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Preface

In 1926, Lukasiewicz proposed the following problem in his seminar at the Uni-
versity of Warsaw: to find a new formalization of classical predicate logic that
could mirror the use of assumptions in real life mathematical arguments and
reasoning. Jaskowski took up the task and formulated for the first time a system of
Natural Deduction. The system was presented in 1927 at a meeting whose pro-
ceedings were published in 1929. The journal paper was published in 1934 under
the title ‘‘On the Rules of Suppositions in Formal Logic’’.

In the same year Gentzen published his classical paper ‘‘Untersuchungen über
das logische Schliessen’’ where we can find a different Natural Deduction system
for both classical logic and intuitionistic logic. In Gentzen’s Natural Deduction
systems each logical connective has an introduction rule showing how to introduce
an instance of the connective into a proof, and an elimination rule showing how to
obtain a consequence of a sentence with that connective as main sign in a proof.
These paired introduction and elimination rules provide a self-contained and
intuitive explanation of the meaning of each connective. But these paired rules
could also produce some ‘‘roundabouts’’ in proofs and Gentzen’s Hauptsatz idea
was that these roundabouts could be eliminated from proofs: Gentzen himself
described how this idea could be carried out for intuitionistic predicate logic. But
Gentzen’s main goal was the consistency of classical arithmetic and for this reason
the theoretical fate of natural deduction systems could have been sealed by
Gentzen’s prescient commentary:

The Hauptsatz holds both for classical and for intuitionistic predicate logic. In order to be
able to enunciate and prove the Hauptsatz in a convenient form, I had to provide a logical
calculus especially suited to the purpose. For this the natural calculus proved unsuitable.
For, although it already contains the properties essential to the validity of the Hauptsatz, it
does so only with respect to its intuitionistic form, in view of the fact that the law of the
excluded middle, as pointed out earlier, occupies a special position in relation to these
properties.

As Gentzen said, although in the intuitionistic case the natural calculus had the
desired properties for the formulation and proof of the Hauptsatz, classical logic
formulated with the rule of double negation elimination or through the addition of
the axiom of the excluded middle did not seem to possess the essential properties
‘‘for the validity of the Haupsatz’’. This was the main reason for the development
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of a new calculus, the sequent calculus, for which the Haupsatz was formulated
and proved for both classical and intuitionistic logic. From the founding fathers
(Gentzen and Jaskowski) to 1965, studies on natural deduction systems were
basically restricted to (1) their use as a good deductive system for teaching logic,
and (2) to problems related to the formulation of the rules for the quantifiers,
especially to the rules corresponding to universal generalization and to existential
instantiation. This situation changed dramatically 30 years later, when in 1965
Dag Prawitz and Andrés Raggio proved, independently of each other, the nor-
malization theorem for classical first order logic.

This process of proof normalization, and its later extensions to higher order
logics, was a breakthrough that paved the way for numerous fruitful applications
of proof theory and logic to computer science. In particular, the Curry-Howard
isomorphism showing the intimate connections between Natural Deduction and
Type Theory, and especially proof normalization and type equivalence, laid the
groundwork for the development of type systems in programming languages. This
not only led to the creation of new programming languages, but also fed back into
the development of new logics. The Extended Curry-Howard Correspondence
furthered the connection between types, proofs, and programs to include mor-
phisms in appropriate categories between programs and proofs. This algebraic
dimension lent new mathematical insight into computational and syntactic issues
in computer science, and stands to open up new areas of study in classical proof
theory.

Natural Deduction is very dear to all of us involved with this book. The book
grew out of the organization of a conference entitled simply ‘‘Natural Deduction’’
that took place in the Pontifical Catholic University of Rio de Janeiro (PUC-Rio) in
2001. The conference was conceived as a celebration of Dag Prawitz’s work in
logic, in particular of his work on proving normalization for logical systems and
his careful philosophical discussion of the importance of proofs. Due to circum-
stances beyond our control, the project was shelved for several years, but as the
possibility of resuming it presented itself, we jumped at the opportunity, as
interdisciplinary and deep-meaning interactions between philosophers and com-
puter scientists need to be fostered by all means at our disposal.

We have selected 12 papers associated with Natural Deduction, in an extended
sense, as the theme of the conference and of this volume that we now briefly
describe. The first contribution, by Schröder-Heister, reminds us that in 1979,
Prawitz proposed a kind of operational completeness for the set of intuitionistic
logical constants: he first defined abstract introduction and elimination schemes
and claimed that any logical operator whose introduction and elimination rules
were instances of these abstract schemes would be defined by the intuitionistic
logical constants. This problem was solved by Peter Schröder-Heister who intro-
duced for the first time higher-level natural deduction rules and in particular
higher-level generalized elimination rules. In his contribution Schröder-Heister
investigates some interesting relations between generalized higher-level elimina-
tion rules and standard-level generalized elimination rules and shows how some
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results for generalized higher-level elimination rules can produce new results in
the standard-level, in particular a new left-introduction schema for implication can
be defined from the interpretation of implication as rules.

Urban’s paper re-addresses the problem of the correspondence between nor-
malization steps in Natural Deduction and the corresponding reductions in Sequent
Calculus, an issue going back to Kreisel’s observations in 1971, heavily developed
in Zucker’s 1974 doctoral work. Returning to Zucker’s investigation, Urban
reproves Zucker’s result that in the fragment of intuitionistic logic consisting of
formulae build up from 9 and V only, every reduction sequence in natural
deduction corresponds to a reduction sequence in the sequent calculus and vice
versa. But this is proved in a much simpler way than Zucker’s via terms associated
to the sequent derivations, with the additional benefit that the cut-elimination
procedure (from Urban 2000) is strongly normalising for all connectives, while the
cut-elimination procedure in Zucker’s work is not strongly normalising when

W

and A are included. Urban’s work also shows that the negative result when
W

and A
are included, is not because cut-elimination fails to be strongly normalising for
these connectives, as asserted by Zucker, rather it is because there are cut-elimi-
nation reductions that do not correspond to any normalisation reduction.

Joinet’s paper provides an insightful discussion on how logic changed in the
twentieth century from a philosophical enterprise concerned with reasoning to a
mathematical enterprise concerned with proofs, and more recently, to a computer
science enterprise concerned with the dynamics of proofs. In particular he dis-
cusses the dynamic character of reasoning versus the static character of proofs; the
referential dimension of reasoning versus the inferential nature of proofs and the
indeterminacy of reasoning versus the correctness of proofs and reflects that this
change of concerns (the metamorphosis in the title), especially the last one, from
Mathematics to Computer Science, seen as a consequence of the Curry-Howard
isomorphism, provides us with a Computational Foundation for Logic, which
amazingly enough bring us back to a dynamic theory of reasoning as originally
conceived by philosophers.

De Queiroz and de Oliveira’s paper also discusses the origins of Natural
Deduction, going back to Frege’s introduction of variable-binding, and his idea of
having terms representing incomplete ‘‘objects’’ whenever they contain free
variables, as motivating their discussion of equality rules in first-order logic. De
Queiroz and De Oliveira wish to see in first-order logic with equality a greater
separation into two independent levels that they call the functional and the logical
levels of the calculus. An analysis of how to keep these two levels of calculus
independent, and yet harmonious, lead the authors to describe a system of Natural
Deduction rules for propositional equality that sits between the extensional and the
intensional versions of Martin-Loef’s type theory. The paper contains a cogent
discussion of why one would like to have a system which is a middle ground
solution between the intensional and the extensional accounts of Martin-Loef’s
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propositional equality. And then presents a system satisfying these required
properties, via a notion of ‘‘rewrite reasons’’.

