature regimes rather than to the

characteristics near the specific temperature T0. Due to the limited range of each

temperature region, it is difficult to judge which expression is the best by the quality

of the fitting only. As shown in the following section, inflections of the dynamics

correspond to changes in the fractal dimension of the random walk, dw, obtained
from trajectories of ions.

The concept of “fragility” is proposed by Angell to characterize the glass

transition [52]. The fragile system shows super-Arrhenius behavior of the dynam-

ics, while the strong system shows temperature dependence closer to the Arrhenius

behavior. It can be concluded that the large “fragility”, shown by the curvature of

diffusion coefficients, can be explained by the changes in the slopes in both

temperature regions rather than the suddenly caused rapid decrease of dynamics

near T0. From this view, the acceleration of the dynamics with heterogeneity near

the inflection points, which resulted in the gentle slope in the high temperature

region, ensures the large changes in the slopes.

If we use the exponential function at lower temperature region, extrapolated

value of the diffusion coefficient of cation becomes 3.8� 10�40 m2 s�1 at 100 K.

It must be difficult to observe the diffusion in the MD simulation up to several

nano seconds. In this situation, phase transition to explain the glass transition is

not necessary, although the results do not exclude the possibility of the existence

of other characteristic temperatures nor starting of the non-equilibrium relaxation.

In the ionic liquid, liquid like structure with small modifications are obtained by

the rapid cooling down (~1 degree/ps) as shown in g(r) at low temperatures.

Therefore, the systems at low temperatures are regarded as (computational)

quenched glasses. In this case, the structure is not so much different from liquids

unless the system was deeply cooled down. We note that we observed a

non-equilibrium relaxation starting at around 410 K in EMIM-NO3 during a

long run. It may cause a crystallization or stabilization of the glasses after longer

runs. This situation may be comparable to the SC (see 8.2.2.1) system

[53, 54]. With a rapid quench of the SC model, a quenched glass keeping the

liquid like structure was obtained, while it seems to be inevitable for the system to

start non-equilibrium relaxation near or larger than ρ*¼ 1.4, in many of runs,

where ρ* is a reduced density of the system. When the system was kept for long

time at a certain temperature region near ρ*¼ 1.3, non-equilibrium relaxation

toward the glass branch (or crystal branch below it in the phase-diagram) starts. It

is also interesting to note that the effective potential underlying the TVγ scaling

behaviors of the ionic liquid is considered to arise from the inverse-power law

type potentials as in the SC model.

Dynamical slowing down similar to the present work has been found in other

systems such as binary Lennard-Jones systems [55, 56].
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11.5 Dynamic Heterogeneity in Ionic Liquid

11.5.1 Heterogeneity Observed in the Trajectories of Ions

Dynamics of these systems at several temperatures are characterized by the fractal

dimension of random walks obtained from the trajectories of ions, van Hove

functions, intermediate scattering functions and multifractal analysis of the density

profiles. Trajectory of ions were visualized and characterized by the fractal dimen-

sion of the random walk by the divider method shown in the Appendix A.1.

In Fig. 11.6, trajectories of arbitrary chosen ions of both kinds at the much lower

temperature of 370 K during 9.5 ns runs are shown. They were averaged every 25 ps

and shown by the projection onto the x-y plane. The jump connecting the localized

regions becomes clearer after the short time scale motion has been averaged. One

can see that some ions are localized for long periods, while some ions tend to show

larger scale motions. The heterogeneity shown in the trajectories are quite similar to

the ones shown in the motion of Li ions in the ionically conducting glasses. The

most mobile ion in Fig. 11.6 (cation) shows the successive jumps during the 9.5 ns

time span, while some ions tend to be localized near the initial positions. The

heterogeneity observed in the lower temperature region is related to the slower rate

of exchange between the fast and slow components.

11.5.2 Fractal Dimension of the Random Walks

Fast and slow ions, as found in Fig. 11.6, can be characterized by their geometrical

characteristics of trajectories and thereby fractal dimension of the random walk

[57], dw, which represent the complexity of the trajectory, was determined by the

Fig. 11.6 Examples of

trajectories of ions at 370 K

during 9.5 ns runs. Cations

(red) and anions (blue) are
arbitrary chosen
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divider method (see Appendix A.1). MSD in the power law region is proportional to

tθ, where θ¼ 2/dw for the mean behavior of fast and slow ions. The fractal

dimension is concerned with the spatial term determined from the following

equation,

NT ¼ ALr
�dW ; ð11:4Þ

where Lr is a length of the divider and NT is a count how many times are required to

cover the trajectories by it. Since the slope of the plots of NT against Lr in double

logarithmic scale changes at around 3 Å in wide temperature ranges, one can obtain

dw1 for the shorter length scale motion and dw2 for the longer length scale motion.

Temperature dependence of both values is shown in Fig. 11.7. The dw values at

higher temperature than 600 K is about 2 (typical value for free random walks) and

it increases with decreasing temperature. At 600 K, dw¼ 2.08 for 1< Lr< 3 Å and

dw¼ 2.02 for 10> Lr> 3 Å. A rapid increase of dw with decreasing temperature is

observed at around 400 K, and at lower temperatures the short length scale motion

becomes dominant. Increase of both dw values with decreasing temperature means

the existence of the anomalous diffusion (i.e. in the power law region) due to

stronger back-correlated motion. The temperature dependence of the long range

motion is stronger than that of the short range motion, because motion of fast ions is

fairly suppressed at low temperature regions. In particular, the contribution of the

Fig. 11.7 (a) Examples of temperature dependence of the NT against Lr plot obtained from the

trajectories for EMIM ions at 600 K, 400 K, 370 K, and 350 K. The slopes of each short and long Lr
region are different at most temperatures. The fitted lines at 600 K in each region shows inflection

at around Lr¼ 3. (b) Fractal dimension of the random walks is obtained from the slope. (b)
Temperature dependence of fractal dimension of the random works for short length (dw1) and for

long length scale (dw2). Circles are for dw1, while the squares are for dw2. Filled marks are for

EMIM+ ions while the open marks are for NO3
� ions. The value 2 is expected for the free random

walks, while larger values than 2 means stronger back correlations. Rapid increase of dw2 begins at
around 410 K and dominant component becomes dw1 at lower temperatures than 350 K
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long range motion rapidly decreases with lowering temperature and NT of Lr> 3 Å
is less than 10�3 at 350 K. At this temperature, difference of the slopes for the two

regions is small. At temperatures higher than 350 K, dw2 for longer length scale

motion is smaller than dw1 due to stronger forward correlated motion. Long range

motion is essentially absent at 250 K. In general, the back correlation probability of

ions depends on the fracton dimension [58] defined by 2df/dw, where df is the

dimension of the path. In the present system, the mobility of the ions is of the same

order as that of the surrounding ions. Therefore, the changes in the path for ionic

motion occur on a time scale similar to that of the motion of the ion itself, and hence

df is comparable to the dimension of the space at high temperature region.

Existence of the characteristic value of the fractal dimension of the random

walk, (dw¼ 3) to separate the localization and delocalization of ion is worth notice.

With decrease in temperature, dw gradually increases at the beginning, and a rapid

increase is found at around 400 K, where the values of dw for longer scale motion

exceed 3. For example, at 370 K, we find dw¼ 3.93 for Lr< 3 Å and dw¼ 3.44 for

Lr> 3 Å. Value of dw larger than 2 is due to the motion having backward correla-

tion. The number of the space dimension 3 is the limit for dw, if overlaps of

trajectories are not allowed. The value can be greater than 3 at lower temperatures,

because dw is a latent dimension which includes the folding of the trajectories. Thus

values of dw larger than 3 mean that the trajectories of ions are folded many times

and do not easily spread over space at lower temperatures. These changes in dw
values and changes in the contribution of long range motion reasonably explain the

inflection observed in the temperature dependence of the diffusion coefficients.

The complex conductivity is a function of the mean squared displacements

[59, 60],

σ* ωð Þ ¼ �ω2 Nionq
2

6HRkT

ð1
0

< r2 tð Þ > e�iωtdt; ð11:5Þ

where Nion is the number density of mobile ions, q the ion charge, k the Boltzmann

constant, and T the temperature. HR, the Haven ratio, is the ratio of the self-

diffusion and the bulk diffusion given by [59]

HR ¼
X
i

vi 0ð Þ • vi tð Þh i=
X
i

vi 0ð Þ •
X
j

vj tð Þ
* +

ð11:6Þ

Therefore, the trend observed for tracer diffusion should be related to the

collective motion, unless a sudden change in the Haven ratio occurs near

the glass transition region of ILs. It is worth mentioning that when both anion

and cation can move by cooperative jumps in the same direction, this contributes to

the diffusion but not the conductivity, and thus this kind of motion also affects the

behavior of the Haven Ratio. In the present IL, the motions of the anion and cation

are strongly coupled with each other and their motions are directly related to the
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structural relaxation, except for a modification by the dynamical heterogeneity. The

motions of cation and anion are only slightly decoupled near the glass transition

temperature, as shown by the van Hove function. Therefore, the behaviors of the

tracer diffusion and the collective motion are connected to each other in the present

system. When the ionic motion is decoupled from the structural relaxation, the

length scale of the cooperative motions for viscosity can be different from that of

conductivity or diffusion. Examples of decoupling of the conductivity relaxation

from the structural relaxation experimentally found in real systems can be found in

Refs. [61, 62].

11.5.3 Self-Part of the Van Hove Functions

Low viscosity ionic liquids based on organic salts are rare and are sought after for

some purposes [63]. The high viscosity originates from the fact that the motion of

ions in the ionic liquid is similar to a super-cooled liquid near the glass transition

regimes. Therefore, it is natural that the dynamic heterogeneity similar to the glass

forming materials is found in the trajectories or in the self-part of the van Hove

functions. The self-part of the van Hove function is useful for understanding the

heterogeneity of the dynamics. The function is defined as follows.

Gs r; tð Þ ¼ 1=Nð Þ
XN
i¼1

δ ri tð Þ � ri 0ð Þ � rð Þh i ð11:7Þ

Example of the data obtained from MD for EMIM-NO3 is shown in the follow-

ing subsection.

11.5.3.1 Lévy Distribution

In Fig. 11.8a, b, the function for the center of mass of EMIM+ ions in the EMIM-

NO3 obtained by MD at 400 K is shown in linear-scale and in double-logarithmic

scale, respectively. Both plots are useful to show shapes to characterize the func-

tional form. Deviation from the Gaussian form is clearly found in both plots.

Observed functional form of the self-part of the van Hove function of ions is

affected by trapping in the cages, back correlated motions with distribution of the

length scales and exponential truncation of it (see Fig. 11.8b).

In the power law region of MSD, the distribution shows an inverse-power law

tail (see red dashed line in Fig. 11.8b) of the following form for large X (¼djrj/dt
or r) region,

P Xð Þ ¼ 1

Xj jαþ1
ð11:8Þ

11.5 Dynamic Heterogeneity in Ionic Liquid 497



with an exponential tail (see dashed dotted curve in Fig. 11.8b). This part of the

van Hove functions is related to the Lévy (alpha stable) distribution (when α< 2)

[64–66] (see Appendix A.2 for details) as found [67] in molten and glassy Li2SiO3.

The broadening of the peak found in a short time region represents the motion

within a cage and the fluctuations of the cage itself, while the decreased area of the

first peak represents the motion to the next shell. With the decay of the first peak,

the tail part of the function develops with elapse of time. The long tail with large r is
related to the long range motion as found in the trajectory, i.e., by fast ions with

successive jump-like motions.

The decay of first peak is faster than that in the case of Li+ ions in glassy lithium

metasilicate (Li2SiO3) at 700 K in spite of the comparable relaxation rates at longer

length and time scales; however, it is similar to the Li2SiO3 in the super-cooled

liquid state at higher temperatures. In Li2SiO3 and related glasses, the first peak

remains for a long time due to long waiting time of the jump motions. This strong

localization enhancing the dynamical heterogeneity is not obvious at least at 400 K

of ILs. These differences are natural because the matrix atoms, Si and O, in Li2SiO3

have the chain structure with much slower relaxation rates than Li ions, while the

EMIM+ and NO3
� have comparable mobility. Jumps in the EMIM-NO3 at these

temperatures are not the typical ones among well-defined ion sites, because the

mobility of the ions at short time and length scales contributes even in the

supercooled liquid state.

Figure 11.9 show the evolution of the self-part of the van Hove function, 4πr2

Gs(r,t), as a function of r with time at (a) 400 K, and (b) 370 K for both cation and

anion in linear-log scales. In this IL, the behaviors of cation and anion are quite

similar. Deviation from the Gaussian form is found for the functions at 370 and

400 K and both at short and long times. Peaks due to long time localization together

Fig. 11.8 (a) Self-part of the van Hove function at 400 K for EMIM+ ions. t¼ 20, 40, 100,

200, 400 and 1000 ps from left to right. (b) The same data shown in a log-log plot. In the power law

region, inverse power law tail (fitted line is shown by a dashed line) is followed by the exponential
truncation (shown by the dash-dotted curve) as found in the data at 400 ps
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with the jump character of the motion become clearer at lower temperature. Peaks

of the function is more prominent at 370 K than at 400 K and the developments of

the peaks at further distances are brought out by the net changes after overlap of

jumps of many ions at different times. The long tail begins to be suppressed at

around 370 K. At 400 K, contribution of fast ions is dominant and gives rise to

non-Gaussian dynamics, while the tails tend to be suppressed at lower temperatures.

The difference of the mobile and less mobile ions becomes more distinct in the

longer time scale. The deviation from the Gaussian form is found in both the shorter

and longer r regions at 370 K, while the dynamics at 400 K is dominated by fast ions

corresponding to the thicker tail in the self-part of the van Hove function. In the

liquid state, the ion in the ionic liquid shows diffusive jumps as well as large motion

in the so-called nearly constant loss (NCL) region, while in the super-cooled liquid

state, the short length scale motions are dominant.

Decrease of the diffusion coefficients with decreasing temperature is related to

the suppression of the successive jumps with long length scales. At 300 K, both ions

are located within 3 Å during 2 ns (only a small contribution is found at around

3–4 Å of the self-part of the van Hove function.) and therefore they are practically

trapped in the cage during the observation time.

11.5.3.2 Exponential Truncation of the Lévy Distribution

As found in Fig. 11.8b, the functional form of the self-part of the van Hove function

consists of inverse-power law part and exponential truncation. Although the

inverse-power law tail of the function is related to the stable Lévy distribution at

Fig. 11.9 (a) Self-part of the van Hove function at 400 K for EMIM+ ions. t¼ 20, 40, 100,

200, 400, 1000 and 2600 ps from left to right. Inverse power law tail is followed by the exponential

truncation. (b) The same function at 370 K at 0.5,1.0, 2.5, 3.0, 4.0 and 8.5 n from left to right. Jump

character of the motion becomes clearer and the tail at longer r region is suppressed
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least for a certain time scale, the shape of the function gradually changes over a

longer time scale. This situation is just the same as that found in several theoretical

works for the Lévy distribution with a truncation [68–70]. That is, with elapse of the

time, the Lévy distribution is affected by the truncation in a multifractal manner due

to the mixing of behaviors of different length scales.

11.5.4 Distinct-Part of the Van Hove Function

Typical ILs can be regarded as a mixture of two species, the cation and the anion.

Generally, in the binary system, the localization is governed not only by the local

structure of the potential function but also by the mutual interception of paths of

different kind of species, resulting in the suppression of the cooperative motions at

lower temperatures. The situation is similar to that in the mixed alkali glasses (see

Chap. 10), where the mutual interception of jump paths of different kinds of alkali

metal ions causes the slowing down of the dynamics. To examine the motion among

the two species α and β, distinct part of the van Hove function is useful.

The distinct part of the van Hove function is defined by

Gd
α,β r; tð Þ ¼ 1=Nαð Þ

XNα

i¼1

XNβ

j¼1

δ r� rαi 0ð Þ þ r
β
j tð Þ

� �D E
; ð11:9Þ

where in the summations the self-term i¼ j is to be left out if α¼ β. Nα and Nβ are

the number of particles of species α and β, respectively. In the function, if the ion

species β comes into the site previously occupied by species α at an initial time t0, a
new peak develops at around r¼ 0.

Examples of such analyses can be found in several papers [19, 71, 72].

In the dynamics of EMIM-NO3 [19], the mobility of both kinds of ions are

comparable at high temperature region and therefore, mutual interception is not

remarkable. In other words, motions among unlike ion sites occur when the system

behaves as liquids, otherwise the mobile region (volume of the substructure) for

each species are restricted. This result is also consistent with the observed changes

in dw values. We can expect larger mixing effect if the size difference is larger as in

the case of MAE.

11.6 Multifractal Structure of the Density Profile

Multifractal analysis [73, 74] is a general and useful tool to characterize the

complex heterogeneity having sub-ensembles with different fractal dimensions.

In this section, we will show that the density profile of ions in IL has a

multifractal nature (see Appendixes A.3–A.5). At fist, density profile obtained
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from MD for ions will be shown. The profile for the EMIM ions at 370 K is shown

in Fig. 11.10a, b for a slice of the MD basic cell. The ion sites (high peaks in a and

white part in b) with different sizes are connected by paths. Both the sites and the

paths connecting sites have different fractal dimensions. As shown by these figures,

the density profile is complex one with heterogeneity. To represent the complex

Fig. 11.10 (a) An example of density profiles of EMIM+ ions at 370 K for a slice (L/20) of the

basic cell of MD Positions of EMIM+ ions are accumulated during 2 ns. (b) a profile at 370 K

projection on a plane. Colors are changed by a logarithmic scale. (c) An example of the singularity

spectrum for the density profiles of EMIM+ ions found in the EMIM-NO3 at 370 K. Convex shape

of the curve means the multifractality. The maximum position with q¼ 0 corresponds to the

capacity dimension of the profile. The value 3 mean the three dimensional connections of the paths

in the liquid state. The αmax and αmin correspond to the most rarefied part and the densest part of the

density profile, respectively
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structure and/or dynamics, multifractal analysis was applied for the present

system [32].

The singularity spectrum, f(α), for this system is shown in Fig. 11.10c. It can

represent all the fractal dimensions of the sub-ensembles by a single curve. For

example, using the capacity dimension at the peak position (q¼ 0), one can

understand how the density profile spread over the three dimensional space. In

this case, the value is found to be 3. It represents that the ion sites are connected

three dimensionally and this characteristic of the system is similar to the liquid

state. The largest singularity α is concerned with the most dilute part of the profile,

while the smallest α is related to the densest part, which is related to ion sites.

Therefore, the difference between αmax and αmin in the singularity spectra [73, 74] is

a measure of the spatial heterogeneity of the density profile. As found in lithium

metasilicate and its mixture with potassium salt (see Sect. 10.5.4), multifractal (i.e.,

mixing of more than one exponent) pattern of the density profile of ions is formed

by the coexistence of localized and delocalized ions. Thus the system has

multifractal density profiles, similar to the lithium silicate.

11.7 Multifractality in the Walk

The singularity spectrumD(h) for the motion can be defined in a similar manner as f
(α) (cf. Appendix A.6). The time dependence of the displacement of a cation and a

corresponding singularity spectrum for an arbitrary chosen EMIM+ ion at 370 K is

shown in Fig. 11.11. As shown in Fig. 11.11a, localized motions and strongly

forward correlated motions are mixing; that is the motion has more than one Hurst

Fig. 11.11 (a) An example of the changes in the position of an EMIM+ ion along X axis at 370 K.

The motion consists of fast and slow motions. (b) A singularity spectrum D(h) for the motion

shown in (a). A convex shape of the spectrum means the multifractality of the dynamics
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exponents (see Eq. (A.17) in the appendix). The curved shape of the spectrum D(h)
in Fig. 11.11b is due to the mixing of several exponents resulted in a distribution of

the Hurst exponents; and therefore it also means the multifractality (In this case,

units in a transverse and a vertical axis are different and therefore it is called

multiaffinity in the strict sense). This result is consistent to the existence of different

fractal dimensions found in the fractal dimension of the random walks of

the trajectories. From the definition of the Hurst exponents, it is obvious that the

distribution of the Hurst exponent is related to the power law exponent in the MSD.

That is, power law exponent of MSD is closely related to the multifractality of the

dynamics.

If the motion is simple Brownian, the Hurst exponent, h, is always 0.5 and the

displacement is self-similar at everywhere. As is well known, fractional Brown

motions are also characterized by the single Hurst exponent. However, in that case,

a trend of forward correlated motions in the time development of the MSD

continues for long time. In the case of Lévy motion, the different length scales

are considered to be mixed randomly, although the Lévy index is inversely corre-

lated to the Hurst exponent. Therefore, the fast ions can switch to become the slow

ones and opposite is also true in a longer time scale. Such mixing of the short and

long length scales motions can be characterized as the multi-fractal walks. With

elapse of time, short length scale motion is found to be mixed with longer scale

motion to form multi-fractal walks.

This mechanism is rather general as shown by the comparison of the dynamics in

ionic liquids and in ionically conducting glasses. The fact that ionic liquids and

other glass forming liquids show similar dynamics related to structural relaxation

and glass transition is pointed out by several authors [11, 75].

The density profile formed by the motion is also multifractal as already shown.

Therefore, time developments of the heterogeneous dynamics are governed by both

the Lévy distributions and multifractality. Here we have elucidated the similarity of

the dynamics of ions in ionic liquids and ionically conducting glasses. Similarities

are also found in other glass forming systems. Robledo [76] has pointed out that the

multifractality is relevant to glassy dynamics characterized by the two step relax-

ations and the heterogeneity. Sakikawa and Narikiyo [77] have reported the

multifractality of the ‘bond’ in the two-dimensional binary soft sphere supercooled

liquid, which is related to the heterogeneity of the dynamics.

Thus overall their dynamics in every respect are rather general, which are

expected by the Coupling Model [39]. The dynamics observed have long memory

of the motion, and we found that the phase space plots for the motions are also quite

similar (see Sect. 11.9).

Thus the concept of the multifractal explains how these systems have common

properties characterized by a small number of exponents as a result of the mixing of

several exponents.
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11.8 Intermediate Scattering Function, Fs(k,t)

Multifractal nature of the dynamics is also found in the wave number dependence of

the intermediate scattering functions, Fs(k,t), defined by

Fs k; tð Þ ¼
XN
j¼1

exp ik � rj tð Þ � rj 0ð Þ� �� 	
=N

* +
: ð11:10Þ

The function for the center of mass of cation at 370 K is shown in Fig. 11.12

together with the MSD associated with it. The curves from bottom to top have

values of the wave number k¼kkk equal to 2π/2, 2π/3, 2π/4, 2π/5, 2π/6, 2π/8, 2π/
10, and 2π/15 (Å�1). Anions behave in quite a similar manner as cations, especially

at longer times and small wave numbers. The function Fs(k,t) is connected to the

self-part of the van Hove function by the Fourier transform [78],

Fs k; tð Þ ¼
ð
4πr2Gs r; tð Þ sin k • rð Þ

k • r
dr: ð11:11Þ

In Fig. 11.12, the dashed lines represent tx1 and tdif. By comparing the function of

different wave number in each region, the following results were obtained. The

function with larger wave number decays faster than that with smaller wave number

at shorter time scale than tx1, while the smaller wave number decays faster than

larger one at longer time scale than tdif. In between tx1 and tdif, the early times

belong to the primitive relaxation regime of independent jumps and are followed by

the power law regime of MSD. In the latter regions, different length scale motions

are mixing. Therefore, existence of two length scale region is clear in the function.

