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CHAPTER ONE 

INTRODUCTION 

The purpose of this book is to j.ir€'~ 0l'l\' a new technique for the experimental 

investigation of the free wave model sound field of acoustics. The technique is 

based on the use of spherical harmonic functions of angle. 

Acousticians frequently encounter random sound fields whose properties may be 

closely modelled by use of the "free wave" field. This model field is defined by 

two basic statistical properties: stationarity in time, and homogeneity in space. 

Stationarity means that any single order statistic measured by a microphone in 

the field will be independent of the time at which the recording is taken, while 

homogeneity means that the measurement will also be independent of the micro-

phone's position in the field. Furthermore, second order statistics obtained 

from the measurements of two microphones will depend only on the time lapse 

between the two recordings, and the relative spatial separation of the micro­

phones, and not on the microphones' absolute positions in space and time. 

The free wave field may also (equivalently) be pictured as a collection of plane 

sound waves which approach an observation position from all angles. These are 

the "free waves" of the title, with no correlation between waves at different 

angles and frequencies, although there may exist an angle-dependant plane wave 

density function. This is a measure of the density of sound energy arriving from 

different angles. 

The free wave field has proved to be a simple but remarkably powerful model. 

Typically a field appropriate to the free wave description may be found at high 

frequencies, a limit in which more conventional descriptions can become unwieldy 

and impractical. In the 1950's the free wave idea was put forward to model the 
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high frequency reverberant sound field in an enclosure, with a dauntingly large 

number (scores or hundreds) of room modes present. Later studies have shown both 

theoretically and experimentally that this description is valid within limits, 

and architectural acousticians have used the model to give important descriptive 

quantities such as reverberation time a firm theoretical foundation, as well as 

to establish new measures. 

The present authors have used the free wave model to study sound fields in 

acoustic ducts at frequencies which are of practical interest, but so high that· 

the usual mode description becomes impractical (with more than twenty propagating 

modes). Further, researchers into sonar techniques have used free wave ideas to 

model the background noise encountered in an ocean, caused by surface effects 

such as shipping and wave action. 

A given free wave sound field may be completely described by two statistical 

quantities: power spectral density (PSD) which depends only on frequency, and the 

plane wave density function, which is a function of both frequency and angle. 

The PSD is readily measurable by standard techniques, but the measurement of the 

more unfamiliar weighting function proves the greatest obstacle to the use of the 

free wave idea in practice. A common challenge is to deduce weighting function 

information from a set of measurements taken at a small (perhaps twenty or less) 

number of microphone positions within a field. These positions may be arranged 

sparsely and irregularly in space. 

This book describes an attempt to meet this challenge, with a method based on the 

use of spherical harmonic functions'of angle. Previous applications of harmonic 

analysis seem to have been mostly to problems of a rather different scale, in the 

study of artificial satellites" orbital perturbations. This has provided 

information about inhomogeneities in the Earth's form, inclu{iing the classic 

demonstration that the Earth is "pear-shaped". On a larger scale still, harmonic 

analysis has offered images of the structure of the magnetic fields of Jupiter 

and Saturn, based on sparse data from unmanned spacecraft flybys. 

In the present proposal, harmonics are used to construct parametric models of a 

free wave field's angle-dependant plane wave weighting. Parameter values are 

determined from experimental data via search techniques based on regression 

analysis. The result i"s a set of images of the weighting function; these are 

limited in resolution but not by the inherent complexity of the field (i.e., by 

frequency) • 

In Chapter Two of the book, the properties of a free wave field are described in 
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more detail. In any given application, these properties are closely linked to 

those of the underlying physical field. The Chapter includes a close look at 

one example of this linking, and its use in practice: the sound field in an 

acoustic duct at high frequency. 

Chapter Three is a review of various methods which are available for the 

experimental study of free wave fields. This review is a background to the 

description of the harmonic analysis technique, which is introduced in Chapter 

Three, and discussed in detail in Chapter Four. The application and properties 

of the technique are exemplified by reference to the experimental study of a duct 

sound field, performed by the present authors. 

Finally, it should be emphasised that the duct study is meant only to illustrate 

the use of the harmonic analysis of free wave fields, and not to define its 

applica tion exclusively. The authors believe that the analysis technique will 

prove of value to workers in many disparate fields. 



CHAPTER TWO 

THE FREE WAVE SOUND FIELD 

2.1 INTRODUCTION 

The purpose of this book is to present an experimental method to investigate the 

spatial characteristics of a certain type of complex, random wave field. A wave 

field qualifies as suitable for study using ,the new method provided it can 

reasonably be approximated by a "free wave" model field. The details of the 

investigation technique are given in later chapters. The present chapter is a 

description of the properties and importance of the free wave concept. 

2.2 PROPERTIES OF THE FREE WAVE FIELD 

2.2.1 Homogoneous sound fields in ducts 

Historically, the idea of the free wave field grew out of studies of spatially 

complex acoustic fields such as the work of Dyer in 1958 (2.1), who studied the 

propagation of high frequency noise from a ducted fan. 

introduction to consider Dyer's work in some detail. 

It is worthwhile as an 

The propagation of low-intensity sound in a duct, or acoustic wave guide, is 

traditionally (2.2) described by assuming it to obey a three-dimensional wave 

equation, subject to a boundary condition at the duct walls. For example, if the 

walls are "hard", that is totally reflecting, the boundary condition is that 

there should be no velocity component normal to the duct surface at a point. 

Such a boundary condition forces the sound to propagate as a series of modes. 

Each mode has well-defined spatial characteristics, and its own speed of 

propagation down the duct. A mode can be pictured as a pattern of pressure 

maxima and minima across a duct cross section, propagating down the duct length. 

The total sound field consists of a sum of such modes, whose amplitudes and 

phases are determined by sound and duct termination characteristics. 

At any frequency there are only a finite number of modes, but the number of cut­

on (that is, allowed) modes progress with frequency (typically, as the square of 

frequency). For example, Dyer based his study on Kerka's (2.3) experimental 

investigation of the sound field in a 15 in. diameter circular duct, which would 

contain only one mode at ~50 Hz (the plane wave mode, which is uniform across a 
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duct cross section) but 20 modes at 2 kHz. Clearly the spatial structure of a 

many-mode sound field is complex, increasingly so at higher frequency, and the 

prospect of trying to investigate a field containing many (20+) modes seems 

daunting. 

However, the investigation of such a field proves to be practical because of a 

surprising fact: that the field's overall spatial structure can actually become 

simpler with increasing frequency. 

The key is Dyer's observation that significant spatial variations of sound 

pressure level (SPL) in Kerka' s duct were confined to a two-octave band of 

frequency, from about 450 Hz to 1800 Hz. At low frequencies, Dyer explained, 

only the plane wave mode can propagate, while at high frequencies, "because of 

the presence of many modes ••• the transverse variations on the average are 

expected to be small". 

Dyer's intuitive understanding seems to have been that at higher frequencies, the 

spatial structure of a duct sound field can become more uniform as more modes cut 

on and modal maxima and minima tend to cancel. At a high enough frequency, when 

the duct radius is large compared to a wavelength, so that a cross-section 

contains many modal maxima and minima, it is plausible that at least in certain 

regions of the duct there would be little spatial variation of (for example) SPL. 

Variation would still be expected however close to the duct walls (Le. within a 

wavelength) because of the presence of reflections, and near to positions of 

symmetry such as the axis of a circular duct, because of focussing effects. 

A field in which second-order statistics like SPL show no spatial variation is 

called "spatially homogeneous". Dyer's work showed that the sound field near a 

duct axis at high frequency could be modelled as a homogeneous field. 

Spatial homogeneity is the central property of the "free wave" model field. 

Despite its simplicity of definition, the free wave model has proved to be an 

invaluable tool in many areas, as will become apparent from the following 

discussion. 

2.2.2 The Free Wave Field 

The properties of the free wave model have been reviewed by Waterhouse (2.4) and 

Jacobsen (2.5) and are summarised here. The most fundamental definition of the 

field is as a collection of random, uncorrelated plane waves. (In the present 
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discussion only waves with purely real wavenumbers will be considered.) 

Taking an acoustic field as an example, the Fourier transformed pressure 

contributed by a single plane wave to a broadband sound field is given by 

(2.1) 

x is the position vector of an observation pOint in the field, W is radian 

frequency, and ~ is the plane wave's (purely real) vector wavenumber with I~I 

w/co ' where Co is the sound speed. (i = (-1)!). A is a complex amplitude, and 

is regarded as a random variable whose statistics are independent of position in 

the field. 

A complex cross-spectral density (CCSD) measurement in such a field would yield 

CCSDpw (.!:.' w ;~) = E {ppw (.!., w; ~) P*pw (.!.', w; ~)} 

= E { I A (~, w) I 2 } exp (i ~ • .!:.) (2.2) 

while a pressure spectral density (PSD) measurement would yield 

E { I Ppw (.!.' w ; ~) I 2} 

= E { 1 A (~, w)l 2} (2.3) 

E denotes an ensemble average, ( )* denotes a complex conjugate, and.!:. is the 

separation vector x - x' between the observation pOints at.!., x'. 

A free wave field is made up of uncorrelated plane waves, so that the total CCSD 

or PSD in the field may be obtained by simply summing contributions like 

equations (2.2), (2.3) from all the field's component plane waves. Equation 

(2.3) shows that measurements of PSD are independent of position in the field 

(because the contribution from each plane wave is independent of position), so 

that the field is homogeneous. Furthermore it can be seen from equation (2.2) 

that two-point statistics like CCSD in a free wave field depend only on the 
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points' separation vector 1:, and not on the points' absolute positions. A pair 

of microphones could be moved through the field and would yield the same values 

of CCSD everywhere, provided their relative separation was kept fixed. A 

homogeneous field is thus the spatial analogue of a stationary time series. 

It should be noted that there is a distinction between a "homogeneous" field and 

an "isotropic" field. Two-point statistics like CCSD in an isotropic field 

depend only on the separation distance r = 11:1 between the two points, and not on 

the points' relative orientation. A free wave field is always homogeneous, but 

is isotropic only if it is "diffuse", that is if the statistics of the amplitude 

function are independent of wavenumber, so that the plane wave contributions to 

CCSD and PSD have a uniform weighting. (See section (2.3)). 

A free wave field can alternatively be regarded as being made up of plane waves 

with random phase relations (2.5). The three basic properties of a free wave 

field (homogeneous, composed of uncorrelated waves, and composed of waves with 

random phase relations) are equivalent, and anyone of them may be used to define 

the field. 

2.3 SPECTRAL DENSITY MEASUREMENT IN FREE WAVE FIELDS: COOK'S THEOREM 

2.3.1 Architectural acoustics 

With the free wave field defined in the last section, we turn now to a theortical 

result of great practical significance, given first by a worker in the field of 

architectural acoustics. 

Homogeneous fields have been extensively studied in this context. The problem 

of studying the many-mode sound field in an enclosure at high frequency is 

analogous to that of studying the many-mode sound field at high frequency in a 

duct, and observations dating from the time of Sabine (2.6) have indicated that 

such a sound field may often be considered homogeneous. 

The free wave field concept has proved its value by becoming the basis of the 

theoretical approach to the study of reverberant sound fields in enclosures known 

as "geometrical acoustics" (2.2). The theory is so named by analogy with 

geometrical optics, and it depends on modelling the field in an enclosure by a 

diffuse free wave field, and assuming that the absorption properties of wall 

surfaces can be represented adequately by simple absorption coefficients. 
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Geometrical acoustic techniques have proved useful in putting the governing 

concepts of architectural acoustics (for example reverberation time) on a firm 

theoretical basis (2.1), and evidence has accumulated over the years that the two 

alternative models (modes and free waves) of the sound field in an enclosure are 

consistent. It has been shown for instance that the results of modal 

computations of the interference patterns at (2.8) and near (2.9) the boundaries 

of a rectangular hard-walled room are consistent with the results of free wave 

model computations (2.10). Calculations made with the two models of the spatial 

variance of SPL measurements in such a room have also been shown to agree (2.11, 

2.4) • 

However, perhaps the most striking evidence of the consistency of the two models 

has come from the study of a quantity which proves to be of great importance: 

the complex cross-spectral denSity (CCSD) of the signals taken from two pressure 

microphones in a free wave field. 

2.3.2 Cook's theorem for a diffuse field 

Interest in CCSD measurements among architectural acousticians was stimUlated by 

a classic paper published by Cook in 1955 (2.12). Cook was trying to find a 

"criterion of diffuseness", an observable quantity which would give some 

indication of whether a given sound field could be regarded as truly diffuse 

(i.e. isotropic). 

To this end Cook presented an argument equivalent to the following. Consider 

the CCSD between the sound pressures observed by two microphones at points.!., .!.' 

in a broadband free wave sound field. (In fact, Cook considered zero-time 

correlation coefficients in a stationary single-frequency free wave field, but 

Cook's method of proof and results about the spatial structure of correlation are 

equivalent to those below about the spatial structure of CCSD. In the following 

discussion, all results about the spatial structure of correlation as studied by 

previous workers will be assumed to refer also to broadband field CCSD, which is 

the prinCipal quantity considered in the present work.) Let a plane wave's 

wavenumber vector k be specified by polar and azimuthal spherical angles (v,u) 

relative to some coordinate system, so that k has Cartesian coordinates 

k (k sin v cos u, k sin v sin u, k cos v) (2.4) 
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~ is purely real, so the angles (v,u) take only real values. The range of v is 0 

to 1T, and the range of u is 0 to 21T. Let the observation point separation 

vector be specified by spherical polar coordinates (1',8, <p) so that it has 

Caresian coordinates. 

1: = (r sin e cos <p, I' sin 8 sin ¢ , I' cos 8 ) (2.5) 

Then the contribution of a single plane wave to the CCSD can be wr.itten (from 

equation (2.2» 

CCSD pw (1:, W j~) :{ I E { I A (~,w ) I 2 } 

x exp (ikr cos 8 cos v + ikr sin 8 sin v cos ( ¢ - u» (2.6) 

The amplitude factor may be removed by defining a normalised CCSD 

CCSD (1:, w) / {PSD (.!.,w ) PSD (.!.', w)} i (2.7) 

so that the plane wave's contribution becomes 

exp (ikr cos 8 cos v + ikr sin sin v cos (¢-u» (2.8) 

If and only if the field is diffuse, the normalised CCSD for the complete field 

may be obtained by averaging equation (2.8) with a uniform weighting over every 

dLrection from which the uncorrelated plane waves can come: 

1T 21T 

(1/41T) J dv sin v J du Cpw (1:, Wj k) (2.9) 
o o 

Because of the symmetric nature of the sound field, the value of this integral 

has to be independent of the orientation of the axes, and so independent of the 

values of e, cjl. For convenience, let the axes be chosen so that the z-axis is 
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parallel to the line joining the microphones, so that e = 0: 

C(.!:., w) ( 1 141T) f dv sin v f du exp (ikr cos v) (2.10) 

Evaluation of the integral gives a surprisingly simple final result: 

sin (kr)/kr (2.11) 

Note that this quantity depends only (apart from on frequency) on 1", 

demonstrating that a diffuse field is isotropic as well as homogeneous. 

Having derived this elegant result, Cook went on to measure correlation 

coefficients in a reverberation chamber. Diffuseness was promoted by using 

frequency modulation and loudspeakers mounted on large rotating vaners, and a 

good agreement was demonstrated between prediction (equation (2.11» and 

measurement. 

Architectural acousticians were later to find Cook's result useful not only as a 

means of assessing diffuseness, but also as evidence that their two competing 

theoretical models of the sound fields in rooms (modes and free waves) were 

consistent. 

The first deduction of Cook's results using a mode model of a rectangular room 

sound field was given by Lyon and Maidanik in 1962 (2.13). Similar proofs were 

also given by Morrow (2.14), Chu (2.15, 2.16) and Chien and Soroka (2.17). 

2.3.3 Cook's Theorem and Ocean acoustics 

Cook's impressive derivation of equation (2.11), "plucked out of the air 

containing all those flying waves" (2.4) "with a simple elegance reminiscent of 

Sabine's theory" (2.14) created a great deal of interest in the properties of 

CCSD in a diffuse field, but Cook's presentation (3.10) of the result was not the 

first. Cook and Edelman had given the result at an Acoustical Society of America 

meeting in 1950 (2.18), and the result was implicit in the work of Eckart 

published in 1953 (2.19). Furthermore, workers in the field of ocean acoustics 

were also studying the properties of correlation in random noise fields, and were 
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independently deriving Cook's results, generally by rather different methods. 

(Cron and Sherman (2.20) did however credit Marsh (2.21) with a free wave field 

derivation dating from 1950.) 

Correlation is important in the study of the signal-to-noise gain behaviour of a 

hydrophone array in an ocean containing background noise (2.22). Ambient sea 

noise is mainly generated by surface wave motion, contributing high frequency 

noise, and by distant shipping, contributing low frequency noise, and can be 

modelled by distributions of uncorrelated sources. By 1960 Freeman (2.23) had 

shown that if an ensemble of identical point sources were distributed throughout 

a large sphere, Cook's correlation function, equation (2.11), would be observed 

near the centre of the sphere. The same result was given independently by Cron 

and Sherman (2.20) and Liggett and Jacobson (2.24) went on to show that the 

result would still hold even if the medium in which the sources were embedded had 

a small attenuating viscosity. Jacobson (2.25) also studied correlation in the 

sound field of an ensemble of point sources spread over the surface of a large 

sphere. Once again, Cook's result followed for measurements made near the centre 

of the sphere. 

2.4 EXTENSION OF COOK'S THEOREM FOR ANISOTROPIC FIELDS 

2.4.1 Anisotropic fields 

Cook's result, equation (2.11), is thus not only satisfyingly simple and elegant, 

but also robust in that it can be derived using a variety of theoretical models 

of isotropic fields. It is however limited to the special case of a diffuse 

field, and would not be expected to describe CCSD in more general, anisotropic 

free wave fields. 

Duct sound fields and ambient sea noise fields are examples of anisotropic free 

wave fields, because of their anisotropic energy flows. Cook's theorem can be 

extended to fields of this type - fields which are homogeneous, but no longer 

necessarily isotropiC. This extension proves to be of great practical 

significance, as will be seen. 

To derive equation (2.11), Cook averaged the CCSD contributed by a single plane 

wave over all wavenumber angles (v, u) with a uniform weighting. However a more 

general average can be written down: 
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11 211 

CCSD ~, w) = f dv sin v f du H (v, u, w ) exp (i~ •. !:) (2.12) 
o o 

This is an expression for CCSD in a free wave field with an arbitrary angle­

dependent plane wave weighting function H. A representation for the PSD is 

obtained when r is set to zero: 

PSD (~, w) = f dv sin v fdu H (v, u, w) (2.13) 

The CCSD function may be normalised following Cook's example by applying equation 

The function C has an integral representation 

(1/2 11 ) f dv sin v f du I (v, u, w) exp (i~ • .!:.) (2.14) 

where the normalised weighting I is given by 

I (v, u, w) = 211 H (v, u, w)/PSD (2.15) 

The factor (1/211) is included so that in the important special case of 

azimuthally symmetric fields, the normalisation takes the simple form 

11 

6 dv sin v I (v, w) (2.16) 

A knowledge of the plane wave weighting function amounts to a complete 

description of the free wave field. As will be seen, in a given application the 

plane wave weighting function is intimately linked to the physical properties of 

the underlying field to which the free wave field is an approximation. 

Equations (2.12), (2.14), which provide the connections between the weighting 

function and the observable quantity CCSD, are therefore of great practical 

significance, and are the focal point of the present study. 

Much of the rest of the book is concerned with the means whereby equations 
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(2.12), (2.14) may be used to yield weighting information from CCSD data. Before 

proceeding further, however, we will look more closely at the properties and 

interpreation of the plane wave weighting function, and consider in detail one 

example of how it can be connected to the underlying physical field. 

2.4.2 Interpretation of the Plane Wave Weighting Function: Energy Flow 

Continuing to take acoustics as our example of the application of the free wave 

concept, the plane wave function H is to be interpreted as the mean square 

pressure density associated with a bundle of waves coming through an element of 

solid angle sin v dv du in the direction (v, u)j it is real, always positive, and 

has the dimensions (pressure)2 (frequency)-1 (solid angle)-1. The dimensions of 

the normalised function I are (solid angle)-1. 

The mean intensity in any given direction, for example the positive x-direction, 

can be written down in terms of H. Using the linearised fluid momentum equation 

Po aVz/Clt = -Clp/Clz (2.11 ) 

between z-direction particle velocity and pressure, and the fact that the mean z­

direction intensity of a plane wave is given by 

J 
1 = E {z He (pVz*)} (2.18) 

(2.26) (where He denotes the real part, and Po is equilibrium density), the mean 

free wave field z-direction intensity can be written as 

J = (1/2 poco) f dv sin v J du cos v H (v, u, w) (2.19) 

The values of mean intensity in other directions can be derived from the function 

H in a similar fashion. These values will not be the same unless H is a 

constant over angle, in which case the field is diffuse. In a general free wave 

field, the function H (and also the normalised weighting I) is thus associated 

with the non-uniform energy flow in the field. 



14 

Note that the RHS of equation (2.13) contains no ~-dependence. The field is not 

isotropic but it is still homogeneous, with PSD values the same everywhere. 

These results were considered as long ago as 1953 by Eckart (2.19) and were 

studied in detail by Cox (2.22), who worked on the problem of ambient sea noise 

with arbitrary directionality. 

2.4.3 Application to Duct Acoustics 

In any application of this work, it is necessary to show that the free wave model 

is a valid approximation to the given physical field. The techniques used for 

this proof will depend on the particular application. 

The motivation for the present study came from a need to investigate the 

distribution of sound power among the modes in an acoustic duct at high frequency 

(2.27, 2.28, 2.29, 2.30). Appendix A is an account of how the validity of the 

free wave approximation for this example may be demonstrated, together with a 

detailed description of the interpretation of the plane wave weighting function, 

which proves to be connected in a simple way to the duct's modal power 

distribution. 

Finally, from duct acoustics can be drawn a concluding example of a practical 

problem in which a knowledge of the plane wave weighting function is valuable: 

the derivation of a simple relation by which the total sound power in an acoustic 

duct field may be determined from a single measurement of PSD. This problem has 

been of considerable interest to researchers into the acoustics of fan ducts 

(2.1). 

The ratio of power to PSD in a field composed of one plane wave mode is 

Tlpw = (2.20) 

where S is the duct's cross section. In a general many-mode sound field there 

is no such simple relation, with the ratio depending on position in the duct. 

However, if the field may be modelled as free wave, it is straightforward to show 

from equations (2.15, 2.19) for z-direction intensity that the ratio of total 

power in the z-direction to PSD is 
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nfw = JS/PSD (2.21) 

211 11 

= (S/411Poco) I du I dv sin v cos v I (v,u,w) (2.22) 
0 0 

(In this example, the z-direction is the axis of the duct.) 

Thus the free wave prediction differs from the plane wave prediction for a given 

value of PSD by a factor 

n fw/npw = (1/211) II du dv sin v cos v I(v,u,w) (2.23) 

In a semidiffuse field (see the Appendix), this factor takes the value 1/2. In a 

"cosine-power" free wave field (see Chapter 3), whose plane wave weighting is 

given by 

I(v,u,w) = (m + 1) cosm v 0 < v < 11/2 

= 0 otherwise (2.24) 

the factor is (m+ 1) 1 (m+2). When m-.", ':,11 is model field approaches a plane wave, 

and the plane wave PSD prediction is recovered. 

2.5 SUMMARY 

The main ideas presented in this chapter may now be summarised. 

In a wide variety of circumstances, spatially complex random fields may be 

described by use of the free wave model field. This field is composed of 

uncorrelated plane waves, and is spatially homogenolls (though not necessarily 

isotropic) • 

Associated with a free wave field is a plane wave weighting function, a knowledge 

of which is sufficient to describe the field completely, and which is closely 
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linked to the physical properties of the underlying random field. An example of 

this linking i~ presented in some detail in Appendix A, where it is shown that 

the plane wave weighting function for a free wave field in an acoustic duct is 

based on the distribution of power among the duct's propagating modes. 

If the plane wave function is known, such quantities of practical importance as 

the flow of energy in any direction in the free wave field may be determined in a 

straightforward fashion. The experimental estimation of the weighting function 

from spectral density measurements is therefore the key step in the practical use 

of the free wave concept, and in the rest of the book the means by which this 

estimation may be made is described. 
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Figure 2.1 
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Geometry and coord-inate system for circular and 
rectangular ducts. 
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Figure 2.2 The (m,n) plane. Broken lines are contours of constant 
axial wlvenumber T. +; mode. The outermost contour is 
T ; 0;' the modes in the shaded region are cut-off. 
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Figure 2.5 Microphone image pairs contributing to CCSD in a 
rectangular duct. • ~ microphone diaphragm; 
o ~ image of diaphragm. 

x 



Figure 2.6 
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11 

The extended (m,n) plane. The summation of equation 
(A53) is over all the points in the unshaded area. 
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Figure 2.7 
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Plane wave weighting functions. Graph (a): semidiffuse 
field. Graph (b): diffuse field. Graph (c): modal power 
proportional to modal axial wavenumber. 



CHAPTER THREE 

INFERENCE OF THE PLANE WAVE WEIGHTING FUNCTION 

FROM SPECTRAL DENSITY MEASUREMENTS 

3.1 INTRODUCTION 

The last chapter was a description of the free wave idea. In whatever context a 

free wave field is encountered, it will always have certain general 

characteristics: in particular, the complex cross-spatial density (CCSD) taken 

between two observation pOints in the field may always be expressed as a weighted 

integral of uncorrelated plane wave contributions. The plane wave weighting 

function occurring in this integral completely characterises the field, and its 

interpretation was outlined in Chapter Two. 

A means to obtain an estimate of the plane wave weighting function in an 

anisotropic free wave field is therefore a key part of any free wave analysis. 

The weighting is not directly observable, however, it must be preferred from 

measurements of the observable quantity CCSD. The present chapter and the next 

are a description of the practical development of a weighting inference method. 

The framework of this chapter is a review of a variety of methods developed by 

previous workers for studying anisotropic free wave fields in various contexts. 

The earliest methods used Cook's diffuse field result as the basis of simple 

cri teria of the non-diffuseness of sound fields. Later more precise analyses 

were made of the anisotropy of sound fields with the inductive comparison of 

measured CCSD with predictions based on assumed forms of plane wave weighting. 

Finally came the development of completely general methods involving the direct 

analysis of CCSD data with no (or very unrestrictive) assumptions about the 

underlying weighting. 

in the next chapter. 

One such direct method is chosen for further development 

The discussion, which is couched in general terms, as illustrated by the 

consideration of specific model examples of anisotropic free wave fields, taken 

from various contexts. Some results derived about the example fields are of 

interest in themselves and may be of value to future workers. 

The scope of this chapter· is the fundamental properties of each analysis method. 