Legris’ paper has a historical-conceptual nature. Its aim is to examine Paul
Hertz logical theory and to show its influence and impact on Gentzen’s logical
systems. According to Legris, Hertz’s work can be seen as an anticipation of a
theory of proofs in the current sense. Legris also shows how Hertz’s work can be
considered as a kind of bridge that would connect traditional logic to Gentzen’s
systems. The paper concludes with an analysis of Hertz’s philosophical ideas
concerning the relation between the essence of logic and more general episte-
mological issues.

In the literature logics modelling the idea of ‘‘generally’’ have been considered
as extensions of First-Order Logic. Deductive systems for these logics can be
obtained either by a usual system for first-order plus a set of axioms introducing
the quantifiers as a kind of defined symbol, or by tailoring specific inference rules
to deal with these new quantifiers. The article by Vana, Veloso and Veloso
describes how to develop good Natural Deduction systems for the quantifiers
corresponding to ‘‘generally’’, ‘‘most’’ and ‘‘several’’. This article is a compre-
hensive tract on the techniques used to deal with quantification notions derived
from filters and ultra-filters. The systems presented are shown to be normalizable
and the article discusses some consequences of normalization.

Anyone using a theorem prover or a proof assistant wants to have confidence
that the system implemented will not allow the derivation of false results. Theorem
provers (and systems used in their implementation) must ensure that it is not
possible to derive contradictions and that the implementation itself is correct with
respect to the original system. Professor Seldin’s article discusses clearly how the
use of logical systems based on typed lambda-calculus are a most adequate basis
for theorem provers when one wants to have confidence on the correctness of their
implementation. Taking each of the many vertices presented in Barendregt’s
lambda-cube, his article discusses how consistency and confidence on a given
implementation can be obtained by means of basic observations on the main meta-
properties of the lambda-calculi considered. The article is also a nice step-by-step
presentation of how to improve the expressive power of a theorem prover by
following paths along the edges of the lambda-cube.

Very traditional philosophical questions concerning the nature of propositional
logic are taken up in Chateaubriand’s paper. Is logic a theory about something?
Can one conceive of propositional logic as an ontological theory? What is the
(epistemological) role of deductive systems? Do propositions have a structure in
the same way that we can say that sentences have a structure? These questions
become especially interesting and acute with respect to the connection between the
material implication and the material conditional, a central topic in the develop-
ment of natural deduction systems.

Since the work of Lambek, category theory has been used to provide semantics
to substructural logics. This semantics is proof-theoretical, since proofs are
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incorporated in the models. Linear logic is a logic that interprets substructural
implicational into intuitionistic implication by means of exponentials. There have
been plenty of categorical models for providing semantics for linear logic. In this
article, Valeria de Paiva compares several notions of categorical model of intui-
tionistic linear logic in the literature. Her article explains why choices can be made
and what they amount to. Her conclusion is that one of the oldest and more
complicated notions, namely linear categories are still the best way to describe
models of linear logic, if one wants the correspondence between syntax and
semantics to be as tight as possible.

Assertions and hypothesis are key notions in the Logic for Pragmatics intro-
duced by Carlo Dalla Pozza and Claudio Garola. In his contribution to the present
volume, Bellin reconsiders and revises some results that are based on the modal
translation of his proposal for an intuitionistic logic for assertions and conjectures
into classical S4: while assertions require epistemic necessity of the truth of the
propositional content, doubts require the epistemic possibility of falsity and con-
jectures are justified by the possibility of epistemic necessity. In the final part of
the paper, Bellin investigates the proof theory of a fragment of co-intuitionistic
logic.

Anyone who has studied proof theory has already been exposed to strong
normalization proofs. Compared with weak normalization, they are more com-
plicated. They fall into to main proof patterns: (1) Using reducibility candidates,
or; (2) Providing a direct proof that any sequence of reductions is terminating. The
first case is known to be more elegant and more famous indeed. It was used in the
case of stronger theories such as System F and Gödel’s system T, for example. The
second case is more informative in general, and has two forms: (1) Provide a
special kind of reduction sequence that dominates any other reduction sequence
and prove weak normalization for this (dominating) reduction sequence, or;
(2) Prove directly by induction, using a tricky induction measure, that any
reduction sequence is terminating. The first approach is also known as the worst-
sequence approach, since the special sequence definition involved considers the
longest possible reduction sequence for each term. Proofs of confluence can be
combinatorial or semantical, in the case a stronger than termination/confluence
inductive hypothesis is used. Zimmerman’s article introduces a method of
decomposition of reductions. He uses the terminology and main results from
rewriting theory to show how one can decompose a reduction in such a way that its
confluence and termination can be obtained from the termination and confluence
of its constituents. This method is applied to Natural Deduction systems for In-
tuitionistic Logic and Intuitionistic Linear Logic. Zimmerman obtains termination
and confluence in a rather elegant way by means of a general theory of reductions.

Forty years ago, Prawitz formulated a very interesting conjecture about the
completeness of intuitionistic logic: are Gentzen’s elimination rules for intui-
tionistic logic the strongest possible rules? This conjecture was formulated in the
framework of a certain semantic approach to general proof theory. In his
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contribution to the present volume, Prawitz reconsiders this old conjecture and the
very semantic approach that served as the base for the formulation of the con-
jecture. A revised notion of validity is defined and given that Gentzen’s elimi-
nation rules are valid, the conjecture now assumes the form: are all valid
inferences rules derivable in Gentzen’s natural deduction system for intuitionistic
logic?

Luiz Carlos Pereira
Valeria de Paiva

Edward Hermann Haeusler
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Generalized Elimination Inferences,
Higher-Level Rules, and the
Implications-as-Rules Interpretation
of the Sequent Calculus

Peter Schroeder-Heister

Abstract We investigate the significance of higher-level generalized elimination
rules as proposed by the author and compare them with standard-level generalized
elimination rules as proposed by Dyckhoff, Tennant, López-Escobar and von Plato.
Many of the results established for natural deduction with higher-level rules such as
normalization and the subformula principle immediately translate to the standard-
level case. The sequent-style interpretation of higher-level natural deduction as pro-
posed by Avron and by the author leads to a system with a weak rule of cut, which
enjoys the subformula property. The interpretation of implications-as-rulesmotivates
a different left-introduction schema for implication in the ordinary (standard-level)
sequent calculus, which conceptually is more basic than the implication-left schema
proposed by Gentzen. Corresponding to the result for the higher-level system, it
enjoys the subformula property and cut elimination in a weak form.

This chapter was completed during a research stay at IHPST Paris supported by the Founda-
tion Maison des Sciences de l’Homme, by the ESF research project “Dialogical Foundations
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2 P. Schroeder-Heister

1 Generalized Higher-Level Elimination Rules

In [27, 28], generalized elimination rules for logical constants were proposed in order
to obtain a general schema for introduction and elimination rules for propositional
operators.1 Given m introduction rules for an n-ary constant of propositional logic c

(cI)
β1(A1, . . . , An)

c(A1, . . . , An)
. . .

βm(A1, . . . , An)

c(A1, . . . , An)
,

where the βi (A1, . . . , An) are premisses structured in a certain way, the elimination
rule is

(cE)
c(A1, . . . , An)

[β1(A1, . . . , An)]
C

. . .
[βm(A1, . . . , An)]

C

C
,

where the brackets indicate the possibility of discharging the assumption structures
mentioned. For conjunction and implication these rules specialize to the following:

A B(∧ I)
A∧B

A∧B
[A B]

C(∧EGEN) C
[A]
B(→ I)

A → B
A → B

[A ⇒ B]
C(→EHL) C

.