The function Fs(k,t) can be approximated by the following equations [79].

Fs k; tð Þ � exp � k2

2d
<r2i tð Þ> þ k4

2

r2i tð Þ
2d

� �2
α2 tð Þ

" #
; ð11:12Þ

where α2 is the non-Gaussian parameter and d is the spatial dimension. This

approximation as well as the non-Gaussian parameter can be useful to determine

the magnitude of the deviation from the Gaussian form but the k2 and k4 terms in

Eq. (11.12) may not be sufficient to fully represent the dynamics.

Instead of this kind of “so called standard” analysis, here we suggest a different

kind of analysis based on the fractional exponent. Experimentally, stretched expo-

nential form of the function has been found in a certain regime for many systems,

Fs k; tð Þ / exp � t=τkð Þβk
h i

ð11:13Þ

In some systems such as polymers [39, 80, 81], it was reported that the τ in the

function obeys in the following forms,
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τ / k�ν ð11:14Þ

From Eqs. (11.13) and (11.14), the wave number dependence of the function can be

shown [80, 81]

Fs k; tð Þ / exp � kνβtβ
� �
 � ð11:15Þ

When the wave number dependence of βk is negligible, the time dependence of the

tβk will explain the power law dependence of MSD. If the dynamics is normal,

i.e. Gaussian with Debye type relaxation, then βk¼ 1 and νβk¼ 2 are expected,

while, it does not necessarily hold in the power law regime, where the

non-Gaussianity of the dynamics is found. The following relation was checked to

hold in the stretched exponential region,

Fs k; tð Þ ¼ exp �g kð Þ r2 tð Þ� 
 � ð11:16Þ

This relation is also given by the coupling model description [39, 82] as well as the

MIGRATION concept of Funke [83] for ion dynamics.

Fig. 11.12 Upper column: Wave number dependence of the self-part of the intermediate scatter-

ing function of the EMIM+ ions at 370 K. Wave numbers are 2 π/2, 2 π/3, 2 π/4, 2 π/5, 2 π/6, 2 π/8,
2 π/10, 2 π/15 A�1 from bottom to top. MSD of EMIM+ ion (red) and NO3

� ions (blue) are shown
with the common time axis.Dashed lines are for tx1 and tdif. Black lines for the power law slopes in

NCL region and power law region for cation. The slope for anion is slightly smaller in each region.

Lower column: MSD of EMIM+ ion (red) and NO3� ion (blue). The black lines are fitted by

power laws
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The plot of g(k) against k has shown the power law behavior as expected and

therefore Fs(k, t) can be represented by a product of the fractional power of wave

number kβ
0
(β0 ¼ νβk <2) and MSD with a fractional power law of time in this

region. The exponent β0 (at 160 ps) was determined to be 1.6. Therefore, the

separation of the part depending on the length scale distribution (k dependent)

and that depending on the geometrical correlation of particle motions found in

MSD can be done. It is interesting to note that both are based on the geometrical

character of jump motions rather than the temporal character (jump rate). As shown

in Sect. 9.4.3, complicated behavior of Fs(k,t) of Li ions in Li2SiO3 has been

explained by the existence of slow and fast ions [36, 67]. General trend observed

in ILs at around 400 K are similar to the Li2SiO3 at around 1000 K slightly above

the glass transition temperature, where the fast (diffusive) ions are dominating. IL is

a mixture of anion and cation with similar mobility, while Li2SiO3 has network

structures composed by SiO4 units, which have considerably lower mobility than

the Li ions. Hence, some differences between ILs and Li2SiO3 systems are found.

These include larger motion in the cage ions or the NCL regime and larger coupling

between the motions of cation and anion in the ILs.

11.9 Deterministic Nature of the System: Phase Space Plot

Although the existence of heterogeneous dynamics with non-Gaussian characters

has been already reported in Ref. [11] for the same IL, EMIM-NO3, the time scale

of the observed heterogeneity found by us is longer than that discussed there. Our

heterogeneity is related to the deterministic motion of ions of long range and up to

long time scale. This situation becomes clear if we examined the phase-space

structure of the ionic motion. Phase-space plot of the ions was found to be useful

to characterize the structure of dynamics such as in chaos. Here we used the plot of

the velocity of each ion against its displacement. Reconstruction of the attractor can

also be done by using the delayed time series [84] even one did not know the

characteristics of the time series. In such a plot, if the motion is random, the curves

will fill the space while. If the motion is oscillating, oval structure will be found.

In the case of time series obtained byMD simulations, thermal motion overlapped

to the dynamics may make the direction of the long range motion unclear. To

de-noise the data, singular spectrum analysis (SSA) (see Appendix A.7), which is

principal component analysis of the time series [85], is useful to examine an ionic

motion [86]. The method looked for the most probable direction of the data without a

generating function. If themotion is deterministic, clear pattern (attractor) will appear

in the phase-space plot after denoising.

Example of de-noised data for the displacement of ions and phase-space plot is

shown here. Figure 11.13 shows a displacement during 9.5 ns at 370 K (black

curve) in the direction for an arbitrary chosen cation, which exhibited successive

jumps as shown in the inset. The blue curve overlapping the black one is obtained
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by the reconstruction from the first principal component. The green one is that for

the second principal component and the red one is the sum of these components. As

shown this figure, a few numbers of components are enough to represent the trend

of the trajectories and this suggests a deterministic nature of the motion. This is

confirmed by the clear structure in the phase-space plot. Figure 11.13b shows the

phase space plot for this motion. Namely, the first derivative of the displacement in

the y-direction is plotted against the displacement by the reconstructed data using

the first and second principal components. Smaller ovals mean the local motion

while the longer curve or oval represent the jumps connecting ion sites. The motion

within a cage is oval-like in the plot with some distortions, and its size is larger

compared with that of Li+ in Li2SiO3 in the glassy state. Thus by using de-noised

data, the jump-like motion can be distinguished from the local motion. However, in

the MSD, such motions by several ions overlap. The relatively larger size of the

circle like structure in the plot reflects the larger amplitude of the mean square

displacement of motion of ions in the caged regime, and this explains why the caged

dynamics region in MSD is not clearly separated from the region by jump motions

in ionic liquids even in the super cooled liquid state.

If memory of the direction of the motion is lost during the localization time, the

direction is randomized and therefore no continuous trend will be found in the

phase space plot. However, the short time motion tends to be smoothly connected to

that at long times in the plot in many cases. That is, the memory of the direction of

the motion is not lost by each jump even after long intervals. This picture of the

dynamics is much different from the thermal activation process with stochastic

nature, and indicates the importance of long range and long time scale correlations.

The continuous motion without trapping long time can be regarded as the long

jump, which contributes to the Lévy distribution.

Fig. 11.13 (a) Displacement during 9.5 ns at 370 K of an EMIM ion, for which trajectory is shown

in the inset. The blue curve is for the reconstruction from the first principal component. Green one
is that for the second principal component. Red one is the sum of these components. (b) Phase-
space plot of the same ion in (a) using the reconstructed data by SSA (for sum of the first and the

second principal components)
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11.10 Thermodynamic Scaling of Ionic Liquids

Recently, the existence of the thermodynamic scaling of dynamic quantities and

transport coefficients has been well established (see Chap. 7). Examination of the

thermodynamic scaling by MD simulations enables one to establish how dynamic

properties depend on the thermodynamic properties, potential parameters, struc-

tures, and other variables. For example, the presence of strong correlations between

equilibrium fluctuations of the configurational parts of (instantaneous) pressure and

energy for a number of model liquids in NVT ensemble has been shown by the

Roskilde group [87] using simulations. An effective inverse law type potential

dominating fluctuations (in the equilibrium system) is argued to be responsible for

the thermodynamic scaling, based on the pressure-energy correlations. From this

point of view, the system with hydrogen bonds and ionic systems were excluded for

the thermodynamic scaling. However, both experiments [88–91] and simulations

[32, 92–95] show that ionic systems such as ionic liquids are not exceptional.

In this section, thermodynamic scaling based on the diffusion coefficient tested

for the EMIM-NO3 system [32] will be discussed. Obviously, the r�1 dependence

of the Coulombic force present cannot explain the observed scaling. One of the

possible explanations is based by a concept of potential of mean force (PMF),

introduced by Kirkwood [28] as shown in Chap. 7 and in this section.

The scaling behaviors are tested as follows. At first, MSD for EMIM+ ions in

several conditions used in the scaling are shown in Fig. 11.14. Temperature

dependent MSDs are overlapped with those of the data obtained under high

pressure. If the diffusivity is comparable, MSD is also comparable starting from

the short time region. That is, the scaling stems from short time region of the

dynamics [94, 95].

In Fig. 11.14, the slope of MSD of ions becomes 1 for high temperature data at

long times. Meanwhile, a deviation from the slope 1 is found at long time

Fig. 11.14 Temperature

dependence of MSD for

EMIM+ ions (blue) at
600, 500, 400, 370 and

300 K at 0.1 MPa from top
to bottom. A dash-dotted
(pink) curve is for the data
at 510 K (500 MPa) and a

dashed curve (green) is for
the data at 800 K (1 GPa).

The black line is for the
slope 1 in the double

logarithmic scale
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(after ~1 ns) even after the subdiffusive regime at 370 K. In Fig. 11.15a, the

diffusion coefficients for EMIM+ ion are plotted against inverse temperature.

Temperature dependence of the diffusion coefficients at ambient pressure

(~0.1 MPa) is shown by the solid (brown) filled circles. These results can be fitted

to Vogel-Fulcher-Tammann-Hesse (VFTH) [49–51] as well as double power laws.

The best fitted parameters obtained for VHTH are D0¼ 1.22E�8 (m2 s�1),

E¼�907.69 (K) and T0¼ 243.24 (K). Here D is given in m2 s�1 and T is in

K. In the power law fits, the best fit parameters obtained in the form of ln(D)¼
A0 +A1(1000/T ) are, A0¼�17.94, A1¼�5.78 for the high temperature regime and

A0¼ –6.44, A1¼�19.05 for the low temperature regime.

The validity of the scaling behavior D¼ℑ(TVγ), of the data shown in this figure

is demonstrated in Fig. 11.15b, where the data are plotted against 1/TVγ, with

γ¼ 4.0. In the plot, the data points at T¼ 800 K and P¼ 0.1, 500, 1000, 2000 and

4000 MPa are represented by the open red circles within open blue squares. All data

points are found to fall on a master curve, and therefore diffusion coefficients are

well thermodynamically scaled with γ¼ 4.0� 0.3. Similarly, TVγ relation for the

diffusivity for anion with similar but slightly smaller γ value (¼3.8) was obtained

for anion. This is as expected from the similar behavior of diffusion coefficients of

EMIM+ ion and NO3
� ions and this suggests the comparable effective sizes of

cation and anion in EMIM-NO3. Thus we could reproduce the scaling behaviors

of data obtained by MD simulations. The exponent obtained for EMIM+-NO3
�

is similar to the value for the soft-core (SC) potential with n¼ 12 and γ¼ n/3.

Fig. 11.15 (a) Diffusion coefficients of EMIM+ ions at several conditions for the center of masses

motion in EMIM-NO3 is shown by solid (brown) circles. Data obtained under high pressure

conditions are also shown by red open circles. Dashed blue curve: Temperature dependence of

the diffusion coefficient of EMIM+ ion fitted to Vogel-Fulcher-Tammann-Hesse (VFTH) type.

Solid pink and red lines are for power law type functions. Some additional data points (open
circles, blue) were also used for fitting. (b) Diffusion coefficients in (a) are plotted against 1/TV4.

Isothermal data at 800 K are shown by open red circleswithin open blue squares. Two sets of data,
A (600 K, ~0.1 MPa) and B (800 K, 500 MPa), C (370 K, ~0.1 MPa) and D (450 K, 500 MPa)

shown in these figures are located nearby on the master curve and have comparable structures and

dynamics. Data are normalized for the 400 K under ~0.1 MPa
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Thus, the thermodynamic scaling was confirmed to hold in this model. Different

experimental values of γ for other ILs were observed [88]. This scaling is concerned
with the effective potential among ions, and not specifically for the repulsive term

with r�n-dependence for each atom-atom interactions. It is certainly not related to

the r�1 dependence of Coulomb term.

Next we considered the diffusion coefficients, D as a target to examine the

thermodynamic scaling. In the experiments, scaling has also been confirmed for the

viscosity or the relaxation time. The appropriate quantity can be D/T rather than

D based on the Stokes-Einstein law or the related fractional Stokes-Einstein law.

We have confirmed the similar scaling behavior is obtained when D/T was used

albeit the deviation from the master curve is slightly larger. Recently, Lopez

et al. [89] have discussed that the results by considering D/T is slightly better and

the γ value obtained byD/T is comparable with those for viscosity and conductivity.

The validity of the scaling suggests the existence of the underlying effective

potentials in the form of the inverse-power law. Therefore, it is useful to refer the

physics to that of the soft-core (SC) model to understand the thermodynamic

scaling, In the SC-model, the scaling by TVγ should be exact if the reduced units

are used (see Sect. 8.2.2). The scaling in the real units was found to be based on the

similar response of the system to temperature and pressure, which can be connected

through the density-temperature variable in the form of TVγ. Correspondence of the

different states on the master curve in the present work is found for the diffusion

coefficients not in the scaled units but in the real units. It is interesting to compare

the situation of this scaling to the exact scaling in the SC system. In the model SC

system, the scaling is due to the self-similarity of the system and trajectories in the

phase space, while the observed scaling law in the present work is valid for the

temperature and pressure dependence within a system and related to the similarity

of the structure of g(r) for small r region in the real unit and we pointed out the

difference of these scalings in Ref. [32]. We note here that it is also pointed out by

Prof. A. Ueda. Later, several authors have used reduced variables or residual

reduced variables [96–98], and the scaling is found to hold slightly better.

11.10.1 Comparison Between Corresponding States
on a Master Curve

To understand the scaling, comparison of the data points located nearby on the

master curve will be useful. Two sets of data points characterized by closely equal

values of D at different combinations of T and P (A-B pair and C-D pair) in

Fig. 11.15b are compared. These two pairs are located in different regimes of the

master curve.

We found that the Coulombic energy for A (600 K ~0.1 MPa), ECoul¼
�281.15 kJ mol�1, is comparable to that for B (800 K, 500 MPa), ECoul¼
�278.92 kJ mol�1. While the potential energy of A, Eptot¼�139.68 kJ mol�1,

which is a sum of terms in Eq. (11.1), is considerably smaller than for B,
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Eptot¼�93.31 kJ mol�1. For the other pair we found the Coulombic energy, ECoul

of C (�299.0 kJ mol�1 at 370 K, 0.1 MPa) and D (�298.6 kJ mol�1 at 450 K,

500 MPa) are comparable. Eptot for C (�228.6 kJ mol�1) is again different from that

for D (�207.6 kJ mol�1). This result suggests that the Coulombic term plays a

major role for the scaling behaviors. Here the energy terms at 400 K obtained by our

MD simulations are comparable to those obtained by Popolo and Voth [11].

The systems in corresponding states on the master curve have comparable

electrostatic energy. This statement was proved in Ref. [32], by plotting TVγ

(γ¼ 4.0) against Coulombic energy of the system, for which the master curve

remains almost stable. That is, The slope for the relation between Coulombic

energy and TVγ changes near the glass transition point (~260 K). It is found that

structures located nearby on the master curve shown by the pair correlation

functions, g(r), of EMIM+-NO3
�, NO3

�-NO3
� and EMIM+-EMIM+ pairs are

comparable for both the A-B and the C-D pairs. Furthermore, temperature and

pressure dependence of the pair correlation function for the A-B pair or the C-D pair

also was found to be comparable. It is interesting to note that the characteristics of

temperature dependence of the diffusion coefficients shown in Fig. 11.5 are kept on

the master curve. As discussed before, dynamical slowing down represented by the

empirical VFTH temperature dependence, or by the inflection of the temperature

dependence of the diffusion coefficient is related to the change from longer to

shorter length scale dynamics. The fact that the master curve maintains these

characteristics mean that the many body character of the dynamics common for

temperature dependence and pressure dependence is retained after the scaling.

11.10.2 Potential of Mean Force

The potential of mean force (PMF),Wij(r), introduced by Kirkwood [28] is playing
an important role in statistical mechanical theories of liquids [99, 100]. Habasaki

and coworkers suggested [32] that the scaling behaviors observed in the ionic

liquid can be explained by the softness of the PMF. This is because nearby points

on the master curve have quite similar pair correlation functions of ion-ion pairs,

and the function bears correlation with the PMF.

The PMF is connected to the pair correlation function gij (r) by the relation,

Wij rð Þ ¼ �kBT ln gij rð Þ ð11:17Þ

The force acting for an ith particle, is represented by [99, 100]

�∂W
∂r

¼ kBT

g rð Þ •
∂g rð Þ
∂r

¼

ð
� � �
ð

�∂UN

∂ri

� �
exp �βUNf g drnþ1, . . . , drN

exp �βUNf g drnþ1, . . . , drN
; ð11:18Þ

where UN is for internal energy for n body potentials of N particles. In the case of

the pair potential, n¼ 2.
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As shown in Eq. (11.18), the concept of the potential of mean force contains

many body effects a priori. In the low density limit, the mean force potential

becomes comparable to a bare potential among ions.

In our simulations, we calculate the PMF from the pair correlation function

directly using Eq. (11.17). The potentials, Wij(r), calculated for cation-cation,

anion-anion and cation-anion pairs from the corresponding gij(r) for the center of

masses of ions at 400 K are shown in Fig. 11.16. The PMF can be regarded as an

effective potential among ions. Effective potential thus obtained has the inverse

power law dependence and similar type of potential parameters is derived in several

works as discussed before in Sect. 11.1. The fits by straight lines in the double

logarithmic plot of Wij(r) against r are also shown in the inset. Since the linear

regions are clearly found for every pairs, the power law exponents can be deter-

mined from the plot. The power law exponents of cation-cation, anion-anion and

cation-anion are found to be �9.00, �6.97 and �11.10, respectively. From the

slope for cation-anion pair, γ can be estimated by (11.10/3)¼ 3.7. Thus these results

explain the existence of scaling exponent by relating it to the PMF.

11.11 Temperature Dependence of Topological
Structures of Ionic Liquids

As generally observed in many systems, diffusion coefficients of ILs show the

slowing down of dynamics with decreasing temperature. In the present section,

relation between dynamics and topological structure of ILs are shown exemplified

by EMIM-NO3.

Fig. 11.16 Potential of

mean force calculated from

the pair correlation

functions of cation-cation,

cation-anion and anion-

anion pairs. Double

logarithmic plots of the

same data are shown in

inset. Slope obtained for the

cation-anion interaction is

reasonable to explain the

observed scaling exponent.

Pale blue: cation-anion pair,
Dark blue: cation-cation
pair; Blight green: anion-
anion pair
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The problem treated here is closely related to the glass transition of the system.

There are many theories or models to explain the glass transitions and related

dynamics [101–107]. Some of them describe the glass transition as the localization

and trapping within a free energy landscape, while others consider it as due to the

rapid increase of cooperatively rearranging regions or some length scales near the

glass transition temperature. In the present section, we don’t directly compare the

results with these theories or models because they are beyond the scope of this book

and are controversial, however, the dynamics of ions is quite similar to that in other

glass forming liquids and therefore, observation and discussion here is expected to

be applicable to other systems. Namely, we suggest that the changes of packing of

local structural units (coordination polyhedra) and topological changes of fictive

bonds explain important features of the glass transition.

Before discussing for the topological changes focused in the present section,

here we briefly discuss the relation between diffusion coefficient and viscosity,

because the glass transition tends to be discussed with both transport properties.

One might expect that the behavior of the diffusivity is connected to the

viscosity, η, through the Stokes-Einstein relation [108].

D ¼ kT

3πηd
ð11:19Þ

where the d is an hydrodynamics diameter of particles placed in the solvent. In MD

simulations, the value η can be obtained from the off-diagonal elements of the

stress tensor [109] or by a non-equilibrium method [110, 111]. If one defines the

glass transition by the changes in the viscosity, the situation is slightly changed

from the discussions for the diffusivity or conductivity. Different slopes of tem-

perature dependence of diffusivity and viscosity with a collective character

resulted in a deviation from the Stokes-Einstein relation as discussed for the

ionic liquids [112], molten salts [113] and in the generalized binary Lennard-

Jones systems [114].

11.11.1 Rigidity and Soft Percolation of Fictive Networks:
Infinitive Networks Found in the Ionic Liquid
Based Glass

Topological structure and packing of the local structure determines the stiffness of

the system as well as slowing down of the system. Since ionic liquid is the

important linchpin, connecting the two research fields of ionics and glass transition,

Habasaki and Ngai [115] examined the fictive networks (formed by contact ion

pairs) in 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO3) by MD simulations by

an all-atomistic model to clarify the relationship between the characteristic struc-

tures and slowing down of the dynamics. As shown in the next subsection, the
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system shows changes of dynamics at two characteristic temperatures [116], TB and
the glass transition temperature Tg, as found in other fragile glass forming liquids.

This behavior is related to the fragility [117] and nonexponentiality (or coupling

parameter n of the Coupling Model) [118] of the system. In the fragile system with

larger n, the Tg-scaled temperature dependence of structural relaxation time or

transport coefficient has steep slope at Tg/T¼ 1 and the fragility can be defined

by the slope. Existence of two characteristic temperatures is a typical behavior near

the glass transition of fragile glass-formers. On the other hand, systems such as

silica, which has rigid three dimensional networks, are typical strong system, where

the Arrhenius behaviors are observed. The dynamics and thermodynamic properties

of strong and fragile glass-formers are very different, although glass transition is

commonly observed.

In the models or theories, glass transitions of fragile systems and strong systems

tend to be treated separately, however, there are other glass-formers having prop-

erties that are intermediate between the strong and fragile extremes. This suggests

us the existence of a common explanation of glass transition in both fragile and

strong systems. In looking for an alternative way to understand glass transition

based on concept that is common to all glass-formers irrespective of whether they

are fragile, intermediate, or strong, the approach of this section was taken. That is,

we consider the networks of the fragile system formed by fictive bonds and packing

of coordination polyhedra.