The details of the practi.cal implementation of one method, including its 

sensitivity to data limitations (such as the available number of sampling 

positions, and the presence of spectral density estimation error) are given in 
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the next chapter. 

3.2 COOK'S THEOREM AND NONDIFFUSE FIELDS 

3.2.1 Applications of Cook's Theorem 

The simple expression (equation 2.11» derived by Cook (2.12) for CCSD in a 

diffuse free wave field created great interest among architectural acousticians, 

who put the result to extensive practical use. For example, valuable results 

were derived about the use of spatial averaging of measurements of acoustical 

parameters of diffuse fields to improve the accuracy of estimates of such 

quantities as sound pressure level (SPL). It was shown (3.1, 3.2, 3.3) that 

averaging over several properly chosen discrete positions could yield 

statistically better estimates than averaging over a continuous line (3.4, 3.5), 

despite the comparative simpliCity of the discrete technique. This is because 

much of the extra information obtained from a continuous traverse comes from the 

oversampling of well-correlated values. Similarly, it was shown that a 

continuous average taken over the perimeter of a disc could be statistically 

bettter than a continuous average over the disc's surface (3.5), and that an 

average over the surface of a sphere could be better than an average throughout 

the sphere's volume (3.6). 

Another economising application of correlation results was made by Broadhurst 

(3.7, 3.8, 3.9) who described the use of an acoustic telescope in the context of 

architectural acoustics. An acoustic telescope as developed in the study of jet 

noise sources can be "focussed" on the sound coming from a given source by the 

careful processing of the signals from an array of microphones. Broadhurst used 

correlation results to show that a 5 x 5 x 5 cubical array of microphone 

pOSitions could be reduced to a 52-point array without the telescope suffereing a 

significant loss of statistical reliability. 

3.2.2 Criteria of Diffuseness 

Cook's result was thus proven useful in a variety of ways. However the 

motivation for Cook's original work had been the need to develop a "criterion of 

diffuseness" which could be used to establish experimentally whether a given 

enclosure's sound field was truly diffuse. 

An assumption of diffuseness played an important role in the theory behind many 

of the most useful quantities in architectural acoustics (3.10). For example, a 

diffuseness assumption was necessary for the analysis of wall absorption 
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measurements, because of the definition of mean free path used in the derivation 

of the decay rate of sound; for the study of transmission loss through 

partitions; for definitions of the total absorption of a room; and for 

deductions of the total power output of a source from the measurement of space-

averaged pressure. A way to determine the diffuseness or nondiffuseness of an 

enclosure's sound field was thus clearly important. 

Qualitative investigations of the anisotropy of sound fields using Cook's result 

were made by Balachandran and Robinson (3.11), who compared correlation 

measurements with Cook's prediction to study the diffuseness of steady and 

decaying fields in a reverberation chamber, and by Pisarevskii (3.12) who plotted 

contours of isocorrelation in a room sound field. The contours in a truly 

diffuse field would be concentric circles, while those in a field consisting of a 

single plane wave would be straight lines parallel to the plane wave's 

wavefronts. The form of the contours could be used to study energy flow in a 

nondiffuse field. 

More precise quantitative investigations of nondiffuseness were based on the 

definition of indices to show the overall nondiffuseness of a field, involving 

the mean-square deviation of correlation measurements from Cook's prediction. 

Such investigations were made by Balachandran (3.13) and by Bodlund (3.14), who 

described a similar study by Koyasu (3.15) in the course of which it was shown 

that the behaviour of such diffuseness criterion is consistent with the variation 

of estimates of absorption coefficients made in the presence of nondiffuse 

fields. 

3.3 INDUCTIVE WEIGHTING ANALYSIS: PARAMETRIC MODELS 

An index of diffuseness such as described in subsection (3.2.2) is both 

quantitative and comparative, in that it can be used to show which of two given 

sound fields is the "less diffuse". However, it can yield no information about 

the precise way in which a sound field differs from the perfectly diffuse: that 

is, about the nature of an arbitrary free wave field's plane wave weighting 

function. The first attempts to use correlation measurements to study 

anisotropic plane wave weightings seem to have been based on induction methods 

developed by workers in ocean acoustics. 

3.3.1 Inductive Weighting Analysis: Sea Noise 

As mentioned in the last chapter, the generation of sea noise by wave action on 
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an ocean surface can be modelled with a plane distribution of identical sources. 

Each source is assumed to have the same unknown directi vi ty. Several workers 

have approached this problem inductively, by supposing the directivity to belong 

to a well-defined parametric family. The small number of adjustable parameters 

(generally one) could be chosen by comparing the resulting CCSD predictions with 

measurements made of real sea noise. 

For example, Cron and Sherman (2.20) studied a source distribution which produced 

in deep water a free wave field with a plane wave weighting function given by 

ICv) a cosm v, ° ~ v ~ rr/2 

= 0, rr/2 < V ~ rr (3.1) 

with m an odd integer, and polar angle v measured away from the downward normal 

to the ocean surface (see Figure 3.1». Cron, Hassel and Keltonic (3.16) showed 

good agreement of theory and measurement when a dipole surface source model (m=1) 

was used. Rein (3.17) later showed that Cron and Sherman's deep water 

correlation results for their surface noise model also applied to correlation in 

regions near to the surface. Linnette and Thompson (3.18) independently made a 

similar theoretical and experimental study. 

Kuryanov (3.19) suggested a different approach to the surface noise problem 

involving the correlation produced in deep water beneath a surface distribution 

of independent sources with a specified plane correlation. Liggett and Jacobson 

(3.20) showed that such an approach was consistent with the methods of Cron and 

Sherman, etc. and studied the case of a Gaussian surface correlation producing a 

deep water plane wave weighting function 

I(v) a cos v exp (- sin2 v/4y), ° ~ v ~ rr/2 

0, rr/2 < v ~ rr (3.2) 

with y an adjustable parameter. 

Other ocean noise models based on simple anisotropic plane wave weighting 

functions were suggested by Liggett and Jacobson (3.2.1), who studied the family 
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of weightings 

I(v) a exp (A cos v), 0 < v < TI/2 

0, TI/2 < v < TI <3.3) 

and by Talham (3.22), who proposed a weighting proportional to the radius vector 

of an oblate spheroid: 

I(v) (1 - e2 + e2 sin2 v)-l, 0 ( v < TI/2 

= 0, TI/2 < v < TI <3.4 ) 

A,e are adjustable parameters. 

3.3.2 Inductive Weighting Analysis: Fan Noise 

Piersol (3.23) made an interesting inductive attempt to model fan noise in a wind 

tunnel with a diffuse field produced by a volume distribution of sources close to 

the observation pOint, together with a single distant source to represent the 

fan. The relative output power of the fan source was chosen by fitting the 

resulting predicted correlation function to observations made in a wind tunnel. 

3.3.3 Inductive Weighting Analysis: Room Fields 

Architectural acousticians have also used inductive methods to study simple 

nondiffuse fields in enclosures. A straightforward generalisation of a diffuse 

field i.s the "partially reverberant" field. The plane wave weighting function in 

a di.ffuse field i.s constant over all angles; in a partially reverberant field it 

is constant over a restricted range of angles: 

o otherwise 
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v1, v2, u1, u2 are constants. The field is azimuthally symmetric if the range 

of u is 0 to 2TI. One special case is that of the semidiffuse field (v1 = 0, v2 

= TI/2, u1 = 0, u2 = 2TI) which was mentioned in Chapter 2 as a simple model of the 

sound field in a duct with an anechoic termination at high frequency. 

Partially reverberant fields were studied theoretically by Blake and Waterhouse 

(3.24). Earlier, Dammig (3.25) had found good agreement between predicted and 

measured correlation in a partially reverberant field stimulated by an array of 

loudspeakers which formed an octant of a sphere. 

3.3.4 The Use of Parametric Weighting Families 

The inductive analysis methods described above depended on the theoretical study 

of CCSD in a free wave field with a plane wave weighting belonging to a 

parametric family. The main theme of the rest of this chapter is a discussion 

of a series of direct analysis methods. However the further consideration of two 

sets of model free wave fields with simple parametric weightings proves to be a 

useful counterpoint to this theme. The model fields' main use here is to 

illustrate points made about the properties of the direct methods, and so to 

provide an intuitive background to the theoretical results presented below. 

Moreover some of the new results obtained (especially those concerning the 

computation of CCSD in fields with arbitrary plane wave weightings, subsection 

(3.3.7», are of interest in themselves. 

The rest of this section of the chapter is an introduction to the two parametric 

families of weightings. The choice of these families for study has been inspired 

by the models considered by earlier workers, as described above. The weightings 

are all azimuthally symmetric CI independent of u). Each family includes 

weightings with a wide variety of forms, characterised by a small number of 

parameters, but each includes as a special case the semidiffuse field weighting, 

which as noted in Chapter 2 corresponds (for example) to a uniform modal power 

distribution in a duct with an anechoic termination. 

An important preliminary result is that the general free wave integral 

representation for CCSD (equation (2.14» in an azimuthally symmetric field may 

be simplified by using the standard Bessel function integral result (2.31, 

Chapter 2): 

2TI 
Jo(x) = (1/2 1T) f exp (ix cos <1» d<l> 

o 
(3.6 ) 
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to perform the u-integration, leaving 

11 
C( w,r, e) = l dv sin v I(w,v) exp (ikr cos e cos v) 

x J o (kr sin e sin v) 

3.3.5 Cosine-Power Weighting 

The first family is of "cosine-power" plane wave weightings: 

I (v) = (m + 1) cosm v, 0 < v < 11/2 

= 0 11/2 < v ~ 11 (3.8) 

The parameter m need not be an integer, and its range is 

-1<m<00 (3.9) 

The lower limit ensures that the weighting is integrable; the weighting is 

square integrable if m > -1-. (See subsection (3.7.1) for a discussion of the 

importance of integrability properties.) Members of this family were studied 

by Cron and Sherman (2.20) et al. in the context of ocean acoustics. 

Despite its analytic simplicity, the cosine-power family encompasses a wide range 

of fields, from the semi diffuse field to a field composed of a single plane wave. 

Some members of the family are shown in Figure (3.2). The case m = 0 is the 

semidiffuse weighting. In the limit m -+ 00 , the weighting approaches a delta 

function with its peak at cos v = 1; this represents a field composed of a single 

plane wave with its wavenumber vector parallel to the z-axis of coordinates. The 

expected normalised CCSD in such a field is 

C(w ,r, e) exp (ikr cose) (3.10) 

(see equation (2.8». 
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It may be shown (2.30) that the eeSD function in such a field can be expressed in 

terms of standard functions in the special cases 8 = 0, 11 /2. The case 8 = 0 

describes an "axial" eeSD, while the case 8 = 11/2 describes a "cross-sectional" 

eCSD. Plots of axial and cross-sectional eCSD for a range of m values are given 

in Figure (3.3). 

The axial eeSD may be computed easily in certain cases by using an iterative 

formula. Writing em for the axial eeSD in an m-th order cosine-power field, it 

follows from integrating the right hand side of equation (3.7) by parts that for 

m > -1, 

exp(ikr) - (ikr/m+2) Cm+1 (3.11) 

In the semidiffuse field case m 0, 

sin(kr)/kr + (i/kr)(1-cos(kr)) (3.12) 

When m is the integral for eeSD may be expressed in terms of the standard 

Fresnel integrals 

eF x cos 

{ SF (x) f dt ( (rrt2/2) 
Sln 

(3.13) 
0 

to give 

(3.14) 

Equations (3.11-3.14) may be used to compute the value of em by iteration on m 

for any integer or half-integer m. 

Another consequence of equation (3.11) is that as m ~ 00 , 

em' exp (ikr) (3.15) 
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since I Cm I ~1 for all values of m. This is the plane wave limit of equation 

(3.10) • 

When e = n/2, the standard Bessel function result 

n/2 
f dv J o (z sin v) sin v cos2p+ 1 v = 2P r(p+l) 
o 

(3.16) 

(2.31) may be used to show that 

C(r,n/2) = (2/kr)m;1 ,Jl" 1 (l<r) r(m+3) 
2 2 

r is the complete gamma function (2.31) 

Special cases occur when m is an odd integer: 

(3.18) 

where m = 2n-1, n 1, 2, •••• , and when m is an even integer: 

C = (2n+l)! jn(kr)/n! (3.19) 

where m = 2n, n = 0, 1, 2, •••• These results are given by Cox (2.22). 

In the semidiffuse case m=O, equation (3.19) reduces to 

C = jo (kr) (3.20) 

In the limit inm~, the asymptotic expansions 
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(3.21) 

and 

(3.22) 

(2.31) may be used to show that Cm+1, agreeing with equation (3.10). 

Equations (3.12, 3.20) were first given by Blake and Waterhouse (3.24). 

3.3.6 Strip Function Weightings 

The second family of model weightings is of "strip function" weightings: 

ICv) 0, n-1 C3.23) 

1j' Vj are constant with Vo = 0, vn = TI (see Figure 3.4)). The normalisation of 

the weighting (equation (2.16)) leads to the constraint 

n 

= L 1j (cos (Vj_1) - cos (Vj)) C3 .24) 
j=l 

This model family includes the partially reverberant field family described in 

subsection (3.3.3). The semidiffuse weighting is the special case n = 2, 

V1 = w2, 11 = 1, 12 0, while a more general partially reverberant field is the 

special case n = 3, 11 = 13 = 0, 12 = (cos v1 - cos V2)-1 (see Figure (3.4)). 

The main value of this weighting family is as the basis of a highly efficient 

procedure to compute CCSD in an arbitrary free wave field, as described in 

subsection (3.3.7). However, the family also affords a useful introduction to a 

practically significant property of the relation bet·ween CCSD and plane wave 

weighting as described by equation (3.7). 
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The shape of a weighting function I(v) could be described by a series of moments: 

1 
111 = f dc c I(c) (3.25) 

1 
1 

112 = f dc (c - 111)2 I(c) (3.26 ) 
1 
1 

113 = f dc (c - 111)3 I(c) (3.27) 
1 ............................ 

where c = cos v. These moments may be called the mean, variance, skewness etc. 

of the weighting, by analogy with the moments of a probability distribution. If 

the weighting is dominated by a single peak, 111 describes the position of the 

peak, 112 describes its width, and so on. The more moments are known, the more 

detail of the weighting is specified. 

If the field is partially reverberant, the first two moments are 

111 = l (cos vl + cos v2) = cos v cos nv (3.28) 

112 = (1/12)(cos vl - cos V2)2 = (1/3)(sin v sin nv)2 (3.29) 

where v = (vl + v2)/2, nv = (v2 - vl)/2. The significance of these moments for 

the form of CCSD is illustrated by a consideration of the axial CCSD in a 

partially reverberant field. Substitution of the strip field weighting into 

equation (3.1) yields 

n 

C(w,r,O) = (l/ikr) ~ Ij(exp(ikr cOS(Vj_l»-exp(ikr cos(Vj») 
j=l 

If the field is partially reverberant, C(w,r,O) takes the form 

C( w,r,O) (l/ikr) 12 (exp(ikr cos v1)-exp(ikr cos v2» 

(3.30) 

(3.31 ) 
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sin(kr sin V sin 6V) exp(ikr cos v cos 6v) 
kr sin v sin 6v 

<3.32) 

- a result first given by Blake and Waterhouse (3.24). It follows that the slope 

of the phase of C at the origin (kr = 0) is 

Im(dC/d(kr» = cos v cos 6v 1!1 (3.33) 

while the first zero of the modulus of C occurs when 

kr sin v sin 6v = ~ (3.34) 

i.e. when 

<3.35) 

Thus the lowest-order moments of the plane wave weighting are reflected in the 

low-kr range of CCSD, so that if only a limited range of kr values were 

available, only the lowest-order features of the plane wave weighting could be 

observed. This point will be considered in more detail in subsection (3.7.3). 

3.3.7 Computational Applications of Strip Weightings 

The computational usefulness of a strip field comes from the fact that one of the 

derivatives of a strip weighting can be expressed exactly as a summation. It may 

be shown (2.30) that for every value of r,e, 

de 
dB 

where 

n 
(w,r,e) = i I Ij (f(Vj_1) - f(Vj)) 

j;l 
(3.36) 
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f(v) = exp (ikr cos e cos v) J1 (kr sin e sin v) 

The value for C for any r, e can thus be computed from 

C( W,r, e) = C( w,r,O) + lede ~~ (3.38) 

with C(w,r,O) given by equation (3.30). For example, for a semiduffuse field, 

dC 
dr 

so that 

( u.o r, e) = - i J, (kr sin e) 

e 
C(w,r,e) = C(w,r,O) - i f de J, (kr sin e ) 

o 

(3.39 ) 

(3.40 ) 

Equations (3.36- 3.38) may be used to compute C(w ,r, e) over, say, a grid of 

values trk,e£: k = 1, M; £ = 1, N}, with only M integrations needing to be 

performed: one integration over e for each fixed value of r. If the original 

formula of equation (3.7) were used to compute C over the same grid, an integ­

ration for each of the grid's M x N pOints would need to be performed. Thus the 

use of equations (3.36 - 3.38) would result in an N-fold improvement in 

computational efficiency, with a corresponding reduction in computer time. 

These ideas may be used to estimate efficiently C(w ,r, e) for an arbitrary 

(azimuthally symmetric) plane wave weighting, by approximating the weighting by a 

strip field. This is especially suited to computing the low-kr range of C, 

since (as noted in subsection (3.3.6» this range is dominated by the gross 

features of the weighting, rather than the fine detail. 

The results of a computer program based on these ideas are given in Figures (3.5 

- 3.9). Each Figure includes a graph of the associated strip field weighting, 

and graphs of C(uJ,r,e) in modulus and phase form as functions of frequency over 

the range 0 - 5 kHz for the three cases r = 12 cm, e = 0; r = 12 cm, e = 1T 12; r = 

" .4 cm, 8 = 1.' rad. 
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Figure (3.5) illustrates C in a semidiffuse field. Figures (3.6 - 3.9) 

illustrate the convergence of C estimates obtained with quite coarse strip models 

of plane wave weightings. Figures (3.6, 3.7) were obtained using 6-strip and 11 

strip approximations of the m = 1 cosine-power plane wave weighting, and Figures 

(3.8, 3.9) were obtained using 6-strip and 11-strip approximations of the m = -0.9 

cosine-power weighting. 

These results show that the method provides an efficient way to produce CCSD 

predictions from an azimuthally symmetric plane wave weighting function. The 

function should be approximated by a strip function, and equations (3.36 - 3.38) 

used to evaluate the CCSD as required. A significant reduction in computer time 

is to be expected. 

3.4 DIRECT WEIGHTING ANALYSIS: THEORETICAL INVERSE 

In this section the main thread of the chapter is resumed, with the beginning of 

a discussion of direct plane wave weighting methods, illustrated by reference to 

the weighting families described above. 

A direct weighting analysis method involves the deduction of information about 

plane wave weighting from CCSD measurements, with no (o!' very unrestrictive) 

assumptions about the nature of the final answer. This is in contrast to the 

inducti ve methods described in subsections C3. 3.1 3.3.4), in which the 

weighting was assumed to be of a specified form dependent on the value of 

adjustable parameters, which may be determined by a fitting to experimental data. 

The analysis methods described here are all single-frequency techniques (except 

for the spatial Fourier Transform technique described in this section), and for 

convenience the frequency dependence of CCSD and weight.ing functions will be 

regarded as implicit for the rest of the chapter. The methods discussed all 

depend on the sampling of a field with an omnidirectional receiver, such as a 

standard microphone. 

The choice of a method of weight Lng analysis appropriate for a given case is 

determined by the nature of the available CCSD data set. Samples of CCSD may be 

available throughout " volume, or over a restricted but well-ordered set of 

points such as a straight line through the field, or - more commonly - over a 

restricted and disordered set of pOints scattered through a volume. In the 

following discussion methods appropriate to each of these cases will be reviewed 

in turn, and one method will be developed in prac·tical detail later. 
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3.4.1 Use of Theoretical Inverse 

If samples of CCSD are available throughout a volume, the theoretical inverse of 

equation (2.14) may be used to deduce information about the plane weave 

weighting. This depends on the three-dimensional spatial Fourier Transform pair: 

Tf 2Tf 

f<.!:.) = f(r,B,~) = I dv {, du {, dk k2 sin v F<,~) exp(i~ • .!) 0 
(3.41) 

Tf 2Tf 

F<'~) = F(k,v,u) = (1/2 Tf)3 {, dB {, d~ I dr r2 sin Sf(!) 
0 

x exp(-i~.!) (3.42) 

The integrals are volume integrals taken over the whole of physical space (1:) and 

wavenumber space (~). 

The theoretical inverse of the C-I equation (2.14) is available in two forms, the 

choice between these being determined by the assumed availability of information 

on the frequency dependence of CCSD. If C is known at all frequencies, a 

function of position may be defined by integrating C over frequency (that is, 

over k): 

(3.43) 

fJI dv du dk k2 sin v Hw,v,u) exp(i~.1:) (3.44) 

The function I may now be found by using the inversion equation (3.42): 

I(w,v,u) = (3.45) 

Alternatively, if C is known at only one frequency, say w', a delta-function may 

be introduced into equation (2. 14) (wi th k' = w 'co) : 

C(w',1:) = (1/2 Tf ) JJI dv du dk k2 sin v I(w,v,u) o(k_k')/k,2 (3.46) 
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and I determined using equation (3.42): 

(1/211) I( w,v,u) o(k-kl}/k,2 = (11211)3 ffl dr de d¢ r2 sin e 

This form of the theoretical inverse depends only on a knowledge of C as a 

function of position; it will yield a function defined throughout wavenumber 

space which will be non-zero only on the sphere with radius I .!. I = k'. 

A practical application of the theoretical inverse of the C-I equation would 

involve an array of samples of C - perhaps an n x n x n cubical array of points. 

Fourier inversion would yield an n x n x n array of samples in wavenumber space. 

The rapid growth of such arrays with n is one disadvantage of the method. 

Another is the fact that, as noted above, either an integration of CCSD over 

frequency (as well as over space) must be performed to obtain a weighting 

estima~e at each frequency of interest, or, if the inversion is performed at one 

frequency only, the n x n x n array in wavenumber space will consist mostly of 

zeroes. The only non-zero samples will be those lying on or near a sphere of 

radius k'. 

3.4.2 Practical Application 

A reverberation chamber freQ wave field analysis method using the theoretical 

"inverse was developed by Freudenstein and Ebeling (3.26). A digitally generated, 

exactly repeatable narrow band signal was used to excite the chamber; a single 

microphone was traversed successively to each pOint in a 16 x 16 x 16 (= 4096 

points) cubical array of positions to give the equivalent of a simultaneous 

sampling by 4096 microphones. The procedure was automated and took several 

hours; nevertheless the method was proven to work. The method was later (3.21) 

applied to the assessment of the diffuseness of the sound field in a 

reverberation chamber under various conditions. 

3.5 DIRECT WEIGHTING ANALYSIS: WAVENUMBER SPECTRA 

In most practical instances, only much more restricted sets of CCSD data will be 

available than is necessary for the use of the theoretical inverse technique 
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described in section (3.4). Suppose, for example, that samples of CCSD are 

available only along a single straight line passing through the field, so that 

the data set is 

{C(r, e, <1»: e ,<1> fixed, 0 ~r < oo} (3.48) 

In practical cases, a truncated and discretely sampled version of this will be 

available. What information can be derived about the field's plane wave 

weighting from this data? 

This question was studied by Cox (2.22) who in the course of his ocean acoustic 

work proposed the use of a "wavenumber spectrum", involving a Fourier-type 

integral of CCSD with respect to distance. Cox found that the wavenumber 

spectrum method was powerful enough to give complete information about plane wave 

weighting in certain cases, despite the restricted nature of the input data set. 

The properties of wavenumber spectra are the subject of this section. 

3.5.1 Fundamental Properties 

Consider an azimuthally symmetric free wave field extending to infinite distance. 

The wavenumber spectrum as studied by Cox can be defined by 

Q(p, e) = (l12Tr) f dR C(R,8) exp (-ipR) 

(C,Q are also functions of frequency implicitly). 

the normalised distance 

The integration variable is 

R = kr (3.50) 

Q(p,e) depends only on the straight line data set, equation (3.48). 

The integral has been extended to negative R values by defining 
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C(-R, e) C*(R,e) (3.51) 

This range of integration has been chosen for analytic simplicity. It ensures 

that Q is a real function of the real parameter p. 

However Q contains information about both real and imaginary parts of C, as can 

be seen from the inverse of equation (3.49): 

C (R, e) J dp Q(p,e) exp(ipR) (3.52) 

The dimensionless parameter p can be interpreted as a normalised plane wave 

flight time, as will be discussed below. 

Q can be expressed in terms of plane wave weighting by substituting equation 

(3.1) into equation (3.49). If the order of integration is changed, the result 

is 

where 

'IT 
Q (p, e) 6 dv sin v w(p,v,e) I(v) 

w(p,v, ~ = (1/2'IT) J dR exp(iR cose cos v - ipR) J o (Rsine sin v) 

(3.54 ) 

Equation (3.53) can alternatively be written in terms of the variable c 

1 
Q (p, e) J dc w(p,c, e) ICc) 

(3.53) 

cos v: 

(3.55 ) 

An important special case is that of an "axial" spectrum, e = 0, which depends 

only on axial CCSD data. When e = 0, the window factor w becomes 
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w(p,c,O) (1/2 1T) f dR exp(iR(c-p)) 

= o(c-p) (3.56 ) 

so that 

Q(p,O) = I(p) 

(The (1/2 1T) normalisation factor and the sign of p in equation (3.49) were chosen 

with this result in mind.) This somewhat surprising fact, that a wavenumber 

spectrum can yield complete information about a plane wave weighting despite the 

comparatively limited nature of the data on which it is based, was noted by Cox 

(2.22). 

For 8 ~ 0, Q as expressed by equation (3.53) is in general a weighted integral 

over plane wave angle. It may be shown (2.30) using standard Bessel Function 

results (2.31, Chapter 11) that 

w(p,v, e) = (1/1T) {(sin 8 sin v)2 - (cos e cos (v_p))2} -! 

This result holds provided the expression in curly brackets is positive; w is 

zero otherwise. 

The window factor w is sketched as a function of cos v in Figure (3.10). It has 

the property that the area under its graph as a function of cos v is 1, 

independently of the value of p. 

To interpret the properties of the window function, let an angle ~ be defined by 

p cos ~ 

so that Q may be written Q(W,8). Then it may be shown that w is non-zero only 

when the ~ , v, e satisfy the condition 
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co~ (~+e) ~ cos v < cos (~-e) (3.60 ) 

Thus the limits in the integral of equation (3.53) representing Q must be 

replaced by cos ~+e), cos (w-e), since w is zero outside this interval, so that 

only waves from a restricted range of angles contribute to Q. (The range will be 

further restricted if the plane wave weighting is also non-zero only within a 

restricted band of angle, for example if the field is partially reverberant.) 