Here, (∧ I) and (→ I) are the usual introduction rules for conjunction and implication,
and (∧EGEN) and (→EHL)are their generalized elimination rules, following the
pattern of (cE). The index “hl” indicates that our generalized elimination schema
for → is a rule of higher level, in contradistinction to generalized standard-level
elimination rules, which will be discussed in Sect. 2.

The motivation for the generalized introduction and elimination rules (c I) and
(cE) can be given in different ways: One is that the introduction rules represent
a kind of ‘definition’ of c, and the elimination rule says that everything that fol-
lows from each defining condition βi (A1, . . . , An) of c(A1, . . . , An) follows from
c(A1, . . . , An) itself. This can be seen as corresponding to Gentzen’s ([6] p. 189)
viewof introduction inferences in natural deduction as a sort of definition, or as apply-
ing an inversion principle or a principle of definitional reflection to the introduction
rules (for Lorenzen’s ‘inversion principle’ and the related principle of definitional
reflection and its usage in proof-theoretic semantics, see [8, 32, 34, 35, 38]).

1 In [29] this approach was extended to quantifiers, and in [30] to various other applications,
including the sequent calculus, certain substructural logics (in particular relevant logic), andMartin-
Löf’s logic. In [7, 32] and in later publications itwas extended to the realmof clausal-based reasoning
in general. For a general description of the programme of proof-theoretic semantics see [38], and
for a formal rendering of proof-theoretic harmony see [19, 40]



Generalized Elimination Inferences 3

A slightly different idea (preferred by the author in [27, 28]) that focusses
more on the elimination rules is that c(A1, . . . , An) expresses the ‘common con-
tent’ of β1(A1, . . . , An), . . . , βm (A1, . . . , An), i.e., the set of consequences of
c(A1, . . . , An) is exactly the intersection of the sets of consequences of the
βi (A1, . . . , An) (1 ≤ i ≤ n). Formally, both interpretations amount to the same,
viz., the ‘indirect’ form of the elimination rule which generalizes the standard pattern
of introduction and elimination rules for disjunction:

A
A ∨ B

B
A ∨ B

A ∨ B
[A]
C

[B]
C

C .

In the generalized elimination rule (cE) the premiss structures occur in assumption
position. In the case of → this means that the dependency of B from A must be
represented as a form of assumption. Our proposal in [27, 28] was to read this de-
pendency as a rule, since the fact that B has been derived from A can be naturally
understood as the fact that the rule allowing one to pass over from A to B has been
established. Conversely, assuming that the rule permitting to pass from A to B is
available, is naturally understood as expressing that we can in fact derive B from A.
Consequently, the minor premiss of generalized → elimination (→EHL)depends
on the rule A ⇒ B, which is discharged at the application of this elimination infer-
ence. (→EHL)is therefore a rule of higher level, i.e., a rule that allows for a proper
rule to be discharged, rather than for only formulas as (dischargeable) assumptions.
Actually, the ‘usual’ → elimination rule, which is modus ponens, is a rule without
any discharge of assumptions at all:

(→EMP)
A → B A

B
,

as are the usual ∧ elimination rules2:

2 A generalized schema for elimination rules which contains (∧EGEN) as an instance was proposed
by Prawitz in [25]. I have made this point clear in all relevant publications. In fact, a fundamental
error in Prawitz’s treatment of implication in his elimination schema was one of my motivations
to develop the idea of rules of higher levels, another one being von Kutschera’s [11] treatment
of logical constants in terms of an iterated sequent arrow in what he very appropriately called
Gentzen semantics (Ger. ‘Gentzensemantik’). So I claim authorship for the general schema for
elimination rules, but not for the particular idea of generalized conjunction elimination (∧EGEN).
I mention this point as I have been frequently acknowledged as the author or (∧EGEN), without
reference to its embedding into a higher-level framework. When the higher-level framework is
mentioned, it is often not considered relevant, as transcending the means of expression of standard
natural deduction. Although it extends natural deduction, the results obtained for the general higher-
level case can easily be specialized to the case of generalized standard-level elimination rules for
implication. In this sense, a direct normalization and subformula proof for standard-level systems
with generalized rules is already contained in [27]. For a discussion of inversion in relation to
Lorenzen’s and Prawitz’s semantical approaches see [16, 34, 35].



4 P. Schroeder-Heister

(∧E)
A∧B

A

A∧B

B
.

This approach is formalized in a calculus of rules of higher levels: A rule of level
1 is a formula, and a rule of level α + 1 has the form (R1, . . . , Rn) ⇒ A, where
the premisses R1, . . . , Rn are rules of maximum level α and the conclusion A is a
formula. A finite list of rules is denoted by a capital Greek letter, so in general a rule
has the form β ⇒ A.

A rule can be applied and discharged in the following way: A rule of level 1 works
like an axiom, a rule of level 2 generates its conclusion from its premisses:

A1, . . . , An ⇒ B
A1 . . . An

B

and a rule of level ≥3 of the form

(β1 ⇒ A1, . . . ,βn ⇒ An) ⇒ B

generates B from A1, . . . , An , whereby the assumptions β1, . . . ,βn can be dis-
charged at this application:

[β1]
A1 …

[βn]
An

(β1 ⇒ A1, . . . ,βn ⇒ An) ⇒ B
B .

(1)

Applying β ⇒ A means at the same time assuming it, i.e., introducing it as an
assumption except in the case where it is a basic rule (or ‘primitive rule’) such
as (→ I). Therefore, formally, applying (→ I) means the same as applying the rule
(A ⇒ B) ⇒ A → B:

[A]
B

(A ⇒ B) ⇒ A → B
A → B .

(2)

However, as in this case (→ I) is not introduced as an assumption and therefore not
used as an assumption rule, but is basic (or ‘primitive’), we write as usual

[A]
B(→ I)

A → B .

The counting of rule levels is according to the height of the tree it corresponds to. For
example, in (2) the application of the level-3-rule (A ⇒ B) ⇒ A → B corresponds
to a tree

[A]
B

A → B
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of height 3. In this sense, the primitive rules (→ I) and (∨E) are rules of level
3. Obviously, a rule discharging a rule of level 2, i.e., discharging a rule of the
form A1, . . . , An ⇒ B, must be at least of level 4. The primitive rules used in
standard natural deduction are therefore of maximum level 3. A rule of maximum
level 3 is also called a standard-level rule, whereas a rule of level ≥4 is called
a proper higher-level rule. Thus (→EHL)is a proper higher-level (viz., level-4)
rule. Obviously, if α is the level of an introduction rule for a logical constant c
of the form (c I), then α + 1 is the level of the corresponding elimination rule
of the form (c E). This raising of levels made it necessary to introduce the con-
cept of higher-level rules and the idea of assuming and discharging rules. That this
cannot be avoided, i.e. that elimination rules cannot always be ’flattened’ (using
a terminology proposed by Read [26]) has recently been formally established in
[18, 19]. The idea of higher-level elimination rules can be generalized from the
realm of logical constants to arbitrary clausal definitions in logic-programming style
and therefore to inductive definitions, leading to a powerful principle of ‘defin-
itional reflection’ that extends standard ways of dealing with clausal definitions
(see [7, 8, 32]).