In Fig. 11.17a, an instantaneous network structure for anion-cation bonds is

shown for EMIM-NO3 in the glassy state (at 150 K), where the nodes are chosen

to be the center of mass positions of ions (Blue: EMIM+ ion; Red: NO3
� ions) and

bonds are connecting ions within the distance of the first g(r)min. Of course, there

is no direct bond among center of mass positions of cation and anion, however,

one can find network of closely packed anion and cation interacting through

Coulombic interaction. Since the system is analyzed using the position of center

of mass of each ion, details of the inner structures have no significant roles in the

glass transitions observed here, although some details of the packing of the system

may depend on them.

In Fig. 11.17b, clusters within g(r)min of the cation-anion the central cation (left)

and anion (right) are shown. As shown in these figures, cations surrounding anion

forms a coordination polyhedron and vice versa. These coordination polyhedra are

not separated each other but is mixing in a complex manner because the same kind

of ions as the central ions are also included in the cluster defined by the same cut-off

distance.

As shown in Fig. 11.17b, both anions around cation and cations around anion

form closely packed coordination polyhedra in the glass. In these structures, cation-

cation or anion-anion pairs form an edge of the coordination polyhedron. Of course,

there is no direct bond between anion and anion, or between cation and cation and

therefore, the bond is fictive one for the neighboring contact ion pairs. These bonds

and coordination polyhedra are used to characterize the system. Generally, mixing

of networks found for the ionic fragile systems are also expected for non-ionic

fragile systems and the concept of overlapping networks are valid in many systems.
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If a trapped particle is the same kind as the surrounding particles, it can form a cage

of the other particles. That is, even in a one component system, distinguishable

substructures are found and the system can exhibit the glass transition having the

same origin.

11.11.1.1 Structural Changes Near TB and Tg and Definitions

of NV, Nb and NB

As already shown in Fig. 11.3a, g(r) of the ionic liquid changes with temperature

gradually. This change is accompanied with that for the coordination number NV

for both cations around anion and anions around cation. The changes also

Fig. 11.17 (a) Structure of the network found in the glassy state of EMIM-NO3 at 150 K (based on

the full atomistic MD consists of 5888 atoms (256 ion pairs)). Positions of the center of mass of

anions (NO3
�: red) and surrounding cations (EMIM+: blue) within the distance of g(r)min of

cation-anion pair are connected. The structure is repeated by the periodic boundary condition

applied to form an infinite network. (b) Examples of clusters for the cases, anions around anion

(left) and cations around anion (right). The same kind of ions as the central ion within g(r)min of

cation-anion distance are also shown. Colored sticks are connecting cation and anion, while gray
sticks are connecting the same kind of ions within g(r)min of anion-anion (left) or cation-cation
(right) for each coordination polyhedron
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occurred for the coordination by same kind of species. Topological examination

of the system and polyhedra were performed typically at the onset time, tdif, of
the diffusive regime shown by the mean squared displacement (MSD), however,

the essential features of networks obtained during t ~ tdif can be observed already

from the instantaneous structure. Since changes of the first minimum positions

are relatively small, we used fixed cutoff values to determine the bonds of

network and polyhedra. Namely, the first minimum positions of g(r) at 7 Å,
10 Å and 11 Å were used for the cation-anion, anion-anion and cation-cation

pairs, respectively.

Here, we distinguish the total number of bonds, NB, counted without redundancy

for the system from the number of bonds, Nb in each polyhedra, which have a

redundancy with other polyhedra. This is because vertices of polyhedra are usually

shared with other polyhedra and as a result, NB <
P

Nb holds. This relation is

important because it suggest that temperature dependence of the packing of the

polyhedra and that of bonds behaves in a different manner.

At first, how system volume changes with temperature and how it is related to

the changes in NB will be discussed.

11.11.2 Existence of TB and Tg in the System Volume
and in the Diffusivity

In Fig. 11.18a, the volume of the system obtained by MD simulations in NPT

conditions at each temperature after equilibration is plotted. When it is plotted

against reciprocal temperature, changes in the slope at around ~410 K and ~250 K

are found. These characteristics are common with other ionic liquids and similar

trend is found in Ref. [119], where Forero-Martinez et al. examined voids in three

ionic liquids ([C4mim][PF6], [C4mim] [Tf2N] and [C3mim][Tf2N]) by MD simu-

lations. The free volume of fragile systems measured by the positronium annihila-

tion lifetime spectroscopy (PALS) [120, 121] is also comparable.

The inflection point TB found in the system volume is closely related to the

change in the dynamics summarized below. As discussed in Sect. 11.2, our

diffusion coefficient data of ions in ILs can be fitted to Vogel-Fulcher-

Tammann-Hesse (VFTH) equation (see Fig. 11.5a). If the same data are plotted

in log-log scale (or semi-log scale), temperature dependence of the diffusion

coefficients of the cation in the present system shows an inflection point at around

400 K (see Fig. 11.5b) and this point is assigned as TB. That is, the fragile behavior
is characterized by the slower decrease of the diffusion coefficient at higher

temperature region above TB, and the change to a more rapid decrease below

TB. This finding suggests that it is not necessarily required to consider the sudden

changes of dynamics near Tg for understanding fragile behavior. Diffusivity near

the inflection point (~410 K) is of the order of 10�10 m2/s and is measurable within

~ns runs. While at Tg (~250 K) determined by change of the temperature
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dependence of the density, diffusive regime of MSD was not attained during the

observation time. Estimated value (from the extrapolation of the fitted lines in the

lower temperature regimes) at Tg is of the order of 10
�16 m2/s for both cation and

anion in the present system. Each time region of the MSD becomes longer and

longer with decreasing temperature and NCL region becomes to cover the whole

region of the observation time. The kinetic glass transition temperature, Tg-k,
obtained from simulations up to ~10 ns by the condition that the diffusive regime

is not attained during the observation time, is higher than Tg¼ 250 K but lower

than TB. This can be regarded as the “computer glass transition”, although it does

not necessarily mean the absence of structural change at TB or at Tg. In

Sect. 11.4.2, by using the fractal dimension of the random walk, it was also

shown that the inflection of the diffusion coefficient at TB is related to the

restriction of the trajectories in the local space at low temperatures. Therefore,

the change in the dynamics is directly related to the available region for the

motion of ions. This view is not against with the traditional concept of the free

volume. It is note worthy again that there is a characteristic value of the fractal

dimension of the random walk, (dw¼ 3) to separate the localization and delocal-

ization of each ion.

Fig. 11.18 (a) Temperature dependence of volume of the system. Lines are fitted ones using

power laws for three temperature regions. Red: above TB, Blue: between TB and Tg, Purple, Below

Tg. (b) The probability, 1�P¼ NB

3N�6ð Þ, is shown as a function of reciprocal temperature in a semi-

log plot, where the total number of bonds (contact pairs) within g(r)min of anion-cation (blue),
anion-anion (green) and cation-cation (red) pairs are counted without redundancy. The curves are

obtained by the power law fitting. At around TB (~410 K) and Tg (~250 K), the change of slopes for
the three kinds of networks is observed. The saturation of the number of bonds is observed for the

cation-anion network at around Tg and followed by others. Error bars estimated at 250 K from

three independent cooling schedules are within the size of the mark
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11.11.3 Structural Change at Tg as a Rigidity Percolation:
Number of Bonds and Degree of Freedom
of the Whole System

How are the dynamics related to the geometrical freedom of the system? As shown

in the present section, the structural change at Tg is characterized by the saturation

of the number NB of cation-anion bonds (followed by saturation of the other kinds

of bonds) with the corresponding decrease of the degrees of freedom of the system

as shown below.

The degrees of freedom of the system consisting of N particles, Fsystem, can be

defined by,

Fsystem ¼ 3N � 6ð Þ � NB½ � ð11:20Þ

Here counting is taken over all bonds (contact pairs) without redundancy.

3N is the degrees of freedom of the motion for N particles in 3 dimensions (here

we consider the coordinate space only), and 6 is that for the rotational and

translational motion of the system. Then the probability P of finding a mode with

NB< 3N� 6, is defined by

P ¼ Fsystem= 3N � 6ð Þ ¼ 1� NB

3N � 6ð Þ ð11:21Þ

The probability of finding a part without the mode is the complement,

1� P ¼ NB

3N � 6ð Þ ð11:22Þ

If the value exceeds 1, it means that the inner structures of the system have extra

bonding compared with the value of 3N� 6. In the present work, analysis has been

done for each pair of species.

In Fig. 11.18b, results of 1�P plotted against the inverse of temperatures for

cation-anion, anion-anion, and cation-cation pairs are shown. Here N stands for the

number of all ions, although the number of bonds is counted among the cations

(or anions) in the case of cation-cation (anion-anion) pairs. Remarkable features

found are the saturation of the 1�P values for these pairs near the glass transition

temperatures. This means the system becomes rigid by the saturated number of

bonding.

This result means that even for a fragile system, glass transition can be described

by the formation of rigid networks formed by ion pairs. Especially, attractive

interaction for cation-anion pair seems to be important. For other combinations,

even larger saturated values were observed. This is because fictive bonds examined

are loose ones having several lengths. Changes in the network of the system are

found at both TB and Tg.
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11.11.4 Geometrical Degree of the Freedom
in the Polyhedron

To consider the different changes of volume and dynamics at TB and Tg, we

introduce here the geometrical degree of freedom [122], fg, of each coordination

polyhedron, which can be defined by fg¼ [(3NV� 6)�Nb]. This kind of analysis

was previously applied for the coordination polyhedra made of oxygen atoms

around Li ions in the molten and glassy Li2SiO3 system and can characterize the

dynamics and topological change at Tg, successfully [123–125]. Here 3NV is

the degree of freedom of NV vertices of the polyhedron in three dimensions,

6 is the degree of freedom for translational and rotational motion of the polyhedron.

In other words, “3Nv� 6” bonds are necessary to fix the shape of the polyhedron.

The concept is schematically shown in Fig. 11.19a for the case of NV¼ 4. That is, if

Nb< 3Nv� 6, system has a floppy part (and/or free volume) in the coordination

polyhedron. The present explanation is not specific to the structures with a fixed Nv

such as icosahedra, although they are included in the concept of the distribution of

coordination polyhedra.

Fig. 11.19 (a) Schematic description of the concept of geometrical degree of freedom of the

coordination polyhedron [122] for the structure with NV¼ 4. Trapped ions are not shown. Here NV

is a number of vertices, and Nb is number of fictive bonds (contact pairs). Broken bonds have

lengths longer than a certain criterion (the first minimum position of g(r) for the anion-anion pair is
used here). When Nb¼ 3NV� 6, the freedom for the deformation of the polyhedron is lost. (b)
Temperature dependence of the coordination polyhedra (anions around cation) are mapped on the

corresponding volume change. Characteristics of coordination polyhedra of anions around cation

are shown by colors. Blue: polyhedron with Nb< 3NV� 6. Yellow: polyhedral with Nb¼ 3NV� 6.

Green: polyhedra with the maximum number of bonds, Nb¼ 1/2NV(NV� 1). Structures between

Nb¼ 3NV� 6 and Nb¼ (1/2) NV (NV� 1) are not colored. Decrease of the structure with

Nb< 3NV� 6, becomes clearer at around TB. At the glass transition temperature (~250 K), the

saturated Nb structures increase
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11.11.5 Temperature Dependence of the Distributions of NV

Following changes were found in the distribution of coordination number, NV (see

Ref. [115]). Peak position of the distribution tends to shift to the right with

decreasing temperature. Contribution of NV¼ 4 structure is almost totally missing

below 400 K. The distribution at higher temperature has a tail of larger NV values,

while in the glassy state at 150 K, the distribution is rather symmetrical and

centered at NV¼ 7. We also note that the corresponding changes of peak heights

are found in g(r) and are detectable in experiments.

11.11.6 Changes of the Distribution of NV and Nb

at Around TB and Tg

Structural change accompanying glass transition is sometimes not emphasized in

the study of glass transition. This is probably because the sudden structural changes

at Tg was looked for and changes at these characteristic temperatures are not easily

observed in the experiments. However, to explain the change of the slope of the

dynamics at TB towards to Tg, only a gradual structural change is required. As

shown below, in the distribution of NV and Nb, one can clearly observe the

characteristic temperature dependence in each region separated by both TB and Tg.
To characterize the local and medium range packing, here we considered

coordination polyhedra formed by anions around cation. Their remarkable changes

on decreasing temperature were observed at around TB and Tg by using the

coordination number, NV, and the number of bonds, Nb, within the coordination

polyhedron. Temperature dependence of the characteristics of the polyhedra is

shown for the anions around cation in Fig. 11.19b.

Blue polyhedra have a character with Nb< (3NV� 6). Yellow ones are for the

structure with Nb¼ (3NV� 6), while green ones are for polyhedra with maximum

number of bonds, Nb¼ (1/2)NV(NV� 1). Polyhedra with the Nb between

Nb¼ 3NV� 6 and Nb¼ (1/2)NV(NV� 1) are not colored. As shown in this figure,

the change at TB is related to the disappearance of polyhedra with Nb< (3NV� 6).

Therefore above TB ~400 K, there is a geometrical degree of the freedom for

polyhedra, and the change in the structure is accompanied by the decrease in the

free volume with increase of Nb and NV. Large Nb structures become dominant at

lower temperatures. At Tg, the characteristics of polyhedra change again by the

saturations of the shortest connections by the cation-anion pairs followed by the

other pairs. Below TB ~400 K, the change is mainly observed in the distribution in

Nb and NV of the polyhedra within the limited region of Nv.

Near the glass transition point, inner structure becomes more rigid because of

saturation of possible connections within the polyhedra as well as the saturation of

the number of bonds shown before. That is, the structures with (1/2)NV(NV� 1),
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which is the maximum number of bonds for each polyhedron, are found frequently

near and below Tg. Even if each cage had enough number of bonds to stabilize the

shape of the structure, further increase of fictive bonds are allowed below TB.
Thus the system volume can decrease even below TB, by increasing number of

contact ion pairs. Below Tg, the change of the pattern of distribution of Nb is small

and the sharpening of each peak is the dominant effect. These results are consistent

with the change of the compressibility of the system with temperatures and there-

fore, the locations of the “free volume” are represented well. To characterize the

packing, coordination polyhedra of cations around anion are also examined [109]

and are summarized below. The peaks for the distribution of Nb are sharper and

seem to be more separated with δNb ~ 5. The structure with Nb< (3NV� 6) was not

so clear at the high temperature region. If the difference between the effective sizes

of cation and anion is larger, such differences in the mutual coordinations will

become more important.

11.11.7 The Concept of Rigidity and Soft Percolation

Topological aspects of the glass structure formed after glass transition has been

repeatedly discussed in the literatures [39, 126–141] after the suggestion of the

concepts of rigidity by Phillips [126, 139–141]. He introduced the constraint theory

for SiO2 and the binary and ternary chalcogenide glasses As2Se3 and GeaAsbSec to

address glass forming ability. It seems to be quite natural to apply it to the problem

of the glass transition. Actually, Thorpe [127, 128, 137] reformulated the constraint

theory as a problem of rigidity percolation. In random networks, numerical calcu-

lations have shown that a floppy-to-rigid transition occurs when the mean coordi-

nation number <r> increases to a value quite close to the predicted mean-field

value of 2.40. Experimentally, Boolchand [138] has observed an intermediate phase

in binary Ge-Se glass. Existence of the intermediate phase seems to be similar to the

intermediate temperature region between TB and Tg found in our work.

The concept of percolation concerning a fictive bond (contact pair) is slightly

different from the rigidity percolation involving direct bonding. We call it soft

percolation. As already mentioned, fictive bonds are defined by the neighboring

pairs of cation-cation (or anion-anion), where the interactions are via the repulsive

force modified by the other terms of the potential. Such fictive bonds can increase in

number even after the condition Nb¼ (3NV� 6) has been attained. As a result,

gradual change of the topology of cages continues below TB until the system has

been deeply cooled. In other words, the volume of the system is reduced until the

more rigid bonds by cation-anion interaction, which connects the loose networks of

anion-anion and cation-cation, are formed.

Here we considered the characteristics of the soft percolation, which causes the

complexity of the dynamics and structure in the fragile system. Often large
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coordination numbers and “fictive” bonds are found with the soft percolation. The

large coordination number of the system and mixing of different networks means

the existence of variety of structures with different Nb and NV. This will result in

wide distributions of life-times of the structures as well. Cages of anions are formed

by cations, while the cages of cations are formed by anions and these networks are

highly intertwined. Such multiple networks make the system a complicated one.

The first changes at TB are the characteristics of the fragile system, which is related

to the packing of networks and coordination polyhedra around the anion or the

cation. That is, the “soft percolation” characterizes the gradual changes in volume

and the non-Arrhenius behavior of diffusivity in the fragile system.

It is interesting to compare this situation of the fragile liquid with the strong

liquid. In typical strong system, silica, the equality, 3NV� 6¼ (1/2)NV(NV� 1), for

the tetrahedron holds for each SiO4 unit, and therefore further change of the number

of bonds in the unit is not allowed after the loss of geometrical degree of the

freedom, and this explains the Arrhenius behavior of the strong system. It is also

understandable that the mixing of modifier such as alkali metal ions, which brings a

distribution of coordination numbers of oxygen atoms, resulted in more fragile

character to the system.

11.11.8 Relation of the Structure of Polyhedron
with the Dynamics

As already shown in Sect. 11.2, MSD of ILs shows a caging region in a short time

scale as found in other glass forming liquids. It means that the mobility of trapped

particle and its cage are closely connected to the property of the polyhedron. This

brings us an idea that dynamics of the trapped ion in the cage can be related to the

deformation of cages, which is characterized by the fluctuation of NV and/or Nb. By

using the MTM (multi taper method) spectra of the motion of the central ions, it was

shown that it is comparable with those of the motion of the cage characterized by

Nb, although contribution from outer shells of the cages is not negligible [115]. If

we examined the fast ion at 400 K, both the zero frequency mode corresponds to the

diffusive motion, and the power law frequency dependence (caused by back

correlated motion of ions) at around f¼ 0.002–0.03 are found, while the both

regions are naturally missing for the slower (localized) ion. (Here the Nyquist

frequency ( f¼ 0.5) corresponds to 1/(2δt) (THz), where δt is chosen to be 0.8

(ps).) For the case of the localized ion taken near Tg, situation is similar to the

localized ion found at 400 K. Thus the decrease in the diffusive mode is related to

the stability of the polyhedron, and they are accompanied by the volume change at

both TB and Tg.
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11.11.9 Relation with Thermodynamic Scaling

One of other possible approaches for the glass transition is based on the observation

of the property of thermodynamic scaling as discussed in Sects. 7.4 and 11.10.

Temperature and pressure dependences of the system are well described by the

master function of the product variable, TVγ, with γ¼ 4.0 and 3.8 for cation and

anion respectively. Pair correlation functions show similar trend. The master curve

of TVγ shows an inflection at around TB and the scaling seems to break down near

the Tg. Existence of the inflection point implies a change in the compressibility of

the system, and this is naturally related to the packing of the polyhedra.

Validity of the thermodynamic scaling of dynamic properties in many glass

forming liquids suggests we should consider the packing of the coordination

polyhedra in relation to the glass transition problem. This is because the dynamics

having inflection points at temperatures TB and Tg are associated with the

corresponding changes in temperature dependence of volume.

11.11.10 Formation of the Infinitive Networks
and the Glass Transition

To understand the mechanism of glass transition, one may assume the formation of

infinitive network of some structural or dynamical units or domains at Tg, but it is
not clear what is the length scale of the structural units that characterizes the glass

transition. In the present section, we explained the glass transition as the soft and

rigidity percolation of bonds and polyhedra including fictive bonds. This explana-

tion is closely related to the structural and volume changes of the system with

temperature or pressures.

Sometimes, the glass transition might be regarded as purely kinetic phenome-

non, where the relaxation time of the metastable liquid state becomes longer than

the observation time, while we considered here the structural changes near the glass

transition regimes. In MD simulations, the former situation is expected and may be

regarded as a “computer glass transition”, caused by the short time scale of the

observation. We note that this situation occurs even for the ionics in the ionically

conducting glass, where the ion is still mobile in the longer time scale. That is, only

NCL region is observed in the MD simulation in low temperature region, however,

of course, this is not a true glass transition of ions. This concept related to the

observation time does not exclude further structural changes with non-equilibrium

relaxation. The change accompanied with that for the free volume of the system is

still possible.

Disorder found in the glass is considered to be the one brought by the mixing of

different structures and/or different coordination numbers and this is related to the

multifractality of the system discussed in Sect. 11.6.
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In ionic liquid, several findings for dynamics such as details of the dynamic

heterogeneity and relaxations with several steps are similar to those found in the

ionic motion in ionically conducting glasses as well as other glass forming liquids.

Thus the study of the ionic liquid bridges of the field of ionics and glass transition.

These common features mean the existence of general physics underlying. Espe-

cially, the glass transition in an ionic liquidmay be informative for the glass transition

in other materials and therefore, it is summarized below. We have considered the

network structures formed by bonds and cages to address the glass transition problem

in the fragile ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO3).

The existence of the changes of network properties at TB and Tg are shown. With

decrease in temperature, we have observed the increase of the shortest cation-anion

(Coulombic) bonds resulting in the saturation of the degrees of the freedom of the

system near Tg as well as increase in the number of connections of fictive bonds. Thus

the glass transition is similar to the rigidity percolation for these bonds.

Then we have characterized the cages, and the local structures in the network,

and their changes on decreasing temperature by using the coordination number, NV,

and the number of bonds, Nb, within the coordination polyhedron. We introduced a

concept of soft percolation of the cages with fictive bonds to characterize changes in

the volume and dynamics near TB higher than Tg. Coordination polyhedra with

fictive bonds play a role to determine the packing of the local structures. That is, the

structure with NV¼ 4 and Nb< (3NV� 6) with other NV values almost disappeared

at TB, where the system still have measurable diffusivity in MD simulations. Soft

percolation of cages can explain the further change of the system volume after the

geometrical degree of the freedom was lost in each cage. Dynamics of ions are well

correlated to the fluctuation of the cage characterized by using NV and Nb. The

rigidity and/or softer percolation of bonds or cages can explain the structural and

dynamical changes accompanied with the glass transition in the system with

different fragility.

11.12 Further Details of the Dynamic Heterogeneity

Because the heterogeneity is related to the existence of fast ions, some points for

designing new materials with high conductivity and accelerated motions on the

surface of the materials will be discussed. The problem is now common for both

ionically conducting systems and ionic liquids.

11.12.1 Accelerated Dynamics in Ionic Systems

As explained in Sects. 9.4 and 11.3, the short time behavior of dynamics reflect the

character of the jumps, while the diffusion or conduction is a mean behavior of both

the fast and slow ions at times after tdif when the MSD assumes the linear time
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dependence. This averaged behavior attained after tdif determines diffusion.

Changes from cage decay to diffusion regimes through the intermediate power

law time dependence of MSD and the corresponding changes in frequency depen-

dence of susceptibility are commonly found in the dynamics of ions in ionically

conducting glasses and ionic liquids. In all cases, with decreasing temperature, the

jump character of the motion becomes clearer. Thus the activation energy of each

individual jump of ion is different from that for the steady state diffusion.