A further interpretation of this is that the contributing range of angles 

decreases as p approaches the value 1 (that is, W -r 0). In the limit, the 

spectrum once again becomes a copy of the plane wave weighting. This follows 

because as p approaches 1 the range of contributing angles (equation (3.60)) 

shrinks to a narrow band around e, so that the only contributing plane waves 

make up a thin bundle with their wavenumber vectors almost parallel to the line 

on which the basic CCSD data has been taken. Finally, in the limit, 

Q( 1 ,8 ) ICG ) (3.61 ) 

This result has a physical interpretation in terms of the flight time of waves 

between two microphones in the sound field. Consider Figures (3.11, 3. 12) • It 

.is straightforward to show (see the Figure captions) that the time taken for a 

wave characterised by wavenumber angle v passing from a microphone at x I to a 

microphone at x is 

T (rico) 1 cos (V-8) I (3.62) 

and the flight time of a wave passing from x to x, is 

T (rico) 1 cos (v+8)1 (3.63) 

The range is thus 0 to rico. Waves with wavenumbers almost perpendicular to the 

line joining the microphones have very short flight times; while the more nearly 

parallel a wave I s wavenumber is to the microphone aXis, the longer its flight 

time, up to the limit rico. It may be shown from equation (3.60) that the only 
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waves contributing to Q(p,e) are those satisfying one of the conditions 

Icos (v-e) I > Ipl, jeos (v+e)j > jpj (3.64 ) 

- that is, waves with flight times satisfying 

(3.65 ) 

As p approaches 1, this contributing set grows smaller, until finally only that 

plane wave with a wavenumber vector parallel to the microphone axis can 

contribute to Q. The same argument holds for every microphone separation 

distance r, and so equation (3.61) follows. 

The dimensionless parameter p can thus be interpreted as normalised delay time, 

which specifies the set of free waves which can contribute to the spectrum Q. 

In summary, the wavenumber spectrum Q(p, W is a copy of the plane wave weighting 

in the two limits p = 1, e = O. Otherwise it is a convolution of the weighting 

with a window factor w. 

3.5.2 Wavenumber Spectra for Parametric Model Weighting 

Closed-form expressions are available (2.30) for wavenumber spectra in a free 

wave field whose plane wave weighting belongs to one of the model families 

introduced in section (3.3). This may be useful in future applications, since 

closed form expressions for CCSD are not in general available. 

An example is the wavenumber spectrum in a semidiffuse field. The spectrum takes 

different forms in different regions of the (e ,lji) plane (Figure (3.13)). In 

region (i), defined in the figure, Q(lji,e) is zero. 

In region (ii), Q(lji,e) is unity. In region (iii), 

Q(lji,e) (3.66 ) 
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3.5.3 Truncation Effects 

The definition of wavenumber spectrum Q (equation 0.49)) was in terms of an 

integral with respect to distance. The integral was taken out to infinity; 

however an important limitation on spectra computed in practice is that the 

available CCSD data will always be truncated at some finite value, say R = R'. 

To see the consequence of thiS, consider the example of a truncated estimate of 

the axial wavenumber spectrum Q(p,O) in a semidiffuse field: 

R' 
Q' (p;R') = (1/2 TI) f dR C(R,O) exp(-ipR) 

-R' 
(3.67) 

Substitution of equation (3.12) for the CCSD in this case into equation (3.67) 

allows Q' to be expressed in terms of the standard sine integral function (2.31, 

chapter 5): 

x 
f sin x/x dx (3.68 ) 
o 

so that 

TIQ'(p-R') (3.69 ) 

Since the spectrum is axial, in the limit R' + 00 this should reduce to a copy of 

the plane wave weighting function. This follows from the fact that 

w2, (3.70 ) 

so that as R' + ~ 

Si«1-p)R') -r TI/2 if p > 1, _)-- 11/2 if P < 1 
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and 

Si(pR') ->- Tr/2 if P > 0,->- -Tr/2 if P < 0 (3.72) 

These results combine to give as R' ->- 00 

Q' (p;RI) ->- 1 if 0 < p < 1, ->- 0 otherwise 

which as expected is a copy of the semidiffuse weigating. 

Q' is plotted for various R' in Figure (3.14), to show the distortion suffered by 

Q' as a result of truncation of the integral. Note the presence of Gibb' s 

phenomenon fringes to either side of the discontinuities, which will persist even 

at large R'. The Figure suggests that R' should be at least as large as 4 Tr 

before truncation effects can be neglected;. this corresponds to a maximum 

sampling separation of 13.6 cm at a frequency of 5 kHz, and 34 cm at 2 kHz. 

3.5.4 Practical Applications 

The practical application of wavenumber spectral analysis to the study of free 

wave fields has been quite limited. Tohyama (3.28, 3.29) studied wavenumber 

spectra in a room field but concentrated on low frequencies with few modes 

present whose amplitudes could be found from the spectra. 

In a comparable study, Gorskaya (3.30), working in ocean acoustics, investigated 

the field in an acoustic waveguide by means of a wavenumber spectrum. Again, 

attention was restricted to low frequencies with few modes present. 

Lubman (3.31) adapted wavenumber spectrum ideas to the analysis of the signal 

from a single microphone. Traversing the microphone produced a record of the 

spatial variation of a sound field in the form of a time series. Fourier 

transforming the time series was then equivalent to taking a wavenumber spectrum. 

Lubman u.sed a circular tranvepse, and obtained spectra with the expected band­

limited shape. Lubman suggested that such transforms performed in three 

perpendicular directions could be sufficient to assess the directivity of the 

field. 
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3.6 DIRECT WEIGHTING ANALYSIS: STATIONARY PHASE APPROXIMATION 

The wavenumber spectrum method described above is powerful enough to yield in 

certain cases complete information about plane wave weightings even if the 

available CCSD data is quite limited compared to that necessary for the 

theoretical inverse technique described in section (3.4). However the data set 

was assumed to be well ordered, with samples of the field taken along a straight 

line. 

The subject of this subsection is a direct data analysis method with which plane 

wave weighting information can be deduced from an even more limited CCSD data 

set: a sparse, irregular array of sampling posLtions. Provided only that the 

points are well separated compared to a wavelength, an asymptotic form of the 

basic C-I relation (equation 2.14)) may be used to obtain weighting information 

relatively easily. 

The method of stationary phase (3.32) is a standard method of estimating 

integrals of the form 

f dt q(t) exp(ix p(t)) (3.74) 

where x is a large parameter, and p,q are differentiable functions. The method 

is based on the fact that the main contribut~on to the integral comes from those 

points in the range of integration where the phase is stationary, i.e. pI 

(=dp/dt) is zero. The contribution from such a point to in the interior of the 

range is, when x is large, 

(3.75) 

The method can be applied to the integral of the basic C-I relation, equation 

(2.14). 

The main conclusion is that when the normalised distance R = kr between a pair' of 

sampling positions is large, the principal contribution to C comes from those 

plane waves with wavenumber vectors parallel to the separation vector. When8 iO, 

so that the sampling positions are not both on the z-axis. 
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C(R,e,<p) 'V (1/iR)(exp(iR) I(e,<p) -exp(-iR) I(lT-8,<p±1r» 0.76) 

(The choice of sign in the second term depends on whether <p is greater or less 

than IT.) A similar result holds for positions on the axis, but with the I 

terms replaced by azimuthal averages of I. 

Weighting estimates could thus be taken directly from an arbitrary set of CCSD 

measurements, provided R is large enough for equation 0.76) to be a valid 

approximation. The relative error is O( 1 IR), suggesting that R should be at 

least 10, giving r = 11 cm at 5 kHz, and 27 cm at 2 kHz. 

3.7 DIRECT WEIGHTING ANALYSIS: SPHERICAL HARMONIC EXPANSIONS 

Only one restriction - large sampling position separations - was made on the CCSD 

data set necessary for the stationary phase analysis method described in the last 

section. Suppose now that the data set is still more limited, to a sparse 

irregular array of pOints which cannot be assumed to be far apart. An analysis 

method which will work even under these conditions is based on the spherical 

harmonic expansion of CCSD and weighting, and is discussed in this section. 

The first part of the discussion is a review of some of the basic properties of 

spherical harmonic series. 

3.7.1 Fundamental Properties 

Spherical harmonic functions (3.33) are a set of standard functions of the 

spherical polar angles v, u. Each harmonic yq is a complex combination of 
9, 

trigonometric functions of v (with maximum order9, ) and u (with maximum order q). 

9, takes integer values 0 to 00, and for each 9, , q takes integer values from -9, 

to 9,. 

Y1(v,u) is proportional to the product of the associated Legendre polynomial 

pq with exp(iqu): 
9, 

Y~(v,u) a p1(v) exp(iqu) C3. 77) 
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The harmonics with q = 0 are azimuthally symmetric: 

(3.78) 

where p~ is the Legendre polynomial of order ~. 

Spherical harmonics are "orthonormal"; 

normalised in the sense that 

that is, they are orthogonal and 

1T 21T 

fa dv sin fa du Y~(v,u) y~ll* (v,u) = 0 0 
'" '" ~~ I qq I 

(3.79) 

The first few associated Legendre polynomials are listed in Ref. (3.32), page 

639. 

The usefulness of spherical harmonics comes from the ability of a harmonic series 

to approximate to almost any function f (v,u) of angle: 

f(v,u) 
N 

= l: 
~=O 

~ 

l: 
q=-~ 

0.80 ) 

A spherical harmonic series is to a function of angle what a Fourier series is to 

a periodic time series. An azimuthally symmetric function would be approximated 

by a sum of harmonics with q = 0: 

f(v) 
N 

_ S~ = l: 
£=0 

If the coefficients fq are chosen properly, 
£ 

then most 

0.81) 

functions can be 

approximated arbitrarily closely by a large enough series. This fact depends on 

a property of harmonics called "completeness", and to understand this properly 

some properties of functions of angle must be introduced. 

A function of angle is called "integrable" if the integral 
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'IT 'IT 

6 dv sin v £ du f(v,u) (3.82) 

exists, and "square integrable" if 

'IT 

6 dv sin v 
2 'IT 

I du If(v,u) 12 
o 

exists. A square integrable function is always integrable as well, but the 

converse is not necessarily true. For example, all partially reverberant 

weightins are both integrable and square integrable. All cosine-power weightings 

are integrable for m > - 1, but only square integrable for m > -l. (This is 

easily seen by evaluating the integrals in equations (3.82, 3.83) for the general 

cosine-power weighting given by equation (3.8). The integral resul t becomes 

infinite as m approaches -1, as does the square integral result as m approaches -

i.) A function composed of delta-functions would be integrable but not square 

integrable. Integrability and square integrability are thus associated with the 

presence and strength of singularities in the function f. All plane wave 

weightings encountered in practice would be expected to be square integrable. 

A reasonable way to choose the coefficients f~ for the series s& (equation 

(3.80» for a given N would be to minimise the mean square error 

RN = II dv du sin v I f(v,u) - sJ /2 (3.84 ) 

with respect to the values of the coefficients. Expansion of the square and the 

use of the orthogonality of harmonics may be used (3.33) to show that the 

minimising coefficients are given by 

fq = II dv du sin v f(v,u) yq* (v,u) 
~ ~ 

(3.85) 

The "completeness" of the harmonics means that as N -+ 00 then RN -+ 0 for any 

square integrable f. The approximatipn s~ is said to be "convergent in the mean 

to f". An arbitrarily good harmonic approximation of f may be obtained by 

taking a large enough series, and it is valid to write down an, exact harmonic 

representation of f: 



f(v,u) = l: l: 
9,=0 q=-9, 

fq yq (v,u) 
.Q, 9, 
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(3.86 ) 

If the function f contains a discontinuity, Gibbs' phenomenon fringes are found 

to occur, because of the inability of a finite series of continuous functions to 

fit the infinite slope required at a discontinuity. This point is discussed 

further in Appendix B. 

Another subtlety of harmonies is that the harmonic approximation of a function 

still has some meaning and usefulness even if the function is not square 

integrable. The coefficients f~ as given by equation (3.85) still exist provided 

only that f is integrable, and the series Sf of equation (3.80) may still be 
N 

wri t ten down. However, the series no longer converges in the mean, but only 

point by point - and will not converge at, for example, singularities of the 

function. It is thus no longer valid to write down the exact equation (3.86). 

Nevertheless sJ is still a useful approximation to f, as will be illustrated in 

Appendix B. 

No harmonic expansion exists for functions which are not integrable, because the 

coefficients are not defined. 

3.7.2 Harmonic Expansions of CCSD, Weighting 

Spherical harmonic theory provides a new light in which to consider again the 

problem of the extraction of information from the basic C-I relation (equation 

(2.14» between CCSD and plane wave weighting in a free wave field. 

The plane wave function exp(i~ • .!:.) is a square integrable function of v,u (and 

also of e,~) and has a standard harmonic representation (3.33) 

9, 

exp(i~ • .!:.) = l: l: (3.87) 
9,=0 q=-9, 

j 9, is the spherical Bessel function of order 9,. 

Suppose that a plane wave weighting I at a given frequency is modelled by a 

finite sum of N spherical harmonics: 



I(v,u) SI 
N 

= E 
q 
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(3.88 ) 

Substitution of equations <3.87, 3.88) into the C-I relation gives a harmonic 

expression for C: 

SC 
N 

N 
E E 
Q, q 

<3.89 ) 

Reference (2.30) contains a rigorous statement of some theoretical results about 

the convergence of the series in equation (3.89). The main conclusion is that 

provided only that I is integrable (not necessarily square integrable) then C may 

be approximated by a series of this form, with coefficients given by an integral 

of the form of equation (3.85). The C series is convergent at every value of kr, 

and may thus be extended to N ~ 00 , to an exact representation of C, even when 

the same is not true of the corresponding I series. The series is thus a very 

robust representation of C, and is in a sense "more convergent" than the 

corresponding I series. 

A simple special case is that of a diffuse field, whose weighting series has only 

one non-zero coefficient 

(3.90) 

so that the C series becomes 

jo(kr) = sin(kr)/kr (3.91 ) 

which is Cook's result, equation (2.11). 

The pair of equations <3.88,3.89) is basic to the development of a plane wave 

weighting analysis method. Suppose the weighting I is modelled by a series of 

the form of equation (3.88) with a fixed set of harmonics and unknown 

coefficients. Then equation (3.89) gives a prediction for C at any position as a 

function of the unknown coefficients. The coefficients can then be determined 
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by comparing the predictions with experimental data on CCSD, and an estimate of I 

may be constructed. 

This basic procedure can be refined by introducing least-square fit methods, and 

by searching through different sets of harmonics to see which produces the "best" 

models for a given number of terms. The procedure is flexible because of the 

great variety of weighting shapes which can be approximated with a small number 

of harmonics. The procedure is also convergent, because a large enough CCSD 

data set could yield an arbitrarily large set of estimated coefficients, and so 

as well converged an approximation to the weighting as desired. 

The procedure places no restrictions on the form of the input data set; it will 

produce results no matter how sparse or irregular the array of sampling 

positions, though the quality of the results will depend on the nature of the 

array. 

Strictly speaking, this technique is an inductive analysis method, since each fit 

depends on the adjustment of the values of a small number of parameters in a 

weighting model of a specified form. However the flexibility introduced by the 

search procedure and the ability of the technique in principle to produce an 

arbitrarily good image of any plane wave weighting justified its classification 

as a "direct" deductive method. 

3.7.3 Fundamental Limitations 

The power and general applicability of the harmonic analysis technique will make 

it the focus of attention for the rest of this study. However, the technique 

does suffer from some fundamental limitations, which stem from the fact that CCSD 

and weighting must be represented by finite harmonic series, and it is wothwhile 

to consider these limitations as a background to the application of the 

technique. 

Appendix B is a detailed discussion of some convergence properties of the two 

series, equations (3.88,3.89). The emphasis of the discussion is on the 

consequences of limited convergence for a practical harmonic analysis algorithm. 

There are three main conclusions. First, the presence of discontinuities and 

singularities in the plane wave weight.ing has (as might be anticipated) an 

adverse effect on convergence. Second, the low-frequency (i.e. low -kr) range of 

CCSD contains information only about the lowest-order moments of the underlying 
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weighting, and not about finer details. 

subsection (3.3.6).) 

(This recalls the discussion in 

Finally, if the rates of convergence of the CCSD and weighting series are 

compared, it emerges that a weighting series with a given number of terms is in 

general a worse representation of the true weighting than is the corresponding 

series for CCSD with the same number of terms. All these results have important 

practical consequences. 

Typical experimental data for CCSD will be restricted to low values of kr because 

of frequency sampling considerations, and will be subject to a certain amount of 

statistical estimation error. The fact that the low-kr range of CCSD contains 

information only about the lowest order harmonic coefficients - even in the 

absence of measurement errors - means that a harmonic series analysis method 

could be expected to yield only low order harmonic models of plane wave 

weightings showing only gross features. Furthermore, a C series tends to be 

better converged than an I series of a comparable size, so that the variation of 

estimated harmonic coefficients due to the presence of even a small experimental 

error in CCSD measurements may have a marked effect on the variance of the 

resulting weighting models. Well-resolved data will be needed to obtain even a 

moderately good approximation of the weighting. 

3.7.4 Practical Applications 

In common with many of the important results considered in this chapter, the 

basic pair of harmonic series for C,I were given by Cox (2.22). Cox applied the 

results inductively to show that CCSD functions related to low order harmonic 

series models of plane wave weightings could be made to fit to measurements made 

of ambient sea noise fields at various frequencies. 

Spherical harmonic expansions were used in the course of the proof by Cron and 

Sherman (2.20) that the sound field at the centre of a large sphere filled with 

sources is diffuse. Pierce (3.34) suggested the use of harmonic series to 

define an index of diffuseness for anisotropic fields. A similar idea was put 

forward by Ebeling and Freudenstein (3.27). 

Bart (3.35) suggested the modelling of an anisotropic free wave field with simple 

combinations of harmonies, whose coefficients could be determined by measuring 

correlations with various microphone orientations. The results were used to 

measure the energy flow towards and away from a piece of carpet; the estimates 
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of absorption coefficient that Bart thus obtained were consistent with 

reverberation time measurement results. Makita and Fujiwara (3.36) used Bart's 

idea in the discussion of the precision of measurements of absorption 

coefficients in the presence of anisotropic fields. 

The application of harmonic series to problems encountered by workers in other 

fields, such as the study of the angular dependence of planetary magnetic fields, 

will be described in Chapter 4. 

3.8 CONCLUSIONS 

The framework of this chapter has been a review of methods to obtain information 

about the plane wave weighting of a free wave field from CCSD measurements made 

in the field. A series of methods requiring progressively less restrictions on 

the quality of the input data was presented, finishing with the harmonic series 

method which is capable of extracting weighting information from input data 

limited to a sparse, irregular array of sampling positions. 

Of all the methods reviewed, the harmonic series method is the least demanding in 

terms of the quality of its input data, and would therefore be expected to be the 

most widely applicable. In the next chapter, we will focus our attention on a 

harmonic series free wave field analysis method, and develop the ideas presented 

in this chapter into a practical algorithm. 
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Figure 3.1 
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Generation of ambient sea noise by a surface distribution 
of sources. 
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m = -1 

k 

Axial CCSD for cosine-power fields (real part). 
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Figure 3.4 Strip function plane wave weighting. (a) General 
weighting. (b) Partially reverberant field weighting. 
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Figure 3.5(a) Strip function weighting:semidiffuse field. 
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Figure 3.5(b) Modulus and phase for CCSD derived from weighting in 

Figure 4.S(a); CCSD taken at (a) r = 12 em, 8 = 0; 
(b) r = 12 em, 8 = Tf/2; (c) r = 11.4 em, 8 = 1.1. 
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Figure 3.10 Window factor w(~,v,8). The shaded area is unit for a~l 
~, 8. 
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x' z 

Figure 3.11 The figure shows wavefronts (-- -) travelling from 
microphone x' to microphone x. Angle a is v - 8. The 
distance tr;avelled by the wa"efronts is 
d = Ir cosal = rlcos (v - 8)1. 
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Figure 3.12 This figure shows wavefronts travelling from x to x'; 
angle a is n-v-8, so the distance travelled by the 
wavefronts is d = Ir cos al = rlcos (n-v-8) I = rlcos (v+8) I. 
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Figure 3.13 The (8,~) plane used to define wavenumber spectra in.a 
semidiffuse field. 



81 

Figure 3.14 Truncated estimates of axial wavenumber spectrum Q'(p,R) 
in semidiffuse field. - - - true weighting. 
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Figure 3.15 Spherical harmonic approximation to cosine-power 
weighting, m = 2. - - - true weighting. 
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Figure 3.16 Spherical harmonic approximation to cosine-power 
weighting, m = 1. - - - true weighting. 
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Figure 3.17 Spherical harmonic approximation to semi diffuse field 
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Figure 3.18 Spherical harmonic approximation to cosine-power 
weighting, m = -i. - - - true weighting. 



86 

1 

.8 

.6 

.4 

.2 

o L---------__ --______ ~------~~~------r_------~~------~~ 
o 2 4 6 8 10 

Figure 3.19(a) Spherical harmonic approximation to axial CCSD in 
semi diffuse field (modulus). - - - true weighting. 
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Figure 3.19(b) Spherical harmonic approximation to axial CCSD in 
semidiffuse field (phase). - - - true weighting 
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Figure 3.20 Convergence of harmonic series for plane wave weighting, 
various cosine-power fields. 



.9 

.8 

.7 

.0 

.5 

.4 -

. 3 

. 2 -

.1 

o 

89 

o 
" . 

"-

~O 
o - - ... 0 . 

'-, 0- o 

• V1 ",/3, V2 = TI/2 

0 V1 0, V2 TI/3 

0 V1 0, V2 1/2 

o • 
o 2 4 6 8 10 12 

Figure 3.21 Convergence of harmonic series for plane wave weighting; 
various partially reverberant fields. 

N 



.4 

o 

90 

• m = -0.3 

o m 0 

N 

2 4 6 8 10 12 
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CHAPTER FOUR 

THE SPHERICAL HARMONIC ANALYSIS OF FREE WAVE FIELDS IN PRACTICE 

4.1 INTRODUCTION 

As we saw in Chapter Two, a free wave field used to model a spatially complex, 

random wave field may be completely described by its plane wave weighting 

function. Associated with the weighting function are such quantities as the 

energy flow directi vi ty in the field. However, the weighting function is not 

directly observable, and must be inferred from measurements of complex cross­

spectral density (CCSD). 

There are a variety of methods by which this may in prinCiple be done, as 

described in Chapter Three. Of these, the spherical harmonic analysis method has 

the most general applicability, and this chapter is a description of a practical 

algorithm for plane wave weighting inference, based on the use of spherical 

harmonics. 

The technique as finally developed involves the least squares fitting of 

spherical harmonic models of free wave field plane wave weighting to CCSD data. 

The harmonic models are based on sets of harmonics which are chosen by a stepwise 

variable-by-variable search procedure. The output of computer programs written 

to perform the search and fitting consists, for a given input CCSD data set, of a 

series of plane wave weighting models which can be judged according to their 

statistical quality and physical plausibility. 

As will be described, this method is designed to derive as much information as 

possible from a given set of CCSD data of a finite size, with associated errors 

of finite size. 

The chapter opens with a detailed formulation of the central harmonic fitting 

problem as an exercise in regression analysis. Previous applications of 

spherical harmonic model fitting in various areas are then described, and the 

final method is presented, together with a discussion of its limitations and 

sensitivity to input data errors. 
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4.2 FORMULATION OF THE HARMONIC SEARCH PROBLEM: LEAST SQUARES FITTING 

4.2.1 Preliminary Formulation 

The integral relation between the plane wave weighting function characterising a 

free wave field, and CCSD measurements taken between signals recorded at two 

points in the field, was given in Chapter Two (Equation (2.14». This integral 

relation may be re-expressed, as shown in Chapter Three, as a pair of spherical 

harmonic series. If the weighting I can be modelled by a series of the form 

I(w,v,u) I(w,v,u) 
P +1 
L L I~ (w) Y~ (v,u) 
9, q 

( 4.1) 

(equation (3.88»), with the sum taken over P+ 1 suitably chosen harmonics, then 

the correspnding normalised CCSD is given by 

(equation (3.89». 

P+1 
L L 
9, 

(kr) y~ (e, ¢ ) (4.2) 

As outlined in Chapter 3, these equations may be used in the deduction of 

information about weighting from CCSD samples taken over a sparse array of 

sampling positions. The basis of the technique is to assume a model of the 

weighting as expressed by equation (4.1), with the coefficients treated as 

unknowns. CCSD predictions based on this model weighting may be computed using 

equation (4.2), for each position used in the experiment. The coefficients may 

then be chosen by comparing the predictions to experimental measurements of CCSD. 

Finally, an estimate of the weighting may be reconstructed using equation (4.1). 

The central problems faced by a program designed to carry out such an analysis of 

a given CCSD data set are: how to make an appropriate choice of a set of 

harmonics for the model; how to estimate the coefficient values; and how to 

assess the validity of the resulting model. 

If the weighting varies with frequency, the coefficients will vary with freq­

uency, and so a separate fit must be made at each frequency of interest. The 

following discussion concerns the estimation of coefficients from single freq-
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uency data sets, and the frequency dependence of CCSD, weighting and harmonic 

coefficients will be omitted for convenience. Each input data set will corres­

pond to a single frequency, and will be referred to as, for example, "a 3 kHz 

data set". Such a data set consists of the 3 kHz complex values of CCSD read off 

from CCSD frequency spectrum estimates obtained at a variety of sampling 

positions. 

The fitting procedure may be more formally expressed as follows. 

Suppose a data set 

{C(.!:j)j j = 1,N} (4.3) 

of N CCSD samples taken, at pOints.!:j (j = 1,N) is available, and that the chosen 

model of plane wave weighting for the sound field is expressed by equation (4.1), 

involving P+1 harmonics. 

constant term 

, 
= 1Il! 

It is assumed that the harmonic sum includes the 

(4.4) 

to ensure the correct normalisation of I (equation (2.16», so that the model 

includes P unknown coefficients. The model produces a prediction C(.!:j) of the 

CCSD at each sampling position, a prediction which depends on the values of the P 

coefficients. 

Then, provided P < N, the coefficient values may be chosen to minimise the 

weighted residual sum of squares 

N 
RSS = L I C(.!:j) - C<.!:j) I 2 w(.!:j) (4.5) 

j=l 

It was decided to develop a least squares procedure because of the well-known 

advantages of such methods (4.1). Because of the restriction P < N, a least 

squares procedure cannot yield as many coefficient values for a given data set as 

could be obtained by a simple simultaneous solution of N versions of equation 

(4.2) (one for each data point). However, in the inev~table presence of data 

uncertainty, a least squares procedure can be shown to produce coefficient 
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estimates which are of zero bias (given zero mean input errors) and whose 

statistical properties may be assessed in a variety of standard ways. 