That modus ponens (→EMP) and (→EHL)are equivalent can be seen as follows:
Suppose (→EMP) is a primitive rule. Suppose we have derived the premisses of

(→ EH L ), i.e. we have a derivation
D1

A → B
of A → B and a derivation

A ⇒ B
D2

C
of

C from the assumption rule A ⇒ B. If we replace every application of the assumption
rule A ⇒ B in D2 D3

AA ⇒ B B

with an application of (→EMP) using D1 as derivation of its major premiss

D1

A → B
D3

A(→EMP) B ,

then we obtain a derivation of C , i.e., of the conclusion of (→EHL). Note that this
derivation of (→EHL)from (→EMP) works for every single rule instance, i.e., for
A, B, C fixed, so we need not assume that (→EHL)and (→EMP) are rule schemata.

Conversely, suppose (→EHL)is a primitive rule. Suppose we have derived the

premisses of (→EMP), i.e., we have derivations
D1

A → B
and

D2

A
of A → B and

A respectively. From D2, using the assumption rule A ⇒ B, we obtain

D2

AA ⇒ B B ,

from which, together with D1 we obtain by means of (→EHL)
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D1

A → B

D2

A1[A ⇒ B] B 1
B ,

which is a derivation of the conclusion B of (→EMP). However, it is important to
note that unlike the other direction, the derivation of (→EMP) from (→EHL)does
not work for every single rule instance, i.e., for A, B, C arbitrarily fixed. Rather,
we must be able to substitute B for C . So what we have essentially proved is that
(→EHL), as a rule schema, implies (→EMP).

This corresponds to the original idea of generalized elimination rules of the form
(cE), where the C is implicitly universally quantified, expressing that every C that
can be derived fromeach defining condition of c(A1, . . . , An) (for fixed A1, . . . , An),
can be derived from c(A1, . . . , An) itself.

We have an entirely similar situation when proving the equivalence of (∧E) and

(∧EGEN). For the direction from left to right, given derivations
D1

A∧B and
A B
D2
C

, we

construct a derivation D1

A∧B
A

D1

A∧B
B

D2

C ,

whereas for the direction from right to left we instantiateC with A and B respectively,
yielding derivations

A∧B 1[A]
A

1 and
A∧B 1[B]

B
1 ,

where [A] represents a derivation of A from A and B, in which A is effectively
discharged and B is vacuously discharged, and analogously with [B].

A detailed proof of normalization and of the subformula property for higher-level
natural deduction, for systems with and without the absurdity rule (the latter corre-
sponding to minimal logic), and for a system with explicit denial can be found in
[27].3 Generalized elimination rules have also found their way into type-theoretical
approaches such as Martin-Löf’s type theory (see [15], p. i–iii), where they are par-
ticularly useful in the treatment of dependent products (see [5]), uniform approaches
to the machine-assisted treatment of logical systems such as the Edinburgh log-
ical framework (see [9]), and proof-editors and theorem provers such as Isabelle
([20]). For applications of this framework to relevance logic, logic programming and
Martin-Löf-style logical systems see [30].

3 Although stated as a result, the proof was omitted from the English journal publication [28], both
for space constraints and because its character is that of an exercise.
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In this chapter, we confine ourselves to minimal logic, or more precisely, to what
corresponds to minimal logic in the higher-level framework, namely nonempty sys-
tems of rules and n-ary operators definable from them. Especially, we do not touch
here the problem of dealing with empty systems of rules (which leads to intuition-
istic absurdity) or the general problem of denial and negation. Also, concerning
substructural issues, we just assume the standard provisions according to which lists
of formulas or rules can be handled as sets, where appropriate. In particular, we do not
discuss the issue of relevance, although the higher-level framework can be adapted
to these fields (see [30, 34]). (Tennant’s [42] approach to generalized elimination
inferences is much inspired by the problems of relevant implication.) The vast area
of using extended structural means of expression to describe or determine the infer-
ential meaning of logical constants, which in particular leads to general frameworks
for describing logics is also omitted from our discussion here. For this point see [44].

2 Generalized Standard-Level Elimination Rules

Dyckhoff [4] (in 1988), Tennant [41] (in 1992), López-Escobar [12] (in 1999), von
Plato [17, 21, 22] (2001-2002) and Tennant [42] (in 2002) have independently
(though, as is clear, with considerable temporal intervals) proposed a generalized
form of the → elimination rule which is related to the left → introduction rule in
sequent calculi. In our terminology it is of level 3 and thus a standard-level rule. We
call it (→ESL)4

A → B A
[B]
C(→ESL) C

.

In these approaches the generalized elimination rule for conjunction is the same as
before: (∧EGEN), which means that it is a level-3-rule and thus one level higher than
the∧ introduction rules. However, (→ESL) stays at the same level as (→ I) (viz. level
3), so that no higher level is needed as far as the standard connectives are concerned.
As these approaches are concerned with generalizing the elimination rules of the

4 From the fact that none of these authors mentions the earlier one, we conclude that none of them
was aware of the fact that (→ESL) had been discussed before. Dyckhoff’s chapter appeared in a
volume of a kind often called a ‘grey’ publication (similar to a technical report), which was difficult
to notice and to get hold of, at least in pre-Internet times. It mentions (→ESL) neither in the title
nor in the abstract nor in the display of the inference rules of natural deduction. The only sentence
mentioning (→ESL) explicitly as a possible primitive rule for implication elimination occurs in
the discussion of proof tactics for implication: ‘this makes it clear that a possible form of the rule
⊃_elim might be that from proofs of A⊃B, of A, and (assuming B) of C one can construct a proof
of C . Such a form fits in better with the pattern for elimination rules now increasingly regarded as
orthodox, and is clearer than the other possibility for ⊃_elim advocated by Schroeder-Heister and
Martin-Löf [. . .]’ ([4], p. 55). Before the appearance of von Plato’s papers, Dyckhoff never referred
to this publication in connection with the particular form of → elimination, in order to make his
idea visible.
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standard connectives and not with a general schema for arbitrary n-ary connectives,
they are content with (∧EGEN) and (→ESL). (∧EGEN) and (→ESL) are generalized
elimination rules, as the indirect pattern of elimination found in (∨E) is carried
over to conjunction and implication, in the sense that the right minor premiss C is
repeated in the conclusion, even though, due to the presence of the minor premiss A,
the uniformity inherent in the generalized higher-level rules is lost in (→ESL).

We do not discuss here the somewhat different conceptual intentions the above
authors pursue when introducing (→ESL). We are solely interested in the form
and power of this rule that we shall compare with (→EHL)and with the higher-
level approach in general. Concerning terminology, we use the term ‘generalized
elimination rules’ as a generic term covering both the higher-level and the standard-
level versions. Tennant [42] speaks of the ‘parallel form’ of elimination rules and of
‘parallelized’ natural deductions, von Plato [22] of ‘general elimination rules.’

It can easily be shown that (→EMP) and (→ESL) are equivalent as primitive
rules. Suppose (→EMP) is a primitive rule. Suppose we have derived the premisses

of (→ESL), i.e., we have a derivation
D1

A → B
of A → B, a derivation D2

A
of A and

a derivation
B
D3
C

of C from B. If we replace every occurrence of the assumption B in

D3 with an application of (→EMP) using D1 and D2 as premiss derivations:

D1

A → B
D2

A(→EMP) B ,

we obtain a derivation of C , i.e., the conclusion of (→ESL). This derivation of
(→ESL) from (→EMP) works for every single rule instance, i.e., for A, B, C fixed.