As found for these systems, existence of the Lévy stable distribution is rather

general to characterize the dynamics of ions at certain time regimes. If consider-

ation is confined to the localized motion only, Gaussian like motion might be found

(example is given in Sect. 12.2.5) and this functional form is a special case of the

Lévy distributions. It was also shown that the origin of the power law behaviors of

MSD and stretched exponential behavior of the intermediate scattering functions

are coexistence of fast and slow dynamics.

When considering the ionics in glass one may encounter the following questions.

1. In the field of glass transition problem, existence of the power law, tθ depen-
dence of MSD with θ< 1, is regarded as the signature of the slow dynamics.

Why the ions can show the large displacement in the glass in spite of the large

back correlation probability of jumps?

2. Why the power law region in MSD can persist over many orders of time and how

it changes to the diffusive regime?

The functional form of Lévy distribution with truncation is relevant for provid-

ing answers to these questions. When the van Hove function spreads to a distance

rc, the mean squared displacement < ri tð Þ2 >is represented by

< ri tð Þ2 >¼
ðrc
0

r2 • 4πr2Gs r; tð Þdr ð11:23Þ

From this equation, we can see that dynamics of ions are affected considerably by

the small number of fast ions in the tail part of the function. In other words, the

existence of the fast ions is an origin of the relatively large diffusion coefficient of

ions, although the localized ions also make some contribution. Existence of the

vacancies or ion channel related to this characteristics of<ri tð Þ2> are observed, but

is not sufficient to explain the commonly found behavior. Even if more coarse-

grained model is considered and neglecting dynamic heterogeneity, the mean

behavior of diffusion in the model was already affected by the fast ions, through

the increase of the effective length scale or decrease of back correlation probability.

For the second question, the stable character of the Lévy distribution explains why

the power law region can continue many orders of magnitude in time. This is

because of the truncation and multifractal mixing in the stable Lévy distribution, the

change to the diffusive regimes proportional to time can take place over a longer

time scale.
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11.12.2 Origin of the Lévy Distribution: Fractional Fokker-
Planck Equation

If the motion is random without interaction with other atoms or ions, its correlation

function should show exponential decay with time, and Gaussian dynamics is

expected. The Lévy distribution is a result of the deterministic motion affected by

other ions. This view is consistent with the nature of the relaxation and diffusion of

interacting species in ionic conductors and other systems espoused by the Coupling

model by one of the authors [39]. Here we introduce some other approaches

explaining the existence of Lévy distribution.

One of the possible methods to argue for the Lévy distribution is based on the

fractional diffusion equation. Chaves [142] started the discussion from the ordinary

Fokker-Planck equation based on the Fick’s law and has analyzed the motion by the

skew Fokker-Planck equation as follows. The stream, j, caused by the difference of

the concentration n is taken into account here. By combining the continuity equation

∇ • jþ ∂n
∂t

¼ 0: ð11:24Þ

with the Fick’s empirical law,

j ¼ �D∇nþ vn; ð11:25Þ

where D is diffusion coefficient, the result is the ordinary Fokker-Planck equation

∂tP x; tð Þ ¼ �v∂xP x; tð Þ þ D∂x2P x; tð Þ; ð11:26Þ

In one dimension, the probability density P(x,t) of a particle, initially (t¼ 0) located

at x¼ 0, is represented by the Gaussian form,

P x; tð Þ ¼ 4πDtð Þ�1=2
exp �x2=4Dt
� �

; ð11:27Þ
By generalization of the equation (11.25),

j ¼ �D

2
∇α�1

r �∇α�1
�r

� �
nþ vn; ð11:28Þ

with 1 < α 	 2:

∂n
dt

¼ D

2
∇α�1

r �∇α�1
�r

� �
n� v •∇n: ð11:29Þ

In one dimension,

∂n
dt

¼ D

2
∂α
x þ ∂α

�x

� �
n� v

∂n
∂x

; ð11:30Þ
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where the operator ∂α
x is defined by the eigenvector equation,

∂α
bx exp axð Þ ¼ a

b

� �α
exp axð Þ; ð11:31Þ

Here, a, b, and α are complex numbers.

The solution was obtained by using the Fourier transform,

n x; tð Þ ¼
ð1
0

dk

π
Φ k; tð Þexp ikxð Þ; ð11:32Þ

as,

n x; tð Þ ¼
ð1
�1

dx0

2π
n x0, 0ð ÞP x� x0, tð Þ; ð11:33Þ

where the kernel P(x,t) is

P x; tð Þ ¼
ð1
0

dk

π
cos k x� υtð Þ � exp



cos
�
α
π

2

�
Dtkα

�
: ð11:34Þ

Further generalization with a skewness is introduced by different diffusivity

depending directions, although it remains to prove that P(x, t) is positive. Later

Almeida [143] commented that this probability kernel is a positive one, which is

exactly the characteristic function of the stable distribution. Thus the Lévy distri-

bution is a natural result of the generalized Fokker-Planck equations. The distribu-

tion is also a natural result of the Tsallis statistics [144].

11.13 Acceleration of the Motion on Surfaces

Here we note that the accelerated dynamics represented by the Lévy flight dynam-

ics is also observed on the surface of material as shown by both experiment [145]

and simulations [146]. Some works related to this problems are introduced here.

Deltour et al. [146] have examined the fast diffusion of LJ clusters on the crystalline

surface by MD simulation. Luedtke and Landman [147] reported the Lévy type

power law distribution in the anomalous diffusion of a gold nanocrystal by using

extensive molecular dynamics simulations. Maruyama [148] has analyzed temper-

ature dependence of stick-slip diffusion of Au cluster on graphite. Chen et al. [149]

have examined a Brownian particle in a two-dimensional periodic potential (force

field). When the potential is separated into the independent two one-dimensional

potentials, the friction η dependent on the diffusivity is D ~ 1/η, while for

non-separable and anisotropic potential, D ~ 1/η0.5. They found that the depen-

dence of D on η in the low friction regime is directly related to the occurrence of

long jumps.
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Thus, acceleration of the motion in the nano crystals or grain boundaries, which

discussed in Chap. 6, seems to be closely related to the Lévy distribution. Further

studies by molecular dynamics simulations for such systems with and without

periodic boundary condition will be useful to understand the effects of surface.

11.14 Conclusion

Studies of structure and dynamics of ionic liquids exemplified by EMIM-NO3 using

molecular dynamics simulation are described and discussed in the present chapter.

Since the ionic liquid is ionic and also glass forming, this can make clear connec-

tions of the physics of ionics with that of the glass transition.

Time development of MSD of ions shows several distinct time regions and ions

show a dynamic heterogeneity of long time scale. They are characterized by van

Hove functions, intermediate scattering function and fractal dimension analysis.

The self-part of the van Hove function has an inverse power law tail followed by the

exponential part. That is, it has characteristics of the Lévy distribution with a

truncation [see A.2.2–A.2.4]. Multifractal mixing of such motions explains both

the time development of dynamics and frequency dependence of them related to

it. From the phase-space plot, it was shown that such motion is rather deterministic

and it is related to chaos.

Topological changes of the system and coordination polyhedra, which are

related to the packing and geometrical degree of the freedom of the system were

observed in the temperature dependence of the system by MD. Such features would

be useful to understand the glass transition of the system.

The dynamics shows common features with ions in ionically conducting glass.
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Chapter 12

Practical Introduction to the MD
Simulations of Ionic Systems

12.1 Examples of MD Simulation of Ionic System

For anyone interested in performing molecular dynamics simulations, there are many

possible approaches. Nowadays, many kinds of MD programs and those for analysis

are available. Choice of the method of the calculations depends on the objective of

the researcher and the application of MD depends on scientific background of the

researcher. Due to large number of possible selections, it may be difficult to choose

the most suitable programs or conditions for starting the MD simulations.

In such situations, fundamental steps taken in the study of simpler system with a

minimum setting will be useful as a start for learning how to perform MD simula-

tions. Then one can select the suitable methods for one’s purpose. Therefore, in
Sect. 12.1, we will show some examples and carry out the exercise of MD

simulations of ionic systems using a short program. Although the program is not

optimized one for your machine, it is essentially the same one used in our studies

and can be used for other purposes. In this exercise, we planned that one can run

MD simulations and treat the data on “windows machine” by oneself. Some pro-

grams and examples will be found in Electronic Supplementary Material (ESM)

(http://extras.springer.com) You will be able to find materials by searching the

book’s ISBN. Please use contents of ESM at your own risk.

In Sect. 12.4, fundamental setting in MD programs is explained. How to prepare

initial configurations of melt, crystals and glasses are also explained with examples.

After that, introduction of several products of software of MD simulations and for

visualization available freely or commercially are given. For advanced features to

acquire, one may need to consult with experts of related systems, manuals of

programs.

In principle, it should be avoided to use addresses of WEB sites in publication.

However, especially in the present section, addresses of some WEB sites are

included for convenience of users, in spite of the fact we cannot guarantee the

validity of the address.
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Example 1: MD simulations of lithium metasilicate glass on “Windows”

In the first example, we use a program for the lithium silicate glass that works on

“Windows” with a personal computer.

STEP 1 (Preparation of Linux like environment on Windows)

Unfortunately, the situations of the readers (for machines, OS etc.) can be different

case by case. Here we assume the case of the “Windows 8.1 or 10” machine with

64 bit, while most of MD programs work on the “Unix” or “Linux” platform with

suitable compilers. Therefore, at first, linux-like environment is introduced on

windows by “Cygwin” [1]. Cygwin user can skip this step; although addition of

some options may be required later.

Cygwin is a large collection of GNU and Open Source tools which provide

functionality similar to a Linux distribution on Windows. Please visit the WEB

page (Ref. [1]) and follow the instruction there. Please include GCC and Gfortran

compilers. Additional installations of editors (such as vi) may be useful for mod-

ification of the input files, although one can also use the text editor on windows.

This environment can be used for many purposes. Some knowledge for Linux or

UNIX may be required, although usages of some commands (appeared after the

prompt $) are included below. Caution may be required for the difference of code

(for example, it is found in carriage return (CR) or line feed (LF)), in using different

systems.

• If you are a user of the Linux or Unix and Intel compilers, please try to use the

file named “mdintel.exe” in the ESM instead of “lsomd.exe”.

• If your environment is not suitable for using exe files found in the ESM, please

skip step 1–4.

STEP 2 (Preparation of files on your home directory)

Put all files within “Example 1” folder in ESM in your home directory of Cygwin

(You can do it by the usual operation on windows). By the default installation, the

home directory may be located at C:\cygwin64\home\“User Name”. For starting the

program, one can prepare some shortcuts during the installation.

For example, click “Cygwin64Terminal” created on the desktop for starting

Cygwin.

Input the following command and then depress the enter key to see file list.

$ls –al

File names with information will appear.

STEP 3 Structure of Files

lsomd.exe is a binary code of the MD Program LSOMD for M2SiO3 systems.

The test data used is for M¼Li.

Input files

Initial configuration of the system of 3456 atoms (Li 1152, Si 576, O 1728) is given

in lslarsinf800ini.data.

Please copy the configuration data to “lslarinfini.data” for the input of the

program by the following procedure.
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For copying the data from A to B files, put the command “cp A B” after the

prompt, $, then depress a return key. In this trial, please input the following.

$cp lslarinf800ini.data lslarinfini.data

The data included in this file are initial coordinates of ions and atoms, xn, yn, zn

in Å.
That is, x1, y1, z1, x2, y2, z2, ----x3456, y3456, z3456 followed by dx1,dy1,dz1,dx2,

dy2,dz2-----dx3456, dy3456, dz3456. Here dx1 is for a difference of x1(t) and x1(tþ dt)
and similar definitions are used for dy, dz for n¼ 1, 2,---3456.

Several parameters are necessary to be set in “lslarset.data”.

“lslarset.data”: Setting of total steps, temperature, pressure, delta t, etc.
Initial setting in the file is as follows.

¼¼¼¼¼ lslarset.data¼¼¼¼¼

5000 100 33.15 800. 1.00E�15 0.

6.941 28.0806 15.9994

0.87 2.40 �1.38

1.0155 0.8688 2.0474

0.07321 0.03285 0.17566

10.87 23.18 70.37

¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
For the first line, number of steps, N, interval of steps, mitv, length of the cell

(in Å), target temperature (in K), and step time (in s) and parameter for setting

conditions. In the last figure, ‘0.’ means NVE condition, while ‘1.’ means NVT

condition (using Gaussian thermostat). The value ‘target temperature’ does nothing
when the NVE condition is chosen. In the following lines, potential parameters (see

Sect. 9.1) for lithium metasilicate are given. In the second line, mass of Li, Si and O

are given. In the third line, effective charges of Li, Si and O are given, respectively.

In line 4, (5 and 6), potential parameters in Gilbert-Ida type for these species, ai, (bi,

and ci) are given in the order of Li, Si and O in this case. Please distinguish integer

and real figures carefully.

Setting of these parameters depends on the problem to be examined as well as

the properties of the system. For example, one needs to modify the setting consid-

ering following situations.

Usually longer total time steps will be necessary for slow dynamics in melts,

glasses, and crystals. The highest frequency accessible depends on the mint of the

output. Shorter step time is required for the system with faster dynamics. If the

system includes light atom such as hydrogen, it should be less than 0.5–1 fs.

Step 4 Run the program

Please run the program “lsomd.exe” using the lslarset.data. Configuration file

lslarinfini.data is also used by the program. Put the following command.
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$./lsomd.exe<lslarset.data

Here “./” is for using a current directory for execution of the program.

After pressing the “enter key”, the program will start.

At first the content of “lslarset.data” is repeated for confirmation.

Please wait for a while.

Then the status of the run with interval of mitv steps will be appeared on screen.

Count, Temperature for Li, Si, O and total (in K), Pressure (in GPa),

Energies (Total, Coulombic, Repulsive and for cicj term (in J/mol).

The following is an example.

---------------------------------------------------------------------------------------------------

COUNT T_Li T_Si T_O Tmean P Etot Ecoul Erepul Ecc

10 822.208 808.818 804.311 811.027 �0.9078E-02 �0.7689Eþ07

�0.8087Eþ07 0.2975Eþ07 �0.2576Eþ07

---------------------------------------------------------------------------------------------------

The execution time depends on your machine.

You can see temperature and energy fluctuate during the run. Total energy of the

system is maintained if NVE condition is chosen.

Pressure of the system tends to show large fluctuations including negative

values. Note that the pressure is sensitive to the setting of the box size and also

the potential parameters used. The value has a relatively large error because it is

obtained from a difference of large comparable values.

OUTPUT FILES

When a run stops, the following files will be found.

lslar2traj.data: Coordinate of atoms obtained for every mitv steps are accumu-

lated in this file. The data have similar sequences as lslarinfini.data but is repeated

for N steps with interval of mitv steps. The data for dx, dy, dz are not included here.

lslar3thermo.data: This output is the same one, which is shown on the screen

during the run.

“lslarinflast.data” is the last configuration for the input of continuing run.

The structure of the file is the same as the “lslarinfini.data”.

Pair correlation function, g(r) of the system was stored in lslar-gr.data.

Please examine the size of output files and “real time” required for the calcula-

tion of 5000 steps in your system. If your file space is enough and run time is

acceptable, further longer runs can be done by your own choice.

Before starting the second run, copy the lslarinflast.data to lslarinfini.data.

$./cp lslarinflast.data lslarinfini.data

Please try further the longer runs for better statistics. During the following runs,

output files are overwritten by new data. Such “overwriting” seems to be used in

several MD programs and caution may be required if you need long successive

runs. When you need old data, rename the old files. Probably it is better to prepare

the script file for renaming or modify programs to add the run number.

It may be also useful to add the name of the system, temperature, date, etc. to the

file name with some rules of order and abbreviations.
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STEP 5 Visualization of data
After finishing run, one can plot the g(r) for each combination of ion pairs using the

file named “lslar-gr.data” (or “lslar-gr.csv” if you skipped step 1–4) by several

plotting programs.

For example, the plot using “Microsoft Excel” after some setting of the appear-

ance can be found in Fig. 12.1.

In the “lslar-gr.data”, the first column of the data is a distance r. The values of

g(r) are found from the 2nd to 7th column for Li–Li, Si–Si, O–O, Li–Si, Li–O and

Si–O pairs, respectively.

Please examine the characteristics of the structures.

An example of the output file “lso.pdb” will be found in the ESM. The pdb file

can be read from many visualization programs. One can use it to examine the

structural details such as angles, distances, etc. Please try to use VESTA

(Visualization for Electronic and STructural Analysis) [2] and open the pdb file.

Select “Edit” tab and “bonds” tab and set Si–O bonds (connecting the atoms

within 2.1 Å is useful in almost all cases) in the case of VESTA. Then select the

“ball and stick” model. You can also use other styles such as “space filling

model”, “polyhedra (after setting bonds)”. The file “lso.vesta” will be found in

the same location, where the Si-O bonds are connected and polyhedra of SiO4

units are shown as in Fig. 12.2.

Fig. 12.1 Example of the plot of g(r) using the “lslar-gr.data” obtained by the 100,000 steps run

(Li2SiO3 system at 800 K) using “Excel”
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Please change the size of atoms or ions by yourself. You can also Zoom, Rotate

and Move it. You can also measure distances or angles in the structures. Please

follow the manual of VESTA or other programs used for further details.

You can also visualize the structure obtained by the run you have performed.

Please run the program inftoxyz.exe to change the “lslarinflast.data” to “lso.xyz”

by the following command.

./inftoxyz.exe <lslarinflast.data

The file named “lso.xyz” was created in the same directory. Many programs for

visualization can read “xyz” format. Please modify the appearance by your own

choice.

STEP 6 Further analysis of the system

Change temperature or box size gradually. How does the structure change?

You can also examine more details by your own programs.

Fig. 12.2 Examples of the visualization of the Li2SiO3 system (3456 particles) (near the

glass transition temperature) at 800 K. (a) SiO4 units are shown by polyhedra. Li ions are

shown with atomic radius to emphasize the positions and existence of ionic paths. (b) The
same structure as (a) but with ionic radius of Li ion. (c) The same structure in ball and stick

model. (d) The same structure in space filling model. Green: Li ions, Red: Oxygen atoms and

Blue: Si atoms (and SiO4 units). These figures are visualized using the file “lso.vesta” (or “lso.

pdb”) in ESM and the program “VESTA” [2]
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12.2 Example 2: Analysis of the Lévy Flight and Lévy
(Alpha Stable) Distribution

12.2.1 Example of Analysis for a Mobile Ion

In this subsection, an example for the ionic motion in the lithium “metasilicate” is

shown, and after that examples included in the ESM will be explained.

It shows a Lévy distribution as found in the functional form of the self-part of the

van Hove functions for all ions. This result shown here is another proof of

the existence of Lévy flight with α< 2. Original time series for ionic motion is

plotted in Fig. 12.3, where the absolute value of the displacement for Li ion jri(t)j
in lithium metasilicate at 500 K during 1 ns runs is used. Here t is a sampling time

measured by an interval of dt. (In this example, dt is taken as 4 ps).

12.2.2 Log Return of Data

For examining the functional form of vibrational motions and jumps, one can use

“log return” defined by following relation, which is often used in the analysis of

financial time series (for example, see Ref. [3]).

For the time series, jri(t)j(¼jrtj), log-return, Δlnjrtj is given by,

Δln
��rt
�� ¼ ln

��rtþ1

��� ln
��rt
��;

¼ ln 1þ rtþdt

��� ��rt
�� ��

rtj j
� �

� rtþdt

��� ��rt
�� ��

rtj j

Fig. 12.3 Time series of absolute value of the displacement for Li ion jri(t)j in lithiummetasilicate

at 500 K during 1 ns runs plotted against t. Here t is a sapling time measured by an interval of dt
(in this example, dt is taken as 4 ps), plotted by using Mathematica
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Therefore, the log-return is an estimation of the expansion rate of jrtj.
The distribution of jrtj is affected by the sudden jumps of the data, and the

change of the absolute value of the jrtj is affected by the distance from the initial

position, while the log-return does not depend on the absolute value of the jrtj.
Log return of the time series in Fig. 12.3 is shown in Fig. 12.4.

12.2.3 Comparison of the Distribution of Log-Return
and the Fitted Curve

In Fig. 12.5, histogram for the probability distribution for the log-return (denoted by

Z here) (orange) is shown, where a fit by the stable distribution is represented by the

blue curve (blue). Thus the motion of ion is represented by the Lévy flight dynamics

with α¼ 1.46.

12.2.4 Further Analysis of Cumulative Distribution
and Comparison of Lévy (Alpha Stable with α< 2)
and Gaussian Distribution (Alpha Stable with α¼ 2)

To check the quality of the fit, cumulative distribution function is useful. In the long

time scale, the distribution is affected by the exponential truncation of the tail.

One should note that the exponential truncation (see Appendix A.2) in the self-

part of the van Hove functions is found in the log-log scale (For example, see

Fig. 9.8 of Chap. 9), where the contribution is less than ~1%, but is emphasized in

the log-log scale.

Fig. 12.4 Log-return of the time series of absolute value of the displacement for Li ion shown in

Fig. 12.3
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In Fig. 12.6, the function of the log-return of the time series (blue dots) and the

fitted one for stable distribution (red curve) by the maximum likelihood method [4]

obtained by using Mathematica are shown.

In Fig. 12.7, comparison of the stable α distribution with α¼ 1.46 (red) and

corresponding distribution with α¼ 2.0 (blue dot) is shown. The difference is

observed in both the tail and the sharpness of the function.

12.2.5 Free CDF Files with Manipulation

We prepared free Computable Document Format (CDF) files using Mathematica

[5] for treatment of the data in the folder named “Example 2” in the ESM. It works

on Windows. Please copy the contents of the folder in your Documents directory

(by usual procedures on your machine).

Fig. 12.5 Probability distribution, P, of the log return (denoted Z here) of the time series of

absolute value of the displacement for Li ion shown in Fig. 12.3. Histogram (orange) is for the data
obtained by MD, while the blue curve is for the fitted one with the stable distribution. Parameters

for (α, β, γ, δ) is found to be (1.46, 0.039, 0.073, 0.028) by the maximum likelihood method. Here

the tail found in longer distance was omitted
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If you don’t have Mathematica, you can use a free CDF-Player which can be

available at Ref. [6].

There is a free CDF file named “Levy -stable alpha- distribution of type

1. cdf”. It includes interactive manipulation of four parameters in the stable

distribution (see Appendix A.2 for details of the distribution). If the file does not

work well in your environment, please try “Levy -stable alpha- distribution of
type 1_9.cdf” files. You can check how the distribution changes with parameters by

yourself.

There are several examples of CDF files (Analyses ---.cdf) for time series, jri(t)j
data of some arbitrary chosen particle obtained byMD runs, which were fitted to the

stable distribution.

You can treat the file using the CDF player. Please change the size of figures to

see the details for the motions

Sample 1: Jump motion for a Li ion in lithium “metasilicate” glass at 700 K. Lévy

flight dynamics is clearly observed.