4.2.2 Weighting Factor; Real and Imaginary Data Fitting 

The inclusion of the arbitrary weighting factor w in equation (4.5) makes the 

formulation of the problem as general as possible. If the plane wave weighting 

is azimuthally sy~~etric, so that the CCSD predictions would be dependent only on 

the axisymmetric harmonics y~( e), which are Legendre polynomials in cos e (see 

Chapter 3), a suitable weighting factor would be 

w( e) I d~ cos G I sin (4.6) 

The use of this weighting makes a distribution of samples which is uniform on an 

angular scale equivalent to a sample weighting which is uniform over cos e. 

Since both observed and predicted CCSD's are complex quantities, the residual sum 

of squares RSS splits into two separate sums: 

RSS = RSSR + RSSI (4.1) 

where 

N 
C(ro))2 w(ro) RSSR l: (Re C(l:j) - Re 

j =1 
~ ~ 

(4.8) 

N 

C (l:j) ) 2 w(l:j) RSSI = l: (1m C (l:j) - 1m 
:=1 

(4.9) 

(Re denotes real part, and 1m denotes imaginary part.) 

Since 

(4.10) 
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it is straightforward to show that 

P+l 
C(.!:.) = 2 l: l: i 9- j 9- Eq 

9- >0 q= 

(4.11) 

= 1 for q = OJ = 2 otherwise.) 

It follows from the form of this sum that Re C is made up only of contributions 

from harmonics with the polar angle label 9- even, while 1m C is formed only by 

odd terms. Thus the two sums RSSR, RssI are decoupled, and the problem of 

finding the best-fitting set of complex coefficients to fit to a complex CCSD 

data set breaks up into two separate problems: one involving the fit ting of 

even coefficients to the real part of the data, and one involving the fitting of 

odd terms to the imaginary part of the data. 

Henceforth the two separate problems will be referred to respectively as "the 

real data search" and "the imaginary data search". Note that both fitting 

problems involve real-valued coefficient terms and real-valued variables. 

It turns out to be convenient to define "real harmonic variables" and "imaginary 

harmonic variables" as follows: 

l/JR a j2 yO 
1 2 

1j;R a j2 Re y1 
2 2 

R j2 1m y1 
l/J 3 a 

2 

l/JR a j2 Re y2 
4 2 

l/JR a j2 1m y2 
5 2 

l/JR a j4 1m y2 (4.12) 
6 4 ................................................................................ 
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I j1 yO 
Wi a 

1 

tiJI a j1 Re y1 
2 1 

tiJI a j1 1m y1 
3 1 

I j3 yO (4.13) 
tiJ 4 a 3 ................................................................................ 

(See Appendix C, equations (C4,C7) for more detailed expressions.) These 

variables are all real valued. The "real" variables contribute only to the real 

part of C, and the "imaginary" variables contribute only to 1m C. A convenient 

shorthand for the variables is the notation (~,q-Re), or ~ ,q -1m). 

(2,1-Re), while tiJ~ is (2,1-Im). 

ThustiJR is 
2 

4.2.3 Regression analysis: solution of problem 

In Appendix C, the minimisation problems expressed by equations (4.8, 4.9) are 

recast into the standard notation of multiple regression analysis (4.1). This 

notation is simpler to manipulate than that of equations (4.8-4.11) and standard 

regression analysis results about the statistical quality of a fit become easily 

accessible. 

Appendix. 

These results are summarised below, and are given in detail in the 

It may be shown that the coefficients which minimise a residual sum of squares 

like those of equations (4.8,4.9) can be found from a solution of a matrix 

equation known as the "normal equation". The elements of the matrices and 

vectors involved are computed from sampling position coordinates and CCSD data. 

Two fundamental measures of the quality of an estimate of a random variable 

obtained from a regression are its "bias" and "variance". The bias measures the 

difference between the estimate's expected value and the "true" value of the 

variance, which the variance is a measure of the "spread" of estimates about 

their expected value. A good estimate should have low bias and low variance. 

However, in practice low bias estimates tend to suffer from high variances, and 

vice versa, and a compromise must usually be reached. An overall measure of an 

estimate's quality is the "mean square error" (MSE), the sum of the bias squared 

and the variance. An estimate will be improved by any procedure which reduces 

its MSE. 
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If we suppose that the residual data in a regression (that is, the difference 

between the CCSD data and the CCSD predictions produced by a harmonic model) is 

an unbiased, random disturbance containing no significant information, then it 

can be shown that the least squares coefficients and predictions are unbiassed 

estimates. 

4.2 4 Regression Analysis: measures of statistical quality 

These are various standard measures of the overall statistical quality of a 

least-squares fit to data (detailed in the Appendix). The most familiar is 

probably the ordinary correlation coefficient R. This is a measure of the ratio 

of the variation of the CCSD data explained by the harmonic model to the total 

variation of the data. If no fit is attempted, R is zero. 

is made at every data point, R has absolute value 1. 

If a perfect match 

If p, the number of variables in a fitting model, is increased, then R2 always 

increases. This reflects the fact that with more variables equation (4.12) can 

match the values of each of the n data samples more closely. In fact, if p is 

allowed to equal n, RSS is zero and R2 is unity. However the true quality of 

the model may be poorer because the predictor function may take unrealistic 

values away from the data points. 

This is illustrated in Figure (4.1), which is a representation of the fitting of 

a set of data points with polynomials of various orders. If the order "is too 

high, the data points may be fit very well, but the predictor function oscillates 

to unreasonable values elsewhere. 

Two more subtle measures of the qauality of a fit designed to take this feature 

into account are the F-statistic and the PRESS statistic. F is a function of the 

correlation coefficient: 

F = / -p­
n-p-l 

(4.14) 

This quantity can be shown to be a random variable with the standard F 

probability distribution with p, n-p-1 degrees of freedom. Roughly speaking, a 

fit is significant if the value of F is large. This is possible if R2 is large, 

but p is not too close to n. 
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PRESS is the "predicted residual :;;um of squares" defin.ed by Allen (4.2). Its 

use involves a technique known as "cross validation" (CV), (4.3), which depends 

on the splitting up of the input dQta into two sets. One set is used to produce 

the predictor function, and the s"cond set is used to validate the predictor 

function. CV allows the investigation of whether a predictor is poor away from 

the predictor data points on which it is based, as will be the case if too many 

variables are included in the model. The comparison data set, which has not been 

used in the formation of the predictor, is equivalent to a fresh data set against 

which the predictions of the model can be checked. PRESS is a measure of the 

deviation of the predictor function from the values of the "fresh" data set. 

PRESS would be expected to be laNf for small p - when the fit to the data is 

poor - and at large p - when the fit is good, but the predictor function 

oscillates to unreasonable values between the data points. The best values of 

p would be near the PRESS minimum, representing a trade-off between goodness of 

fit to the data and the quality of tie predictor elsewhere. 

The above discussion illustrates the at first glance surprising fact that the 

inclusion of more harmonic variables in a model will not necessarily improve the 

fit. This is further shown by the properties of a measure of the contribution of 

an individual variable in a model, known as the t-statistic. 

The t-statistic is defined as the ratio of the coefficient estimate to that 

estimate I S standard error. 

standard deviation. 

The standard error is a measure of the estimate I s 

The larger the value of the t-statistic, the more important the variable is to 

the model. The threshold value is unity: a variable with a t-value greater than 

one is called "significant". It can be shown that the quality of a model is 

actually improved if insignificant variables are deleted from it - even though 

the remaining set of variables is smaller than the original. Although 

coefficient estimates from the smaller set suffer a worse bias than the larger, 

their variance is less. The decrease in variance offsets the bias increase, to 

give a smaller MSE. 

4.2.5 Regression analysis: collinearity 

An important deciding factor in the quality of a regreSSion is the amount of 

collinearity among the variables. Collinearity describes the extent to wh.ich two 

variables appear to have a linear relationship. The relationship may be real 
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(for example, the dependent variable will, or should, be highly collinear with 

the dominant independent variables) or an artifact of the data acquisition. 

Collinearity among the independent variables is purely a function of the sampling 

structure, and not of the values of the dependent variable data. 

present example, the independent variable collinearity depends 

Thus, in the 

only on the 

sampling position array, and not on the CCSD values, and in principle the 

sampling array could be designed with this in mind. 

Collinearity among the independent variables makes the estimation of coefficients 

unstable • A coefficient estimate set may indicate a strong dependence on one 

. variable, but a slight perturbation of the data or a marginal change in the model 

can "flip" this dependence to another variable, highly collinear with the first. 

This occurs because a linear dependence of CCSD on a given harmonic is equivalent 

to a linear dependence on a second harmonic, if the second variable is highly 

collinear with the first. 

Another serious effect of collinearity is the degradation of estimates of 

quantities like the F- and t-statistics, making the selection and deletion of 

variables for a model uncertain. 

Associated with a regression is a correlation vector ryi' which measures the 

collinearity between the CCSD data and each harmonic in the fitting model, and a 

correlation matrix rik' each element of which measures the col linearity between 

the i'th and j'th harmonic variables. 

A correlation matrix element can range in magnitude from zero - indicating zero 

collinearity between the two variables concerned - to one - indicating a perfect 

linear relationship. A "good" set of independent variables will have a 

correlation matrix with low value elements (with a magnitude « 1) away from the 

leading diagonal. (The leading diagonal elements rii are always unity.) 
r 

A measure of the impact on variable i of collinearity with all the other 

independent variables is the "variance inflation factor" (VIF) (4.4) defined by 

(4.15) 

This is, the VIF is the i-th diagonal element of the inverse of the correlation 
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matrix. It ranges in value from one to infinity, with one indicating zero 

collinearity, and infinity indicating perfect col linearity with another variable 

or variables. In practice, a VU' larger than about 10 indicates that the 

variable suffers from serious collinearity. 

A st.raightforward measure of the overall effect of collinearity in a variable set 

is the average of the VIF's: 

P 
l: 

i=l 
VIFi/p (4.16) 

A highly collinear variable set is characterised by a high (RL > 10) value of RL. 

The large value is caused by improbably large coefficient values, resulting in 

large fluctuations of the prediction function between data values (see Figure 

4." . 

4.2.6 Summary 

This concludes the formulation of the spherical harmonic fitting problem 

described in subsection (4.2.1) in terms of regression analysis, with the 

discussion of a battery of measures with which the quality of a regression may be 

tested. 

These measures offer a way to assess the quality of a harmonic model once 

constructed, but as noted in subsection (4.2.", a preliminary problem in the 

design of a model is the choice of a suitable set of harmonic terms. Various 

standard methods have been developed by regression analysts by which the 

selection of independent variables may be performed. However it is not clear a 

priori which methods are appropriate for the particular fitting problem presently 

considered. 

There seems to have been little significant work done on harmonic model searching 

by previous workers in acoustics (see the discussion in Chapter 3). However, a 

considerable expertise has been developed in the fitting of such lQodels by 

researchers on the apparently unrelated topics of the magnetic and gravitational 

fields of planets, and this work is the subject of the next section. 
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4.3 HARMONIC ANALYSIS OF THE GRAVITATIONAL AND MAGNETIC FIELDS OF PLANETS 

4.3.1 Geomagnetism 

Much of the inspiration for the development of the harmonic regression technique 

described here has come from a study of comparable work done by researchers in 

the field of geomagnetism (4.5). 

Geomagnetism, the study of the Earth's magnetic field, is one of the oldest 

sCiences, dating back 4000 years to studies by the ancient Chinese (4.6). The 

fact that the field is approximately a dipole in character was shown by Gilbert 

as long ago as 1600. It was realised soon after this, however, that the field 

has other significant components, and spherical harmonic models have been used to 

describe the field since the time of Gauss (1839). Harmonic models are a 

natural description of the field, which is a function of two spherical angles -

latitude and longitude - on the Earth's surface. A dipole field can be regarded 

as a special case of a harmonic series, with one non-zero component (£=1, q=O). 

The coefficients in the harmonic models produced by Gauss and later workers were 

determined by fitting models to measurements of the geomagnetic field made over 

the Earth's surface. The earliest global survey of the field seems to have been 

assembled by Edmund Halley in 1700. The importance of such surveys has grown 

with time, as a knowledge of the Earth's field yields not just information about 

the structure of the Earth - Gauss himself was able to show from his harmonic 

modelling that the magnetic field is generated inside the Earth - but also about 

such practical matters as the behaviour of the ionosphere, and the position of 

anomalies in the Earth's crust such as ore lodes. A modern survey includes many 

thousands of measurements made on land, at sea, in the air and in Earth orbit 

(4.7), sufficient to yield such harmonic models as the International Reference 

Geomagnetic Field (4.8), which comprises 80 variables. 

The method presently accepted by workers in this area for the selection and 

testing of harmonic models for the geomagnetic field was presented by Fougere in 

1963 (4.9). Fougere described what is basically a stepwise variable-by-variable 

search procedure (see section (4.4». Recently, Whaler and Gubbins (4.10) 

investigated more advanced approaches to the problem, but found only marginal 

imporvements on Fougere's method, and concluded that the Fougere method remained 

the most sensible chOice, being reliable and thoroughly familiar. 

One interesting suggestion by Whaler and Gubbins was aimed at reducing "ringing" 
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- the Gibbs' phenomenon - in truncated harmonic series (see Chapter 3). Whaler 

and Gubbins considered the analogy between a harmonic series and a time series as 

employed in the frequency analysis of acoustic signals. They argued that the 

sharp truncation of a unweighted harmonic series is equivalent to the use of a 

rectangular data acquisition window, so that ringing is caused by "leakage" into 

"side lobes". Whaler and Gubbins proposed the use of a smoothing window, 

analogous to those used in signal processing, to reduce ringing by weighting out 

the higher order harmonic terms and so reducing the side lobe levels. However, 

it was found in practice that a significant reduction of the side lobes led to an 

unacceptably blurred final estimate. (As is familiar from frequency analysis, 

leakage can be reduced only at the expense of resolution.) Whaler and Gubbins 

concluded that "ringing seems to be a property of the spherical harmonic 

representation which one must live with". 

4.3.2 The Magnetic Fields of Jupiter and Saturn 

The expertise gained in the harmonic analysis of the Earth's magnetic field has 

recently been applied to data obtained from the spectacular flybys of the planets 

Jupiter and Saturn by unmanned American sp'lcecraft. Each spacecraft made one 

pass through the gravity well of its target planet, yielding a sparse array of 

samples of the planetary magnetic field along a single track. 

Connerney (4.11, 4.12, 4.13), describing the spherical harmonic analysis of this 

data, noted that a principal problem with such a limited data set is collinearity 

among the independent variables. This was evidenced by a model giving a good fit 

to the data set on which a predictor is based, but having poor behaviour 

elsewhere. This was shown by comparing models derived from the data from one 

spacecraft to further data yielded by a later spa~ecraft. Connerney described 

the development of an analysis method involving a stepwise search procedure (see 

section (4.4) which sought a low-collinearity variable set. 

4.3.3 The Earth's Gravitational Field 

Another interesting application of spherical harmonic fitting has been made in 

the study of the Earth's gravitational field. 

The Earth's gravitational field is nonuniform because of the slightly 

nonspherical shape of the planet, and it can be described by a series of 

harmonics (4.14). The angular arguments of the harmonics are again latitude and 
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longitude. The orbit of an artificial satellite is a function of the 

coefficients in the series (among other perturbing factors such as solar and 

lumar gravity). Observations of satellite orbits, obtained by such means as 

laser and doppler tracking, can then be used to estimate the unknown 

coe fficients. 

Such modelling was performed as long ago as 1958 using observations of Sputnik 2, 

the second man-made object to orbit the Earth (4.15). A more recent study 

(4.16) involved the study of 28 satellite orbits. The resulting models, 

projected back to the Earth's surface, have shown that the Earth is pear-shaped, 

with a depression at the south pole and a spindle at the north, the variations in 

radius being of the order of tens of metres. 

The analysis methods developed by workers in this field appear to be mostly "rule 

of thumb", involving the rejection on qualitative grounds of any model with 

excessively large high order coefficients, giving an oscillating estimated field. 

However, Stone (4.3) described a cross validation study of such data, involving a 

successful use of the PRESS s,tatistic. 

4.3.4 Summary 

The main conclusion of this brief review is that the most successful formalised 

variable selection technique used in the construction of harmonic models of 

planetary magnetic and gravitational fields has been the relatively simple 

variable-by-variable stepwise search method (to be described below). More 

advanced techniques have been proposed but not generally accepted. Collinearity 

among the independent variables is a weakness of more restricted data sets, such 

as those acquired by the sampling of a planetary magnetic field during a single 

spacecraft flyby. 

The plane wave weighting harmonic model construction technique developed in the 

present study has been based on a stepwise search procedure, with safeguards 

against collinearity incorporated into the search. The development of the 

search technique is described in the next section. 

4.4 DEVELOPMENT OF HARMONIC SEARCH PROCEDURE 

4.4.1 Introduction 

The standard statistical results described in section (4.2) may be used to assess 
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the goodness of fit of a model composed of p spherical harmonic terms to n CCSD 

data samples, with p < n. There are, however, an infinite number of harmonic 

terms to choose from, and so an infinite number of possible models of size p. 

The basic requirement of a harmonic fitting procedure is therefore a method to 

find harmonic models which are likely to give a good fit to the data. The 

goodness of fit of each model can then be measured using the criteria described 

earlier, and the models further judged in terms of their physical plausibility. 

A reasonable preliminary criterion, giving n data points, is to restrict the 

harmonic variable set out of which models are to be constructed to the first n 

harmonic terms (with the variables arranged in the order of increasing complexity 

described in equations (4.12, 4.13).) It is likely that any higher order 

harmonic variables would suffer from aliasing, and would worsen the collinearity 

of any model. 

Even this restricted set, however, has a total of 2n - 1 subsets from which 

harmonic models could be chosen. In principle, 2n - 1 separate regressions would 

be required to evaluate all the possible models, and even for moderate values of 

n this is impractical. (For example, for n = 12, 2n - 1 = 4095.) 

As mentioned in section (4.3), the approach adopted by workers in the field of 

geomagnetism is that of Fougere (4.9), who described a "stepwise" search 

procedure (4.1). This is a search through likely combinations of harmonic 

variables, performed by adding to or deleting from a model one variable at a 

time. Such a search cannot be exhaustive and is not guaranteed of success, in 

that it is possible that a good model or group of models may be missed 

al together. However, it is practical and economical and, as noted in section 

(4.17), has been proven successful. 

Such a search procedure is described in the present section. The motivation for 

the inclusion of each feature of the final method is illustrated by a series of 

example runs of a computer program, made as the method evolves. 

4.4.2 Basis of Development 

The operation of a computer program performing a stepwise search for harmonic 

variable combinations to fit to a given set of data can be described as follows. 

At any point in the search, the program has a "model", that set of harmonics 

yielded by the search so far. The program compares its model with the given data 

and considers its quality using the statistical measures described in section 
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(4.2), and changes the model by adding or deleting one variable, in such a way as 

seems likely to improve the model's quality. The new model can be compared to 

the data and assessed, and a further change made; and so on. 

The two basic operations involved in such a search are known as "forward search" 

(FS) and "backward elimination" (BE) • FS involves the inspection of all the 

variables in some allowed set outside the model (called the "hopper"). The 

variable which seems most likely to improve the model, by some external 

criterion, is taken from the hopper and added to the model. 

A straightforward way to perform a FS stepwise search is simply to scan through 

the variables in the hopper in the order defined by equations (4.12, 4.13). 

Another external criterion commonly used is that the variable selected should be 

the one whose correlation with the residual data is the highest. The residual 

data is the difference between the data and the present model's prediction. 

This criterion seeks to ensure the selection of an improving variable by using 

any systematic information still left in the residual data. A FS can be 

initiated by choosing, for the first variable in a model, that variable in the 

hopper with the highest correlation to the data. 

BE (backward elimination) involves the examination of the variables within the 

present model. A variable may be deleted from the model and returned to the 

hopper if this seems likely to improve the model's quality, according to some 

internal criterion. The criterion most commonly used is that or signiricance as 

measured by the t-statistic (subsection (4.2.4», since the deletion of variables 

insignificant by this criterion leads to a definite imporvement in the quality of 

a model. A model variable may become insignificant as the model evolves through 

the inclusion in the model of variables with which it is collinear. In practice, 

the least significant variable (the one whose t-statistic is smallest in 

magnitude) is deleted. 

The two simplest methods to perform a stepwise search are to FS until the hopper 

is empty, or BE from a model initially composed of all the hopper variables, 

until the model has been reduced to purely significant variables or emptied. 

Mantel.(4.18), studying these two methods, recommended the BE procedure because 

the deletion of insignificant variables is guaranteed to improve the model, while 

FS brings no guarantee of improvement. Furthermore, the BE technique can be 

shown to be more economical in computer time. 

More sophisticated searches involve a combination of the two basic operations, 

with the selection of fresh variables for the model followed by the pruning out 
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of insignificant terms. This sort of approach offers the prespect of finding 

more good quality models than do the two simple methods described in the last 

paragraph. In principle, if deleted variables are returned to the hopper for 

reconsideration later, all the 2n - 1 possible models derivable from a hopper of 

size n can be reached. 

This is desirable because a model searching procedure cannot be expected to be 

fully automated, with no need for the further judgement of results. A search 

program seeks models according to criteria of statistical quality, which are not 

equivalent to criteria of physical plausibility. Two models may have comparably 

good statistical behaviour, with one making good physical sense and the other 

not. However, it is unlikely that a model which is poor statistically will be 

worthwhile physically. A good search program therefore filters out statistically 

bad models from the possible combinations of harmonics. The remaining 

statistically good models may then be further reviewed to remove the physically 

implausible, leaving a residue of sound models. 

A drawback of any variable selection technique is that in the presence of 

significant collinearity among the variables, estimates of the statistics on 

which the selection is based are unreliable, and the selection procedure can 

become unstable. A check on the level of collinearity in the models is therefore 

desirable. 

4.4.3 Model Experiment Data 

The search pro?edure described below was originally designed for the analysis of 

acoustic duct data, and was tailored to suit properties of the data to be 

analysed. Modifications may be necessary if the procedure is applied in other 

areas. 

Input CCSD data for use as a development example was obtained from a microphone 

traverse experiment performed in a hardwalled circular duct of radius 34.3 cm and 

uniform length 2.96 diameters. At one duct termination was a reverberation 

chamber containing four Hartmann generators. The generators excited a 

reverberant field in the chamber which in turn excited the duct sound field. The 

duct terminated in a second reverberation chamber. 

It is worth pausing to consider the geometry of this experiment in some detail. 

It illustrates an attempt to produce a useable set of CCSD data from a 

straightforward experimental set-up. 
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Two 1/4 in. microphones were used in the exper imen t, and their placing in the 

duct sound field is shown schematically in Figure (4.2). The microphones were 

attached to a pair of traverse rods which stretched across a horizontal diameter 

of the duct; the rods were at the mid-point of the working section length. The 

microphones were attached with their axes perpendicular to the traverse rods, so 

that the diaphragm of the moving microphone swept out an arc of a circle as the 

rod was twisted, as indicated in the Figure. 

The microphones were initially positioned with their axes parallel to each other 

and to the duct axis, with the centre ponts of their diaphragms held a distance d 

= 2.54 cm apart. Both microphones pOinted towards the source reverberation 

chamber. One rod was then twisted to move the microphone marked.!. in Figure 

(4.3) to a total of 12 positions relative to the microphone marked .!.', which was 

held stationary. These positions were parametrised by the angle a through which 

microphone.!. had been rotated from its initial position. 

An input data set for the harmonic search procedure would consist of twelve 

complex values of CCSD read off at a particular frequency from the twelve 

sampling positions. 

It is convenient to study the geometry of the chosen set of sampling positons in 

terms of a coordinate system defined as in the Figure, with a Cartesian z-axis 

taken along the duct axis. The origin of coordinates is located at the mid-point 

of the duct length, at the centre of a circular cross-section. As shown in the 

Figure, the y-axis is vertical, so that the x-axis is horizontal. Information 

about the chosen set of sampling positions is summarised in Table (4.1). A 

range of values of turning angle a from -37 0 to 420 was used. The position 

vectors .!.'.!.' are given in terms of Cartesian and polar coordinates relative to 

the above. axes by 

x = (-d, R sin (ao + a), - R cos (ao + a» (4.17) 

(4.18) 

d is the microphones' minimum separation distance, 2.54 cm. R is the radius of 

the turning circle of the diaphragm of the moving microphone (Figure 4.3», while 

o is the angle made by the z-axis to the line joining the microphone diaphragm 

to the centre of the mounting rod. The separation vector r = x-x' of the two 
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microphones is given in terms of Cartesian and cylindrical polar coordinates for 

each of the twelve positions in Table (4.1). 

4.4.4 Design of Experiment: CCSD Sampling 

The twelve sampling positions were chosen with three criteria in mind: that the 

positions should be close enough together for the sampled sound field to be 

considered homogeneous; that the microphones should always be far enough apart 

for scattering to be negligible; and that the expected spatial variation of CCSD 

should be well sampled. 

The distance scale of variation of CCSD might reasonably be expected to be 

comparable to the distance scale of Cook's diffuse field CCSD sin(kr)/kr. The 

twelve separations were chosen to give eight samples distributed in terms of 

separation distance approximately uniformly over the interval from the minimum 

separation d up to a wavelength of sound at 3 kHz (11. 35 cm), interwoven with 

eight samples distributed uniformly over the interval from d up to a wavelength 

of 5 kHz (6.81 cm). This is illustrated in Figure (4.4). The Figure shows that 

this choice would ensure that the first lobe of the diffuse field CCSD would be 

well sampled. 

The Table shows that the twelve sampling positions cover a range of polar angle 

of width 0.494 (= TI/6.4) radians. Thus is would be anticipated that 

axisymmetric spherical harmonics up to order at least 3 could be considered well 

sampled without fear of aliasing. Figure (4.5) shows that the twelve angular 

separations cover roughly half the interval between successive zeroes of Y3(8). 

The aliasing of harmonics is considered further in subsection (4.4.10). 

As well as the measured experimental data, artificial data was computed. The 

value of CCSD which would be obtained in a free wave field with a cosine-power 

weighting of m = 1 (see Chapter 3) at a frequency of 3 kHz was calculated for 

each of the twelve microphone separation positions used in the experiment. The 

calculation was made using a program based on the strip-function method outlined 

in Chapter 3. The true harmonic coefficients for this field can be calculated 

so that the results of the procedure could be readily judged. If computing 

rounding errors are neglected, this data set can be regarded as an ideal input 

set, completely free of measurement error. 
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4.4.5 Design of Variable Hoppers 

A suitable choice of initial hoppers of harmonic variables for each of the real 

and imaginary data model searches performed by the program in its earliest form 

is illustrated in Figure (4.6). As shown in the Figure, there are five real 

harmonic variables with polar angle index Q, ~ 2. They are (2,0), (2, 1 - He), 

(2,1 - Im), (2,2 - He), (2,2 - Im). Similarly there are fourteen variables with 

Q, < 4 and in general, there are 

real variables, up to polar index Q,(Q, even). 