Conversely, suppose (→ESL) is a primitive rule. Suppose we have derived the

premisses of (→EMP), i.e., we have derivations
D1

A → B
and

D2

A
of A → B and A,

respectively. Considering B to be a derivation of itself, by an application of (→ESL)
we obtain D1

A → B
D2

A 1[B]
(→ESL) 1

B ,

which is a derivation of the conclusion B of (→EMP). As before, it is important to
note that unlike the other direction, the derivation of (→EMP) from (→ESL) does
not work for every single rule instance, i.e., for A, B, C arbitrarily fixed. Rather,
we must be able to substitute B for C . So what we have essentially proved is that
(→ESL), as a rule schema, implies (→EMP).

This again corresponds to the idea of generalized elimination as an indirect
schema, in which the C is implicitly quantified.
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3 Comparison of the Higher Level with the Standard-Level
Generalized → Elimination Rules

As rule schemata, or more precisely, with the letterC understood schematically, both
(→EHL)and (→ESL) are equivalent to (→EMP), which implies that (→EHL)and
(→ESL) are equivalent. If we compare (→EHL)and (→ESL) directly, i.e., not via
(→EMP), then (→EHL)implies (→ESL) as a concrete rule, i.e., as an instance with
A, B, C fixed, which can be seen as follows. Suppose we have derived the premisses

of (→ESL), i.e., we have a derivation
D1

A → B
of A → B, a derivation

D2

A
of A

and a derivation
B
D3

C
of C from B. If we replace every occurrence of the assumption

B in D3 with the following application of the assumption rule A ⇒ B

D2

AA ⇒ B B ,

we obtain a derivation D2

AA ⇒ B B
D3

C

of C from A ⇒ B. By application of (→EHL)we can discharge A ⇒ B:

D1

A → B

D2

A1[A ⇒ B] B
D3

C(→EHL) 1
C

yielding the conclusion C of (→ESL).
For the converse direction, we have to keep C schematic, more precisely, we have

to be able to specify it as B. Suppose we have derived the premisses of (→EHL), i.e.,

we have a derivation
D1

A → B
of A → B and a derivation

A ⇒ B
D2

C
of C from the

assumption rule A ⇒ B. Suppose A ⇒ B is actually used as an assumption in D2
(otherwiseD2 is already the desired derivation of C). If we replace every application
of the assumption rule A ⇒ B in D2
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D3

AA ⇒ B B

with the following application of (→ESL)

D1

A → B
D3

A 1[B]
(→ESL) 1

B ,
(3)

then we obtain a derivation of C , i.e., of the conclusion of (→EHL). The fact that in
the application of (→ESL) in (3), by instantiating C to B we are using a trivialized
version of (→ESL), which essentially is modus ponens (→EMP), cannot be avoided.
It is tempting to consider replacing every application of the assumption rule A ⇒ B
in D2 D3

AA ⇒ B B
D4

C

(4)

with the following application of (→ESL):

D1

A → B
D3

A

1[B]
D4

C(→ESL) 1
C

(5)

which would leave the C uninstantiated. However, this way is not viable as in (4)
there may occur assumptions open in D3 but discharged at a rule application in D4.
Such an assumption would remain open in (5), where the derivation (4) is split into
two independent parts.

Therefore (→EHL)and (→ESL) are equivalent with schematic C , but they are not
equivalent as instances, i.e., for every particular C . In this sense (→EHL)is stronger
than (→ESL). However, one should not overestimate this difference in strength, as
primitive rules of inference are normally understood as rule schemata.5

It is easy to see that the mutual translation between (→EHL)and (→ESL) does not
introduce newmaximum formulas. Therefore from the normalization and subformula
theorems proved in [27] for the generalized higher-level case we immediately obtain
the corresponding theorems for generalized standard-level natural deduction. In fact,
when specialized from the n-ary case to the case of the standard operators, this proof
gives the same reductions as those found in Tennant’s [41, 42], López-Escobar’s
[12], and Negri and von Plato’s [17] work. This means there has been an earlier direct

5 The way in which letters C are schematic, i.e., which propositions may be substituted for them,
becomes important, if one investigates extensions of the language considered, i.e., in connection
with the problem of uniqueness of connectives (see [3]).
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proof of normalization for generalized natural deduction than the one given in 1992
by Tennant [41] (there for minimal logic and for Tennant’s system of intuitionistic
relevant logic), albeit in a more general setting.6

4 Comparison of the Expressive Power of Higher-Level
with that of Standard-Level Rules

So far we have investigated the relationship between the generalized higher-level
→ elimination rule (→EHL)and the generalized standard-level → elimination rule
(→ESL).We can carry over some of these results to amore general comparisonwhich
relates higher-level and standard-level rules independently of logical connectives.We
may ask: Is it possible to express higher-level rules by means of standard-level rules,
perhaps along the lines of the comparison of generalized → elimination rules in
Sect. 3? Here we must again distinguish whether the rules compared are schematic
with respect to some or all propositional letters or not.

The comparison of (→EHL)and (→ESL) might suggest that the rules

[A ⇒ B]
C
D

and A
[B]
C

D
(6)

are equivalent. Corresponding towhatwas shown above, the left rule implies the right

one for any fixed A, B, C, D: Given derivations
D1

A
and

B
D2

C
of the premisses of

the right rule, we just need to replace each assumption B in D2 with a step

D1

AA ⇒ B B

in order to obtain a derivation of the premiss of the left rule. However, the converse
direction is not valid: Already if in the left rule of (6) C does not depend on any
assumption (i.e., the discharging of A ⇒ B is vacuous), the right rule of (6) cannot
be obtained, as there is no possibility of generating a derivation of A from the premiss
derivations of the left rule. Therefore in (6) the higher-level rule is strictly stronger
than the standard-level rule.

If we change D toC , which is more in the spirit of the generalized → elimination
rule, do we then obtain the equivalence of

[A ⇒ B]
C
C and

A
[B]
C

C ?
(7)

6 López-Escobar [12] proves strong normalization. Other such proofs are given in [10] and [43].
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As before, the left side implies the right one. However, the right side does not imply
the left one, if C is fixed. Only if we allow for C to be substituted with B, which
essentially means considering C to be schematic, it is the case that the right side of
(7) implies the left side. By means of

A 1[B]
B

1,

which is the same as
A

B
,

we can eliminate every application of A ⇒ B in a given derivation ofC from A ⇒ B,
yielding a derivation of C as required. As in the case described in Sect. 3, attempting
to extract, from

D1

AA ⇒ B B
D2

C ,

two independent derivations
D1

A
and

B
D2

C
, is bound to fail, as in D2 assumptions

open in D1 might have been discharged.
Of course, these are just examples showing that a translation of a higher-level rule

into a standard-level rule is not possible according to the idea underlying (→ESL).
However, this is not accidental: A reduction of higher-level to standard-level rules is
not possible in general. For example, a higher-level rule of the form

[A ⇒ B]
C
D

,

which can be linearly written as ((A ⇒ B) ⇒ C) ⇒ D, is never equivalent to a
standard-level rule or to a finite set of standard-level rules. This follows from the
general non-flattening results obtained byOlkhovikov and Schroeder-Heister in [19].

5 The Benefit of Higher-Level Rules: Strong Uniformity
and Closure

In the following, we use this terminology: ‘generalizedSL’ stands for ‘generalized
higher-level’, ‘generalizedHL’ for ‘generalized standard level.’Whenwe speak of the
higher-level’ or the ‘standard-level’ approach, we always mean the approaches with
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generalized higher-level or standard-level rules, respectively, and similarly when we
speak of ‘higher-level’ or ‘standard-level’ natural deduction.