Sample 2: For an EMIM ion in the ionic liquid, EMIM-NO3 at 300 K. The motion is

not a clear jump but the Lévy (alpha stable) distribution is clearly observed.

Sample 3: For the arbitrary chosen Li ion at 800 K in lithium “disilicate” glass. The

ion is localized for a long time (The time series during 12 ns run is shown here.). In

this case, both fittings to normal and Lévy stable distributions are compared. The

distribution is Gaussian like except for the contribution of the peak due to the jump

found at the last of the time series. Note that the numbers of the sampling points are

not the same in each example.

The file named “Simulation using stable distribution.cdf” (and/or that with_9)

is for the simulation of the displacement of ion reproduced by the random sampling

of 1000 points from the stable distribution with a characteristic index α chosen by

you. When α¼ 2, the motion is the Brownian motion.

You can find strong heterogeneous motions with intermittency with a smaller

(<2) value of the index α. You can compare the actual data and the randomly

sampled data.

The free CDF file named “MD-Soft-Core Model.cdf” is for the MD simulations

of soft-core model (exponent n¼ 12). Although this is not an ionic system, readers
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the pattern of the
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can have some idea of what is done in the MD simulations. In this example, the

periodic boundary condition is not used and particles are bounced back from

the wall. Except for this point, the program do the MD simulation by the

Verlet algorithm with your choice of the number of particles, temperatures and

system size. Color of particle changes when the velocity of the particle changes.

12.3 Example 3: Examining Movies

Two examples of movies are included in the “Example 3” directory in the ESM.

Since their visibility depend on your machine environments, we prepared two files

with different formats. We hope that you can see at least one of them.

The file named “EMIM-NO3 100 K-1.wmv” is for EMIM-NO3 glass at 100 K

shown by the stick model. This can be open by the “media player”. Try to click the

file name on Windows.

In these movies, periodic boundary condition is used as usual. If the center of

mass position of the ion moves to the next image cell, the ion disappeared and the

corresponding ion comes in at the same time. Thus the number of ions is kept

constant.

The file named “disilicate crystal.swf” is for lithium disilicate crystal in the

metastable form at 1400 K. The format is for adobe flash player. Please try to open it

from Internet Explorer. If it does not work, please check if the adobe flash player

was installed in your system or not, by visiting the WEB site of adobe (Ref. [7]) and

follow the instruction there.

It can be seen that how the mobility of atoms depends on the direction of the

crystal.

For explanation of other files, see readme.txt or Readme---.docx in each folder in

the ESM.

12.4 Fundamental Usage of MD Programs

In followings, we explain a general (and may be minimal) example for input and

output in MD programs.

12.4.1 INPUT of the MD Programs

If you use a program suitable for your purpose, each MD program has its own input

and output format and may have examples to show how to use it.
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Typical input files in the works using MD simulations of glasses contain

1. Setting of potential parameters and functions

2. Setting of ensemble (NTP, NVE, etc.) and some options such as the shape of the

MD cell.

3. Initial configuration, velocity and system size.

4. Setting of runs for analysis (step time and total number of steps at each

temperature).

In the case of MD simulation of super-cooled liquids and/or glasses, cooling

schedule must be planned.

5. Several settings for cutoff values (for repulsive term and/or Ewald summation).

12.4.2 Preparation of Initial Configurations for Crystals

Crystal structures can be used for checking the quality of the potential parameters,

for the preparation of initial configuration for liquids or glasses, as well as exam-

ination of crystals themselves.

Here we briefly explain how initial configuration for MD simulations of crystal

is prepared as exemplified by lithium or sodium metasilicate crystals.

These crystals are orthorhombic and space group is Cmc21 with Z¼ 4 [8].

Li2SiO3 a0¼ 9.36; b0¼ 5.395, c0¼ 4.675 (in Å)
Na2SiO3 a0¼ 10.52; b0¼ 6.07, c0¼ 4.825 (in Å)
Space group: Cmc21,

where the meaning of each notation is as follows.

C: base-centered lattice.
m: mirror planes
c: glide planes (mirror planes involving reflection and a translation parallel to the

plane). (The plane can be a, b, c, n or d)

21: screw axis

Treatment of crystal structure is based on the “International Tables for Crystal-

lography” volume A [9].

General coordinate of the present systems are given by,

1. x,y,z

2. �x,�y,zþ 1/2

3. x,�y, zþ 1/2

4. �x, y, z

5. xþ 1/2, yþ 1/2, z

6. �xþ 1/2,�yþ 1/2, zþ 1/2

7. xþ 1/2,�yþ 1/2, zþ 1/2

8. �xþ 1/2, yþ 1/2, z
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Some software can generate the crystal structure by choosing the space group

and input of coordinate in the unit cell. As an alternative way to obtain the basic cell

for MD runs, the atomic coordinate, rα, within an asymmetric unit is expanded to ri
in the whole crystal lattice by using symmetry operators.

rα •Pm þ Tm ¼ ri; ð12:1Þ

where Pm and Tm are (3� 3) matrix of linear part and (3� 1) column matrix

(translational vector), respectively for general transformation.

The linear part (orientation or length, or both) of the basis vector a, b, c can be

transformed into new vector a0, b0, c0 by the (3� 3) matrix Pm¼
P11 P12 P13

P21 P22 P23

P31 P32 P33

0
@

1
A, that is, (a0,b0,c0)¼ (a,b,c)Pm. This is combined with transla-

tional transformation.

For example, obtaining the coordinates x, y, zþ 1/2, from atomic coordinate xα,

yα, zα, following operation

Pm Tm

xα; yα; zαð Þ
1 0 0

0 1 0

0 0 1

0
@

1
Aþ

0

0

1=2

0
@

1
A ¼

xi
yi
zi

0
@

1
A ð12:2Þ

is applied for the (8b) positions in the atomic coordinates shown in the next

Table 12.1 [8].

Both matrix and general forms also can be found in the WEB site [10]

In Fig. 12.8, primitive cell for the lithium metasilicate crystal is shown.

Usually, basic unit of MD simulations is chosen to have equal (or comparable)

axis lengths by repeating the crystal units.

In this example of lithium metasilicate crystal, a supercell formed by repetition

of axis length as a0� 2, b0� 3, c0� 3 is taken as the basic cell of MD simulations.

The cell contained 2� 3� 3 of Z¼ 4, namely 72 of Si atoms, 144 of Li ions, and

216 O atoms, and the total number of atoms is 432. The space group of the system is

Cmc21. The supercell thus prepared is shown in Fig. 12.9. This system size can be

used to examine some characteristics of crystal structures, but might be too small

for examining dynamics of them because of long length scale repetitions of the

structures affect the dynamics.

Table 12.1 Atomic coordinate of lithium (and sodium) metasilicate crystal [8]

Atom Position X Y Z

Li(Na) (8b) 0.160(0.166) 0.320(0.339) 0.000(0.000)

Si (4a) 0.000(0.000) 0.164(0.166) 0.537(0.564)

O(1) (8b) 0.141(0.130) 0.321(0.286) 0.450(0.500)

O(2) (4b) 0.000(0.000) 0.100(0.077) 0.860(0.895)
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The required system size depends on the property to be examined and it should

be judged by the purpose of the work. Especially, oscillation of the system is

affected by the symmetry of environments as well as that of the inner structure of

the crystal unit, and therefore caution is required in how to prepare the supercell.

12.4.3 Data Base for Crystal Structures

In the case of crystals, one can use the data from data bases such as

AMCSD (American Mineralogist Crystal Structure Database) [11],

COD (Crystallography Open Database) [12], WWW-MINCRYST (Crystallo-

graphic and Crystallochemical Database for Minerals and their Structural Analo-

gous) [13]. Several data format (in xyz, cif and pdb) are used for initial

configurations and changes of the format may be necessary to adjust the MD code.

Fig. 12.8 Unit of crystal

in Li2SiO3 system

[8]. Pale blue, blue and
red spheres are for Li,

Si and O, respectively

Fig. 12.9 Example of basic

cell of MD for Li2SiO3

crystal. Supercell consists

of 2� 3� 3 of primitive

cells. Colors are the same

as in Fig. 12.8
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Configurations in the basic cell of crystal structure can be prepared by using the

information of the space group as already mentioned. It can be done by using

software, such as, “CrystalMaker®” [14], which can create a supercell of

n1� n2� n3. Usually, it seems convenient to set the length of three axes to be

comparable in 3D system as already mentioned; otherwise, different setting for

calculations of cut off length, Coulombic force by directions will be required.

Some other cautions are required in the preparation of the super cell.

1. Number of repeating cell may affect the properties of the crystal especially the

dynamics.

2. Some atoms may be automatically added at the edge of the crystal by a software.

It is usually unnecessary, when one uses PBC. One needs to eliminate them.

3. Some crystals contain several sites for one atom, with occupation number being

less than 1. This should be carefully treated when it is used for an initial

configuration of MD.

12.4.4 Initial Configurations for Melts and Glasses

For melts and glasses, it can be started from the crystals or random configurations

equilibrated at high temperatures. One may need to check if the final configurations

after equilibration are affected by the initial configuration or not, especially when

using crystal structures. For example, in the case of silica, it is known that the long

range network structure remains for a long time in the structures. This trend is more

remarkable in the strong system than in fragile systems [15]. Of course, several

kinds of molecular structure editors can be used for preparing and/or modifying

structures.

The system in the glassy state is obtained by cooling or by compressing the melt.

Some details of the glassy state depend on the cooling schedule. Example of a

configuration of lithium silicate glass (after equilibration) is found in the ESM, and

such a structure can be used for the initial structures of other melts.

Required system size depends on the properties and status of the system con-

siderably (see Sect. 8.5.1 for more details). Generally, in the melt and glass, the

structure has shorter length scale than the crystal. Therefore in the former with

periodic boundary condition, relatively smaller system can be used, as long as the

effect of ghost particle (image of the particle in the basic cell) in the surrounding

cells of MD simulations is negligibly small.

In the lithium silicate glass, if one fixed the particle within a wall (for one of the

6 faces) of the basic cell, it affects mobility of other particles. The length scale thus

determined was about ~8 Å at around 700 K for lithium metasilicate and the system

size of L ~ 17Å (longer than twice the length scale) for 432 particles seems to be the

minimum size for examining of structure and dynamics of the present system in the

liquid and glassy states. The larger size is required for stronger (rich in network

formers) systems even for the liquid and glass [16], and it also means necessity of
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longer equilibration time of the system. Of course, practical system size depends on

the available resources for calculations and “real” times necessary to do

simulations.

For the initial configuration of melts or glasses, random configurations at high

temperature (for example, ~3000 K in silicate) are used frequently.

If one start from the random configurations, it may be better to remove or change

the position of particles being too close to other particles in the beginning of runs.

The problem depends on the characteristics of potential parameters used. In the

beginning of equilibration of the system, several pre-relaxation methods, which

may be included in the software, can be used. Smaller time steps or modification of

mass will be helpful to suppress unstable motion in the beginning.

MD programs may have examples of initial configurations, tutorials and exer-

cises, which are useful to begin simulations with/without some modifications,

although check of the quality of parameters or methods used is the responsibility

of the user.

12.5 Output of the MD Programs

Most fundamental output of MD is time series of particle positions, that is,

trajectories. From these values, many secondary outputs can be drawn. Further

analyses by the user also can be done. In typical output files, fundamental infor-

mation such as temperature, energies, pressure, pair correlation functions are

included and they will be useful for checking the setting and/or for further

treatment.

12.6 Software for MD Simulations

Many kinds of MD programs have been developed including commercial ones and

researchers can choose the ones suitable for their own purpose. It also depends on

the available potential parameters, the functional forms and the ensembles to

be used.

Some of them, which can be used for the study of ionics, are introduced here,

although for details the user should consult the developer.

Amber [17] is a collective name of program. It is designed for the biomaterials

but can be used for the ionic materials such as ionic liquids. Several force fields

such as, general amber force field [18] can be used for the simulation of ionic

liquid. Of course, other potential parameters tuned for individual systems are also

useful. The “sander” code was for the classical molecular dynamics for CPU,

while “pmemd” code was for GPU and is included in the version 11. After

the Amber 12, “sander” has been added to the “pmemd” coding for both CPU
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and GPU. Official support for the Intel Xeon Phi architecture also started in

Amber 14.

DL_POLY is a general purpose serial and parallel molecular dynamics simula-

tion package (DL_POLY_4.08 is the latest version (March 2016)) [19, 20], which

can be used for ionic systems and several exercises and demonstrations for them

can be found.

The Car-Parrinello Molecular Dynamics (CPMD) [21] is a code designed for the

ab initio MD simulations, where the parallelized plane wave/pseudopotential

implementation of Density Functional Theory is used.

Large-scale Atomic/Molecular Massively Parallel Simulator, LAMMPS [22]

is a molecular dynamics package and LAMMPSCUDA is a molecular dynamics

package, which can use GPU and have been applied for ionically conducting

glasses [23].

The OCTA [24] [OCTA is Greek “8”, which is a 90� rotation of the mathemat-

ical symbol of infinity.] is flexible and expandable programs for meso-scale simu-

lation and it seems to be suitable for the multiscale simulations of polymer etc.

MODYLAS [25] is a general-purpose, molecular dynamics simulation program

suited for the simulation of very large physical, chemical, and biological systems.

In the program, the Coulombic term can be calculated by the multipole method.

Many of MD programs have been coded by Fortran (The name “Fortran” tends

to be used for after Fortran 90, although “FORTRAN” had been used before.)

and/or C (Cþþ). Therefore, some knowledge of them may be required. Tradi-

tionally, the former has been used for long time because of suitableness of

numerical processing and there are many cumulative programs related to it. Its

method for memory allocation has said to have merits for parallel computation.

Some comparison of Fortran and C has been done by several authors. For

example, see Ref. [26].

12.7 Software for Visualization

Nowadays, there are many software including commercially available ones and free

ones for visualization of structures obtained by MD. One can select the suitable

software for any particular purpose. Some of them are introduced here.

Some tools can treat the output of MD codes, directly. For example, the program

VESTA [2] can be used for the visualization of many kinds of files including

CONFIG file used in DL_POLY code.

VMD (Visual Molecular Dynamics) [27] can be used for visualization of

instantaneous structures as well as making movies (for example, using HISTORY

file obtained by DL_POLY and/or other trajectory files).
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Chapter 13

Some Applications and Further Problems

13.1 Fabrication of Porous Structures in Molecular
Dynamics Simulations: For Design and Examination
of Solid State Batteries

The importance of porous materials in applications to batteries has attracted the

attention of researchers in many fields. Many materials having not only microscopic

and mesoscopic pores but also macroscopic pores are the subjects of studies by

researches. They are beneficial to use in electric devices as electrode, insulator, and

other components. Especially for the use as electrode or electrolyte, porous mate-

rials are expected to increase the reaction rate, because of the large surface areas.

The subject is closely related to the nanoionics discussed in Chap. 6. In this section,

application of molecular dynamics (MD) simulations to such fields is described.

Recently, all solid-state lithium batteries using porous materials are proposed by

Kanamura et al. [1–3]. Almost ordered porous Li0.35La0.55TiO3, which shows the

electric conductivity larger than 10�4 S cm�1, was prepared in their work. It acts as

the electrolyte of the solid state battery with inclusion of LiCoO2 (or LiMn2O4) as a

cathode material, and Li4Ti5O12 as an anode material.

Experimentally, porous silica can be prepared by sol–gel methods or by chem-

ical vapor deposition (CVD) methods, where some templates for pores can be used,

although the fabrication of suitable porous materials for practical use is not neces-

sarily an easy task. Under this circumstance, modeling of porous structures and

their composites by MD simulations should be beneficial for understanding the

details of the structures including shapes, types (open/closed pores, or channels),

size and its distribution, and details of dynamics, as well as for the design of new

composites.

Furthermore, porous materials are expected to be useful for storage and trans-

portation of gaseous substances [4] and also for drug delivery [5, 6]. Therefore, the

MD methods will be relevant for these related fields.
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In the following subsection, modeling of porous silica by MD simulation will be

introduced, although the methods used are not limited to silica. Obtained porous

structures by these methods can be used as templates for modeling of other porous

systems. Quasi-equilibrated structures thus prepared by the large scale molecular

dynamics can be used as the initial structures for ab initio calculations of electronic

states if necessary.

13.1.1 Modeling of Porous Silica in MD

So far, several methods to prepare computational models of porous silica have been

proposed. Kieffer and Angell [7] prepared a porous model by the expansion of a

dense silica system. The method is later refined by Nakano et al. [8] and Beckers

and De Leeuw [9] have prepared a nano-porous silica model using the charge

scaling procedure. Aggregation of silicic acid in water is studied by Bhattacharya

and Kieffer using a reaction force field [10]. Rimsza and Du [11] have compared

two protocols (by expansion and charge scaling) in modeling of porous systems and

found several differences in the structures and/or mechanical properties.

In Fig. 13.1, another protocol by Habasaki and Ishikawa for preparing the porous

system based on the spontaneous formation of gel from silica nanocolloids [12] is

shown schematically. Using the TTAM model of silica, which allows the reorga-

nization of Si–O bonds, several aqueous systems with different NaCl concentra-

tions were examined. As reported in Ref. [12] in details, infinitive three

Fig. 13.1 A new protocol to prepare a porous model (before annealing) in MD simulations.

Spontaneous formation of infinitive network of silica including open pores filled with water was

observed and this structure was regarded as gel
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dimensional network (with a periodic boundary) of the silica part was formed in

MD at a certain composition and it includes open pores filled with water. This

structure with immobile water (and salt) was regarded as a gel. It is worthwhile to

note that the structure of the-pore part can be obtained at the same time, because it

corresponds to the water part in gels (before further annealing of the system).

Therefore it is easy to visualize the structure of the silica part having open pores

and channels as shown in the right panel of Fig. 13.1. Further details of the porous

structures thus obtained will be reported elsewhere in the near future.

The porous structure obtained by this protocol is not necessarily the same as the

ones prepared by other protocols and comparison of them are in progress. Further

studies for effects of surface modifications, details of morphology, mechanical

properties, and etc. are waiting for researchers to explore.

In order to represent the different length scale regions in gels and related

aggregates, the use of a MD basic cell as large as possible is preferred even to

examine the pores of nano-scales. Around the gelation composition, the dynamics

of the components including water becomes slower. Therefore, long time of

calculation is required to make possible quasi-equilibration of the system with

slow dynamics. Since dynamics of the water confined in pores are different from

the pure water [12, 13] (see also arguments in Sect. 10.7 for systems with particles

blocked or confined by walls), the change of mobility of solvent is non-negligible in

the formation of gels.

13.1.2 MD Simulations of Porous Lithium Disilicate

The ionic motion in the porous structure is known to be accelerated and its

mechanism is a topic of discussion. Some examples of porous materials intended

to increase the conductivity have already been introduced in Chap. 6. Some other

examples are shown here. When the AgI and AgBr are mixed with Al nano particles

or mesoporous alumina, large increase of ionic conductivity was observed [14]. It is

interesting to note that our MD simulations predict considerable increase of mobil-

ity of Li ions in porous lithium disilicate as well [15]. In this case, the porous

structure was prepared by scaling the volume [7, 8] at 600 K and the resultant

density is 0.74 times of original (glassy lithium disilicate before expansion) system.

In the left column of Fig. 13.2, example of trajectories of ions and atoms in porous

lithium disilicate obtained by MD simulations is shown. The last position of these

atoms and ions are shown in the figure on the right column. Quite a heterogeneous

character of the motions of ions is observed. Diffusion coefficient of Li ions is

found to be one order of magnitude higher than the original system, and the motion

of network is also found to be affected by the expansion. As found in the trajecto-

ries, the mobile region is not necessarily along the boundary of the pore. Further

examination of dynamics including the motion of network part is in progress to

understand the mechanism of the acceleration.
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In References [1] and [2], opal (fcc) like porous structures are used for the solid

state battery. The role of ordering (or disordering) and dimensionality of the

structure in the porous materials, especially in electrochemical devices, are also

interesting problems to examine.

13.2 Application of Thermodynamic Scaling
to the Material Design

From the generality of dynamics as suggested by the Coupling Model (CM) [16] as

well as the explanations given in Chaps. 7 and 11 on ionic liquids, one can expect

the thermodynamic TVγ scaling of conductivity relaxation time and transport

coefficients will hold in general. Actually, the CM gave in Ref. [16] that the TVγ

scaling of the structural α-relaxation and transport coefficients stems from the

primitive relaxation of the CM or the associated Johari-Goldstein (JG) β-relaxation.
More details are given in a Chap. 7 on pressure dependence of ionic liquids and

glass-formers. Ribeiro et al. [17] showed by MD simulations in CKN that diffusiv-

ity, viscosity and the structural relaxation time τα obey TV
γ scaling with a common

value of γ¼ 1.8. Therefore, once a master curve for one of the dynamical variable

such as the diffusivity is obtained as a function of a known physical quantity

(temperature and volume or density), it can be used to predict the behavior of the

Fig. 13.2 Accelerated dynamics in porous lithium disilicate at 600 K. Left panel: Trajectories

during 400 ps for the slice of the MD cell (width is chosen to be 10 Å) Red: O atoms, Blue: Si
atoms and Green: Li ions. Right panel: The last position of ions and atoms in these trajectories.

Red circles: O atoms, Blue circles: Si atoms, Green filled circles: Li ions. In this case, density of

the system is 0.74 times of the original system and diffusion coefficient of Li ions is one order

higher than the original system
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system under different conditions, and it is also expected that the scaling holds for

other physical quantities than diffusivity.

Therefore the thermo-dynamical scaling will provide a general and promising

method to design materials having desired properties. This is especially useful for

the ionic liquid, which has many possible combinations of cations and anions. For

example, López et al. [18] have pointed out that the values of the scaling exponent

for the ionic liquids containing the [BF4]
� anion is lower than those for the ILs with

the [PF6]
� anion. They also pointed out that increasing the length of the side alkyl

chain of the cations leads to a decrease in the scaling exponent for both imidazolium

and ammonium ILs. This trend is comparable to that of the scaling exponent

in alkanes examined by Pensado et al. [19]. The value γ¼ 13 for hexane

decreases with chain length to γ¼ 6.3 in octadecane. Thus the guideline for

the selection of material designed for application with certain purpose is simplified

by using the γ value.
Scaling based on the potential of mean force discussed in Sect. 11.10 means

the coarse-grained model using the effective potential functions also work well in

the ionic liquids as well as other glass forming liquids. Therefore, naturally it can be

connected to the theories related to the coarse-graining [20] and entropy

scaling [21].

13.3 Applicability of Effective Potential Parameters
for Coarse-Grained Dynamics

For the study of systems with complex structure such as ionic liquids, coarse-

graining description of the system is useful. Several attempts to replace a long range

electrostatic potential energy by the short range effective potential have been

reported. Izvekov et al. [20] have obtained a soft-sphere type potential by the

force matching methods for water and NaCl, where interaction potential are deter-

mined on an atomic level. Thus the long range Coulombic potential is replaced by

the effective soft-type potential. This success seems to be related to the generality

of the thermodynamic scaling. Thus coarse grained potential can be obtained from

the scaling properties and/or from the pair correlation function both by experiment

and simulations in principle. When it is used for modeling of multi-scale systems,

different levels of systems can be connected without changing the dynamic prop-

erties, if the coupling among systems at different levels is correctly taken into

account.