Given twelve data pOints, the inclusion of more than the five variables with Q, < 
2 in the initial hopper would necessitate the inclusion of some but not all the 

variables from the nine-member set with Q, = 4. The choice of which variables 

to include would be somewhat arbitrary, and could influence the nature of the 

final regressions. The neglect of terms with higher q values, for example, would 

effectively weight the choice of harmonic models in favour of models with a more 

complex polar angle dependence than azimuthal angle dependence. If, for 

example, twenty data points were available, then an appropriate choice of initial 

hopper variables would be the fourteen with 9..i 4; and so on. 

Similar considerations apply for the selection of a hopper for the imaginary fit 

variables. It can be seen from Figure (4.6) that there are three variables with 

Q, ~ 1, and ten with 9. < 3. In general, there are 

~ (9,2 + 39. + 2) 

variables up to polar angle order 9,. 

of ten variables with Q, ~ 3. 

4.4.6 Simple FS, BE Search Procedures 

The initial hopper in this case is the set 

The results of the application of the simple FS (forward ,search) procedure 

described in subsection (4.4.2) to the set of artificial data is shown in Table 

(4.2). 
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Each column of the table represents one iteration of the search procedure. The 

program begins by choosing that variable in the hopper which has the highest 

correlation with the data, and proceeds to select at each iteration one more 

variable to include, according to the best residual data correlation criterion 

described in subsection (4.4.2). The table records each harmonic coefficient 

estimate value and the corresponding t-statistic. It can be seen from a 

comparison of the estimated coefficients with the true values given in the table 

that the searches in the early stages successfully found the "correct" harmonic 

variables; the non-zero coefficient estimate values are within a few per cent of 

the theoretical values for the first few iterations, while the t values indicate 

the relative contribution to the fit of the correct terms. Once the contribution 

of these correct variables has been removed, the residual "data" is due to higher 

order harmonic variables than are present in the hoppers, and appears to the 

present program as non-systematic error; the table indicates the largely 

unsuccessful attempts of the program to fit further terms to the residual data. 

The later iterations in the imaginary data search show the hazards of using a 

collinear set of variables. Collinearity is significant by the fifth iteration 

(RL > 10), and by the twelfth the collinearity is enormous. Some of the 

coefficient values are unrealistically large, the estimates of coefficients and 

t-statistics have been thrown awry, and the true harmonic structure of the field 

is not discerni ble. The harmonic content of the field in this case is quite 

simple; these problems would be aggravated for fields with more complex 

structures, as would be anticipated in practice. 

The collinearity problem is evident in Table (4.3), which shows the results of a 

straightforward BE search appl ied to the same data set. The same hoppers were 

used as in the FS run described above; the program begins with models composed 

of all the hopper variables and deletes the least significant term at each 

iteration until only one is left. The "correct" coefficient emerges from the 

real data search, but in the imaginary data case the t-statistic estimates are so 

distorted by collinearity that the correct term is deleted at the first 

iteration, and the correct harmonic dependence is not found in the later stages 

of the search. 

Because of the need for BE searches to start from quite large variable sets, with 

the consequent hazards of collinearity (the only way to avoid this being to make 

an arbitrary choice of initial hopper variables), it seems best to build the 

final program around what is essentially a FS procedure. 

The most encouraging feature of the results in Table (4.2) is the good statist-
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ical· quality of the early models, with good estimates of .the correct co­

efficients, large values of Rand t where appropriate, and reasonable levels of 

collinearity as indicated by RL' This indicates that the method is workable in 

principle. 

The behaviour of the PRESS statistic, as shown in Table (4.2), is disappointing. 

The PRESS results alone do not indicate unambiguously which model or models would 

be preferred: the statistic does not vary monotonically with the number of 

variables in a model, and its minima do not correspond to the best models. 

Throughout the rest of the regression exercise described in this Chapter, the 

PRESS statistic was not found to be of any practical value. There are various 

possible explanations: for example, it is possible that the numbers of variables 

invol ved here were too small to be meaningful. Stone (4.3) in his harmonic 

analysis of the Earth's gravitational field using satellite data, used a much 

larger data set than that available here. 

However, PRESS has been introduced here in order to illustrate its possible use. 

PRESS is a novel and intuitively appealing statistic which may be of value to 

future workers. 

4.4.1 Stepwise Search Procedure 

The first improvement we can try over a simple FS (forward search) procedure for 

the next generation of the program is to incorporate a BE (baQkwards elimination) 

routine into the program, so that the program has the option of deleting 

variables which become insignificant from the models it builds up. 

Table (4.4) shows how this version of the program works in practice. This table 

is based on experimental data; the data set used here is made up of twelve 

measurements of CCSD taken at 4143 Hz. 

The real data search results show how at first the program successively selects 

the harmonic variables from the hopper which fit best to the residual data, just 

as did the simple FS procedure described earlier. However, after each selection 

the program scans through its new model to check if any variables have become 

insigniCicant - as is indeed the case at iteration 4. The programe prunes away 

the insignificant variables, until a new combination of significant variables has 

been found, at iteration 6. This exemplifies the value of the more complex 

search procedure; this model could not have been found with a simple FS 
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procedure. 

After deletion from the model, the variables are returned to the hopper for 

possible reselection later. This is done to maximise the number of significant 

variable combinations the model is likely to find. For example, in the real data 

search shown in Table (4.4) the program reselects variable (2,2 - rm) at 

iteration 1. However, this variable proves to be insignificant and is 

immediately dropped at the next step. 

The selection and deletion in successive iterations of a variable is a sensible 

choice as the program's basic stopping criterion. The argument for this is that 

the variable just selected was chosen on the basis of any systematic information 

left in the residual data. Once in the model, however, the variable proves to 

be an insignificant part of the fit, and so the residual information to which it 

fits may also be regarded as insignificant. That is, there is no significant 

information left in the residual data, and the search may end. 

The imaginary data search presented in Table (4.4) also shows the operation of 

this termination criterion. 

4.4.8 Statistical Properties of Results 

An inspection of the statistical parameters of the models found during this 

analysis is encouraging. Values of the correlation coefficient are quite high, 

though not so high as those achieved by fits to the noise-free artificial data 

considered earlier. The most probable cause of this is the presence of 

estimation error in the experimental data. The degrading effect of error is 

also the probable cause of lower t values than were computed in the artificial 

data fits. The F-statistic shows the significance of the models to be high, and 

the coeffiCients of the dominant terms are stable during the perturbation of the 

rest of the model caused by the introduction and deletion of higher order terms. 

These observations reinforce the remarks made in subsection (4.4.6) that the 

search method is workable in prinCiple and delivers good, statistically reliable 

models. The performance of the method may be further improved by subsequent 

developments, described in the rest of this section. 

4.4.9 Col linearity Safeguards 

As noted earlier, the presence of col linearity in the data makes variable 
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selection techniques hazardous, as the statistics on which they are based become 

unreliable. That collinearity is a danger with the example duct data sets is 

demonstrated by the early stages of the BE search shown in Table (4.3), and also 

by the typical independent variable correlation matrix shown in Table (4.5). 

The simplest safeguard against collinearity is to terminate the search procedure 

as soon as the level of collinearity in the model becomes unacceptably high. The 

search would become questionable after this point, since the basic variable 

selection criteria are unreliable when collinearity is significant. A simple 

criterion may be based on the value of RL (equation (4.16)). If RL for a model 

is greater than 10, the program stops. 

A complementary approach is to attempt to reduce the levels of collinearity in 

the variable sets used in the search procedures by "screening out" collinear 

pairs from the initial hoppers of variables. This may be done by removing from 

the hopper the higher order member of any pair of variables whose collineari ty 

(as measured by the elements of the correlation matriX) is unacceptably high. 

The justification for removing the higher order member of the pair, rather 

than the lower order, comes from an Occam's razor argument. A model made up of 

low order variables represents a simpler physical hypothesis about the duct sound 

field in question than one made up of high order variables. A suitable level of 

unacceptability is a correlation matrix element value of 0.9. Thus, in the 3 kHz 

example shown in Table (4.5), the only variable deleted would be (3,2 - He). 

This level of acceptability is quite high, but a more restrictive criterion could 

lead to an unacceptable reduction in the number of models found by the search 

procedure. The introduction of this fairly lax screening technique is intended 

to reduce the risk of finding models becoming unacceptablY collinear with a small 

number of variables. However, collinearity will still be present and will 

adversely affect larger models. 

An example of the difference made by the introduction of the col linearity 

safeguards is shown by Table (4.6), which presents the results of a search 

procedure as applied to the 3 kHz data set. Table (4.6a) shows the real data 

search which was unaffected by the new measures. Table (4.6b) shows an imaginary 

data search performed without prescreening of the hopper, and models are found 

featuring the variable (3,2 - Re). Table (4.6c) shows a run with pre-screening, 

and models are found featuring the variable (3,0),' the other half of the high 

collinearity pair. The results of the new procedure are satisfactory because it 

has yielded two significant models as opposed to one found by the replaced 

procedure, indicating that (3,0) was a more correct choice. 
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4.4.10 Origin of Col linearity 

The properties and origins of collinearity in the present harmonic variable set 

are of interest, since they throw some light on facets of the harmonic analysis 

method. 

A more complete analysis of correlation matrices like that in Table (4.5) reveals 

that collinearity in the present example has certain properties. First, the 

general level of collinearity tends to decrease with higher frequency. Second, 

if a pair of variables are highly collinear at any frequency, they may be 

expected to be collinear at all frequencies. Third, the highest levels of 

collinearity tend to occur between pairs of higher-order (i.e. spatially complex) 

variables. Finally, the correlation between a low-order/high-order variable 

pair can often be virtually independent of the choice of higher-order variable: 

that is, the collinearity is dominated by the identity of the low order terms. 

The most obvious candidate for the primary cause of collinearity among the 

variables is "spatial aliasing" among the harmonic variables. Such aliasing is 

familiar by analogy with similar problems encountered during the digital sampling 

of time series. If a field is undel"-sampled spatially, it is impossible to 

determine whether an observed variation is due to the presence of a given 

harmonic variable, or to the presence of another, higher-order term. Another way 

of expressing the same problem is to note that if only a small, sparse set of 

sampling positions is available, a linear combination of high-order variables can 

be formed whose sum is close to zero at each of the given sampling positions. 

It is then impossible to tell from a given data set whether these higher order 

variables are present or not. 

However, spatial aliasing alone does not explain the features of the correlation 

matrices described above. Aliasing would be expected to produce high 

collinearity between low order/high order variable pairs, but the general trend 

observed is for high collinearity to occur between high order/high order pairs. 

Collinearity due to aliaSing would tend to increase with frequency, since the 

spatial structure of a harmonic variable depends on the dimensionless combination 

kr: at higher frequencies, the zeroes of a variable move closer together in 

position, and a given set of sampling positions becomes effectively more sparse. 

In contrast, however, we have observed a general reduction in the level of 

collinearity with increasing frequency. 

An alternative hypothesis for the cause of collinearity comes from a 

consideration of the distance dependence of the variables. A harmonic variable 
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of polar angle order ~ is proportional to the spherical Bessel function j~ (kr) 

(see Equations (4.12, 4.13)). When ~ is large (i.e.~ »kr) 

j (kr) a 
~ 

~ ~ ~ e (kr) (~+ ~)-

(reference 2.31, Chapter 10). 

(4.19) 

A variable with large ~ will thus take very small values at any data point where 

kr is not large. In the present experiment, at 2 kHz kr ranges in value from 

0.94 to 4.24. At a typical value, say kr = 2, j~(kr) takes the values .2 for 

~ = 2, 0.14 for ~ = 4, 4 x 10-4 for ~ = 6, and 1 x 10-6 for ~ = 8. It can be 

seen that the independent variables with higher ~ will take significantly non-

zero values at only a few of the twelve sampling positions. At higher 

frequencies, kr takes higher values: in the present example, kr ranges from 2.35 

to 10.6 at 5 kHz. The number of positions where the high ~ independent variables 

take significantly non-zero values is therefore increased. 

This appears to explain the observed features of the correlation matrices. The 

details of the argument may be found in Appendix C; the key idea is that a high 

order variable will take a significantly non-zero value at only one data pOint. 

Thus the correlation rik between two variables i,k which are both high order will 

be approximately unity, since correlations computed on the basis of one data 

pOint are by definition unity. If i is low order and k is high order, only i 

takes significant values at most of the sampling pOints, so the structure of 

variable i dominates the value of rik. 

At higher frequencies, with increasing kr, a higher order variable will take 

significantly non-zero values at more sampling positions, and these tendencies 

are reduced - as observed. 

This hypothesis is therefore consistent with the observed features of the 

matrices discussed above, and appears the most plausible principle cause of 

col linearity among the harmonic variables. The persistence of high correlation 

between certain low order variable pairs may however be evidence of spatial 

aliasing. This could be tested by a consideration of the correlation matrices 

corresponding to different arrays of sampling positions at the same frequencies. 

A final remark concerning col linearity is that the collinear behaviour of the 

variable sets considered here is in general encouragingly good. This is further 
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improved by the anticollinearity screening procedure described earlier. 

4.4.11 Final program 

The above ideas may be incorporated into a final program to take in complex 

values of CCSD recorded at a given frequency for a given set of sampling position 

separations, and to perform both the real and imaginary data model searches 

described above. 

The execution of each of the search procedures (for real and imaginary data) is 

illustrated in flow diagram form in Figure (4.7). The operation and stopping 

criteria are essentially as described above. The terminating case in which a 

variable is selected and deleted immediately, described in subsection (4.4.7), is 

detected by comparing the contents of a model before and after each process of 

selection and deletion. In the terminal condition described above, the process 

would leave the model unchanged, and the program is instructed to stop. However 

the casting of the criterion in this form also ensures that the program stops if, 

through any peculiarity of the data, an infinite loop of selection and rejection 

of any form is entered, making the program more reliable than if a simpler form 

of the criterion were used (see for example (4.1». 

4.5 DEVELOPMENT OF AXISYMMETRIC HARMONIC SEARCH PROCEDURE 

With the application of the stepwise search procedure described above to several 

sets of data from the example experiment, it became apparent that the program was 

consistently find ing models composed of or dominated by axisymmetric harmonic 

variables (variables with q = 0). This fact motivates the development of an 

al ternati ve version of the program described above, involving searches through 

hoppers composed purely of axisymmetric harmonic variables. 

Such a restricted search offers the hope of extracting more information from a 

given set of data. For example, the search procedure described in section (4.4) 

could yield axisymmetric models fitting to the real data composed of variables of 

order no higher than £ = 2; in principle an axisymmetric variable search could 

yield more detailed models of plausible weightings composed of higher order 

variables. 

The development of the program follows similar lines to that of the program 

described above; the principal difference is in the choice of selection 
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described in the next subsection. 

4.5.1 Simple FS Search Procedure 
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The motivation for the alternative choice is 

The hoppers of variables used for this search procedure may be initially chosen 

to be simply the first ten real or imaginary axisymmetric harmonic variables, in 

the order described in subsection (4.2.2). 

Table (4.7) illustrates the preliminary application of a simple FS procedure to 

the 3 kHz duct data set. The external criterion by which the next variable for 

inclusion in the model was selected was to choose the next highest order variable 

in the hopper. The entire hopper was scanned through in increasing order. The 

use of this criterion as an alternative to the highest-residual-correlation 

criterion employed in the development of the previous program is satisfactory 

since the dominant terms in the axisymmetric models in this case seem in general 

to be the lower order variables. This is evidenced by the t values in the table. 

The program is therefore built on this framework, incorporating a BE option and 

collinearity safeguards as described above. 

4.5.2 Stepwise Procedure: Col linearity Safeguards 

The structure of the final program involves the use of two hoppers of variables 

outside the model: hopper 1, from which variables are selected for fitting into 

the model by the FS operation, and hopper 2, in which are stored variables 

deleted from the model by the BE option. The program searches through the 

variables in hopper 1 in increasing order. Each variable is included in the 

model and tested for significance using the t-statistic criterion. Significant 

variables are retained; insignificant variables are rejected and stored in 

hopper 2. When hopper 1 is exhausted, it can be refilled from hopper 2, and the 

search begun again. The search stops when both hoppers are empty, or when no 

variables are retained from hopper 1 after a complete scan through its contents. 

This two-hopper structure was designed to give the program as much scope as 

possible in the building of models, in the hope that many good models would be 

generated. 

As might be expected, collinearity is a more serious problem for the sort of 

variable set used for this version of the program than for the lower order 

variable sets employed previously. 
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This can be seen from the results of Table (4.1), not only from the large values 

of RL for later iterations but also from the large and fluctuating coefficient 

estimates, characteristic of highly collinear data sets. The correlation 

matrices for the 3 kHz data shown in Table (4.8) show serious collinearity 

occurring among the higher order terms. 

To counteract this, anticollinearity safeguards as described in the last section, 

comprising a pre-screening of the initial hopper's contents and a level of 

acceptability of col linearity for the search to continue, may be included. 

The operation of the final version of the program is illustrated by Table (4.9), 

which shows the results of a search for axisymmetric harmonic models to fit to 

the 3kHz data set. The table shows the program scanning repeatedly through the 

hoppers, deleting redundant variables from the models as it proceeds. Both real 

and imaginary data searches are stopped when no variables are retained from 

hopper 1 after a complete scan through its contents. 

The execution of the final version of the axisymmetric model search procedures 

(for real and imaginary data) is illustrated in flow diagram form in Figure 

(4.8). Given n complex values of CCSD recorded at a given frequency the program 

performs both the real and imaginary data searches described above. 

4.6 PROPERTIES OF ANALYSIS RESULTS 

4.6.1 Results of Analysis 

A typical product of the harmonic analysis method is illustrated in Figure (4.9). 

This Figure is an estimate of the plane wave weighting function at 5 kHz in the 

example duct used in the present experiment. Included in the Figure for 

comparison is the plane wave weighting corresponding to an equal modal power 

distribution in an anechoically terminated duct. The weighting function estimate 

was made using the axisymmetric model version of the search program. 

We can make phYSical interpretations of such a Figure. Most of the sound power 

appears to be concentrated in the modes with large I cos v I ; that is, with 

propagation angles close to the duct axis. In the present example, this is 

thought to be due to the focussing effect of the tapered inlets to the duct from 

the reverberation chambers at its terminations. The symmetry of the Figure 

suggests a significant reflection of sound back up the duct towards the source; 
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this may be due to the excitation of a reverberant field in the receiver 

reverberation chamber, which in turn re-excites the duct field. 

This symmetry is also reflected in the fact that the imaginary harmonic variable 

coefficients take small values compared to the real. The imaginary terms made 

up the antisymmetric part of the field, while the real terms make up the dominant 

symmetric part. 

However, such hypotheses depend on the reliability of the weighting estimate. As 

noted above, the search procedures do not deliver just one model of the 

weighting, but several with similar statistical properties. An estimate like 

that given in Figure (4.9) cannot be treated as the 'best' model or definitive in 

any sense; associated with it is an uncertainty due to the presence of similar, 

comparable models. 

In addition, there is an uncertainty due to the harmonic analysis method's 

sensitivity to error in the input data, which is the subject of the next 

subsection. 

4.6.2 Sensitivity to data errors 

The two principal limitations of the input data set are the finite size of the 

sample array on which it is based, and estimation errors associated with the CCSD 

values. A parameter to describe the sample array size is simply the number of 

pOints in the array, np' Two parameters describe the CCSD estimation errors: 

the frequency bandwidth, and the number of degrees of freedom nd' If it is 

assumed that the data set is large enough that a sufficiently small choice of 

bandwidth may be made to resolve the significant frequency variation of CCSD, 

then estimate .errors may be assumed to depend only on the number of degrees of 

freedom. It may be shown (4.19) that the mean square error of CCSD estimates is 

inversely proportional to nd' 

The impact of the error sources controlled by the parameters on the harmonic 

search technique is indicated schematically in Figure (4.10). Estimation errors 

corrupt the data input to the analysis procedure. As the sample array size is 

increased, it would be expected that the number of terms in a possible model, and 

the accuracy of the estimation of coefficients in each model, would increase. 

Furthermore the onset of spatial aliasing would be delayed to higher harmonics, 

as the sample density of the sound field was increased. 
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To study the practical consequences of adjusting the two error parameters np, nd, 

an investigation was made of the following axisymmetric models of the 5 kHz data 

set: (2,0), (4,0), (6,0) for the real data set, and (1.0), (3,0), (5,0) for 

the imaginary data set. During the runs of the axisYlllllletric harmonic search 

program described in the last section, which were based on data with np = 12, nd 

= 3000, each of these models was found to consist of two significant terms and 

one insignificant term. The insignificant term in the real data model was 

(6,0), and (1,0) was insignificant in the imaginary data model. The separate 

effects of the two error sources are discussed in the following. 

The impact of raising the level of estimation error in the data was investigated 

by repeating the axisymmetric search procedure, keeping the number of sampling 

positions fixed at 12, but using CCSD data sets estimated using 1000, 400, 150, 

50 and 24 degrees of freedom. The results are shown in Figures (4.11, 4.12) 

which illustrate the dependence of the model coefficient values and their 

associated t-values on the number of degrees of freedom. Figure (4.11) shows the 

coefficients and t-statistics to be fairly stable for nd > 400. For nd below 

this value, the magnitude of the coefficient estimates for the significant 

variables tend to drop, and that of the spurious variable (6,0) tends to 

increase. The t-values for the 'correct' terms also drop, while that of the 

spurious variable increases. Thus the introduction of estimation error gradually 

swamps the true harmonic structure of the model, by corrupting the 'correct' 

contributions and magnifying the contributions of spurious terms. However, if nd 

is higher than 400, the errors are sufficiently small that the spurious term in 

the model is well suppressed. 

Figure (4.11) therefore allows another encouraging conclusion to be drawn. The 

results of the search procedure are stable to small perturbations of the data, 

represented by the small but increasing error in the range nd = 3000 to nd = 400. 

This provides further confidence in the analysis method. 

The same trends are evident in the imaginary data model results presented in 

Figure (4.12). The onset of instability occurs at larger nd' and the corruption 

of the model is more dramatic, with the structure of the model breaking down 

altogether. This is probably because the 'correct' coefficient and t values are 

smaller than those in the real data model at nd = 3000, reflecting the 

comparatively small amount of significant information in the imaginary data set 

noted earlier. 

The effect of reducing the number of sampling positions np on the models is 

illustrated in Figures (4.13, 4.14). The Figures summarise the results of 
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applying the axisymmetric model search program to CCSD data sets estimated with 

3000 degrees of freedom, with np reduced from 12 to 10, 8 and 6. 

Figure (4.13) shows that the increase in error from this source has a similar 

effect on the real data model to that of the increase in estimation error: the 

coefficient values for the 'correct' variables tend to decline, while that of the 

spurious variable (6,0) increases, and the t-statistics for the correct variables 

decrease, while that of the spurious variable increases. Thus, as before, the 

introduction of error tends to swamp the harmonic structure of the model. 

Similar trends can be observed in the imaginary data results shown in Figure 

(4.14), although once again the onset of instability occurs for higher values of 

np. 

The assertion that the number of sampling positions np = 12 is high enough for 

these models to be reasonably stable to errors from the array size limitation is 

not really justified by the above results. If np were increased, the results 

suggest that the accuracy of estimates of the model coefficients and the number 

of terms in possible models might increase significantly. 

This study of the stability of the harmonic analysis method to input data errors 

cannot claim to be exhaustive or definitive, being based on the results of one 

experiment. A useful future project would be a thorough study of the stabilty of 

the method based on sets of artificial data with known "target" harmonic 

coefficients, corrupted by known levels of random errors. 

4.7 CONCLUSIONS 

The scope of this chapter has been a description of the role of techniques from 

regression analysis in the development of a method to implement the duct sound 

field plane wave weighting harmonic modelling procedure first outlined in Chapter 

3. Wi th the input of ideas generated by work done on comparable problems 

concerning the magnetic and gravitational fields of planets, the discussion has 

concluded with a listing of programs to perform the analysis of CCSD data. 

The analysis performed may be claimed a success, within the limitation of the 

input data set. The harmonic models produced have been shown to have good 

regression statistics, and to be stable to small errors in the data. 

The plane wave weighting results produced, while hedged with qualifications, 

appear physically reasonable in the present instance. The value of the new 
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technique may be gauged from the fact that for the first time a glimpse has been 

obtained of the modal power distribution in a duct at frequencies high enough to 

allow as many as 500 modes to propagate. 
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Polynomial fits to seven data points. 
(a) Good ~hoice of order; (b) Low order 

(e) High order. 
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Schematic representation of microphone positioning in 
test duct 
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Details of microphone mounting. R is turning circle of 
microphone diaphragm; 00 is made by z-axis with the rod­
diaphragm line. 
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4 0 

3 0 
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0 1 2 3 

q (bl 
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0- C? 
0 1 2 3 4 

Section of variable hoppers. 
(a) Real harmonic variables; 
(b) Imaginary harmonic variables. 

~ 
R. 

Each circle represents two variables, except for those on 
the q = 0 axis, which represent one. For example, the 
circle Q, =2, q=1 in (a) represents the variables (2,1-
Re), (2, 1-Im). 
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INPUT POSITION, CCSD DATA 
FROM MAIN PROGRAM 

SET UP, SCREEN HOPPER 

IS THE HOPPER EMPTY? 

N 
• 

SELECT BEST HOPPER VARIABLE; 
PLACE IN MODEL 

* 
PERFORM REGRESSION 

• 
IS THERE MORE THAN ONE 

VARIABLE IN MODEL? 

t 
\r 

ARE ANY MODEL VARIABLES 
INSIGNIFICANT? 

l 
HAS THE MOST RECENT 

SELECTION/DELETION 
PROCESS CHANGED THE 

MODEL? 

Yl 
IS COLLINEARITY 

SIGNIFICANT? 

y....J -i STOP 
'---_---I 

I 
-Y~ 

DELETE THE 
LEAST SIG., 
REPLACE IN 

HOPPER 

-N4 STOP I 

Y~ STOP I 

Flow diagram to illustrate operation of harmonic search 
subroutines. 
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VARIABLES 
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SIGNIFICANT? 

c 

133 

Y 

ARE THE CONTENTS 
OF HOPPER 1 SAME 

AS AFTER LAST DUMP? 

DELETE THE LEAST SIG., 
Y -.... STORE IN HOPPER 2 

Y --1 STOP 

y-B 

Y----------------------------~·I~ __ S_TO __ P~ 

Figure 4.8 Flow diagram to illustrate operation of harmonic search 
subroutines; axisymmetric version. 
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cas·v 

Figure 4.9 Harmonic search results: axisymmetric version, 5 kHz 
real and imaginary data. Broken line: equal modal power 
weighting (zero for cos v < 0). 
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OPERATION ERROR SOURCES 

MEASURE SPECTRAL 

DENSITY 
CCSD 

ESTIMATION 

ERRORS (nd ) 

l 
FINITE NO. 