Both the higher-level and the standard-level generalized elimination rules satisfy
the requirement that the elimination inferences for the standard connectives induced
by the generalized form are equivalent to the ‘common’ elimination inferences, at
least as inference schemata. In particular, modus ponens (→EMP) is equivalent to the
generalized forms (→EHL)and (→ESL). A second requirement one should impose
on a generalized form is its uniformity: The elimination inferences covered by it
should follow a uniform pattern—achieving this is the main purpose of the general-
ization. The generalizedSL rules obviously satisfy this criterion. The generalizedHL
rules satisfy it to the extent that they give an ‘indirect’ reading to the elimination
inferences expressed by the schematic minor premiss and conclusion C . However,
the standard-level implication rule (→ESL) is hybrid in so far as it has both the
‘indirect’ character expressed by the schematic C and the ‘direct’ character ex-
pressed by the minor premiss A which makes it a variant of modus ponens, if the
derivation of C is trivialized to the derivation of B from B:

A → B A [B]
(→ESL) B .

This hybrid character is the price one pays for avoiding higher levels, which would
be inevitable otherwise. Therefore, the generalizedSL eliminations are uniform in a
stronger sense than the standard-level rules. There is a third criterion which only
the generalizedSL rules satisfy and which is a closure property: Unlike the standard-
level approach, the higher-level approach allows us to formulate a general schema for
elimination rules forall introduction rules that are possible on the basis ofall available
means of expression. In particular, the means of expression used to formulate a given
elimination rule must be admitted to formulate a new introduction rule. Putting it
negatively: An elimination rule must not be of a form that is not suitable in principle
as an introduction rule. In other words, for every list of introduction rules that can
be formulated at all, a corresponding elimination rule is available.

Of course, by extending the means of expression, for example, by considering
quantifiers or modal operators, one would be led to elimination rules of a different
kind. However, every rule pattern used in the given framework should qualify to
formulate introduction rules. That this is not the case with generalizedHL elimination
rules in the manner of (→ESL) is seen by the following example. Consider, for
example, the rule

A
[B]
C

D

which is a pattern used to formulate generalizedHL eliminations. Using this pattern
as an introduction rule

(c1 I)
A1

[A2]
A3

c1(A1, A2, A3)
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gives us a ternary operator c1, for which there is a generalizedSL elimination rule

(c1 E)
c1(A1, A2, A3)

[A1 A2 ⇒ A3]
C

C ,

but no generalized elimination rule according to the standard-level pattern. This
situation might be remedied by using two separate generalizedHL elimination rules
according to the standard-level pattern:

(c1 E)′
c1(A1, A2, A3)

[A1]
C

C
c1(A1, A2, A3) A2

[A3]
C

C .

However, this way out is not available if we consider the 4-ary connective c2 with
the introduction rules

(c2 I)

[A1]
A2

c2(A1, A2, A3, A4)

[A3]
A4

c2(A1, A2, A3, A4)
.

The corresponding higher-level elimination rule is

(c2 E)
c2(A1, A2, A3, An)

[A1 ⇒ A2]
C

[A3 ⇒ A4]
C

C .

This rule cannot be expressed along the lines of the standard-level rule (→ESL).
The natural way of attempting such a solution would be to propose the following
elimination rule:

(c2 E)′ c2(A1, A2, A3, A4) A1

[A2]
C A3

[A4]
C

C
.

However, though it can be easily shown that (c2 E) implies (c2 E)′ (the proof is
similar to the demonstration that (→EHL)implies (→ESL) in Sect. 3), the converse
does not hold. Even if in a given application of (c2 E) there is no vacuous discharge of
A1 ⇒ A2 or A3 ⇒ A4 (in which case theminor premiss A1 or A3 of (c2 E)′ cannot be
generated), it may happen that in the derivation of the minor premisses C of (c2 E) an
assumption above A1 ⇒ A2 or A3 ⇒ A4 is discharged at a rule application below
A1 ⇒ A2 or A3 ⇒ A4, respectively, such as the B in the following example of a
derivation of (B → A2)∨(B → A4) from c2(A1, A2, A3, A4), B → A1 and B → A3:
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c2(A1, A2, A3, A4)

B → A1
1[B]

(→EMP)
A13[A1 ⇒ A2] A2(→ I) 1

B → A2(∨ I)
(B → A2)∨(B → A4)

B → A3
2[B]

(→EMP)
A33[A3 ⇒ A4] A4(→ I) 2

B → A4(∨ I)
(B → A2)∨(B → A4)

(c2 E) 3
(B → A2)∨(B → A4)

.

Since (c2 E) is a generalizedSL rule, whereas (c2 E)′ is considered to be a
generalizedHL rule, we have used applications of (→EMP) (rather than applications
of assumption rules), as they can easily be translated into either of these systems. The
formula B occurs in both subderivations of the minor premisses in top position and
thus above the assumptions A1 ⇒ A2 and A3 ⇒ A4, but is discharged at applications
of (→ I) below A1 ⇒ A2 and A3 ⇒ A4, so that we cannot split the subderivations
of the minor premisses into two upper parts

B → A1 B
(→EMP) A1

B → A3 B
(→EMP) A3

and two lower parts

A2(→ I)
B → A2(∨ I)

(B → A2)∨(B → A4)

A4(→ I)
B → A4(∨ I)

(B → A2)∨(B → A4)

in order to obtain derivations of all four minor premisses of (c2 E)′.
This shows that the generalizedHL elimination rules do not cover the elimina-

tion rule necessary for such a simple connective as c2, which has the meaning of
(A1 → A2)∨(A3 → A2), although we can formulate its introduction rules in the
standard-level framework. In this sense the generalized higher-level elimination rules
are far more general than the standard-level ones7. A rigorous formal proof that a
connective like c2 (we used the ternary connectivewith themeaning A1∨(A2 → A3))

has no standard-level elimination rule, is given in [18].
As indicated above, even higher-level rules do not suffice to capture every propo-

sitional connective. As an example we need not consider modal connectives and the
like, but the ternary connective c3 with the meaning A1 → (A2∨A3) suffices. How-
ever, the situation is entirely different from that of c1 and c2, as for c3 we cannot even
give introduction rules of the form (c I) using the means of expression available. (In
this sense c3 resembles, e.g., amodal operator.) As soon aswe have introduction rules
according to the schema (c I), we do have a corresponding generalizedSL elimination
rule (cE). This is not the case with generalizedHL rules.8

7 In his discussion of generalized left inferences in his higher-level sequent framework, von
Kutschera ([11], p. 15) gives an example similar to c2 (namely the ternary connective with the
meaning (A1 → A2)∨(A3 → A2)) to show that the higher-level left rules cannot be expressed by
lower-level left rules along the lines of the standard implication-left rule (→L) in the sequent
calculus (which corresponds to (→ESL), see Sect. 6)
8 If we also consider operators definable in terms of others, i.e., if the premisses βi of introduc-
tion rules (c I) are allowed to contain operators c′ which have already been given introduction
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For this greater uniformity we pay the price of introducing higher levels. On the
other hand, higher levels lead to considerable simplifications in other areas, notably
in type theory (see [5]).

6 Generalized Elimination Rules, Sequent Calculus,
and the Proudness Property

The motivations for using generalizedHL elimination rules vary between the
authors mentioned in Sect. 2. From the standpoint of proof-theoretic semantics, we
[33, 36] proposed to use them in in a system called ‘bidirectional natural deduction’
that gives assumptions a proper standing. Another meaning-theoretical discussion of
generalizedHL elimination rules can be found in [16]. In what follows we are only
concerned with the formal relationship of generalizedHL elimination rules to left
introduction rules in the sequent calculus along the lines advanced by von Plato and
Tennant.