Recently, Shell [22] suggests that the potential energy landscapes of arbitrary

fluids can be mapped onto effective soft-sphere landscapes in a systematic way

using a recently introduced coarse graining formalism based upon the relative

entropy [23–25]. This approach can also be considered to be related to the thermo-

dynamic scaling.
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13.4 Application of the Mixed Alkali Effect

The mixed alkali effect (MAE) is exploited for various purposes and applications in

industry and society [26]. Therefore, a fundamental understanding the mechanism

of the mixed alkali effect is useful for the design and control the transport properties

and/or dielectric and thermodynamic properties. Furthermore, the low diffusivity in

the mixed alkali glass is useful to increase the strength of the glass. The knowledge

obtained from the MD simulation works has been used to obtain the materials with

the desired level of conductivity.

13.4.1 Low Dielectric Loss Glasses

Materials with low dielectric loss are useful as components in electric devices such

as mobile phones. Low dielectric loss in materials can be obtained effectively in

glasses with low content of alkali ion [26]. For the same concentration of the ions,

mixed alkali glasses can be used, although the MAE at high frequencies is weaker

than that in the low frequency region.

13.4.2 Modification of Surface by Ion Exchange Process

Surface of the glass can be modified by ion exchange process when it is immersed

in a molten salt bath. This technique is convenient to change the strength or optical

properties of glasses [26]. How are the properties of the mixed alkali glass in the

surface different from that of the bulk mixed alkali system? Interestingly, it is

known that the conductivity of both are comparable [27]. After a certain immersion

time, the gradient glass behaves as if it were a composite of stacked layers of mixed

alkali glass with a varying ratio of the two alkali ions [28]. Ion exchange can occurs

even at temperature below the glass transition temperature Tg because of the high
mobility of the alkali ions by decoupling from the structural relaxation. This may

suggest that the details of the long ranged structure of ion channel are not neces-

sarily important for the controlling diffusivity or conductivity, although the perco-

lation of it is a precondition of this statement.

Empirically, after the exchange process of alkali metal ions in the glass, the

mutual diffusion coefficient, D, is given by [29]

D ¼ D1D2= x1D1 þ x2D2ð Þ; ð13:1Þ

where D1 and D2 are the diffusion coefficients of species 1 and 2, while x1 and x2
mean their fractions, respectively.
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13.4.3 Toward the Design of the Materials with High
Conductivity

Both theory and MD simulations have the power of predictability, and it can be

used profitably in some applications. For designing the material of high conductiv-

ity, knowledge of the mechanism of diffusion or conduction of the ionic system is

of course fundamental and seems to be already used for design. Importance of the

dimensionality of paths of ion migration seems to be well recognized nowadays.

Percolation of ionic channels is a necessary condition for the high conductivity

materials. It has been already shown that the related volume of the partial structures

governs the transport coefficients as expected from the TVγ scaling. Some further

hints to design the materials with high conductivity is presented next in this section.

At first we pointed out that the short time activation energy of ionic motion for

jump motion is different from the observed activation energy in the diffusive

regions because the cooperative nature of jumps are important determining factor

for the d.c. conductivity.

1. Effective transport is caused by the cooperative jumps with strong forward

correlations. Therefore effectiveness of cooperative jumps should be taken into

account (Sects. 4.4 and 9.7). For the effective transport of ions, controlling the

dimensionality of paths as well as the optimal concentration of vacancies

enabling the cooperative jumps are useful.

In single alkali oxide system, the mobility of the smaller cation is not necessarily

larger. For the glass and melt of this system, Habasaki and coworkers predicted

[30, 31] larger diffusivity of potassium ions than the lithium ions in the alkali

metasilicate. This trend is confirmed by the experiment for the disilicate composi-

tion at 1000 K [32, 33] including the reproducibility of the mixed alkali effect.

2. Although the mixed alkali effect (MAE) discussed in Chap. 10 is concerned with

non-linear decrease of the dynamics, one can find from research some other

controlling factors of the ion dynamics. For example, the importance of the

dimensionality of the paths and walks was clarified. It is consistent with the fact

that the interception of the ion jump paths is enhanced by the large difference of

the ion sizes of the two species. The analysis of paths and walks enable us to

characterize the details of the transport properties.

3. The power law increases of the diffusion coefficient on the composition of alkali

metal ions are found in MD simulations in single alkali silicate glasses and this

result is consistent to the experimental observation (see Sect. 9.9).

4. It is also interesting to consider the role of mobility of the network in the design.

In silicate and related materials, ions in the glassy state still have mobility in

spite of the slowing down of the dynamics of the framework structures. When we

consider the system with networks, based on the conservation of the momentum

of the system, it is clear that a flexible part such as rotational motions of O

around Si atoms, which can move in the opposite direction of ions, is desirable.
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We also pointed out the importance of the structure of the cages in determining

the mobility of ions.

5. From the arguments of gradual topological changes found in the ionic liquids

and related argument for the silicate glasses (see Sect. 11.11), one can under-

stand why the ions in a cage still can have mobility in the glass.

6. From the experiments performed on nano particles and porous structures, we

learn that there are many possibilities in the preparations of new materials and

composites. From our MD simulations of porous lithium disilicate systems, we

predict that the ionic motion of Li ions is also accelerated in the porous structures

[15] and the simulations will enable us to examine details of the ion dynamics.

7. In the ionically conducting glasses, ionic motion tends to be enhanced when the

two kinds of network former is mixed. The “Mixed former effect” [34–36] is

another example of cooperative motions of ions and matrix atoms. It is possible

to examine how trajectories of ions change with structure by MD simulations of

different mixed network formers.

8. As shown in the comparison of glass and crystal of Li2Si2O5 with the same

composition, we reproduced the large enhancement of mobility of lithium ions

in the former (see Sect. 9.10). Roles of disorder and defects played in the ionic

glass is made clear by the comparison.

9. MD simulations are useful for design as well as screening of the materials that

can operate under special conditions including the extreme ones, while these

tasks cannot be performed by experiments. Systematic changes of the system by

varying the ionic size, mass, and compositions can be easily carried out in MD

simulations, and hence the importance of simulations in the design of materials

will increase in the future.

Of course, the considerations of ionic diffusivity and conductivity given in the

above conditions are modified by other factors such as electromotive force of ions,

densities, availability of ions, durability, safety and cost in practical use.

A multicomponent analysis including all factors will be useful in optimizing the

performance of the material.

13.5 Relation with the Glass Transition Problems

In Chap. 7 and Sect. 11.11.10, we have shown TVγ-scaling is applicable to

conductivity relaxation of ionic liquids. From this fact and since TVγ-scaling is

known to apply to structural relaxation of glass-forming liquids, we have inferred

that the physics governing ion dynamics in ionic conductors are similar to glass

transition. Furthermore, in Sect. 11.11, we have argued for the changes in the

topological characteristics of the system. Because the structure and its fluctuation

via the coordination polyhedra correlate well with the dynamics of the caged ion,

these characteristics of ion dynamics can explain the slowing down of the

structural relaxation in the glass transition problem reasonably. This explanation
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shares a view with the constraint theory related to the rigidity percolation, but it is

not necessarily the same as other conventional theories or models of glass

transition.

Several distinct time regions in the mean square displacement as well as

dynamic heterogeneity discussed in the present book on ionics are commonly

observed in glass-forming materials. Therefore, theories or models of glass transi-

tion may share common grounds with ionics in the basic physics. Some additional

important issues to consider in the glass transition problem are pointed out here

based on the results obtained in ionic systems.

13.5.1 What Is a Cause of the Rapid Slowing Down
of Dynamics Near Tg?

Many theories of the glass transition put emphasis on the super-Arrhenius or the

Vogel-Fulcher-Tammann-Hess (VFTH) temperature dependence of the structural

relaxation time and viscosity, prompting some researchers to assume a divergence

of the length and time scales at the glass transition temperature (or a characteristic

temperature before it). However, as shown in Sects. 11.4 and 11.11.8, the VFTH

behavior of the transport properties found in the Arrhenius plot of the diffusion

coefficient can be also represented by two regions of the dynamics separated by TB
with different temperature dependences. This result suggests that the cause of the

slope change at TB is relevant to understand the rapid slowing down of the dynamics

on decreasing temperature to approach Tg. Actually, below TB, long ranged motion

by cooperative jumps are found to be suppressed. This feature is quite general

because similar slope change is found even for the master curve of the TVγ scaling

of the dynamics in different kinds of materials and therefore not limited to ionics.

When the smaller negative slope is found above TB, it is combined with the

larger negative slope below it, and it enhances the fragile behavior. In other

words, acceleration of the dynamics compared with the Arrhenius behavior at

high temperature region resulted in the rapid slowing down near Tg. Therefore

change in the dynamics at TB is a problem to be explained together with the rapid

increase of viscosity and the possibility of existence of divergent dynamic length

scales near Tg.

13.5.2 Is the Slowing Down of Dynamics Comes
Without Any Change in the Structure?

Glass transition is often assumed to occur without a structural change. Of course,

due to the limitation of the observation time, “computational” glass transition might

be observed especially in MD, where the diffusive regime is not attained within the
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observation time. However, the existence of this limitation of time scale observa-

tion does not exclude the existence of structural changes at Tg.

As shown in Sect. 11.11, several structural changes have been found for the ionic

liquid, EMIM-NO3, by MD. That is, a gradual change of structures concerned with

the rigidity percolation formed by fictive bonds (contact ion pairs) was found.

Namely, geometrical degree of freedoms for the coordination polyhedra and num-

ber of fictive bonds changes in the regions separated by characteristic temperatures,

TB and Tg. The change in the coordination polyhedra is not well known experimen-

tally for glass forming materials, however, corresponding changes in the system

volumes [37–39] and changes in the peak height in g(r) or the related S(q) [40–43],
which corresponds to the changes in the coordination can be detectable in exper-

iments as well as in MD. In a model system such as soft-core and LJ systems,

changes in the g(r) such as splitting of the second peak in the glass is well known

among researchers [44]. The splitting means the dynamical changes among several

structures are suppressed and particle tends to be trapped in the potential well

[40, 42, 43]. Therefore, such structural changes are naturally accompanied with the

dynamic slowing down.

With decreasing temperature and/or increasing pressure of the system,

delocalized motion changes to well defined jumps among cages, and then trapping

within cages. These structural changes in the topological structure of coordination

polyhedra are related to the change in dynamics with temperature and/or pressure.

Importance of topological modeling has been pointed out in several approaches.

For example, as a generalization of Thorpe [45–48] and Phillips [49, 50], Gupta

and Mauro [51] have argued for the composition dependence of the glass transi-

tion temperature and fragility in GexSe1�x using the concept of topological

constraints. Moreover, many properties of glasses such as thermodynamics,

mechanical properties and rheological properties are well represented by the

constraint theory [52].

13.5.3 How Structural (Topological) Changes Are Related
to the Dynamics?

Using the concept of coordination polyhedra and its fluctuation, the relation

between the caged ion dynamics and their structures are clarified for EMIM-NO3

in Sect. 11.11. If one’s standpoint or emphasis is on the dynamics only, it seems to

be difficult to explain why the caged ion dynamics by jump motions remains at

lower temperature than TB. Is the existence of the thermal fluctuation enough to

explain the temperature dependence of it?
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13.5.4 Is the Structure and Dynamics of the Glass Random
or Fractal?

As discussed in Sects. 9.3, 11.6, 11.7, structure and dynamics of supercooled liquids

and glasses are multifractal rather than random. This feature is concerned with the

mixing of different units or length scales. Mixing of the dynamic heterogeneity

naturally explained the existence of different dynamical regions as shown by the

slope changes in diffusivity at the same time. Structural change from liquids to

glasses can occur while keeping multifractal nature of the structure. If one assumes

the structure of the glass is just random, it is difficult to understand how the random

structure can change.

13.5.5 How Can We Detect Non-Equilibrated Relaxation
Before the Glass Transition?

In MD, if one used NVE condition (here we distinguished the NVE ensemble and

NVE condition, because the latter does not necessarily means the NVE ensemble in

a non-equilibrated process), gradual increase of the temperature during the run is

observed if the system is in non-equilibrium (see Sects. 8.2.2.1 and 8.5.3). This also

means the gradual structural changes with decreasing potential energies. Related

changes are also observed in the dynamics. It is also accompanied with gradual

slowing down of the dynamics with elapse of time. These changes might be

overlooked when temperature control is always applied. For examining related

changes, careful treatment of cooling schedule is required.
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Afterword

We have presented a plethora of experimental data and simulations results on the

dynamics of ions in various ionic conductors. The finding is the universal patterns

followed by their properties, independent of the chemical composition and physical

structure, liquid, glassy or crystalline. From our point of view, this is a remarkable

phenomenon in condensed matter physics and materials science, and is worthwhile

of recognition by the research communities from different disciplines. Surprisingly

this recognition has not yet been given, possibly because of the broad spectrum of

materials studied and the publications of results are scattered over various research

journals with diverse emphases. Perhaps the main reason for the lack of recognition

is the absence of any serious effort in the past of analyzing and comparing the

properties of different ionic conductors to bring out the universality until now after

this book has been written. Thus one purpose of writing this book is to make the

research communities fully aware of the universal properties of ion dynamics.

Another possible reason why the universality has not been recognized in the past

is the influence from theories and models proposed in the past to explain the ion

dynamics. These theories did not cover all the properties collected in this book and

naturally are not able to indicate universality we found. Examples including those

theories based on distribution of ion jump relaxation rates or random energy

barriers will not either expect or be able to address the universal properties. Also,

in the current literature, there is the fixation on the frequency dependence of the

conductivity as the major property to be explained, as well as the unjustified claim

of a.c. conductivity of different ionic conductors can be scaled to a master curve.

These works unfortunately have diverted attention of the research community from

the universality of many more important properties of ionic conductors in the past

2 decades.

The universal ion dynamics must originate from some fundamental feature

common to all ionic conductors considered in this book. A common feature is

that most of the conductors have high density of ions, and ion-ion interactions are

naturally one of the determining factors on the ion dynamics. This factor is clear to

anyone familiar with molecular dynamics simulations as presented in several
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chapters of this book. The very first step in carrying out the simulation is to

determine the potential function, which necessarily has the ion-ion interactions

term in it. From this step it is clear that the ion dynamics and the ion conductivity

relaxation and diffusion problem is a many-body problem of irreversible process in

statistical mechanics. Of course the many-body relaxation problem common to all

ionic conductors is just a hint to the occurrence of universal properties. There is no

assurance that this is true until the many-body relaxation problem has been solved

to show the universal properties. Unfortunately, many-body relaxation and diffu-

sion is an unsolved problem in statistical mechanics and condensed matter physics

as far as we know. The well-known Brownian diffusion is a one-body diffusion

problem and it was solved in 1905 by Einstein. Astonishingly, 110 years have gone

by but a complete solution of the many-body relaxation and diffusion problem is

still nonexistent. The only feeble substitute at the present time is the Coupling

Model. Although far from a full solution of the problem, based on classical chaos

originating from ion-ion interactions and other terms in the potential function, the

Coupling Model has proven that it can generate and explain the observed universal

properties of ion dynamics, as well as the dynamics of glass-forming systems. It

may be used as a stepping stone for others to solve the problem completely.

We have written the chapters with the intention of meeting the diverse back-

grounds of the potential readers of the book. Chapter 2 is devoted to describe some

commonly known theoretical models for ion diffusion. It presents the basics of

linear response theory, and introduces the Debye model and other phenomenolog-

ical descriptions of relaxation phenomena. These descriptions are typical not only

for dielectric relaxation originating from bound charges in some systems, but also

for conductivity relaxation in materials with mobile ions. A detailed discussion is

provided of the use of conductivity formalism and of electric modulus formalism,

the connection to linear response theory, and the application for the analysis of the

electrical response of ionic conductors. Chapter 3 presents the basics of Impedance

Spectroscopy (IS) and Nuclear Magnetic Resonance (NMR) techniques and their

applications in experimental study of ion dynamics in ionic conductors. Special

emphasis is given to IS due to its extremely wide spectral range that spans from

frequencies of just a few nHz (τ ~ 1 year) to above 1 THz (τ ~ 10�1 ps). Besides the

description of the experimental techniques, we have tried to provide the reader with

some useful hints for extracting information of ion dynamics from the experiments.

Chapters 4 and 5 contain a multitude of experimental data, obtained by IS and

NMR, showing the relevant properties of ionic conductivity relaxation and ion

diffusion. The universal patterns in the dynamics of ionic conductors emerge from

the collection of the data. The experimental data are discussed in terms of different

proposed models for ion diffusion, and in particular the Coupling Model, which

helps the reader to gain a global perspective of all the different experimental

findings.

Chapter 6 deals with the emerging research field of nano-ionics and applications.

Spectacular changes of ionic conductivity relaxation and diffusion were observed in

experimental studies and by simulations. These changes are important concerns in

the development of nano-ionics for applications, as well as critical in judging
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theories proposed for bulk ionic conductors. It is desirable for a theory to be able to

predict the changes when dimension of the material is reduced to nano-meter

dimension. Even better if the theory can predict quantitatively the changes from

the known dynamics of the bulk. In this Chapter we show the Coupling Model has

done just that, but not any other theory or model discussed in Chaps. 2 and 4 as far

as we know.

Ionic liquids, and especially the room temperature ionic liquids, have recently

become an active research area of ionic conductivity relaxation. These ionic liquids

and molten salts are also glass-formers. Therefore the study of the ionic dynamics in

these materials necessarily involves both ionic conductivity relaxation and struc-

tural relaxation which leads to glass transition. The results from experiments and

simulations in ionic liquids challenge simultaneous explanations of the two aspects

of the dynamics. So far no theory of ionic conductivity relaxation has done so

except the Coupling Model.

Molecular dynamics (MD) simulation is a powerful tool to examine the struc-

tures, the dynamics and the mechanism behind them. The technique might be

regarded as a microscope probe, where the magnification can be changed freely,

and even the dynamics of each ion can be observed. The essentials of the technique

necessary for understanding the properties of ionic materials by MD simulations are

explained, and a practical introduction for that newcomers to engage in research

using MD simulations are also included in the book. By these means we hope MD

simulation techniques will become more familiar to researchers and accessible to

beginners of ionics and related fields, and our book can serve as a guide for starting

new research to gain deeper understanding.

In Chap. 9, the structures and dynamics of ionically conducting glasses for

lithium silicate glasses (Li2SiO3 and Li2Si2O5) examined by MD simulations

were discussed. In Chapter 10, the lithium metasilicate mixed with potassium

metasilicate was examined to clarify the mechanism of the mixed alkali effect

(MAE). In Chap. 11, ionic liquids are examined from several points of views, using

the system EMIM-NO3 as an example. The glass transition of the system was also

examined and behaviors are explained by the changes of the topological constraint

of the system. Transport properties obtained by MD simulations are compared with

experiments and theory in these chapters. A limited number of systems are exam-

ined by different approaches with references given to related works. The method

and style of research carried out by simulations is quite different from that in

Chaps. 4–7, where experimental data from studies of a variety of ionic conductors

are accumulated and analyzed to show the generality of properties implying the

existence of common underlying physics, and compared with predictions from

theory. The results of some simulations overlap that presented in Chaps. 4–7 despite

the difference of styles and time scales. The results obtained by these two different

approaches should be consistent if the underlying physics are common. In fact this

is the case, and this should make the readers more convinced of the existence of

universal properties of ionic conductors and the underlying common physics.

From Chaps. 9–11, one can understand there are some remarkable differences

between dynamics of glasses and crystals of the same composition. Difference
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between single alkali and mixed alkali systems can be also found in the mixed alkali

effect (MAE). The dynamics of ionically conducting glasses and glass forming

ionic liquids are also different. Comparisons of these different systems for

distinguishing their properties will be useful to understand and to predict the

properties of new materials. The non-linear MAE is a key feature of ionic dynamics

critical in judging the validity of any theoretical explanation of ion dynamics. One

of the remarkable contributions of MD simulations to ionics is concerned with

identifying the mechanism of the mixed alkali effect. Existence of independent

paths of unlike ions in mixed alkali glasses was proven by distinct part of the van

Hove functions, and the paths of ions were visualized in the simulations. At longer

time scales, existence of jumps among unlike ion sites are found and it causes a

loosening of the network structures.

Non-Gaussian dynamics found in the real space is closely related to the stretched

exponential decays in the intermediated scattering function, as revealed by exam-

inations of the mean square displacement (MSD), the van Hove functions, the

non-Gaussian parameters, and by the fractal dimension analysis. Ionic motion

shows dynamic heterogeneity (coexistence of fast and slow ions) similar to the

glass forming materials near the glass transition temperature. Each motion found in

several distinct time regions of MSD was characterized by these functions and

fractal dimensions (or exponents).

Development of the mean square displacement (MSD) with time starts from

local caged ion dynamics, independent and local ion jumps, changes to ion jumps

participated by increasing number of ions, mixing of fast and slow motions of ions,

and culminating in the long ranged diffusive motions which defines the diffusion

constant. We have successfully separated spatial (related to the geometrical corre-

lations among successive jumps) and temporal (related to the waiting time distri-

bution of jumps) contributions to the MSD. Thus the relationship between the jump

motions and the relaxation rate of stretched exponential relaxation is clarified.

In room temperature ionic liquids, ionic motion also shows dynamic heteroge-

neity and the several distinct time regions of mean squared displacement (MSD)

similar to that found in ionic glasses, as reported for the case of EMIM-NO3.

Moreover, the ion dynamics obey thermodynamic scaling similar to that found in

structural relaxation of glass-formers and there are similar relation between topo-

logical structure and dynamics for the ions and for the structural relaxation respon-

sible for glass transition.

We clarified that the heterogeneous ion dynamics have a multifractal nature. By

the multifractal nature of walks, heterogeneous density profile of ions is formed.

Heterogeneous motions and structures can be well characterized by the multifractal

analysis using singularity (D(h) or f(α)) spectra. Thus mutifractality is a measure of

the heterogeneity and can be used as a general framework to describe the univer-

sality of the dynamics and structures.

Applications of MD in several fields were also discussed. For example, in

nanoionics, MD simulations are expected to play a role for understanding the

mechanism of ion transport and for optimization of them as devices. Design of

solid state batteries totally by MD simulations is a promising approach, if the
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required system size and time scales are fulfilled. Such emerging fields are not fully

explored so far, and they await new efforts from other researchers. With further

developments of the methodologies and computational techniques, MD simulations

will be able to study the ion dynamics of larger size systems to longer time scales, as

well as more complicated systems with hierarchy structures.