ESTIMATE OF SAMPLING 

HARMONIC POSITIONS 

COEFFICIENTS (n ) 
p 

t 
CONSTRUCT 

WEIGHTING 

MODEL 

Figure 4.10 Schematic representation of harmonic analysis procedure 
and associated error sources, with their controlling 
parameters. 
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4 

2 

~ (6,0) 
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24 50 150 400 1000 3000 

Figure 4.11 Dependence of harmonic model on degrees of freedom of 
input CCSD data. 5 kHz real data; 12 sampling 
positions. 
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Figure 4.12 5 kHz imaginary data. 
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Figure 4.13 Effect of reducing number of sampling positions on 
harmonic model. 5 kHz real data, 3000 degrees of 
freedom. 
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Distances in cm; a in degrees; other angles in radians 

Position x y z r 

1 0 -2.54 0 0 2.54 1.57 3.14 

2 7 -2.54 1.86 0.34 3.17 1.46 2.51 

3 13 -2.54 2.42 0.81 4.34 1.38 2.21 

4 18 -2.54 4.67 1.32 5.48 1.33 2.07 

5 24 -2.54 6.11 2.08 6.93 1.27 1.97 

6 32 -2.54 7.89 3.31 8.92 1.19 1.88 

7 42 -2.54 9.84 5.18 11.41 1.10 1.82 

8 -10 -2.54 -2.70 -0.08 3.71 1.59 2.96 

9 -16 -2.54 -4.32 .093 5.01 1.55 4.18 

10 -21 -2.54 -5.64 .37 6.20 1.51 4.29 

11 -26 -2.54 -6.94 .76 7.43 1.47 4.36 

12 -37 -2.54 -9.64 2.00 10.17 1.31 4.46 

Table 4.1 Microphone separation position vectors 
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Iteration No. 
Variable 2 3 4 5 

2.0 .951 .938 .966 .963 1.25 
45.0 44.7 30.9 28.6 4.40 

2,1-Re - - - - 1.46 
1.03 

2,1-Im - -.037 -.042 -.058 -.120 
-1.64 -1.87 -1.34 -1.62 

2,2-Re - - -.023 -.026 .112 
-1.16 -1.184 .826 

2,2-Im - - - .008 -.165 
.436 -.979 

Statistics 

RSS 7.1 x 10-4 5.5 x 10-4 4.7 x 10-4 4.6 x 10-4 3.9 x 10-4 

R .993 .994 .995 .995 .996 

8.5 x 10-3 7.8 x 10-3 7.7 x 10-3 8.1 x 10-3 8.1 x s 

PRESS 7.9 x 10-3 6.4 x 10-3 5.7 x 10-3 5.8 x 10-3 5.3 x 

RL 1 1.03 1.62 2.77 200 

Table 4.2(a): Harmonic search results: artificial real data. 
Simple FS procedure 

True values: (2,0): 0.9908; other coefficients zero. 

The pairs of values in this Table and those following are coefficient 
estimates (uppermost) and t-statistics. 

10-3 

10-3 



Variable 

1,0 2.10 
164 

1,1-Re -
1,1-Im -
3,0 -

3,1-Re -

3,1-Im -

3,2-Re -
3,2-Im -
3,3-Re -

3,3-Im -

Statistics 

RSS 3.5 x 10-5 

R 1 

s 1.9 x 10-3 

PRESS 5.5 x 10-5 

RL 1 
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Iteration No. 
2 3 

2.11 2.12 
154 141 

- -

- -
- -

-.009 -.022 
-.956 -1.84 

- -.008 
-1.60 

- -
- -
- -

- -

3.2 x 10-5 2.4 x 10-5 

1 1 

1.9 x 10-3 1.7 x 10-3 

5.3 x 10-5 4.7 x 10-3 

1.39 5.90 

2.12 2.12 
110 76.4 

- -
- -
- .003 

.099 

-.032 -.032 
-1.00 -.896 

-.009 .010 
-1.49 -.910 

- -
- -

.002 .001 

.340 .064 

- -

2.4 x 10-5 2.4 x 10-5 

1 1 

1.8 x 10-3 2.0 v 10-3 

.--
5.4 x 10-3 6.6 x 10-5 

8.70 22.4 

Table 4.2(b). Harmonic search results: artificial imaginary 
data. Simple FS procedure. 

True values: (1,0): 2.047: other coefficients zero. 



V 'able arl. 6 

1,0 2.22 
30.9 

1,1-Re -

1,1-Im -.009 
-1.46 

3,0 .100 
1.37 

3,1-Re -.051 
-1.45 

3,1-Im -.035 
-1. 76 

3,2-Re -

3,2-Im -

3,3-Re -.033 
-1.19 

3,3-Im -

Statistics 

RSS 1. 7 x 105 

R 1 

s 1.8 x 10-3 

PRESS 7.4 x 10-5 

RL 161 

Table 4.2(b) Continued. 
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Iteration No. 
7 8 

2.22 2.20 
11.8 323 

- -

-.021 .009 
-9.67 1. 77 

.172 .124 
8.25 123.1 

-.020 -.007 
-2.00 -1.91 

.052 -.009 
4.43 -.886 

- -

.139 .179 
8.29 21.17 

-.017 -.003 
-2.28 -.982 

- .010 
6.13 

9.2 x 10-7 6.8 x 10-8 

1 1 

4.8 x 10-4 1.5 x 10-4 

8.0 x 10-6 2.9 x 10-6 

2320 5800 

9 10 

2.15 -.145 
304 -.040 

- 3.21 
.640 

.018 .210 
9.45 .701 

.470 14.3 
8.91 .662 

-.019 40.3 
-9.28 -.640 

-.057 -.563 
-7.37 -.712 

.211 12.6 
-6.58 .651 

.197 6.15 
57.3 .661 

-.014 11.63 
-7.59 .639 

.153 1.95 
16.7 .694 

3.0 x 10-9 2.1 x 10-9 

1 1 

3.9 x 10-5 4.6 x 10-5 

1.5 x 10-7 2.4 x 10-6 

7.3 x 106 2.1 x 1011 
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Iteration No. 
Variable 2 3 4 5 

2.0 1.25 1.03 .964 .938 .951 
4.40 14.7 26.5 44.7 45.0 

,1-Re 1.46 .306 .122 - -
1.03 1.37 .868 

~, l-Im -.122 -.074 -.073 -.037 -
-1.62 -1.58 -1.54 -1.64 

~,2-Re -.165 -.028 - - -
-.979 -1.06 

2,2-Im - - - .008 -.165 
.436 -.979 

Statistics 

RSS 3.9 x 10-4 4.3 x 10-4 5.0 x 10-4 5.5 x 10-4 7.1 x 10-4 

R .996 .996 .995 .994 .993 

8.1 x 10-3 7.9 x 10-3 7.9 x 10-3 7.8 x 10-3 8.4 x 10-3 
s 

PRESS 5.3 x 10-3 5.4 x 10-3 6.2 x 10-3 6.4 x 10-3 7.9 x 10-3 

RL 200 8.10 3.90 1.03 1 

Table 4.3(a): Harmonic search results: artificial real data. 
Simple BE procedure 



Variable 

1,0 -.145 
-.040 

1,1-Re 3.21 
0.640 

1,1-Im .210 
.102 

~,O 14.3 
.662 

~, l-Re -40.3 
-.640 

p,l-Im -.563 
-.113 

3,2-Re -12.6 
-.651 

3,2-Im 6.15 
.661 

3,3-Re 11.6 
.639 

3,3-Im 1.95 
.695 

Statistics 

~SS 0 

R 1 

~ 4.6 x 10-5 

PRESS 2.0 x 10-6 

RL 2.1 x 1011 
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Iteration No. 
2 3 

- -

3.00 3.15 
361 18.0 

.198 .089 
151 2.53 

13.4 12.6 
900 11.4 

-31.8 -41.0 
-366 -18.1 

-.531 -
-99.5 

-11.8 -12.3 
-1320 -21.3 

5.18 6.92 
431 18.5 

10.9 13.1 
346 11.6 

1.84 1.50 
411 13.3 

0 1.1 x 10-5 

1 1 

3.3 x 10-5 1.9 x 10-3 

2.2 x 10-1 3.1 x 10-4 

1.1 x 109 2 x 106 

4 5 

- -

3.54 .005 
12.1 .146 

- -

14.2 9.4 
25.2 4.32 

-44.5 -.160 
-12.1 -.560 

- -

-12.8 -5.80 
-20.9 -5.51 

6.43 .640 
13.0 1.00 

12.8 -
12.1 

1.26 .414 
14.0 1.33 

3.3 x 10-5 1.2 x 10-3 

1 .993 

2.9 x 10-3 .016 

3.5 x 10-4 4.9 x 10-3 

9.1 x 105 304 

Table 4.3(b): Harmonic search results: artificial imaginary data. 
Simple BE procedure. 



Variable 6 

1,0 -
1,1-Re -
1,1-Im -
3,0 8.21 

7.57 

3,1-Re -.127 
-.796 

3,1-Im -
3,2-Re -5.72 

-6.88 

3,2-Im .586 
1.23 

3,3-Re -
3,3-Im .391 

1.60 

~tatistics 

RSS 1.2 x 10-3 

R .993 

s .014 

PRESS 4.2 x 10-3 

RL 332 
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Iteration No. 
7 8 

- -
- -
- -
7.22 7.00 

21.3 15.5 

- -

- -
-5.24 -4.75 
-9.46 -21.7 

.340 -

.962 

- -
.280 .095 

1.43 2.94 

1.4 x 10-3 1.6xlO-3 

.993 .992 

.014 .014 

3.4 x 10-3 3.0 x 10-3 

99.3 13.1 

Table 4.3(b): Continued 

9 10 

- -
- -
- -
- -
- -
- -

- -
-4.59 -.163 
15.9 -.710 

- -

- -
- -

3.2 x 10-3 9.0 x 10-2 

.983 .209 

.019 .095 

5.2 x 10-3 .108 

18.8 1 
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Iteration No. 
Variable 2 3 4 

2.0 3.29 23.26 3.24 3.02 
7.79 8.67 8.95 6.18 

,1-Re - - - -
2,1-Im - - - -.750 

-.672 

,2-Re - - .375 .234 
1.32 .649 

2,2-Im - -.329 -.350 -.229 
-1.92 -2.12 -.922 

Statistics 

RSS .271 .192 .158 .148 

R .927 .949 .958 .961 

s .165 .146 .141 .146 

PRESS .320 .246 .249 .246 

RL 1 1 1.02 2.03 

F 60.7 40.4 29.7 20.9 

Table 4.4(a): Harmonic search results: 4743 Hz real data 
Stepwise procedure 

5 

2.92 
6.59 

-
-1.17 
-1.33 

-

-.153 
-.724 

.157 

.958 

.146 

.225 

1.67 

29.8 



Variable 6 

~.o 2.81 
69.92 

2,1-Re -
2,1-Im -1.57 

-2.36 

2,2-Re -
2,2-Im -

Statistics 

RSS .168 

R .955 

s .137 

PRESS .209 

RL 1.21 

F 46.9 

Table 4.4(a): Continued 

148 

Iteration No. 
7 8 

2.92 2.81 
6.59 6.92 

- -
-1.17 -1.57 
-1.33 -2.36 

- -
-1.53 -
-.724 

.157 .168 

.958 .955 

.140 .137 

.225 .209 

1.67 1.21 

29.8 46.9 



Variable 

1,0 -

1,1-Re -

1,1-Im -
~,O -
~, 1-Re -
3,1-Im .296 

3.20 

3,2-Re -
3,2-Im -
3,3-Re -

3,3-Im -

~tatistics 

RSS .022 

R .712 

s .046 

PRESS .023 

RL 1 

F 10.3 

149 

Iteration No. 
2 3 

- -

-.114 -.114 
-2.40 -2.45 

- -
- -
- -

.308 .328 
4.05 4.25 

- -
- -
- .054 

1.11 

- -

.013 .011 

.836 .860 

.038 .038 

.015 .015 

1.01 1.13 

10.5 7.57 

4 5 

-.281 -
-.522 

-.103 -.114 
-1.93 -2.45 

- -
- -
- -

.336 .328 
4.08 4.25 

- -
- -

.051 .054 

.988 1.11 

- -

.011 .011 

.866 .860 

.040 .038 

.018 .015 

1.20 1.13 

5.23 7.57 

Table 4.4(b): Harmonic search results: 4743 Hz imaginary data. 
Stepwise procedure. 
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Variables 

i k 

2,0 2,0 1 

2,0 2,1-Re -.419 

2,0 2,1-Im -.160 

2,0 2,2-Re .687 

2,0 2,2-Im .226 

2,1-Re 2,1-Re 1 

2,1-Re 2,1-Im .856 

2,1-Re 2,2-Re -.508 

2,1-Re 2,2-Im .744 

2,1-Im 2,1-Im 1 

2,1-Im 2,2-Re -.272 

2,1-Im 2,2-Im .754 

2,2-Re 2,2-Re 1 

2,2-Re 2,2-Im .141 

2,2-Im 2,2-Im 1 

Table 4.5 (a) Correlation matrix, 3 kHz 

real data 



i 

1,0 

1,0 

1,0 

1,0 

1,0 

1,0 

1,0 

1,0 

1,0 

1,0 

1,1-Re 

1,1-Re 

1,1-Re 

1,1-Re 

1,1-Re 

1,1-Re 

1,1-Re 

1,1-Re 

1,1-Re 

1,1-Im 

1,1-Im 

1,1-Im 

1,1-Im 

1,1-Im 

1,1-Im 

1,1-Im 

1,1-Im 

3,0 

Variables 
k 

1,0 

1,1-Re 

1,1-Im 

3,0 

3,1-Re 

3,1-Im 

3,2-Re 

3,2-Im 

3,2-Re 

3,3-Im 

1,1-Re 

1,1-Im 

3,0 

3,1-Re 

3,1-Im 

3,2-Re 

3,2-Im 

3,3-Re 

3,3-Im 

1,1-Im 

3,0 

3,1-Re 

3,1-Im 

3,1-Re 

3,2-Im 

3,3-Re 

3,3-Im 

3,0 

1 

.460 

.608 

-.083 

.462 

.379 

-.323 

-.234 

.158 

-.116 

1 

.088 

-.747 

.077 

.198 

-.808 

.158 

-.645 

.007 

1 

.290 

-.207 

.558 

.112 

··.320 

-.112 

-.178 

1 

Table 4.5 (b) 
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i 

3,0 

3,0 

3,0 

3,0 

3,0 

3,0 

3,1-Re 

3,1-Re 

3,1-Re 

2,1-Re 

3,1-Re 

3,1-Re 

3,1-Im 

3,1-Im 

3,1-Im 

3,1-Im 

3,1-Im 

3,2-Re 

3,2-Re 

3,1-Re 

3,2-Re 

3,2-Im 

3,2-Im 

3,2-Im 

3,3-Re 

3,3-Re 

3,3-Im 

Variables 
k 

3,1-Re 

3,1"'Im 

3,2-Re 

3,2-Im 

3,3-Re 

3,3-Im 

3,1-Re 

3,1-Im 

3,1-Re 

3,1-Im 

3,3-Re 

3,3-Im 

3,1-Im 

3,2-Re 

3,2-Im 

3,3-Re 

3,3-Im 

3,2-Re 

3,1-Im 

3,3-Re 

3,3-Im 

3,2-Im 

3,3-Re 

3,3-Im 

3,3-Re 

3,3-Im 

3,3-Im 

-.253 

.394 

.969 

.682 

.532 

.376 

1 

-.558 

-.352 

.415 

.646 

-.492 

1 

.289 

-.880 

-.305 

.704 

1 

-.602 

.463 

.407 

1 

-.092 

-.829 

1 

-.146 

1 

Correlation matrix, 3 kHz imaginary data 
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Iteration No. 
Variable 2 3 4 

2.0 3.34 2.81 2.20 2.10 
6.28 6.91 3.90 3.50 

2,1-Re - - - -

2,1-Im - -1.58 -1.45 -1.96 
-3.32 -3.18 -2.21 

2,2-Re - - .551 .441 
1.49 1.09 

2,2-Im - - - .221 
.109 

Statistics 

RSS .531 .241 .189 .116 

R .893 .953 .964 .966 

s .232 .164 .154 .159 

PRESS .582 .321 .289 .339 

RL 1 1.03 1.66 2.84 

F 39.4 45.0 34.8 24.5 

Table 4.6(a): Harmonic search results: stepwise procedure 
3 kHz real data 

5 

2.20 
3.90 

-
-1.45 
-3.18 

.551 
1.49 

-

.189 

.964 

.154 

.289 

1.66 

34.8 



Variable 

1,0 -

1,1-Re -

1,1-1m -

3,0 -
3,1-Re -
3,1-1m -
3,2-Re .478 

2.535 

3,2-1m -
3,3-Re -

3,3-1m -

Statistics 

RSS .045 

R .625 

s .067 

PRESS .063 

RL 1 

153 

Iteration No. 
2 3 

- -

-.068 -
-.980 

- -

- -

- -
- -

.490 .478 
2.59 2.535 

- -
- -
- -

.040 .045 

.671 .625 

.067 .067 

.060 .063 

2.88 1 

Table 4.6(b): Harmonic search results: stepwise procedure 
without collinearity screening, 3 kHz imaginary data. 



Variable 

1,0 -
1,1-Re -

1,1-Im -
3,0 .691 

2.36 

3,1-Re -
3,1-Im -

3,2-Re -
3,2-Im -
3,3-Re -
3,3-Im -

Statistics 

RSS .047 

R .599 

s .069 

PRESS .065 

RL 1 

154 

Iteration No. 
2 3 

- -
-.086 -.088 

-1.22 -1.20 

- -
.749 .759 

2.59 2.50 

- -
- -.071 

-.473 

- -
- -
- -
- -

.040 .039 

.671 .682 

.067 .070 

.058 .061 

2.26 5.69 

4 

-
-.086 

-1.22 

-
.749 

2.59 

-

-
-
-
-

.040 

.671 

.067 

.058 

2.26 

Table 4.6(c): Harmonic search results: stepwise procedure 
with collinearity screening, 3 kHz imaginary data. 
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Iteration No. 
Variable 2 3 4 

2.0 3.34 3.05 3.31 3.91 
6.28 4.58 4.37 3.27 

4,0 - 1.52 -.244 -4.78 
.747 -.081 -.620 

6,0 - - 3.81 28.2 
.813 .738 

8,0 - - - -143 
-.644 

10.0 - - - -
- - - -

12.0 - - - -
14.0 - - - -
16,0 - - - -
18,0 - - - -
20,0 - - - -

Statistics 

RSS .537 .506. .467 .441 

R .724 .743 .765 .780 

s .232 .237 .242 .251 

PRESS .583 .697 4.50 4.46 

RL 1 1.26 3.32 145 

Table 4.7(a): Harmonic search results: simple FS procedure, 
axisymmetric variables, 3 kHz real data. 

5 

2.41 
4.25 

8.33 
2.10 

74.5 
3.10 

409 
3.06 

-1290 
-5.77 

-
-
-
-
-

.067 

.970 

.106 

28.9 

149 
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Iteration No. 
Variable 6 7 8 9 10 

~.o 1.39 .947 .513 .916 .714 
1.58 .816 .306 .368 .096 

~,O 27.0 33.3 38.4 32.5 36.4 
2.01 1.92 1.67 .936 .271 

6,0 -377 -472 -537 -442 -514 
-1.19 -1.76 -1.58 -.828 -.209 

8,0 4.7 x 10" 6.0 X 10" 6.8 X 10" 5.4 X 10" 6.6 X 10" 
1.58 1.60 1.46 .697 .1614 

10.0 -5.3 x 10" -6.8 X 10" -7.7 X 10" -5.9 X 10" -7.5 x 10' 
-1.51 -1.54 -1.42 -.652 -.148 

12,0 3.3 x 10' 4.3 x 10' 4.9 x 10' 4.0 x 10' 4.7 x 10' 
1.44 1.49 1.37 .745 .203 

14.0 - 2.4 x 103 -1.6 x 105 -6.8 x 105 -3.4 x 104 
- -.643 -.418 -.351 -.002 

16,0 - - 348 5.9 x 10" -238 
.412 .294 -.001 

18,0 - - - -7.47 5.66 
-.211 .013 

20,0 - - - - -.007 
-.031 

~tatistics 

RSS .048 .043 .041 .039 .039 

R .979 .981 .982 .982 .982 

s .098 .104 .117 .140 .198 

PRESS 57.2 81.1 66.0 307 9.1 x 104 

~L 7.1 x 101i 6.3 x 104 6.5 x 104 9.1 x 105 7.3 x 107 

Table 4.7(a): Continued. 



Variable 

1,0 .062 
-.109 

3,0 -

5,0 -

7,0 -

9,0 -

11 ,0 -

13,0 -

15,0 -

17 ,0 -
19,0 -

Statistics 

RSS .073 

R .190 

s .086 

PRESS .088 

RL 1 

157 

Iteration No. 
2 3 

-.221 -.707 
-.460 -1.01 

.710 1.38 
2.31 1.82 

- -1.50 
-.961 

- -

- - -

- -

- -
- -

- -

- -

.046 .041 

.591 .646 

.072 .072 

.098 .214 

1.01 3.24 

4 

-1.59 
-3.73 

2.23 
4.95 

-3.95 
-3.94 

8.46 
4.51 

250 

-

-

-

-

-

.011 

.922 

.039 

.176 

3.84 

Table 4.7(b): Harmonic search results: simple FS procedure, 
axisymmetric variables, 3 kHz imaginary data. 

5 

-.731 
-8.29 

-0.79 
-.037 

8.16 
.743 

-57.4 
-.964 

1 • 11 

-

--

-

-

-

.009 

.936 

.038 

17 .2 

721 



Variable 

1,0 

3,0 

5,0 

7,0 

9,0 

11 ,0 

13,0 

15.0 

17 .0 

19,0 

Statistics 

RSS 

R 

s 

PRESS 

RL 

Table 4.7(b) 

6 

1.61 
1.30 

-9.44 
-2.12 

65.7 
2.45 

-260 
-2.58 

-2582 
-2.04 

5 X 10'+ 
2.26 
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Iteration No. 
7 8 

3.27 4.19 
1.16 1.30 

-15.9 -22.1 
-1.47 -1.57 

119 196 
1.40 1.44 

-784 -1901 
-.989 -1.12 

2650 1.8 x 10~ 
.333 .818 

5744 1.5 x 10' 
.082 -.684 

- 2.3 x 10' 8.3 x 10' 
.668 .950 

- - -2330 
-.755 

- - -
-1.49 

- - -

.004 .004 .003 

.969 .972 .977 

.030 .031 .033 

231 417 271 

3.2 x 104 5.5 x 105 3.6 x 106 

Continued. 

9 10 

4.35 2.74 
1.61 1.69 

-22.3 -16.9 
-1.88 -2.48 

193 154 
1.69 2.40 

-1812 -1500 
-1.26 -1.90 

1.6 x 1 O~ 1.4 x 10~ 
.883 1.39 

1.3x10' 1.1 x 10' 
-.714 -1.17 

7.7 x 10' 1.6x10' 
1.05 1. 71 

2.1 x 10" 3.1 x 10' 
1.32 -2.25 

-71.2 1517 
2.29 

- -1.40 
-2.40 

.002 2.2 x 10-3 

.989 .998 

.028 .015 

1.9 x 104 8.1 x 103 

3.3 x 106 3.7 x 106 



i 

2,0 

2,0 

2,0 

2,0 

2,0 

2,0 

2,0 

2,0 

2,0 

2,0 

4,0 

4,0 

4,0 

4,0 

4,0 

4,0 

4,0 

4,0 

4,0 

6,0 

6,0 

6,0 

6,0 

6,0 

6,0 

6,0 

6,0 

8,0 

Variables 
k 

2,0 

4,0 

6,0 

8,0 

10,0 

12,0 

14,0 

16,0 

18,0 

20,0 

4,0 

6,0 

8,0 

10,0 

12,0 

14,0 

16,0 

18,0 

20,0 

6,0 

8,0 

10,0 

12,0 

14,0 

16,0 

18,0 

20,0 

8,0 

159 

1 

.455 

.610 

.733 

-.114 

-.463 

.067 

.173 

.173 

.173 

1 

.850 

.720 

-.673 

-.738 

-.041 

-.041 

.123 

.123 

1 

.976 

-.758 

-.936 

-.279 

-.078 

-.078 

-.078 

1 

i 

8,0 

8,0 

8,0 

8,0 

8,0 

8,0 

10,0 

10,0 

10,0 

10,0 

10,0 

10,0 

12,0 

12,0 

12,0 

12,0 

12,0 

14,0 

14,0 

14,0 

14,0 

16,0 

16,0 

16,0 

18,0 

18,0 

20,0 

Variables 
k 

10,0 

12,0 

14,0 

16,0 

18,0 

20,0 

10,0 

12,0 

14,0 

16,0 

18,0 

20,0 

12,0 

14,0 

16,0 

18,0 

30,0 

14,0 

16,0 

18,0 

20,0 

16,0 

18,0 

20,0 

18,0 

20,0 

20,0 

-.643 

-.898 

-.314 

-.122 

-.122 

-1.22 

1 

.911 

.189 

-.006 

-.006 

-.006 

1 

.278 

.065 

.065 

.065 

1 

.976 

.976 

.976 

1 

1 

1 

1 

1 

1 

Table 4.8(a) Correlation matrix, axisymmetric variables, 
3kHz real data 



i 

1,0 

1, ° 
1,0 

1, ° 
1, ° 
1,0 

1,0 

1,0 

1,0 

1,0 

3,0 

3,0 

3,0 

3,0 

3,0 

3,0 

3,0 

3,0 

3,0 

5,0 

5,0 

5,0 

5,0 

5,0 

5,0 

5,0 

5,0 

7,0 

Variables 
k 

1, ° 
3,0 

5,0 

7,0 

9,0 

11 , ° 
13,0 

15,0 

17 ,0 

19,0 

3,0 

3,0 

7,0 

9,0 

11,0 

13,0 

15,0 

17,0 

19,0 

5,0 

7,0 

9,0 

11,0 

13,0 

15,0 

17,0 

19,0 

7,0 

1 

-.083 

-.614 

.052 

.404 

.452 

-.469 

-.259 

-.241 

-.243 

1 

.682 

.195 

-.036 

-.077 

-.040 

.237 

.223 

.193 

1 

.371 

-.109 

-.183 

.600 

.234 

.211 

.188 

1 

Table 4.8 (b) 
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i 

7,0 

7,0 

7,0 

7,0 

7,0 

7,0 

9,0 

9,0 

9,0 

9,0 

9,0 

9,0 

11 , ° 
11,0 

11 ,0 

11,0 

11,0 

13,0 

13,0 

13,0 

13,0 

15,0 

15,0 

15,0 

17,0 

17,0 

19,0 

Variables 
k 

9,0 

11 , ° 
13,0 

15,0 

17,0 

19,0 

9,0 

11 , ° 
13,0 

15,0 

17 ,0 

19,0 

11,0 

13,0 

15,0 

17,0 

19,0 

13,0 

15,0 

17 ,0 

19,0 

15,0 

17,0 

19,0 

17,0 

19,0 

19,0 

.872 

.834 

.223 

.027 

.046 

.042 

1 

.997 

-.175 

-.076 

-.042 

-.038 

1 

-.223 

-.090 

-.056 

-.050 

1 

.136 

.113 

.104 

1 

.998 

.992 

1 

.997 

-

Correlation matrix, axisymmetric variables, 
3 kHz imaginary data. 
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Iteration No. 
Variable 2 3 4 

2.0 3.34 3.05 3.29 3.26 
6.28 4.58 6.27 8.52 

4,0 - 1.52 - -
.747 

6,0 - - 3.54 -3.51 
1.16 -1.08 

8,0 - - - -

10.0 - - - -1202 
- - - -2.98 

12.0 - - - -

14.0 - - - -

Statistics 

RSS .537 .506 .468 .222 

R .893 .900 .908 .957 

s .232 .237 .228 .167 

PRESS .583 .697 2.25 1.48 

RL 1 1.26 1.59 4.68 

F 39.4 19.1 21.1 29.0 

Table 4.9(a): Harmonic search results: REG2, 3 kHz real data. 
The hopper consisted of the variables (2,0), 
(4,0), (6,0), (10,0), (14,0). 