GeneralizedSL elimination rules give natural deduction elimination rules a form
which is familiar from left introductions in sequent calculi.9 Whereas the right
introduction rules directly correspond to the introduction rules in natural deduc-
tion, this is not so in the case of the usual eliminations rules. The rule of ∨
elimination can be read as corresponding to the left introduction rule of ∨ in the
sequent calculus

A ∨B
[A]
C

[B]
C

C

ε, A ∇ C ε, B ∇ C

ε, A∨B ∇ C
,

but the standard ∧ and → eliminations cannot. However, for the generalizedHL
versions of these rules (for conjunction identical with the generalizedSL version),
this is indeed the case:

(Footnote 8 continued)
and elimination rules, then c3 is, of course, trivially definable, with

A1 → (A2∨A3)

c3(A1, A2, A3)

being its introduction rule. This may be considered a rationale to confine oneself, as in the standard-
level approach, to the standard operators. Such an approach fails, of course, to tell anything about the
distinguished character of the standard operators as being capable to express all possible operators
based on rules of a certain form. This is a point in which the goals of the generalizedSL and the
generalizedHL approaches fundamentally differ from one another. (In [27–29] operators definable
from other operators in the higher-level framework are considered, in addition to those definable
without reference to others.)
9 For the symmetry in Gentzen’s sequent calculus and its description in terms of definitional reflec-
tion see [2, 39].
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A ∧ B
[A B]

C
C

ε, A, B ∇ C
ε, A∧B ∇ C

A → B A
[B]
C

C

ε ∇ A ε, B ∇ C
ε, A → B ∇ C .

In this way a parallel between natural deduction and the sequent calculus is estab-
lished.

The parallel between the sequent calculus and natural deduction goes even further
in the standard-level approach. It can be shown that every normal derivation based
on generalizedHL elimination rules can be transformed into one, in which major
premisses only occur in top position. To see this, we have to observe that every
formula C , which is a conclusion of a (generalizedHL) elimination inference and
at the same time major premiss of a (generalizedHL) elimination inference can be
eliminated, as the following example demonstrates, which shows that corresponding
segments10 of formulas of this kind are shortened:

D1

D → E
D2

D

1[E]
D3

A → B(→ESL) 1
A → B

D4

A

2[B]
D5

C(→ESL) 2
C

reduces to

D1

D → E
D2

D

1[E]
D3

A → B
D4

A

2[B]
D5

C(→ESL) 2
C(→ESL) 1

C

.

Here it is assumed that below A → B there is no formula of the incriminated kind
(in particular, C is not of that kind). Since maximum formulas (conclusions of in-
troduction inferences being at the same time major premisses of (generalizedHL)
elimination inferences) are eliminated anyway, we can obtain a derivation of the
required form.11 This gives us a normal form theorem according to which every
derivation based on generalizedHL elimination inferences can be transformed into
a derivation with major premisses of elimination inferences standing always in top
position. Following Tennant ([41], p.41), who speaks of a major premiss of an elimi-

10 Following [23], a segment is a succession of formula occurrences of the same form C such that
immediately succeeding occurrences are minor premiss C and conclusion C of a generalizedHL
elimination step.
11 What one essentially does here, is carrying out permutative reductions as known from [23]. Their
general treatment, without assuming that segments are maximal (and thus start with the conclusion
of an introduction inference), but only that they end with an elimination inference, was proposed
by Martin-Löf (see [24], p. 253f.) For the higher-level case, these reductions are used in [27].



18 P. Schroeder-Heister

nation rules in top (i.e., assumption) position, as standing proud, we call this property
the proudness property.

Proudness property of generalizedSL natural deduction:
Every derivation in generalizedSL natural deduction can be transformed into a
derivation, in which every major premiss of an (generalizedSL) elimination rule
is an assumption.

Anatural deduction derivation having the proudness property corresponds isomor-
phically (i.e., stepwise) to a cut-free derivation in the sequent calculus. Introduction
of formulas in the sequent calculus on the left side of the sequent sign corresponds
in generalizedHL natural deduction to introducing an assumption, which is the major
premiss of an elimination rule.

The proudness property is not available without restriction in higher-level natural
deduction. This is due to the fact that in the higher-level case we not only have
assumption formulas but can also have assumption rules. Consider the following
example of a derivation of B from A → B∧C and A:

A → B∧C

A1[A ⇒ B∧C] B ∧C 2[B]
(∧EGEN) 2

B(→EHL) 1
B

. (8)

Another example is the following derivation of C from A → (B → C), A and B:

A → (B → C)

A1[A ⇒ (B → C)] B → C
B2[B ⇒ C] C(→EHL) 2

C
(→EHL) 1

C
.

(9)
In (8) the formula B∧C is the conclusion of an assumption rule and at the same
time the major premiss of an elimination rule, a situation which cannot be further
reduced. Similarly, in (9) the formula B → C is the conclusion of an assumption
rule and at the same time the major premiss of an elimination rule. However, if
we weaken the notion of proudness to include this situation, then derivations in the
higher-level approach satisfy it. We call a formula occurrence, which is a conclusion
of the application of an assumption rule and at the same time major premiss of
an elimination rule weakly proud. Then the following weak proudness property of
higher-level natural deduction holds.
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Weak proudness property of generalizedHL natural deduction:
Every derivation in generalizedHL natural deduction can be transformed into
a derivation, in which every major premiss of an elimination rule is either an
assumption or a conclusion of an assumption rule.12

For example, the following derivation, in which B∧C occurs both as a conclusion
of an elimination inference and as themajor premiss of another elimination inference,
can be reduced to (8):

A → B∧C
A1[A ⇒ B∧C] B ∧C(→EHL) 1

B∧C 2[B]
(∧EGEN) 2

B .

Similarly, the following derivation, in which B → C occurs both as a conclusion
of an elimination inference and as themajor premiss of another elimination inference,
can be reduced to (9):

A → (B → C)
A1[A ⇒ (B → C)] B → C

(→EHL) 1
B → C

B2[B ⇒ C] C(→EHL) 2
C .

Weak proudness implies the subformula property. This is due to the fact that every
formula C standing weakly proud is the subformula of an assumption rule. If this
assumption rule is undischarged, thenC is a subformula of an open assumption. Oth-
erwise, this assumption rule is discharged at a higher-level introduction or elimination
rule, in which case it is a subformula of the formula introduced or eliminated.13 If one
considers the subformula principle to be the fundamental corollary of normalization,
the fact that for higher-level natural deduction we only have the weak but not the
full proudness property, is no real disadvantage as compared to the standard-level
(generalized) alternative.