Before starting writing this book, when we first explored the ideas of undertak-

ing this project, we strongly felt indeed useful to have such a monograph on the

dynamics in ionic conductors. We agreed that it should be a book presenting

comprehensively the many experimental results, the theoretical developments and

modeling, and the progress made by MD simulations in ionically conducting

materials during the last few decades. The book written indeed covers experimental

data from a large variety of materials obtained by using different experimental

techniques, and various theories and models. Most importantly, the theories and

models are discussed in connection with experimental results to emphasize their

strength and weakness. Many examples of MD simulations are given to examine the

dynamics of mobile ions and to understand them.

Our purpose was to write a self-contained book which could be of interest to both

beginners and experienced researchers in dynamics of ions in ionic conductors, and

serve as a basis of future developments in the field. It is written in such a way that it

may be used as a text-book for university students in a postgraduate course and, at

the same time, used as a reference book for active researchers in academic institu-

tions and industries. We have tried to provide the fundamentals for an introduction

to the field, explaining the basics of experimental techniques, theories of ion

diffusion, and MD simulations applied to ion dynamics, together with an overview

of the recent research results and current activities in the field. And we have also

gathered many relevant scientific results from experiments, theories and simula-

tions, and discuss them by using general concepts that shed light on the universal

patterns found in the properties of the dynamics of ionic conductors, independently

of its chemical composition or physical state, and the role played by many-body

interactions in generating this universal response.

We believe the subject of the book is currently of great interest for the broad and

diverse communities of condensed matter physicists, chemists, materials scientists

and engineers working in many different systems, and making contributions to both

fundamental and applied research. Driven by technological application of ionic

conductors in fuel cells, supercapacitors, and lithium-ion and other solid state

batteries, the interest in the subject is expected to increase in the years to come.

Energy generation, transport, and storage is one of the most important challenges of

the world. Realization of a “green economy” in the future also depends on advances

in research and development of ionics. We sincerely hope this book will contribute

to progress in science and technology of the ionically conducting materials.
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Appendix

A.1 Fractal Dimension of Random Walks

The motion of ions in the molten state (including ionic liquids) or in glasses is quite

heterogeneous. Abnormal diffusion can be found in certain time regimes due to

coexistence of fast and slow ions. Diffusivity of particle is related to how its

trajectory spreads in the space. How can we characterize the motion from the

trajectory?

Mandelbrot has determined the fractal dimension of random walk, such as in

representing the complexity of the coast line by using a divider method

[1]. The method is applicable to the trajectories of ions obtained by MD simula-

tions; i.e. fractal dimension of random walks is a measure of the complexity of the

trajectory. Trajectory is not an exact fractal in the sense of the self-similarity but has

the characteristic of statistical fractal dimension. In general, dynamics of ions in

disordered materials show large dynamical heterogeneity both temporally (waiting

time distribution of jumps) and spatially (geometrical correlation among successive

motions). The fractal dimension analysis of the trajectories is concerned with the

spatial term.

A schematic description how to measure the fractal dimension of the random

walk from the trajectory of ion is shown in Fig. A.1.

With using a divider method or related ones, one can determine the fractal

dimension of the random walks. Using divider (i.e., a straight ruler) of length Lr,
one can count how many times, NT, are required to cover the trajectory. From the

slope in the double logarithm plots we determine the fractal dimension of random

walk, dw, defined by

NT ¼ ALr
�dw : ðA:1Þ

For the system with many ions, we used the following method. When the length of a

complicated trajectory obtained by simulation during trun is measured by a divider,

the number of times needed for the divider to cover the entire trajectory is ν.

© Springer International Publishing Switzerland 2017
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The total length of the trajectory is νLr, which depends on the choice of Lr. For more

complicated trajectories, a larger νLr is obtained if a smaller Lr is used. Then, NT,

which is determined as a function of Lr, is the number of times required for the

divider of length Lr to cover all the trajectories obtained after a run up to trun. In this
manner we can examine all the trajectories of the ions obtained during runs at

several temperatures, with Lr ranging from 0.3 to 10 ~ 20 Å.
Normal random walk like in Brownian diffusion has dw¼ 2. The value increases

if the trajectories are more complex and localized, while the value decreases if the

trajectories were simpler and delocalized. The trajectory curves can overlap each

other and therefore the obtained fractal dimension is a latent one, which can be

larger than the dimensionality of space.

The slope with θ (¼2/dw) is expected for the fractional power law region of

the MSD (before the onset of the diffusive regime) in the case of infinitive network.

That is, if the ionic site is visited by the walk with dw in a monofractal manner, the

mean squared displacement in the power law regime is given by

r2 tð Þ� � � t2=dw: ðA:2Þ

The value can be modified if we consider every particle on clusters of different sizes.

In many cases, more than one region will be found in the plots of NT against Lr

for trajectories examined. Then the walks are “multifractal walks” as explained in

Appendix A.6.

A.2 Dynamic Heterogeneity: Coexistence
of Slow and Fast Ions

The fractal dimension of random walk with dw¼ 2 corresponds to Brownian

diffusion. Fast ions with accelerated motion show smaller dw value (dw< 2),

which means the trajectories are more linear like and this also means the acceler-

ation is achieved by the geometrical terms. On the other hand, localized motion

Fig. A.1 Complexity of the trajectory determines how particle diffuses. Using a ruler of length Lr,
fractal dimension of the random walk (see Eq. A.1), which represents the complexity of the

trajectory, can be measured
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tends to have larger dw (>2) values, which means the trajectories are folded many

times. On path with small dimensionality, such motion can be understood as

“fracton” [2], coming from the complicated motion and small dimensionality of

the paths.

A.2.1 Concept of Fracton

When the motion of ions are examined along the trajectory, the numbers of sites,

V(N ), visited during the N steps is represented by

V Nð Þ � Rdf � Nds=2; ðA:3Þ

where df is the density dimension of the cluster formed by the visited sites and R is a

linear size of it. Vibrational state on the fractal structure depends on both the fractal

dimension of the visited sites and the walk as follows.

“Fracton” dimension, ds, is defined by

ds ¼ 2df =dw; ðA:4Þ

The back correlation probability, <P0(t)>, of finding a walker, which is located at

an origin initially at time t0 and back to the initial position at time t, is given by,

<P0 Nð Þ> � V Nð Þ½ ��1: ðA:5Þ

In the case of slow dynamics, both long waiting time and localized motion con-

tribute. On the other hand, for the fast ions, the Lévy flight [3, 4] dynamics play

important roles as explained in the next section.

Although heterogeneous motion is omnipresent at least in the observed temper-

ature regions, long time diffusive motion is a coarse-grained one after the mixing of

fast and slow motions of ions, and that is why the complex motion of ions at long

times can be represented by the mean behaviors of fast and slow ions.

A.2.2 Concept of Lévy distribution and Lévy flight

The self-part of the van Hove functions often shows a long (inverse power law) tail

deviating from the normal Gaussian dynamics, near glass transition. The charac-

teristics of the motion represented by such a function are explained here.

Existence of such tail means that the motion involves large length scale, which is

a rare event, but is non-negligible. The heterogeneous dynamics observed can be

represented by a Lévy (alpha stable) distribution [5] with a truncation (note that
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without truncation or other mechanisms, the distribution will have infinitive second

or higher moments).

The stable distribution is defined by the characteristic function φ(α, β, γ, δ).
Here α is index of stability or characteristic index (exponent), α2�0, 2�, β is a

skewness parameter, β 2��1, 1� (where,
�
a, b
� ¼ x

��a � x < b
	 


and�
a, b
� ¼ x

��a < x � b
	 


) and γ is a scale parameter, γ> 0, and δ is a location

parameter, δ2. Some caution is required because of the different parameteriza-

tions and or the naming of the distribution.

One can find the different types of parameterization in Ref. [6]. The term “Lévy

distribution” may be used for narrower meaning, specifically for the case of α¼ 0.5

and β¼ 1 [7]. In this book, we use the term “Lévy distribution” with a wider sense

(that is for alpha stable distribution) and the following figures are prepared by the

“type 1” parameterization in Ref. [7].

For the stable distribution of the random variable X with distribution

function F(X), the characteristic function is defined by

ϕ uð Þ ¼ Eexp iuXð Þ ¼
ð1
�1

exp iuXð ÞdF Xð Þ:
The stable distribution of random variable X has the characteristic function

φ(α, β, γ, δ) given by

E exp iuXð Þ ¼ exp
�
iuδ� γα

��u��α 1� iβ Sign uð Þ tan πα

2

� �� �
, when α 6¼ 1: ðA:6Þ

E exp iuXð Þ ¼ exp iuδ� γ
��u�� 1þ 2iβ ln

��u��Sign uð Þ
π

 �� �
, when α ¼ 1: ðA:7Þ

Here the Sign function returns the sign (plus or minus) of the value. Here our

attention is focused on the situation with 1 < α � 2:
Figure A.2 shows the Lévy distribution S(α, β, γ, δ) with several α values (1.0,

1.2, 1.4 and 2.0). The shape gradually changes with the Lévy (or α) index and the

Gaussian dynamics is just a special case of the distribution with α¼ 2.

Fig. A.2 Example of Lévy

distribution Sðα, β ¼ 1ð Þ,
γ ¼ 0ð Þ, δ ¼ 1ð Þ) with several
α values (1.0 (Yellow), 1.2
(Green), 1.4 (Blue) and 2.0

(Red)), where 2.0
corresponds to Gaussian

distribution. You can

manipulate the parameters

of the function using free

CDF file in ESM (see Sect.

12.2)
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When temperature is lowered or pressure is increased, motion of ions becomes

jump like. In this case, the distribution is related to the Lévy flight dynamics of the

jump motion of ions. Essence of the Lévy flight dynamics can be explained as

follows [3] by considering the motion (walk or flight for clear jumps) of an ion

(a particle or a molecule in general) in a real space. For the probability for the sum

of N steps PN(X), where X¼ x1þ x2þ ----þ xN, one can say the distribution is

stable when the same probability p(x) is found in the individual steps.

As a simple example of the Lévy flight dynamics, Weierstrass random walk

represented by

pðxÞ ¼ λ� 1

2λ

X1
j¼0

λ�j½δðx, bjÞ þ δðx, � bjÞ�, ðA:8Þ

where b> λ> 1, is known. This probability means that there are jumps with size of

x¼ 1, b, b2, b3--, where the b time longer jump is λ times less probable. Here δ(x, y)
means the Kronecker delta, which equals 1 when x¼ y and otherwise vanishes. The
Fourier transform of this equation results

p
� ðkÞ ¼ λ� 1

2λ

X1
j¼0

λ�jcos ðbjkÞ � exp½�Njkjα
0
�for small k, ðA:9Þ

where α’¼ ln λ/ln b.
In the example 2 of ESM, some examples of analysis of jumps in proving the

existence of Lévy flight dynamics are shown (see Sect. 12.2).

A.2.3 Lévy Walk and Lévy Flight with Strong
Back Correlated Motions

Lévy flight can be an origin of the accelerated motion. However, at temperature near

the glass transition or in glassy state, it is related with slow dynamics on the average.

Klafter et al. [3] have examined the Lévy walk, where the Lévy flight is

combined with the fractal waiting time distribution. The probability density,

Ψ (r, t) of the displacement vector of particle r at t is represented by,

ið Þ
ðð

Ψ r; tð Þdtdr ¼ 1

iið Þ Ψ r; tð Þ ¼ φ rð Þδ t� ��r��=v rð Þ� �
iiið Þ φ rð Þ �

r!1
��r���μ

ðA:10Þ

Here the step length is φ rð Þdr ¼ φ rð Þdr.
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This model can explain the enhanced dynamics in turbulence successfully. The

Lévy motion can be combined with a fractal waiting time distribution having a long

tail [5]. This temporal slowing down can be a mechanism to avoid the divergence of

the Lévy flight.

Another possible mechanism causing slow dynamics is a strong back correlated

ionic motion, observed in the fractional power law region of MSD in ionic liquids

and in glasses [8–12]. The strong back correlation in the low temperature region,

which is characterized by the large fractal dimension of the random walks, also

causes the slowing down instead of waiting time distribution. In other words, tailed

shape of the self-part of the van-Hove function is formed by the length scale

distribution with α< 2 folded by the strong back correlation [13]. Although the

waiting time distribution of jump motions exists for both slow and fast components

of the dynamics, mean number of jumps at a time is nearly constant for the ionic

motions observed in the quasi-stable glass (see Sect. 9.5.5). Temporal and geomet-

rical slowing down might be expressed by the similar expressions; however, the

physical meaning is not necessarily the same.

A.2.4 Truncation of Lévy Distribution
and Multifractal Mixing

As already mentioned, Lévy stable process has infinite variance and hence addi-

tional mechanism is necessary to explain the behavior in the abnormal diffusion. In

MD simulations of ionic systems [13], exponential truncation of the self-part of the

Van Hove functions is found and this is a possible mechanism to avoid the

divergence of the dynamics. Corresponding upper cutoffs (abrupt one and a smooth

exponential regression) are theoretically treated by several authors [14–16]. Mante-

gna and Stanley [14] have shown that the convergence of the truncated Lévy flight

(TLF) with a sudden cutoff to a Gaussian process is a ultraslow process, because it

requires a remarkable large number of independent TLF steps n (~104) in contrast to

~10 for common distribution. Nakao [16] has pointed out that the TLF shows multi-

scaling properties because of convolution of different length scale motions.

We note that similar mechanism to avoid the divergence of the dynamics is also

possible for the temporal term. For the particles in the rigid heteronuclear bi-atomic

system [17], the waiting time distribution was found to be exponential at higher

temperatures, while at low temperatures, waiting time distribution function of the

jump relaxation was found to obey power law at short times and the decay is faster

than exponential at long times.

The systems with smooth truncation (with an exponential cut-off) exhibit

bi-fractal behavior, which is the simplest case of multifractality [16]. The mecha-

nism plays a role in the dynamics observed and is related to the multifractal nature

of the walks [18], and the multifractal density profile shown in the Appendix A.3 is

formed by such motions.
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In the observation in a limited time scale of experiments and in the simulations,

often the stable region (power law region in MSD) continues for long time;

however, Lévy flight dynamics will not hold further at long times, because of the

truncation of the distribution.

The form of the truncated Lévy distribution seems to be closely related to the

Weibull distribution, W(x), with the following form [19],

WðxÞ ¼ 1=β α
x� μ

β

 �α�1

exp � x� μ

β

 �α � !
, ðA:11Þ

which has both the power law term and the exponential tail. Here the α, β and μ are

the shape, scale, and positional parameter, respectively.

In the case of ionic liquid, this functional form is useful for fitting of the data of

the self-part of the Van Hove function as shown in Fig. A.3 (unpublished data)

approximately.

A.3 Concept of Multifractal Density Profile

To envisage the structure of the ionic system or positions of ions in disordered

system, it is convenient to consider the density profile of it.

An example of a density profile for the Li ions in the lithium metasilicate glass is

shown in Fig. A.4.

Fig. A.3 Self-part of the van Hove function (blue) of EMIMþ ion at 370 K, at 600 ps compared

with Weibull distribution (pink), where α, β and μ are 2.50, 4.75 and 0.0165, respectively. And

normal distribution(pale blue) where μ and σ are 4.23 and 1.81, respectively
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In such a density profile, localized sites and paths connecting them can have

different fractal (Hausdorff) dimensions.

As can be seen from this figure, density profiles of systems in the liquid and

glassy states are complex and heterogeneous. Such characteristics of the structure

can be well represented by the multifractal (singularity) spectra explained in

Appendix A.5. The analysis is applicable for any patterns with contrasting density

and thereby it provides a common framework to study complex structures with

heterogeneity. The theoretical structure of the analysis is comparable with the

“thermodynamics” and is applicable in both time and space to many objects. So

far it is applied for many systems such as chaos, turbulence, geophysics, bio

materials and so on. Before explaining the multifractal analysis of the density

profile, we explain the concept of multifractal.

A.4 Fractal and Multifractal Cantor Sets

In Figs. A.5 and A.6, mono-fractal and multifractal Cantor sets are shown to explain

the concept. Uniform (mono fractal) Cantor set was constructed as follows. At first,

a top bar of length 1 is prepared. The second stage is done by removing 1/3 of the

middle part of the top bar (of probability 1) and the probability of right and left bars

are the same (1/2). In the third stage, 1/3 of each bar was removed and the

probability of both sides was the same. This procedure is repeated. After

n generations, each segment has measure p0¼ 1/2 and scale l0¼ 1/3. In the n-th
generation, the small bars with the same lengths are found. Thus the system is

Fig. A.4 An example of a

density profile of Li ion for

a slice of the MD cell in

lithium metasilicate glass.

Positions of ions are

accumulated during 1 ns

MD run at 700 K. Red part
has the high counts

corresponding to the

deepest well of the ion site.

Such a pattern with

heterogeneity can be

characterized by the

multifractal analysis
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uniform. In Fig. A.6, an example of multifractal Cantor set is shown. In the case of

multifractal Cantor set, similar procedure is repeated with different l and p values.

Here we used the scales of l1¼ 1/5 and l2¼ 1/4, with measures p1¼ 3/5 and

p2¼ 2/5. Resultant distribution after several stages is rather heterogeneous. There-

fore, multifractality provides a general description of the heterogeneity.

A.5 Singularity Spectrum f(α)

Multifractal nature of the probability density profile (or patterns in a general case)

of ions can be represented by using a singularity spectrum, f(α), which is defined

and obtained as follows [19].

Fig. A.5 An example of a

uniform (mono fractal)

Cantor set. From a bar on

the tip, 1/3 of the middle

part was removed in the first

stage. This procedure was

repeated

Fig. A.6 Example of a

multifractal Cantor set.

Length 1/5 and 1/2 remain

in the first stage, where the

measure is 3/5 and 2/5,

respectively. This

procedure was repeated.

Resultant distribution after

n stages is heterogeneous.

That is, multifractal

analysis gives a spectrum

characterizing the

heterogeneity
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Singularity spectrum, f(α), is obtained from the probability μi(δ). The procedure
to obtain the function from the (accumulated) density profile of Li ions is described

as follows.

1. Pattern (density profile) was divided into cells with size δ.
2. Measure (probability) μi(δ) (¼ni/

P
ni ) of the cell is measured. In this case, the

number “howmany times ions visit the i-th cell during the run”, are regarded as ni.
3. The measure μi(δ) is represented as

μi δð Þ ¼ δα; ðA:12Þ

where α is a strength of the singularity. The probability of α lying between α’ and
α’þdα’ is

ρ α’ð Þ / δ-f α’ð Þdα’: ðA:13Þ

Thus f(α) corresponds to the fractal dimension of the set of small cells with a

singularity strength α and they are obtained as the function of the moment q,
using [μi(δ)]

q,where the q-th moment emphasizes the concentrated region of the

data points when it is positive and emphasizes the rarefied region when it is

negative.

When q¼ 0, f(α(q)) corresponds to the capacity dimension, D0, while

information dimension is given by f α q ¼ 1ð Þð Þ ¼ D1, and correlation dimension

is given by D2.

Using the normalized q-th moment, μi(q, δ), the numerical values of α(q) and
f(α(q)) are obtained for a certain range of q (�40< q� 30 were used in our

analysis) for several δ values using following relations.

αðqÞ ¼
XN
i¼1

μiðq, δÞlnμiðδÞ=lnðδ=LÞ, ðA:14Þ

f ðαðqÞÞ ¼
XN
i¼1

μiðq, δÞlnμiðq, δÞ=lnðδ=LÞ, ðA:15Þ

where μi(q, δ) is defined by

μi q; δð Þ ¼ μi δð Þ½ �q=
XN
j¼1

μj δð Þ� �q
: ðA:16Þ

Typical singularity f(α) spectrum of the multifractal is found in Fig. A.7.

A convex shape of the curve in the f(α) spectrum means the multifractality

(mixing of more than one exponent). That is, the structure is formed by the mixing

of localized and accelerated motions having different exponents.
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The generalized dimension, Dq, is related to f(α(q)) by a Legendre transforma-

tion, τ qð Þ ¼ q�1ð ÞDq, where τ(q) and q are conjugate thermodynamic variables to f
(α) and α. These relations have the similar structure as the thermodynamic formal-

ism of equilibrium thermodynamics. In other words, the multifractal analysis has

the thermodynamic framework and generally applicable to many systems. Using

the singularity spectra, one can compare the heterogeneity of different systems.

A.6 Multifractal Walks

A multifractal density profile is formed by the multifractal motion of many ions.

Therefore, each ionic motion has also a multifractal character. Such process named

multifractal random walk was introduced by Bacry [18].

Multifractality of the walks can be characterized by singularity spectrum using

Hurst exponent [20, 21], h, defined by the following equation.

δxi t0; δtð Þ ¼ xi t0 þ δtð Þ � xi t0ð Þj j � δtð Þh t0ð Þ ðA:17Þ

In the power law region of the MSD,

<r2 tð Þ>¼ 2D� tθ, then θ¼ 2H, here H is the Hurst exponent for the mean

behavior of particles. Since the fractal dimension of the random walk dw is related

to θ by θ¼ 2/dw, the value of dw for the mean behavior corresponds to the inverse of

the Hurst exponent [22].

If the motion is simple Brownian, the Hurst exponent, h, is always 0.5 and the

displacement is self-similar at everywhere. The singularity spectrum D(h) for the

Fig. A.7 Example of the singularity (f(α)) spectrum for the density profiles of Li ions found in the

silicate glasses. Convex curve means the multifractality. The maximum position with q¼ 0

corresponds to the capacity dimension of the profile. The value for q¼ 1 corresponds to the

information dimension. The αmax and αmin correspond to the most rarefied part and the densest part

of the density profile, respectively. Therefore, it is a measure of the heterogeneity of the structures.
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motion can be defined by a similar manner as f(α). Example of such spectrum is

found in Fig. 11.11 of Chap. 11 for ionic liquid.

The curved shape of the spectrum is due to the mixing of several exponents

resulting in the distribution in the Hurst exponents; and therefore it also means

multifractality (multiaffinity in the strict sense) [16]. The density profiles with

multifractal natures are thus formed by the multifractal walks. From the definition

of the Hurst exponents in (Eq. A.17), it is obvious that the distribution of the Hurst

exponent is related to the power law exponent in the MSD. As shown by the

example of this figure, short length scale motion is mixed with the longer scale

motion to form multi-fractal walks. This result is consistent to that found in the

fractal dimension analysis of random walks of the trajectories [23], where two

different length scale regions are found in the NT against Lr plot explained in

Appendix A.1.

A.7 Time Series Analysis: De-Noising of Data
by Singular Spectrum Analysis (SSA)

Ions in glasses tend to be localized at the initial sites, when we start observation at

an arbitrary chosen initial time. With elapse of time, the vectors indicating the

displacement of the moving ions tend to be grouped together in domains and the

size of the domains grows with time (see Sect. 4.6). Although time series of such

vectors or other data obtained from MD simulations contain useful information on

the dynamics of the system, they tend to be affected by short time thermal noises

considerably.