5 

3.28 
7.96 

-

-3.42 
-.984 

-

-1210 
-2.81 

-
1542 
.293 

.219 

.958 

.177 

74.9 

4.73 

19.53 



Variable 6 

2.0 3.78 
7.39 

4,0 -2.99 
-1.42 

6,0 -1.42 
-.419 

8,0 -
10.0 -1422 

-3.46 

12.0 -
14.0 -

Statistics 

RSS .172 

R .967 

s. 157 

PRESS 3.17 

RL 5.27 

F 25.2 

162 

Iteration No. 
7 8 

3.84 3.90 
8.25 7.92 

-3.37 -3.50 
-1.88 -1.87 

- -

- -
-1346 -1395 

-3.86 -3.77 

- -

- 2979 
.647 

.177 .167 

.966 .968 

.149 .154 

.357 .424 

1.95 1. 76 

37.2 26.0 

9 10 

3.78 3.90 
7.39 7.92 

-2.99 -3.50 
-1.42 -1.87 

-1.42 -
-.419 

- -
-1422 -1395 

-3.46 -3.77 

- -

- 2979 
.647 

.172 .167 

.967 .968 

.157 .154 

3.17 .424 

5.27 1.76 

25.2 26.0 

Table 4.9(a): Continued. Two more iterations (nos. 11, 12) occurred, 
which were repeats of iterations 9, 10 respectively. 
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Iteration No. 
Variable 2 3 4 5 

1,0 -.062 - - - -
-.109 

3,0 - .691 .839 .586 .870 
2.36 1.55 2.05 2.52 

5,0 - - -.357 - -
-.332 

7,0 - - - 4.35 -2.35 
1. 71 -.427 

9,0 - - - - 30.56 
1.36 

11 ,0 - - - - -
13,0 - - - - -

15,0 - - - - -

Statistics 

RSS 0.73 0.47 0.47 0.36 0.29 

R 0.34 .599 .605 .718 .779 

s .086 .069 .072 .063 .060 

PRESS .088 .065 .089 .101 1.52 

RL 1 1 1.87 1.04 3.92 

F .01 5.60 2.59 4.79 4.12 

Table 4.9(b): Harmonic search results: REG2, 3 kHz imaginary data. 
The hopper consisted of the variables (1,0), (3,0), 
(5,0), (7,0), (9,0), (13,0), (15,0). 

6 

-

.772 
3.13 

-

-

21.9 
2.32 

-

-

-

.030 

.773 

.057 

.071 

1.00 

6.68 
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Iteration No. 
Variable 1 8 9 10 11 12 

1,0 - - -.939 -1.16 -1.16 -1.02 
-3.21 -1.82 -2.06 -3.21 

3,0 .824 .826 .914 1. 35 1.26 .980 
3.42 3.21 5.19 1.39 1.96 5.66 

5,0 - - - -.919 - -
.-.393 

1,0 - - - - -1.18 -
-.460 

9,0 19.1 19.1 26.8 28.9 51.0 21.2 
2.11 1.98 4.04 3.26 .862 2.98 

11 ,0 - - - - - -
13,0 -1.3x10'l -1.3x10'l -2.1x10'l -1.4x10'l -1.0x10'l -2.1x10'l 

-1.29 -1.22 -2.96 -.681 -.411 

15,0 - 228 - - - 118 
.112 

Statistics 

RSS .024 .024 .010 .009 .009 

R .811 .818 .932 .934 .934 

s .055 .059 .031 .039 .039 

PRESS 3.46 4.19 .151 18.0 32.0 

RL 

F 

1.02 1.06 1.25 12.6 48.3 

5.35 3.54 11.51 8.20 8.2 

Table 4.9(b): Continued. Three more iterations (nos. 13, 14, 15) 
occurred, which were repeats of iterations 10, 11, 12 
respectively. 

-2.93 

-.193 

.009 

.939 

.038 

4.49 

1.25 

8.95 



CHAPTER FIVE 

SUMMARY 

This monograph has been a presentation of a new experimental technique for the 

spatial characterisation of complex, random sound fields. Such fields are 

encountered, for example, in the study of acoustic fields in ducts, enclosures 

and in the ocean, and in many other contexts. 

The basis of the new technique is the approximation of the wave field with a 

"free wave" model field, which is spatially homogeneous and composed of 

uncorrelated plane waves. This model field is completely specified by an angle­

dependent plane wave density function, and the book has contained a review of 

methods by which information about the plane wave density function can be 

inferred from spectral density measurements. One such method, based on spherical 

harmonic analysis techniques previously used in the characterisation of the 

gravitational and magnetic fields of planets, has been developed in detail into a 

robust, practical algorithm of general applicability. 

The analysis method has been validated principally by the application of the 

technique to data from a duct acoustics experiment. Data with various levels of 

associated estimation errors were used to study the stability of the analysis 

results. Much further work remains to be done on this pOint, however. A useful 

exercise for future workers would be a numerical study of the degradation of 

weighting ana lysis results by the addition of random errors of a known size to 

synthetic input data. 

The value of the new analysis method is shown by the fact that in the practical 

example studied, the sound field is an acoustic duct, images of the plane wave 

weighting were obtained at frequencies high enough to allow as many as 500 modes 

to propagate. It has been shown in this example that the plane wave weighting is 

int Lmately linked to the duct field's modal power distribution; thus the new 

technique has provided an unprecedented glimpse of the structure of the high 

frequency power distribution in an acoustic duct. 

Much work remains to be done on refining and validating the spherical harmonic 

analysis of the free wave fields. However, it is hoped that just as the new 

method promises to unlock the secrets of high frequency duct fields, it may also 

prove a way forward for workers in many areas in which the free wave field idea 

is applicable. 



APPENDIX A: FREE WAVE FIELDS IN ACOUSTIC DUCTS 

A1 INTRODUCTION 

The purpose of this Appendix is to show, by one example, how a free wave field 

can approximate to a spatially complex random field, and how the properties of 

the free wave field are linked to the physical properties of the underlying 

field. 

The example considered is a free wave field in a hard-walled acoustic duct. The 

main conclusion is that the free wave field plane wave weighting function is 

closely connected to the modal power distribution of the duct field. The 

measurement of the modal power distribution at high frequency has been of 

interest to duct acousticians for many years, and the application of free wave 

ideas to a practical problem in duct acoustics is described in detail in 

References (2.27), (2.28), (2.29), (2.30). 

A2 THE MODAL ANALYSIS OF DUCT SOUND FIELDS 

The proof that a many-mode duct sound field can approach a free wave form is 

based on a discussion of the properties of complex cross-spectral density (CCSD) 

in such a field. The first part of the discussion is the derivation of a modal 

sum expression for CCSD, based on a review of the fundamentals of duct acoustics. 

Following the lead of studies of rectangular room sound fields (2.13, 2.14), this 

complicated expression is later reduced by the introduction of. simplifying 

assumptions - principally the neglect of correlation between the modes, and the 

apprximation of modal sums by integrals. Further manipulation of the resulting 

CCSD expression results in its final reduction to the free wave integral form of 

equation (2.14). The proof is given for both rectangular and circular hard­

walled ducts. 

A2.1 Fundamentals of Duct Acoustics 

The discussion here is based on that given by Morse and Ingard (2.2). 

Consider the sound field in an infinite, uniform hard-walled duct with cross­

section area S. Coordinates are defined in the duct so that the duct's axis is 

parallel to the Cartesian z-axis. The specific duct shapes to be considered are 

rectangular, in which case Cartesian coordinates (x, y, z) will be used, with the 

duct interior being the region 0 ~ x ,i a, 0 ~ y ~ b; and circular, in which case 

cylindrical polar coordinates (s, ~, z) will be used, with the duct interior 
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being the region 0 < s < a. (See Figure 2.1). The two coordinate systems are 

connected by the equations 

x s cos <jJ (A 1) 

y = s sin <jJ (A2) 

The Fourier transformed pressure field in such a duct, defined by 

'V 
f dt p (.!o' t) exp (iwt) (A3) 

satisfies (in the absence of sources) the Fourier transformed wave equation 

(A4) 

subject to the hardwalled boundary condition 

Vp • n = 0 at duct wall (A5) 

where n is the normal to the wall. If the duct is rectangular, equation (A5) 

becomes 

ClP/Clx! x=O,a ClP/ClY!y=O,b = 0 (A6) 

if it is circular, 

Clp/Cls !s=a = 0 (A7) 

The frequency is taken to be large, so that ka » 1. 
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The wave equation is solved by separating out a solution into a product of 

functions of each of the three coordinates involved, and then solving an ordinary 

differential equation for each function. 

direction leads to a z-dependence 

p (~, w) = lji (x, y) exp (ikTZ) 

where the function lji satisfies 

The uniformity of the duct in the z-

(AB) 

(These equations may be written in terms of cylindrical coordinates.) The 

separation constants are a dimensionless radial wavenumber a and a dimensionless 

axial wavenumber T, which are connected by the equation. 

= (A10) 

a (and hence T) is determined by the wall boundary conditions. T may be 

positive, corresponding to a mode propagating in the positive z-direction (a 

"positiv.ely propagating" mode), or negative, corresponding to a mode propagating 

in the negative z-direction ("negatively propagating"). 

Further separation of equation (A9) and the use of the wall boundary conditions 

yields a set of solutions for the case of rectangular geometry: 

ljimn (x, y) = cos (m'1lX/a) cos (n'1l)'/b) (A 11 ) 

with 

(m n/a)2 ... (n 1T/b)2 (A12) 

and for the case of circular geometry: 
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I/J mn (s,<I» = J m (amn s/a) exp (:!: imq,) (A13) 

with 

o (A14) 

mn is the n-th turning point of the m-th order ordinary Bessel function J m• 

The factor exp (:!: imq,) in the circular duct mode function describes modes whose 

pressure patterns are observed to spin in the positive and negative q, -directions 

respectively ("positively and negatively spinning modes"). 

For each duct shape, (m, n) can be any pair of positive integrals. Note that 

for each integral pair there are two rectangular duct modes (positively and 

negatively propagating) and (unless m = 0) four circular duct modes (positively 

and negatively propagating and spinning). 

The further significance of the radial and axial wave numbers comes from the fact 

that it can be shown (section A4) that mode (m, n) can be regarded as a sum or 

integral of plane waves. The wavenumber vector k of each constituent wave will 

have a radial component a la, and an axial component k • 

The modes are orthogonal in the sense that 

If dxdy I/J mn (x, y) I/J mn· (x, y) = Cmm' ann' i\mn S (A15) 

with the integral taken over a duct cross-section. omm' is the Kronecker delta: 

0mm' = 1 if m = m', = 0 otherwise (A16) 

and i\mn is a constant for each mode. For the rectangular case, 
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and for the circular case, 

(A18) 

where Em is defined by 

Em = 1 if m = 0, = 2 otherwise (A19) 

A2.2 The (m, n) Planej Cut-Off 

A convenient graphical representation of duct modes is as lattice points in a 

two-dimensional plane, called the (m, n) plane (see Figure 2.2). There is one 

lattice point for each (m, n) pair, but each lattice point corresponds to in 

general more than one mode (as described above). Contours of constant axial 

wavenumber can be drawn on the plane using equation (A12) or (A14). Different 

modes corresponding to lattice points on or near such a contour would have the 

same axial and radial wavenumbers. 

An important property of duct modes is the phenomenon of cut-off. From equations 

(A12, A14) it follows that a mode's radial wavenumber may be arbitrarily large, 

for large enough (m, n). However equation (A10) predicts that the axial 

wavenumber T will be real (and in the range' -1 to 1) only if a ~ ka, and there 

are only a finite number of modes for which this .is true. 

A mode with a real axial wavenumber is called "cut-on" or "propagating", while a 

mode with a complex axial wavenumber is called "cut-off", and suffers exponential 

decay as it propagates. At a given frequency there are only a finite number of 

cut-on modes. These are represented in the (m, n) plane by the lattice points 

contained within the contour T= 0 (see Figure (2.2». In what follows, cut-off 

modes - which do not contribute to sound power in the duct - will be neglected, 

and each modal summation will be restricted to cut-on modes only; that is, to a 

summation over all the lattice pOints in the cut-on region of the (m, n) plane. 
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A2.3 Modal Expressions for CCSD and Power 

A general duct pressure field may be written as a sum of propagating modes: 

p(~, w) = L LAmn Wmn (x, y) exp (ik Tmn z) 
m n 

(A20) 

The amplitudes Amn are determined by duct termination boundary conditions. The 

sound field is taken here to be random, so that { Amn } are a set of random 

variables. 

For the sake of clarity, modal sums like the above in the following discussion 

will be taken to include only positively propagating modes, and (for circular 

geometry) positively spinning modes. Since an assumption of negligible modal 

correlation will be applied later, it is straightforward to extend results 

derived using such sums to include contributions from the remaining propagating 

modes. 

Equation (A20) may be used to derive modal sum expressions for various 

quantities. For example, the total sound power is found by integrating the 

axial intensity across a duct cross-section: 

W = f f dx dy E {~ He (pV Z *) } 

Using the orthogonality of the modes yields 

W 

where 

1\ mn T mn 

E {I Amnl2 lis a mode's pressure spectrum. 

(A21) 

(A22) 

Wmn is the power associated 

with mode (m, n), and the set {Wmn } is the modal power distribution. 
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An expression for two-point CCSD follows from the substitution of the modal sum 

equation (A20) into the defining equation for CCSD: 

CCSD (.!.' .!.', w) ~ ~ ~,~, E {Amn AlIm'n'} 

x Wmn (x, y) wllm'n' (x', y') 

(x', y', z') are the Cartesian coordinates of position vector .!.'. Equation (A23) 

may be written in terms of cylindrical po lars if appropriate. 

The free wave field proof depends on the reduction of the discouraging-looking 

expression on the RHS of equation (A23) to the simple free wave integral form of 

equation (2.14). This is achieved by the introduction of simplifying approxi­

mations, which are described in the next section. 

A3 SIMPLIFYING ASSUMPTIONS AND APPROXIMATIONS 

A3.1 Conversion of Mode Sums to Integrals 

The most important simplifying technique is the replacing of modal sums by 

integrals. This technique comes from architectural acoustics, where the 

conversion of sums of modes, represented by pOints in a three-dimensional 

lattice, to integrals over a volume has been a much-used technique for many years 

(2.2). 

Elementary introductions to integration show how the area under the graph of a 

function f(x) can be evaluated by summing the area of N strips of width t:, x (see 

Figure 2.3): 

A 
N-l 

I 
i=O 

Xi-I' Xi are the boundaries of the i-th strip. 

approximation improves, until the limit 

(A24 ) 

As N is allowed to increase, the 
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1\ I dx f(x) (A25) 

is obtained. Thus a finite summation of N terms could be regarded as an 

approximation to the final integral. 

In the same way, a modal sum such as that for power (equation A21) can be 

regarded as an approximation of a double integral of a continuous function W(m,n) 

over continuous vet'sions of the modal coordinates (m,n): 

w LIm lin 
mn 

II dm dn W(m,n) (A26) 

(The spacing between the lattice pOints in the (m,n) plane is lIm,lIn = 1). The 

integral is taken over the cut-on area of the (m,n) plane (Figure 2.2)). 

The assumptions necessary for this approximation are that the modal power 

distribution {Wmn } is smooth enough for its approximation by an interpolated 

continuous function W(m,n) to be meaningful, and that there are enough cut-on 

modes (enough lattice points in the region of integration) for the error made in 

replacing the summation by an integration to be negligible. 

A3.2 Changing Integration Variables 

Because of the shape of the cut-on mode integration region, it is convenient to 

change the variables in an integral like that in equation (A26). It is useful 

to choose one new variable related to axial wave-number; it turns out (as 

discussed later) to be convenient to define a new angle-like variable v' by 

cos v' [ron 

It follows from equation (Al0) that 

a mn ka sin v' 

(A27) 

(A28) 
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The range of v' will be from 0 to rr, to include both positively and negatively 

propagating modes. 

A second new variable, say another angle-like variable u', is needed to complete 

the new parametrisation of modal lattice points. For the rectangular duct case, 

a contour of constant axial wavenumber is an ellipse (see equation (A 12» with 

axes of length CI rr, Clb/rra. u' may thus be simply defined as the polar angle 

shown in Figure (2.2), so that (m,n) are related to (v',u') by 

m = (a/ rr) cos u' 

= (ka/ rr) sin v' cos u' (A29) 

n = ( ctb/ ITa) sin u' 

= (kb/rr) sin v' sin u' (A30) 

These relations are exact and hold throughout the (m,n) plane. The range of u' 

is 0 to rr/2. 

The definition of u' for the circular duct case is less straight-forward. It 

depends on Debye' s large-order asymptotic expansion of Bessel functions (2.31, 

equation (9.3.3»: 

J m (m sec u') '" (2/rrm tan u')1 cos (m tan u' - mu' - rr/4) (A31) 

u' varies from 0 to rr 2. 

of this approximation, 

approximately (n-1)rr •. 

(m,n) is given by 

m sec u' = Cl mn 

It can be shown (2.32) that Clmn' the n-th turning point 

occurs when the· argument of the cosine term is 

Thus the parametrisation of mode 

(A32) 

m tan u' - mu' - rr/4 (A33) 
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That is, 

m ka sin V' cos u ' (A34) 

n = (ka/ TI ) sin V' (sin u ' - u ' cos u l ) + 3/4 (A35) 

This approximation has been used by previous workers (2.32, 2.33) to enumerate 

the modes in cylindrical ducts and rooms. Its main value is that equations 

(A34, A35), though strictly true only for large m, remain valid over much of the 

(m,n) plane (2.30). 

A3.3 Use and Interpretation of New Variables 

When the variables of an integration are changed by such a transformation, a 

Jacobian factor defined by 

J = l :l(m,n) I 
d(v',u') I (:lm/av') (an/au') - (:lm/au') (an/av') I (A36) 

must be introduced. This describes the non-uniform density of modal lattice 

pOints in the plane of the new variables. For the rectangular duct, the factor 

is 

bos v' sin v'I (A37 ) 

and for the circular 

Icos v' sin v' sin2 ull (A38) 

As an example of the use of the new variables, the total number N of modes in a 

duct whose axcial wavenumbers lie between T 1 and T 2 (0 < T 1 < T 2) can be 

computed by counting all the (m,n) plane lattice points lying in the band between 

contours and 2. The result for a rectangular duct is 



N 

= 

= 

'" /rr/2 du' 
o 

(k2 S/211) 
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dv' J R 
cos v' = T2 

T1 In 

when l':.T = T2 - T1 is small. The result for a circular duct is 

N '" 2 J du' J dv' JC 

(A39) 

(A40) 

(A41 ) 

(A42) 

(The factor 2 is present in equation (A41) because of the presence of positively 

and negatively spinning modes for each lattice point). The total number of 

positively propagating modes at a given frequency is (T2 = 1, T1 = 0): 

N '" k2 S/4 11 (A43) 

More exact counts (2.33) show this expression to be the first term in an 

expansion. The next term in the expansion involves a correction for modes near 

the perimeter of the integration region; such corrections will be ignored in the 

following discussion. Equation (A43) is compared in Figure (2.4) with an exact 

count of the number of modes in a circular duct based on tables (2.34). 

The new variables (v' ,u') are named by analogy with the wavenumber spherical 

polar angles (v,u). The proof given below that CCSD in a duct field can approach 

a free wave form depends on the manipulation of modal sums, approximated by 

integrals, into the form of equation (2.14) ,. The dummy angle-like variables used 

in the final integrals can then be identified with the wavenumber angles (v,u) 

used in a free wave integral. 

This procedure may seem less like sleight-of-hand if it is noted that the 

variable v' parametrises the radial and axial wavenumbers of a mode (via 

equations (A27, A28». Every plane wave component of the mode will have the same 
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radial and axial wavenumbers and so will be parametrised by the same polar angle 

v' • 

Some basic modal quantities as functions of (v',u') are as follows: 

For the rectangular duct, 

A(v',u') = 1/4 

For the circular duct, 

A (v' ,u,) = sin u'/1l\<:a sin v' 

W(v' ,ut) = (1/2) B(v',u') S cos v' sin u'/p c nka 
o 0 

(A44) 

(A45) 

(A46) 

(A47) 

B(v' ,u') is the continuous version of the modal pressure spectrum Bmn. The 

range of v' is from 0 to n so that the quantities are defined for modes 

propagating in both z-directions. The range of u' is 0 to n/2. Equation (A47) 

can represent the power of a mode spinning in either ~-direction. 

In all the equations, the factor Em has been replaced by 2 for every mode. The 

error made is of the same order as the error made in approximating modal sums by 

integrals, since only modal lattice points at the edge of the (m,n) plane (m or n 

zero) are affected. 

The replacing of modal sums by integrals is an approximation which depends on the 

requirement that the sound field be high frequency, with many cut-on modes. 

Other simpli fying approximations necessary for the proof are more restrictive, 

and are discussed in the next subsection. 

A3.4 Further Assumptions 

It is useful to assume negligible correlation between the modes. This allows the 

dropping of int.')rmodal contributions to the morlal sum expression for CCSD, which 
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then becomes a sum of decoupled modal contributions. 

This assumption clearly depends on the sound field's source mechanism. For 

example, Dyer (2.1) has shown that uncorrelated modes are generated when a duct 

is excited by a plane of statistically independent sources. 

Modes with different modal coordinates will be assumed uncorrelated, as will two 

modes with the same coordinates but propagating in different z-directions, and 

two modes with the same coordinates but spinning in opposite q,-directions in a 

circular duct. These assumptions are justifiable in the absence of a directly 

reflecting duct termination. 

A further simplification is needed for the circular duct proofs: that the modal 

power distribution in the duct depends only on modal axial wavenumber. This 

corresponds to an assumption of azimuthal symmetry of the sound field. 

There is a body of evidence that this assumption is suitable for the sound field 

in, for example, jet engine inlet ducts. Rice (2.35) has reported demonstrations 

that the attenuation effects of a given duct liner on a mode, duct termination 

reflection of modes, and the far field directivity of modes are all functions 

only of axial wavenumber. 

A4 CCSD EXPRESSIONS IN DUCT SOUND FIELDS 

The simplifying approximations described above are the background against which 

the double modal sum expression for CCSD in a duct sound field, equation (A23), 

can be reconsidered. 

The expression becomes much more manageable on the assumption of zero intermodal 

correlation, so that the expression collapses to a sum over one set of modal 

coordinates: 

CCSD (.!.,.!.', w) = H Bmn 1mn (x,y) ljJ*mn (x' ,y') exp (ikTmn(z-z') (A48) 
mn 

It should be recalled that this sum only includes contributions from modes 

propagating in the positive z-direction, and (in the circular duct case) spinning 

in the positive <I>-direction. 

The next step is the substitution of particular expressions for modal functions 
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(equations (All), (An» into equation (A48). The argument for the rectangular 

case is presented first, followed by the argument for the circular case, 

beginning again from equation (A48). 

A4.1 Rectangular Duct 

It is straightforward to show that the expression for CCSD in a rectangular duct 

field, obtained by substituting equation (All) into equation (A48), can be 

converted into a (lengthy) sum of plane wave terms. This depends on the fact 

that each modal function can be expanded into a sum of waves using the standard 

results 

cos A cos B = l {cos (A+B) + cos (A-B)} (A49) 

cos A = l {exp (iA) + exp (-iA)} (A50) 

The resulting expression is given in full in Reference (2.30); it includes 16 

plane wave terms for each node. It can then be shown that the expression can be 

simplified by extending the definition of the quantity Bmn to negative values of 

(m,n) by 

B 1m lin I for m,n < 0 (A5l) 

The resulting expression is 

4 
CCSD (.!.,.!.', w) = L: CCSD (.r:. i' w) (A52) 

i~l 

where 

CCSD (.r:. i, w) = H (A53) 
mn 

with 
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k (A54) 

The vectors!:i are given by 

.£.1 (x-x', y-y', z-z') (A55) 

.!:2 = (x-x', y+y', z-z') (A56) 

.£.3 (x+x', y+y', z-z') (A57) 

.£.4 = (x+x', y-y', z-z') (A58) 

.£.1 is the separation vector between the microphone at .!. and the microphone at .!.' • 

.£. 2, .£. 3' .£. 4 are the separation vectors between the microphone at .!. and the 

images of the other microphone in walls of the duct (see Figure 2.5). The sum 

of equation (A53) is now taken over modal lattice points in four quadrants of the 

(m,n) plane (Figure 2.6). The 1/EmEn factor in equation (A53) is there to ensure 

that lattice pOints with m or no zero are not counted twice in the new form of 

the sum. 

No simplifying assumption (apart from zero intermodal correlation) has yet been 

introduced; the transformation of the CCSD expression into the wave sum form of 

equation (A53) has been performed purely by algebraic manipulation. The next 

step is to approximate the wave sums with integrals, as described in subsection 

(A3.1). The result is for each i, 

CCSD (!:i' w) 'V (1116) II dm dn B(m,n) exp (i~.!:i) (A59) 

The integral is taken over the cut-on region of the (m,n) plane together with its 

mirror images (Figure (2.6». The correction for modes with m or n zero has been 

dropped; this is consistent with the order of approximation used here. 