How can we extract the characteristics of motion without noises?

Previously, using the phase-space plot of de-noised data, similarity of the

dynamics in ionic liquids and ionically conducting glasses are clarified, where

both show a long term memory of the motion and deterministic characters. These

plots exhibited clear topological structures with a complicated and dissipative

character (see Sect. 11.9).

Singular Spectrum Analysis (SSA) [24] is a principal component analysis of

time series, which can extract the de-noised data from raw data. SSA

non-parametrically provides a robust method of separating an arbitrary signal

from noise, and finds the most probable equation to represent the data to maximize

the variance of the data. When it is applied to the MD simulations, it is useful to

extract the structure of motion in the phase-space and/or in the real space by

de-noising the MD data.

In Fig. A.8a, an example of the de-noising applied for the ionic motion is shown.

By using the reconstructed data, phase-space plot and return map are obtained.

When applied to the jump motion of ions, SSA can effectively extract the charac-

teristic of it for both within and among sites as shown in Fig. A.8b. In this figure,

small circles are for localized motion and these regions are connected by larger
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circle like motions for delocalized motion. Even a longer scale motion is found

during a long run. The clear pattern means that the deterministic characters of

jump motions. This means that ion moves along a kind of strange attractor both

in the short time (NCL) regime and the longer time (jump diffusion) regimes (see

Sect. 11.9).

As shown in this figure, time series analysis was successfully applied for the

development of the length of these vectors, that is, the absolute value of the

displacements of ion. From MD simulations, several kinds of time series x (t)
(t¼ 1,---,N ) of data, where x can be positions, velocities, temperatures, and other

variables, are available and the method is applicable to other time series.

Fig. A.8 (a) Example of

de-noising of data using

singular spectrum analysis

(SSA) for ionic motion. The

data is the absolute value of

the displacement of

arbitrary chosen Li ion at

800 K in lithium disilicate

glass. The ionic motion is

localized within 12 ns run.

A blue curve is for the
original data sampled every

1000 step. A red curve is for
the reconstructed data using

the 1 ~ 3 principal

components. (b) Phase-
space plot obtained from the

reconstructed data. Here the

difference of the absolute

value of the displacement

with an interval of dt
(¼4 ps) is plotted against

the value at t. The clear
pattern of the dynamics

hidden in the noise was

clarified
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The analysis can be done as follows. The sampled time series x (t) (t¼ 1,---,N )

are embedded in a vector space of dimension M by considering M lagged copies.

x(t, j), j¼ 1,-----M.

1) the M x M lag-covariance matrix CD of the data was computed using the

trajectory matrix D,

CD ¼ N�1DDT : ðA:18Þ

Eigenvector Ek (empirical orthogonal functions, EOF) and the eigenvalues λk
are obtained by the diagonalization of the covariance matrix CD from the

N sample points. The eigenvalues λk are obtained are ranked in a decreasing

order. The eigenvalue gives the variance of the time series in the direction

specified by the corresponding eigenvector.

2) For each EOF, we can construct the k-th principal component Ak(t) of length N,
as follows.

Ak tð Þ
XM
j¼1

x tþ jð ÞEk, j t ¼ 0, ��� ,N �M; ðA:19Þ

Partial reconstruction RK(t) of the original data series can be obtained by

RK tð Þ ¼ 1

Mt

X
k2K

XM
j¼1

Ak t� jð ÞEk, j,M � t � N �M þ 1: ðA:20Þ

Here N means N�Mþ 1.

The time series x(t) can be represented by

x tð Þ ¼
XM
k¼1

xk tð Þ; ðA:21Þ

where the function xk (¼RK(t)), which is a k-th component of x(t), form a

complete orthogonal set. The eigenvalue λk in SSA gives the variance of the

time series in the direction specified by the corresponding kth eigenvector, thus
the reconstructed data using the first component by SSA is a most probable

direction of the data.

The function xk in Eq. (A.21) forms a complete orthogonal set. For example, the

direction of the second principal component is perpendicular to the first component.

This gives us useful information for the characteristics of the motion.

The probability of the system being in the state xk is Pk and it is defined by

Pk ¼ ð
ð
x2kdtÞ2 ¼ λk

2 ðA:22Þ

Thus λk is a measure of the importance of the mode xk in the expansion of x(t).
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This approach is promising not only to learn more about the dynamics of ions but

also for the understanding of molecular motions from the MD simulation of glass-

forming substances. In principle, it can be used to prepare the model to represent on

the coarse-grained level while keeping the phase-space structure of the dynamics.

A.8 Acceleration of MD Simulations by GPU

There are several ways to use the Graphic Processing Unit (GPU) (see Sect.

8.2.12.1). One is through using the library, in which some functions are accelerated

by GPU. In such a case, each function seems to be well tuned for the devices by

experts of GPU coding. Second one is to use OpenACC, which are directives for

accelerator.

Compiler (for example, PGI Compiler [25]) can treat the parallel computation by

addition of OpenACC to the source codes as follows.

------------Example of coding using OpenACC-----------

!$acc parallel loop !OpenACC
DO j¼ 1,M

DO i¼ 2,N-1

Codes for a parallel computation

END DO

END DO

!$acc end parallel loop

----------------------------------------------------------------

As shown here by bold fonts, OpenACC directives are inserted both in the

beginning and the end of the target Do loop. Then the codes between them are

compiled for parallel computation by the compiler. The acceleration by this method

is not always successful and not necessarily better than using programming language,

but is useful to use GPU with a small effort. The third one is to use programming

language such as CUDA [26]. This allows fine tuning of each program.

GPU can be used in several programming languages such as C, FORTRAN

(or Fortran) and/or in several applications such as MATHEMATICA and/or

MATLAB.

Nowadays, C or Cþþ languages seem to be more frequently used than FOR-

TRAN; however, many MD programs traditionally use FORTRAN as well. It

depends on the store of knowhow and related programs etc. For the numerical

calculations, the FORTRAN seems to have some reasons for it to be used. After

FORTRAN 77, structured programming was introduced and modules can be used in

Fortran 90, 95, and 2003. Probably, it depends on the problem in judging of which

language is the best. For example, see Ref. [27] for the comparison of C and

FORTRAN.

Here we show an essence of CUDA coding for an example of FORTRAN

program of MD of ionic system [28], while similar coding is possible in other

languages.
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A.8.1 Example of CUDA Coding of the MD Program
for Lithium Silicates, lso.f

The following is a part of MD code named “lso.f” using CUDA FORTRAN.

A structure of MD program coded by CUDA is as follows.

Here “DO 9999 loop” is a main loop for MD steps and the CUDA program was

found to be 26 times faster than the original code for this main loop.

In this program, the loop 200 is a hot spot, which should be parallelized.

The loops 200 and 98 (not shown) are treated by GPU and other parts are treated

CPU in this code.

------------------------

Reading module

Setting of the initial values

| Setting of input and output files

| Input from files

|--- Setting of device

|

|--- Reserving the device memory (cudaMalloc)

|--- 0 clear of device parameters (cudaMemset)

|--- Data transfer from host to device (cudaMemcpy)

| C < < < START SIMULATION > > >
|--þDO 9999 COUNT¼ 1,STEP ----Main loop for MD steps

| |--- 0 clear of device parameters (cudaMemset)

| |--- Data transfer from host to device(cudaMemcpy)

| |--- loop98

| |--- Data transfer from device to host(cudaMemcpy)

| |--- loop200

|

|--- Data transfer from device to host(cudaMemcpy)

|--- Releasing the device memory (cudaFree)

|

|--- Output to files

-------------------------------------------------------------

Setting of device can be done using the following command.

istat¼ cudasetdevice(0)

Here device number 0 is used.
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In the program “lso.f”, GPU device was called as follows.

---------------------------------------

call malloc_device(NTT,NMAX)

~

C<< < START SIMULATION > > >
DO 9999 COUNT¼ 1,STEP

~

9999 CONTINUE

~

call free_device()

---------------------------------------------------------------------------------------------------

Contents of the “lso.f” are as follows. The hot spot (DO 200 loop) was changed

to a kernel and called from the following main program.

--------------------------------------------------------------------------------

use cudafor

use kernel_func_mod

use reduction_sum_module

~

C < < < START SIMULATION > > >
DO 9999 COUNT¼ 1,STEP

DO 90 I¼ 1,NTT

EED(I)¼ 0.0

BER(I)¼ 0.0

90 CONTINUE

istat¼ cudaMemset(d_enp,0.0,ntt)

istat¼ cudaMemset(d_en2,0.0,ntt)

istat¼ cudaMemset(d_ttf,0.0,ntt*3)

istat¼ cudaMemcpy(d_q,q,ntt*3,cudaMemcpyHostToDevice)

call loop98 <<< NL,128 >>>
& (ntt,d_vm,d_vn,d_q,d_z,d_si,d_co,d_nw,d_en2,

& d_bl,d_bm,d_ttf,d_en1)

en1¼ sum_gpu(nl,d_en1,d_wrk1,d_wrk2)

istat¼ cudamemcpy(EN2,d_en2,ntt,cudamemcpydevicetohost)

TT1¼ 0.0

TT2¼ 0.0

TT3¼ 0.0

TTT¼ 0.0

TTA¼ 0.0

TT11¼ 0.0

TED¼ 0.0

BBER¼ 0.0

call loop200<<< NTT-1,128 >>>
$ (NTT,

$ AL,ALH2,
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$ d_KINNUM,d_IPAIR,d_JFR,

$ d_Q,d_ENP,

$ d_DEC,d_DER,d_DRFF,d_DEP,

$ d_EC,d_ER,d_RFF,d_EP,d_BR,d_TTF,

$ d_ECL,d_EDD,d_ERS,d_VIL)

ecl¼ sum_gpu(NTT*(NTT-1),d_ecl,d_wrk1,d_wrk2)

edd¼ sum_gpu(NTT*(NTT-1),d_edd,d_wrk1,d_wrk2)

ers¼ sum_gpu(NTT*(NTT-1),d_ers,d_wrk1,d_wrk2)

vil¼ sum_gpu(NTT*(NTT-1),d_vil,d_wrk1,d_wrk2)

istat¼ cudaMemcpy(TTF,d_TTF,NTT*3,cudaMemcpyDeviceToHost)

istat¼ cudaMemcpy(ENP,d_ENP,NTT,cudaMemcpyDeviceToHost)

~

9999 CONTINUE

---------------------------------------------------------------------------------------------------

Kernel of the DO 200 loop
Original DO loop is as follows.

-------------------------------------------------

DO 200 I¼ 1,NTT-1

ION¼KINNUM(I)

DO 201 J¼ Iþ 1,NTT

IF (RR2.LE.ALH2) THEN ----If the distance dij is within L/2,

JON¼KINNUM(J)

MF¼ IPAIR(ION,JON) --------Pair index for I and J

R¼ SQRT(RR2)

N¼R*100

NN¼N/2þ 1

C-------------

ENP(I)¼ENP(I)þEP(N,MF)þDEP(N,MF)*RFA

ENP(J)¼ENP(J)þEP(N,MF)þDEP(N,MF)*RFA

EDQF¼RFF(N,MF)þDRFF(N,MF)*RFA

TTF(I,1)¼TTF(I,1)þEDQF*AA1

TTF(J,1)¼TTF(J,1)-EDQF*AA1

TTF(I,2)¼TTF(I,2)þEDQF*AA2

TTF(J,2)¼TTF(J,2)-EDQF*AA2

TTF(I,3)¼TTF(I,3)þEDQF*AA3

TTF(J,3)¼TTF(J,3)-EDQF*AA3

ECL¼ECLþEP(N,MF)þDEP(N,MF)*RFA

BERS¼ER(N,MF)þDER(N,MF)*RFA

EDD¼EDD-EC(N,MF)-DEC(N,MF)*RFA

ERS¼ERSþBERS

VIL¼VIL-BR(MF)*BERS*R

ENDIF

201 CONTINUE

200 CONTINUE

---------------------------------------------------------------------------------------------------
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For DO 200 loop, the blocks of the same number as the iteration (NTT-1)were

used while for inner loop 201, threads were used for parallel computation.

For the summation of each energy (ECL, EDD, ERS) and virial (VIL) terms,

new arrays were prepared for saving the values before summation was taken. A

summation was performed in the “sum_gpu” kernel after the calculation of

this loop.

For JFR (a summation of numbers of particles at distance rij for calculation of a

pair correlation function), ENP, TTF (summation of force), atomic function of

CUDA was used.

The kernel function for double loops (200 and 201) was prepared as follows.

---------------------------------------------------------------------------------------------------

attributes(global) subroutine loop200(NTT,

$ AL,ALH2,

$ KINNUM,IPAIR,JFR,

$ Q,ENP,

$ DEC,DER,DRFF,DEP,

$ EC,ER,RFF,EP,BR,TTF,

$ ECL,EDD,ERS,VIL)

INTEGER,value::NTT

REAL,value::AL,ALH2

INTEGER,device::JFR(3000,6)

INTEGER,device::IPAIR(3,3),KINNUM(NTT)

REAL,device::Q(NTT,3)

REAL,device::DEC(NTT,6),DER(NTT,6),DRFF(NTT,6),DEP(NTT,6)

REAL,device::EC(NTT,6),ER(NTT,6),RFF(NTT,6),EP(NTT,6),br(6)

REAL,device::ENP(NTT)

REAL,device::TTF(NTT,3)

REAL,device::ecl(NTT,NTT-1),edd(NTT,NTT-1),

& ers(NTT,NTT-1),vil(NTT,NTT-1)

integer I

I¼ blockIdx%x

ION¼KINNUM(I)

DO 201 J¼ Iþ threadIdx%x,NTT,blockDim%x

ecl(j,i)¼ 0.0

edd(j,i)¼ 0.0

ers(j,i)¼ 0.0

vil(j,i)¼ 0.0

AA1¼Q(I,1)-Q(J,1)þ 1.5*AL

AA2¼Q(I,2)-Q(J,2)þ 1.5*AL

AA3¼Q(I,3)-Q(J,3)þ 1.5*AL

AA1¼AMOD(AA1,AL)-0.5*AL

AA2¼AMOD(AA2,AL)-0.5*AL

AA3¼AMOD(AA3,AL)-0.5*AL

C
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RR2¼AA1*AA1þAA2*AA2þAA3*AA3

IF (RR2.LE.ALH2) THEN

JON¼KINNUM(J)

MF¼ IPAIR(ION,JON)

R¼ SQRT(RR2)

N¼R*100

NN¼N/2þ 1

iret¼ atomicadd(JFR(NN,MF),1)

RFA¼AMOD(R,0.01)

C phy1i

ftmp¼EP(N,MF)þDEP(N,MF)*RFA

fret¼ atomicAdd(ENP(i),ftmp)

fret¼ atomicAdd(ENP(j),ftmp)

EDQF¼RFF(N,MF)þDRFF(N,MF)*RFA

ftmp¼EDQF*AA1

fret¼ atomicAdd(TTF(I,1),ftmp)

20

fret¼ atomicSub(TTF(J,1),ftmp)

ftmp¼EDQF*AA2

fret¼ atomicAdd(TTF(I,2),ftmp)

fret¼ atomicSub(TTF(J,2),ftmp)

ftmp¼EDQF*AA3

fret¼ atomicAdd(TTF(I,3),ftmp)

fret¼ atomicSub(TTF(J,3),ftmp)

ECL(J,I)¼EP(N,MF)þDEP(N,MF)*RFA

BERS¼ER(N,MF)þDER(N,MF)*RFA

EDD(J,I)¼ -EC(N,MF)-DEC(N,MF)*RFA

ERS(J,I)¼BERS

VIL(J,I)¼ -BR(MF)*BERS*R

ENDIF

201 CONTINUE

end subroutine

MD runs were performed on “Thin node” in TSUBAME2.5 at the

Global Scientific Information and Computing Center of the Tokyo Institute of

Technology.

CPU used is Intel Xeon 2.93 GHz and GPU used is NVIDIA Tesla K20X.

A.8.2 Compile of the CUDA Code

For the check of the performance of the original code, Intel compiler was used

without any option, while PGI compiler was used for the code using CUDA.
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Versions of the compilers are as follows.

Intel: Intel(R) Fortran Intel(R) 64 Compiler XE for applications running on

Intel(R) 64, Version 13.0.0.079

PGI: 13.9-0 64-bit target on x86-64 Linux -tp nehalem

Compile options used for CUDA are as follows.

pgfortran -O2 -Mcuda kernel_func.f reduction_sum.f90 lso1.f-o lso.exe

A.8.3 Check of the Performance

The performance was checked for a 10,000 steps-run of 3456 particle system.

Measurement of time has been done using “system_clock” command

(Table A.1).

Thus the DO 9999 loop is 26 times faster compared with the original code.

Using CUDA for other loops is not necessarily effective for the acceleration

because of time loss by using kernels.

This check was done for single precision. In this condition, TSUBAME2.5

(in Tokyo Institute of Technology) has shown the best performance because the

performance of “atomic functions” becomes better in Kepler architecture. While,

when the double precision was used, the performance of the atomic functions

becomes worse.

To obtain better performance in the calculation using double precision, avoid-

ance of atomic function, criteria by distance may be necessary.

Generally, on GPUs warp divergence using if and switch statements, is to be

avoided for better performance. In the case of loop 200, the judgment by distance

corresponds to the case. Other possible changes are to do the execution without

synchronization, if the dependency among treatments did not exist. Multiuse of

GPUs for long loops is also useful.

Of course, the faster calculations enable us to treat larger system or long time

simulations, which may expand systems or themes which can be examined. Nev-

ertheless, it seems to be a good question for researcher of science, how fast is good

enough for the purpose of the simulations.

Table A.1 Comparison of time required for MD run during 10,000 steps run of Li2Si2O5

Time required

in serial computing

using CPU (sec)

Time required

in parallel computing

using a GPU (sec)

Acceleration (time

for CPU/time GPU)

DO 9999 loop 3088.42 118.73 26.01

DO 200 loop 3062.17 107.88 28.38

Memory copy – 1.04 –
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A.9 Fast Fourier Transform (FFT)

In experiments and simulations, one may need a procedure to do the Fourier

transform of a signal. Particularly, treatment of numerical time series by Fast

Fourier Transform (FFT) is useful and shows the dominant frequencies. Although

there are many methods to treat it, here we introduce a simple method by using

Microsoft Excel with an add-ins [28, 29], so that many readers can do the procedure

by themselves and familiarize with the basics of the FFT. We will explain step by

step how to perform the FFT and plot it. (We assume the reader is familiar with the

general use of Microsoft Excel.)

When one considers the N data points f(xj) for xj ¼jL/N ( j¼ 0,---,N�1) with an

interval of h¼ L/N, Fourier transform of the data at kn¼ 2nπ/L (n¼ 0,---,N�1),

f̂ knð Þ, is defined by

f̂ knð Þ ¼
XN�1

j¼0

f xj
� �

exp i2πnj=N
� �

: ðA:22Þ

And inverse Fourier transformation is defined by

f xj
� � ¼ 1

L

XN�1

j¼0

f̂ knð Þexp �i2πnj=N
� � ðA:23Þ

Note that to do the FFT, the number of data points, N, must be a power of 2, that is,

4, 8, 16,---.

Step 1

We prepared a sheet of Microsoft Excel representing a Fourier transform of the

sample data. Please copy the example of the sheet named “FFT1.xlsx” in ESM

(example 4) to your Windows machine. First, please examine the following exam-

ple carefully, to understand what is done in the procedure.

When you open the file by using Microsoft Excel, the Fourier transform of the

simple data “0,1,0,�1,0,1,0,�1” (Column B) is found in the column D in complex

number. In the sheet, column A is data number, and C is time.

Frequency of the n-th FFT data is n/(N h). The magnitude or amplitude of the

FFT data can be obtained by the function IM.ABS($D) as shown in the column I.

In Fig. 1 on the sheet, the amplitude of FFT of the data is plotted against the

frequency. Red and blue curves are symmetrical and it means that only the half of

the values is meaningful. Note that it shows a peak at a value of f¼¼¼ 0.25, since

the data are periodic with time with a period of 4.

The sum of the values of the amplitude (column I) is found to be 8 as shown by

the column marked by yellow. This sum is larger than the sum of the original

values. In the column J, the values are modified by (N/2), so that the sum of the

values, 2, corresponds to the column marked in red.
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Step 2

In order to perform the Fourier analysis using Microsoft Excel you need an add-in

named “The Analysis ToolPak”. If you cannot find it in the data tab, you must add it

by clicking “File”, “Options”, “Add-ins”, “Setup” and check the “Analysis

ToolPak” found there [30].

Step 3

The procedure to obtain the FFT of the data will be done using the same file “FFT1.
xlsx”. Select “data” tab of the Excel ribbon. Then click the “Data Analysis” button.

Select the “Fourier Analysis” from the following window.

In the next window, select the region of the input data “$B$2:$B$9” and the

place for the output “$D$2:$D$9”.

The position “$D$2:$D$9” was used in the output of this example. Please select

now “new work sheet” instead, so that you can compare the result to the example.

Then the result will appear in the A column of the new sheet.

In the new sheet, please set the frequency in column C as in column H of the

example.

In the new sheet, use the column D to calculate the amplitude of the complex

data obtained by the Fourier transform by using the function “¼IMABS ($A$1)” for

D1. Please drag the equation down to fill every cell used.

Then you can plot the result of FFT by selecting the

“Magnitude” column (D) for Y axis against the “Frequency” column (C) for

X axis.
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Now, use the first half of the data for the plot. Magnitude can be also modified as

explained in the step 1, if necessary.

Step 4

You can try to do the inverse Fourier transform using the Fourier transform tool by

choosing the FFT values of the data as input and check the box of “inverse Fourier

transform”. This will allow you checking you did it right, since you must get the

initial input data.

Step 5

Now you can use the tool for the analysis of your own data. Please input your data

(remember that the number of data must be a power of 2 and if the data do not

satisfy this condition, please add “0” values. If the Fourier noise is not negligible in

your data, additional use of the window function may be necessary.) Try for

example with the series “0, 1, 2, 1, 0, �1, �2, �1” in column B. Perform the

FFT following the step 3 and see the FFT plot. Which are the dominant frequencies

now?

We have also included in the ESM an Excel file (FFTKWW.xlsx) with an

example to obtain the FFT of a signal whose time dependence follows a stretched

exponential or KWW behavior of the form ϕ tð Þ ¼ e� t=τð Þβ . We have chosen the

value of τ as 10 s (or 10 times the time interval, chosen as 1 s), and the exponent β
can be chosen by changing the value in cell B4. Then you can perform the FFT as

explained in the procedure above, and see the result of the amplitude of the FFT and

also the frequency dependence of the real and imaginary parts of the FFT. You must

be aware that while these examples give you the basic details on how to perform

and analyze the FFT of a signal, the limited number of data results in relatively

large errors in the FFT, particularly at the lowest and highest frequencies. If you are

interested in using the FFT procedure for the analysis of your data you may consider

using other software specifically designed for it or any general software to perform

operations with a suitable window function.
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