Changing variables to the angle-like pair (v',u') (equations (A29, A30» gives 

CCSD (.£. i' w) 'V .(1/16) If dv' du' JRB (v',u') exp (i~ • .£. i) (A60) 
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with k now given in terms of the new variables by 

k = (k sin v' cos u', k sin v' sin u', k cos v') (A61) 

The range of u' is now 0 to 2n to include all four quadrants of the (m,n) plane, 

and the 0 to n range of v' means that the integral includes contributions from 

both positively and negatively propagating modes. 

The final stage is to substitute modal power into equation (A60) using the 

results in Section A3.3, giving 

CCSD (r ;,w) '" (k2 p c 2n2) ffdu' dv' sin v' W(v',u') 
- ~ 0 0 

x exp (i~.r i) (A62) 

The CCSD integral has thus been reduced to the desired free wave form, save for 

the presence of the three image-contributed terms. Following the lead of Lyon 

and Maidanik's (2.13) analysis of CCSD in a rectangular room, let the (real) 

microphones be close together and far from the walls of the duct, so that 

(A63) 

Then the image-contributed terms will involve a much larger phase shift than the 

"homogeneous" term, and their contribution to CCSD will be much less coherent, 

and therefore negligible. 

A more quantitative argument can be based on an asymptotic expansion of equation 

(2.14) (see Chapter 3) which shows that when kr is large (> 10), 

o (l/kr) (A64) 

Thus the three image terms may safely be dropped, leaving the final expression 
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CCSD (r, w) '" (k2 p c 12112) ffdu' dv' sin v' W(v' ,ur) exp (i_k._r) 
- 0 0 

(A65) 

A comparison with equation (2.12), and an identification of the dummy variables 

(v',u') with the wavenumber angles (v,u) gives the plane wave weighting function 

H(v,u,w) = (k2 P c 12112) W/v,u) 
o 0 

and the normalised plane wave function 

(A66) 

This concludes the desired proof that CCSD in a rectangular hard-walled duct can 

be represented by a free wave integral, under the assumptions that the modes are 

uncorrelated, that the frequency is high enough that mode sums can be 

approximated by integrals, and that the observation pOints are close together and 

far from the duct walls. 

As can be seen, a simple relation exists between the plane wave weighting 

function and the modal power distribution. A further interpretation of this 

result will be given later; first, a proof is given that a similar result holds 

for the case of a hardwalled circular duct. 

A4.2 Circular Duct 

The circular duct proof follows a similar pattern to the above rectangular duct 

proof. An additional assumption that the modal power distribution is dependent 

only on axial wavenumber, discussed in subsection (A3.4) - proves to be necessary 

for the present method of proof. The details of the proof, which is outlined 

here, are given in Reference (2.30). 

Consider again equation (A48) for CCSD in a duct field composed of uncorrelated 

modes. The first step in its analysis, as for the rectangular duct proof, is to 

break up the modal functions into plane waves. For the Bessel function circular 

duct modal function, equation (A13), this is done by using the function's spatial 

Fourier representation (2.36): 
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(1/2 11 ) i m f du exp (imu + iClynn (s/a) cos (¢-u)) 
o 

(A68) 

(This expression is for positively spinning modes; its complex conjugate is 

appropriate for negatively spinning modes.) This representation is more daunting 

than the simple sum of waves expression for a rectangular duct modal function, 

but the princ iple of its use is the same. Note that every wave making up the 

mode has radial wavenumber amnIa. 

If equation (A68) is substituted into equation (A48), an expression for CCSD in 

the form of two sums and two integrals is obtained 

CCSD (.,!., .,!.', ,,,) = 1: f du f du" ••••• 
m n 

(A69) 

The modal sum may be converted to an integral over the cut-on region of the (m,n) 

plane: 

CCSD (.,!., .,!.' , LJ) eef dm f dn f du r du" •••• (A70) 

and the variables changed to the angle-like pair (v',u'): 

CCSD (.,!.,!..', ,,,) ee! dv ' ! du I JC ! du ! du ' I •• (A71) 

Both positively and negatively propagating modes are now included in the CCSD, as 

the range of v' integration is taken from 0 to 11 • 

substituted into equation (A71). 

Modal power may now be 

The next simplifying step is to change the order of integration, and to evaluate 

the u I integral first. It is now necessary to assume that the modal power 

distribution depends only on axial wavenumber, and so is independent of the modal 

parameter u ' • 

It ean be shown (2.30) that given this assumption, and if the contributions from 

both positively and negatively spinning modes are now added in, then the result 

(of the u ' integration is approximately a delta-function, 0 (U-U ,, ), in the range 
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of v' such that the radial wavenumber a is large. In this range, the u or u" 

integration can then easily be performed. 

A further approximation to reduce the CCSD expression is to replace the u' 

integral by the delta-function for every value of v,. This introduces an error 

since the range of v' extends down to zero, and the use of the delta-function is 

not valid for small v' (and corresponding small a). However, the approximation 

can be justified by a consideration of equation (A42) for the number of forward­

propagating modes in a band of axial wavenumber. It follows that the ratio 

is given by 

number of modes with a in the range 0 < a < a 0 

total number of modes 

r = (0: /ka)2 
o 

(A73) 

So (for example) only 1/4 of the modes have ao < ka/2 (note that ka is a large 

number). Thus it is plausible that the delta-function approximation is valid for 

most of the propagating modes. 

Evaluation of the u' integral in this way leaves the CCSD expression in the form 

CCSD (.!.,.!.', w) = (k2 p c /2112) f dv' sin v' f du f du' 'W(v') o 0 

x exp (~ • .!. - i~" • .!.'> I) (u-u" ) 

where 

k" = (k sin v' cos u", k sin v' sin u", k cos v') 

k = (k sin v' cos u, k sin v' sin u, k cos v,) 

giving the final result 

CCSD <1:., w) = (k2 p c /112) f f du dv' sin v' W(v') exp (~ • .!.) 
o 0 

(A74) 

(A75) 

(A76) 

(A77) 
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This is the desired free wave form. Comparison with equation (2.12) shows that 

the plane wave weighting function is 

H(v,ol ) (A78) 

and the normalised weighting is 

I(v, (J) = (k2 fl,p cl 1I) W(v)/PSD (A79) 

These results should be compared with the rectangular duct plane wave weighting 

results, equations (A66, A67). The relation between wave weighting and modal 

power distribution is essentially the same, providing some justification for the 

chains of assumptions used to derive the results. 

A4.3 Interpretation of plane wave weighting results 

This Appendix closes with an interpretation of equations (A6o, A67, A78, A79) 

relating the free wave field plane wave weighting function to modal power 

distribution. 

Suppose that experimental measurements of CCSD have been used to derive an 

estimate i (V',U',WO) of the plane wave weighting in a rectangular duct free wave 

field, as a function of angle at a particular frequency wOo What can be said 

about the power in a given mode (m,n) at that frequency? The first step in 

answering this is to compute the wavenumber angles (v I ,U I) associated with the 

mode from equations (A29, A30). If the mode is forward propagating, v'is taken 

between a and 11/2; otherwise, v'is taken between 11/2 and 11. Then an estimate 

of the power associated with the mode can be obtained from equation (A67): 

Wmn 'V W(V',U ' ) (A80) 

If the duct is circular, the power is assumed dependent only on modal axial 

wavenumber, and the associated plane wave weighting is a function of polar angle 

v' only. To compute the power associated with mode (m,n) from a given weighting 
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estimate I (v I, W 0)' the mode's radial wavenumber ~ mn must first be computed, 

either from tables or from the approximate equations (A32, A33). A wavenumber 

angle v' can then be computed for the mode (taking into account its direction of 

propagation), and an estimate of the mode's power can be obtained from equation 

(A79 ): 

Wmn '\, W/(v ' ) (A81) 

In this case the function I(v ' ,w) is proportional to the power of each of the 

several modes with normalised axial wavenumber given by (approximately) T mn = 
cos v'. The total power in a wavenumber band of width 6T about a given axial 

wavenumber T can be computed by multiplying the function I by the number of modes 

in the band (equation (A40». 

Some simple normalised plane wave weighting functions are illustrated in Figure 

(2.7). All the functions represent fields dependent only on axial wavenumber, 

and are presented as functions of cos Vj 

(equation (2.16». 

the area under each graph is 

The step function, graph (a), corresponds to an equal power distribution among 

the modes propagating in the postive z-direction. This weighting is known as 

"semidiffuse", by analogy with the diffuse field weighting shown as graph (b). 

The latter graph corresponds to a uniform distribution of power among the modes 

propagating in both z-directions, in which case the duct is acting like an 

enclosure and a diffuse field might be expected. The semiduffuse field is 

perhaps the simplest free wave model of the sound field in a duct with an 

anechoic termination. 

The ramp function, graph (c), is obtained when a positively-propagating mode has 

a power proportional to its axial wavenumber. A graph of total power at a given 

axial wavenumber for the equal distribution example (graph (a» would be a ramp 

like graph (c), because of the presence of an extra cos v' factor corresponding 

to the number of modes with a given axial wavenumber (equation (A40». 

AS CONCLUSION 

In this Appendix it has been shown that the sound field in a hard-walled 

rectangular 01" circular duct at high frequency can approach a free wave form, and 
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a relationship has been found between the plane wave weighting function of the 

free wave field and the duct's modal power distribution. 

It is anticipated that similar proofs might be derived in other situations 

whenever the free wave idea is applicable. 



APPENDIX B: CONVERGENCE PROPERTIES OF HARMONIC SERIES 

B1 INTRODUCTION 

This detailed discussion of the convergence properties of the harmonic series of 

equations (3.88, 3.89) is summarised in the main text, and is based largely on a 

series of numerical examples. The emphasis is on the practical consequences of 

limited convergence of the series for a plane wave weighting analysis method. 

The numerical convergence studies concern harmonic representations of CCSD and 

plane wave weighting for the two parametric field families, strip fields and 

cosine-power fields, discussed in the main text. 

The discussion is restricted to single-strip partially reverberant fields, so 

every field considered is azimuthally symmetric, and the harmonic series for C,I 

collapse to 

N 
I(v) SI l: I~Y~(V,u) (B1) 

N ~=O 

N 
I~ 2i~ C (..!:) CI = l: j ~ (kr) yO (e ,¢ ) (B2) 

N 
~=O 

Only square integrable fields are considered (apart from the cosine-power field 

with m = -!) so that it is valid to take the summation in equation (B 1) up to 

infinity. 

Coefficients for the two types of field may be derived from equation (3.85). For 

cosine-power weightings (see equation (3.8)), 

for Q, 2n, and 

r(n-m/2)r(!+m/2) 
r(-m/2)r(n+3/2+m/2) 

r(n+!-m/2)r(1+m/2) 
r(!-m/2)r(n+2+m/2) 

(B3) 

(B4) 
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for £ = 2n+l (n 0, 1, 2, •••• ). 

For a partially reverberant field (equation (3.23)) 

(B5) 

for £ 0, and for £ ~ 0: 

This result could be extended if desired to general strip fields. 

In these equations, rex) is the complete gamma function (2.31, chapter 6) and 

P£ (cos v) is the £-th order Legendre polynomial (2.31, chapter 22). (For the 

derivations of equations (B3-B6), see reference (2.30). 

B2 CONVERGENCE OF WEIGHTING SERIES 

The qualitative effect on the convergence of the weighting harmonic series of 

equation (Bl) of the presence of singularities and discontinuities in the 

weighting is illustrated in Figures (3.15-3.18), which are a series of plots of 

S~ for various cosine-weighting fields, with m ranging from -l to 2. 

The m = 2 weighting (Figure (3.15)) has a continuous derivative everywhere, and 

the series converges well after four terms. The m = 1 weighting (Figure 3.16)) 

has a corner (a discontinuous derivative) at the origin and convergence is less 

good, especially near the corner. The semi diffuse weighting (Figure (3.17)) is 

still less well-behaved, with a discontinuity at the origin, and the convergence 

is considerably poorer. It is worse still for the case m = -~, which is not even 

a square integrable weighting (Figure (3.18)). Nevertheless the series still 

at tempts to model the weighting's shape, even close to the singularity at the 

origin. 
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A feature of the semidiffuse field weighting case (m = 0) is the presence of 

fringes to either side of the discontinuity. This is Gibbs' phenomenon, 

familiar from Fourier series theory, and arises from the fact that a finite 

number of continuous functions cannot fit the infinite slope at a discontinuity. 

In trying to fit, the harmonic series overshoots the target function to either 

side of the discontinuity. 

As can be seen from Figure (3. 17), as N becomes larger the fringe peaks become 

narrower and move closer to the discontinuity, but the height of the first peak 

persists. (Convergence of the series in the mean holds because the area under 

the narrow fringe peaks eventually becomes vanishingly small.) 

This study shows that if a weighting contains discontinuities and singularities, 

the convergence of the harmonic series is poor, but even when the weighting is 

not square integrable the series can converge point of pOint, and attempts to 

model the shape of the weighting. 

B3 CONVERGENCE OF CCSD SERIES 

The qualitative behaviour of the convergence of the harmonic series for CCSD 

(equation (B2» is illustrated in Figure (3.19), which is a set of modulus and 

phase plots of SC for various N. The target function is the axial CCSD in a 
N 

semidiffuse field (equation (3.12». The main feature of these plots is that 

convergence is much more rapid in the low-kr range of CCSD. 

It can be seen that SC fits well to C in the low-kr region for quite small Nj 
N 

the goodness of fit at larger kr improves as N increases. s2 fits the main lobe 

of the modulus fairly well, and SC begins to pick up the second lobe. 
6 

It seems to be generally true that the low-order harmonic coefficients dominate 

the form of C at low kr. This is consistent with the observations made in 

subsection (3.3.6) about the domination of low-kr C by low order moments of the 

plane wave weighting, since each harmonic coefficient is a linear combination of 

moments. 

B4 COMPARISON OF CONVERGENCE OF CCSD, WEIGHTING EXPANSIONS 

It is now instructive to compare the overall convergence of the harmonic series 

for CCSD and weighting. As noted in the main text, a C series is liable to be 
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"more convergent" than a corresponding I series. This impression is confirmed 

by the application of simple quantitative measures of the convergence of e,I 
series to the two families of model free wave fields. 

A straightforward measure of the convergence of a harmonic series for a square 

integrable, azimuthally symmetric plane wave weighting is a normalised version of 

the minimised mean square error by which the series coefficients are determined 

(equation (3.84»: 

F 
N 

II dv au Sln v Ir(v) - s~1 ! r - } 2 

II dv du sin v II(v)12 
(B7) 

A similar measure of the convergence of a e series is 

sinO I C (.£) CI 2 dR II d8 d¢ - SN ! C ( -
~ } 2 

eN 
(B8) 

b 
dR If d8 d¢ sinG IC(r)12 

C 
eN has been made independent of R(= kr) by a simple integration over R. It is a 

measure of the overall convergence of a e series, and contains no information 

about the fact that most of a series' convergence errors are made at large R, as 

noted above. This fact could be reflected by defining an alternative error 
C 

measure including some weighting dependent on R. eN is defined as above for its 

simplicity. 

Substitution of equations (B1, B2) into equations (B7, B8) and the use of the 

orthonormali ty of the harmonics leads to expressions for E~ , E~ as sums of 

harmonic coefficients, given the following Bessel function integral result (2.31, 

chapter 11):. 

I dt jilt) = '1/(4£ + 2) (B9) 
(J 

The expressions are 

r 
7: iI~12 l: Irol2) (B10) eN = 

Q=N+ 1 - £=0 £ 
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II~12 II~ 12 
C }! EN l: l: (B11) 

£=N+1 2£+1 £=0 2£+1 

In Figure (3.20), E~ is shown for the convergence of series approximations for 

various cosine-power weightings: m = -0.3, 0, 1. The improvement of convergence 

with increasing m can be seen; this occurs because the behaviour of the 

weightings improves with increasing m (finite for m ~ 0, continuous for m > 0, 
I continuous derivative for m > 1). EN for various partially reverberant field 

weightings is shown in Figure (3.21). The rough Similarity of all the plots 

suggests that the dominant convergence error source for this type of field is the 

presence of discontinuities in the weightings. 

Figures (3.22, 3.23) show 
C 

EN for the two families of weightings. These plots 

show similar trends but steeper slopes than the corresponding I convergence 

plots, indicating that the speed of convergence of a given C series is greater 

than but related to that of the corresponding I series. 

The interpretation of this is that although there is a one-to-one correspondence 

between the terms in the two series, for a given number of terms a harmonic 

series for a plane wave weighting will be a poorer overall representation of the 

true function than will the corresponding series for CCSD. 



APPENDIX C: HARMONIC SEARCH PROBLEM: REGRESSION ANALYSIS 

C1. INTRODUCTION 

The purpose of this Appendix is to recast the minimisation problems expressed by 

equations (4.8, 4.9) into the standard notation of multiple regression analysis 

(4.1). The Appendix includes a formal discussion of standard regression 

results, which is summarised in the main text. The Appendix also includes some 

details of the collinearity argument given in the main text. 

C2. REGRESSION ANALYSIS 

C2.1 Fundamental definitions 

Multiple regression analysis involves the study of equations of the form 

(C1) 

This equation models the prediction by the (real-valued) independent variables 

xi, i = 1, p, of the value of the (real-valued) dependent variable y. If n sets 

of measurements yj' Xij' j 1,n, i = 1,p of y,x are made, with p < n, the 

values of the coefficients may be chosen to minimise the (unweighted) residual 

sum of squares 

n 
2 

RSS l: E. (C2) 
j~l J 

where the residuals €j are given by 

(C3) 

The residuals are regarded as random disturbances, containing no systematic 

information. 
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Some versions of equation (C1) include a constant term So, independent of x, 

which is also estimated in the minimisation. However no such constant term is 

present in equation (4.11); the first term of the real series is determined by 

the r normalisation and involves no adjustable parameter, and in practice may be 

subtracted from the data. No constant term is therefore included in equation 

(C1) for the present discussion. 

Each of the two harmonic minimisations, equations (4.8, 4.9), may be cast in the 

form of equation (C2) as follows. For the real fit, let the independent 

variables, IjJ ~, IjJ ~, IjJ ~ ••• and coefficients K~, K~, K~ ••• be defined by 

IjJR 0 , e KR = - 2j2 Y2 sin~ r O 1 1 2 

IjJR 
= - 4j2 Re Y~ sin~ e KR = Re r1 2 2 2 

l 1 , e KR r1 = 4 j2 rm Y2 sin~ = rm 3 3 2 

IjJR 
= - 4j2 Re y2 sini e KR = Re r2 4 2 4 2 

IjJR 2 ! KR r2 
4j 2 1m Y2 sin 2 e 1m 

5 5 2 

IjJR 0 , e KR r O 6 = 2j4 Y4 sin:! 
6 = 4 

(C4) 

............................................... 

(c.f. main text, equation (4.12).) 

Furthermore, let the dependent variable y be defined by 

, 
y = (Re C - jo)sin~ e (C5) 

ljJ~j is the value of the i-th variable at sampling position .!:j' and y j is the 

value of y. Note that the y values depend on the CCSD data, but the IjJ values 

depend only on the array of sampling positions. 

With these definitions, the harmonic series for Re C, derived from equation 

(4.11), can be put into a form equivalent to equation (C1), and the RSS of 

equation (4.8) can be made equivalent to the RSS of equation (C13). The factor 
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sin~e in the definition of the variables is included so that nc weighting factor 

is needed in the HSS of equation (C2). 

In practice, a p-term harmonic model of the real part of CCSD would not be made 

up purely of the first p terms in the list above, and the definition of the 

variables x" x2, in equation (C,) would be made suitably. For example, suppose 

a model were to be composed of the first three ( 9- even) axisymmetric harmonic 

terms only, then a suitable definition of x" x2, x3' 8,,8 2, 83 would be 

x, = ljJ H S, = KH = 10 

x2 = 1jJ~ ~ = K~ = 10 
4 

R R 
16 X3 = 1jJ '5 ~ = K'5 = (C6) 

The definitions of equation (C4) give the general principle of labelling a two­

index series of harmonics with a single index, with the harmonic terms arranged 

in order of increasing complexity. 

In the following discussion, each of the harmonic terms in equation (C4) will be 

called a "real harmonic variable". 

A similar ordering of "imaginary harmonic variables", contributing to the fit to 

the imaginary part of the CCSD data, is 

1jJI 
1 = 

0 
2j, Y, sin~ 0 I 

I~ K, = 

1jJ1 
2 = 4h He 

1 
Y, sin~ e I 

K2 = He I~ 

1jJ~ = -4j, 1:0 
1 

Y, sin~ 0 I 
K3 1m I~ 

d - 2j 3 
0 sin~ e I 

10 = Y3 K4 = 3 

IjJI - 4j 3 
1 . ! I 1 

He Y3 sln2 8 K5 = He 13 
5 

~} I 4j3 
1 , I 1 

= rm Y3 sin:! e K6 = 1m 13 (C7) 
6 

.......................................... 
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and the dependent variable y may be defined by 

y (Im c) sink e (C8) 

(c.f. equation (4.13).) 

This enables the imaginary data minimisation to be cast into the standard form of 

equations (Cl-C3). The notation (9"q - He), (9"q - Im) described in the main 

text covers the imaginary harmonic variables as well as the real variables. 

C2.2 Matrix Formulation 

The discussion of the properties of the two harmonic minimisation problems can 

now proceed in terms of the standard regression analysis notation of equations 

(Cl-C3). This analysis is usually cast in a matrix formulation, with the data 

n-vector, the data p x n matrix x, the coefficient p-vector S , and the residual 

data n-vector E being defined by 

y = s = 

x = 

xpn 

Equations (C2,C3) then become 

E = Y - xs 

E = 

El 
E 
2 

E 
n 

(C9) 

(Cl0) 

(Cll) 
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(£T denotes the transpose of ). 

It can be shown (4.1) by expanding the residual sum of squares that the 

coefficient vector estimate b which minimises the sum of squares satisfies the 

"normal equation": 

cb 

where 

c = 

The solution of the normal equation is 

b 

The result leads to the definitionof a further n-vector 

y = xb 

which is a prediction of the n data values Yj' j = 1,n. 

from the data by the observed residual n-vector 

e Y - Y 

C2.3 Statistical Properties of a Regression 

(C12) 

(C13) 

(C14) 

(C15) 

The prediction differs 

(C16) 

This subsection begins a review of standard statistical results about multiple 

regressions, including the means by which the statistical quality of a regression 

maybe assessed (4.1). 
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A main recommendation of the use of least squares fitting is that the estimates 

of coefficients and predictions that it yields are unbiased, for unbiased input 

errors. Assume that the input errors are zero mean and independent so that 

E [c] = 0 

and 

var [d = 0 2 In 

say, where In is the n x n unit :oatrix. E denotes expected value. 

(C18) summarises the equations 

COV(Ej, En) o j ~ k 

Then it can be shown that 

E[b] s 

and that 

Furthermore the variance matrix of the coefficient estimates is 

var[b] a2c 

(C17 ) 

(C18 ) 

Equation 

(C19 ) 

(C20) 

(C21) 

(C22) 
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An unbiased estimator of a 2 is 

RSS/(n-p-1) 

The ordinary correlation coefficient R2 is defined by 

n 

1 - RSSI 2: Y j2 
j=l 

The F-statistic is defined in the main text. 

The predicted residual sum of squares (PRESS) is defined by 

n 

PRESS = L (Yj _ Y(j))2 
j=l 

(C23) 

(C24 ) 

(C25) 

1(j) is the predicted value of the j-th data value, made by a predictor function 

based on a fit to all the data except the j-th value. Thus Yj - Y(j) is a 

measure of the deviation of the predictor function from the true value of the 

"fresh" data Yj' 

PRESS has the computational advantage that it can be written in terms of the 

results of a single regression, based on the full set of n data points: 

n 

PRESS = I: (Yj _ Yj)2 I ( 1 _ Qj)2 
j=l 

(C26 ) 

where 

p p 
Qj l: l: x kj Cu X£j 

k=l £=1 
(C27) 

The t-statistic (4.1) is the ratio of a coefficient estimate to the estimate's 

standard error (s.e.), which is defined by 
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(C28) 

and the t-statistic for the i-th variable is defined by 

(C29) 

The t-statistic has a standard probability distribution (the student's t 

distribution), but its simplest interpretation is as follows. Consider two sets 

of coefficient estimates made from the same data set: a p-set fbi: i = 1,p} 

producing a predictor function y, and a q-set { bi*: i=1,q} producing a predictor 

function y*, with p < q •. In general, it can be shown (1.4) that coefficient 

estimates in the smaller set will suffer from more bias than those in the larger, 

but their variance will be less. Furthermore, under certain conditions, the mean 

square error (MSE) of coefficient estimates in the smaller set can be less than 

the variance of coefficient estimates in the larger set. The MSE is the sum of 

the variance and the square of the bias. That is, the increase in bias can be 

offset by the decrease in variance, and the smaller variable set can actually 

produce a better predictor function than the larger. 

The condition for this to be true is that the variables which are deleted from 

the q-set to yield the p-set should have t-statistics less than one in magnitude: 

that is, that the size of the coefficient estimates should be less than the 

associated standard errors. 

Such a variable is said to be "insignificant". It can be shown further that the 

effect of deleting insignificant terms of the final predictor function y is also 

to give it an increase in bias which is offset by a decrease in variance, to 

yield a predictor with a smaller MSE. In summary, the deletion of insignificant 

variables from a model improves the quality of a regression. 

The collinearity between the independent variables and the dependent variables is 

measured by the correlation vector ry , which has elements 

(C30) 

where 
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n 

Siy = L (xij - xi) (Yj - y) (C31) 
j=l 

n 

Sik = L (Xij - xi) (Xkj - xk) (C32) 
j=l 

n 

xi = L xij/n (C33) 
j=l 

n 
-

L Yj/n (C34) y = 
j=l 

The collinearity between the i-th and k-th independent variables is measured by 

the correlation matrix r, which has elements 

(C35) 

C3 ORIGIN OF COLLINEARITY 

This section contains some details of the collinearity origin argument given in 

the main text. 

Consider the sum Sik defined in equation (C32), used in the computation of the 

correlation between the variables indexed i,k. Suppose first that variable i is 

high order, and that variable k is low order. Then the term Xij - xi in equation 

(C32) will be approximately zero for those sampling positions j where Xij is 

significantly nonzero, and approximately -xi at the others, independently of the 

positon index j. Thus 

-xi 1. (Xkj - xk) 
j 

(C36) 

with the j sum taken over those positions where Xij is close to zero. The factor 

xi is removed when Sik is normalised to give the correlation matrix element rik 

(equation (C35)), and so the value of rik will ,depend only on the variation of 

the low order variable, as observed in the correlation matrices described above. 
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Consider now a variable pair i, k, both high order. Similar arguments to the 

above demonstrate that 

(C37) 

so that 

(C38) 

Thus high collinearity among high order variable pairs is predicted, as observed. 

A t higher frequencies, with increasing kr, a higher order variable will take 

significantly nonzero values at more sampling positions, and this effect is 

reduced, as observed. 