7 A Sequent Calculus Variant of the Higher-Level Approach

Although intended for the purpose of uniform elimination rules in natural deduc-
tion, one might investigate how the generalizedSL approach fits into a sequent-style
framework and which form the weak proudness property then takes, in compari-
son to the proudness property of the standard-level approach, which immediately

12 As an assumption formula can be viewed as the conclusion of a first-level assumption rule, the
second alternative actually includes the first one.
13 For a detailed proof of normalization and subformula property for higher-level natural deduction
see [27].
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corresponds to cut-free derivations. Some of the ideas and results presented here
have been established in [1], others can be found in [30] and [7].14

We only consider the single-succedent (intuitionistic) variant. The generalized
conjunction rule (∧EGEN) simply translates into the ∧ left rule

(∧L)
ε, A, B ∇ C

ε, A∧B ∇ C
,

the only difference being that ε may now stand for a set of higher-level rules rather
than only for a set of formulas.15 In order to frame the idea of assumption rules, we
have to introduce a schema for the left introduction of a rule R as an assumption. We
assume that R has the following general form:

(β1 ⇒ A1, . . . ,βn ⇒ An) ⇒ B

which covers the limiting case n = 0 in which R is just the formula (= level-0-rule)
B, and the cases in which some or all βi , which are lists of rules, are empty, i.e.,
in which βi ⇒ Ai is the same as Ai . Then the left introduction of a rule, which
corresponds to using a rule as an assumption in generalizedSL natural deduction (1),
proceeds as follows:

(⇒L)
ε,β1 ∇ A1 . . . ε,βn ∇ An

ε, ((β1 ⇒ A1, . . . ,βn ⇒ An) ⇒ B)∇ B
,

which covers as a limiting case:

(⇒L)◦ ε ∇ A

ε, (A ⇒ B)∇ B
.

The right and left rules for implication are then the following:

(→R)
ε, A ∇ B

ε ∇ A → B
(→LHL)

ε

,
A ⇒ B ∇ Cε, A → B ∇ C .

The sequent calculus with higher-level rules, which results from the ordinary sequent
calculus with cut by adding (⇒L), and by using (→R) and (→LHL) as rules for
implication, will be called the higher-level sequent calculus. Sowe disregard here the
feature that in addition to → , ∧ and ∨ we have right and left introduction rules for
n-ary connectives and consider just the standard connectives, as this is the concern
of the standard-level approach.

14 Von Kutschera’s [11] approach using an iteration of the sequent arrow should be mentioned as
well, although it needs some reconstruction to fit into our framework.
15 We can here neglect the difference between lists, multisets, and sets, as for simplicity we always
assume that the usual structural rules of the intuitionistic sequent calculus (permutation, contraction,
and thinning) are available—with the exception of cut, whose availability or non-availability as a
primitive or admissible rule will always be explicitly stated.
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Obviously, every derivation in the higher-level sequent calculus (with cut) can
be translated into higher-level natural deduction, as the left-introduction rules are
available as generalizedSL inferences, and (⇒L) is available as the introduction of
an assumption rule. Conversely, every derivation in higher-level natural deduction
can be translated into the higher-level sequent calculus (with cut) along the lines
described by Gentzen ([6], p. 422–424): Applications of introduction rules, of as-
sumption rules, and of elimination rules with major premisses standing proud are
homophonically translated into applications of right introduction rules, of (⇒L),
and of left introduction rules, respectively. Only in the situation in which the major
premiss of an elimination inference is not standing proud:

D
A

D1 Dn

C … C
E inference

C ,

we must apply cut, yielding

D’
ε ∇ A

D′
1 . . . D′

m
L inference

β, A ∇ C
Cut

ε,β∇ C ,

whereD′,D′
1, . . . ,D′

m are the sequent calculus translations ofD,D1, . . . ,Dm . (This
procedure also works for arbitrary n-ary connectives.)

The weak proudness property of higher-level natural deduction gives us immedi-
ately a weak cut elimination theorem.

Weak cut elimination for the higher- level sequent calculus:
Every derivation in the higher-level sequent calculus (with cut) can be transformed
into a derivation, in which cut occurs only in the situation, where its left premiss is
the conclusion of an application of an assumption rule, and the right premiss the
conclusion of a left introduction rule for the cut formula, i.e., only in the following
situation:

...(⇒L)
ε ∇ A

...(L inference for A)
β, A ∇ C

(Cut)
ε,βsseqC

.

As we have the subformula principle for higher-level natural deduction, it holds
for the higher-level sequent calculus as well, if we only allow for cuts of the form
described in the weak cut elimination theorem. Therefore cuts of this special form
are harmless, although perhaps not most elegant.

That we do not have full cut elimination is demonstrated by the sequent-calculus
translation of our example (8):
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A ∇ A(⇒L)
A, (A ⇒ B ∧C) ∇ B ∧C

B ∇ B(∧L)
B ∧C ∇ B

(Cut)
A, (A ⇒ B ∧C) ∇ B

(→LHL) A, (A → B ∧C) ∇ B

. (10)

As there is no inference rule (apart from cut) which can generate A, (A ⇒ B∧C)

∇ B (at least if A, B, and C are atomic and different from one another), cut is not
eliminable. However, this application of cut is of the form permitted by the weak cut
elimination theorem.

It might appear asymmetric at first glance that there is a left introduction rule
(⇒L), but no right introduction rule for the rule arrow ⇒ . Why do we not have a
right introduction rule for ⇒ of the form

(⇒R)
ε, A ∇ B

ε ∇ A ⇒ B

and then introduce implication → on the right directly in terms of ⇒ , as it is done
on the left:

(→R)′ ε ∇ A ⇒ B

ε ∇ A → B ?

This asymmetry: only a left rule for ⇒ , is due to the fact that the rule arrow is not a
logical constant in the genuine sense but a sign belonging to the structural apparatus,
comparable to the comma. If we look at the comma and the rules for conjunction,
we observe a similar phenomenon:

(∧R)
ε ∇ A ε ∇ B

ε ∇ A∧B
(∧L)

ε, A, B ∇ C

ε, A∧B ∇ C
.

When applying (∧R), we do not first introduce a comma on the right-hand side,
which is conjunctively understood, in a way like

ε ∇ A ε ∇ B

ε ∇ A, B
,

and then introduce ∧ in terms of the comma in a manner such as

ε ∇ A, B

ε ∇ A∧B
.

Rather, we have a direct right-introduction rule (∧R) for conjunction, whereas on the
left side, by means of (∧L), conjunction is reduced to the comma. This asymmetry
is somewhat concealed by the fact that there is no formal left introduction rule for
the comma in the sense in which there is a formal left introduction rule for the rule
arrow ⇒ , as the comma is already there as a means to separate antecedent formulas
(or antecedent rules). It nevertheless is a structural entity governed by rules which
do not fit into the symmetric right-left-introduction schema. Analogously, the rule
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arrowmust be looked upon as an enrichment of structural reasoningwhich essentially
affects only the left side of the turnstile (in the intuitionistic framework).

The idea of higher-level rules, i.e., of rules as assumptions, is that we enrich our
possibilities of formulating assumptions, in order to characterize logical operators
as having the same consequences as certain assumption structures. Here A∧B has
the same consequences as the assumption structure (A, B), and A → B has the same
consequences as the assumption structure A ⇒ B.

Although against the spirit of using rules as assumptions (or members of the
antecedent), it is possible to express rules in terms of the standard operators. In fact,
such a translation is used if we want to show that the standard operators suffice to
express everything that can be expressed by means of higher-level rules, i.e., if we
establish the completeness16 of the standard operators (see [11, 27–30]).We translate
the rule arrow ⇒ by means of implication → and the comma by conjunction ∧,
so that, for example, a rule

(A, B ⇒ C), (E ⇒ F) ⇒ G

becomes the implication

((A∧B → C)∧(E → F)) → G .

If we use this translation, then (→LHL) becomes superfluous as premiss and con-
clusion are identical, and rule (⇒L) becomes

ε,β1 ∇ A1, . . . ε,βn ∇ An

ε, ((β1 → A1) ∧ . . . ∧ (βn → An) → B)∇ B
. (11)

This rule can be replaced with the simpler rule

(→L)◦ ε ∇ A

ε, (A → B)∇ B

which corresponds to (⇒L)◦. Given the premiss of (11), we simply need to use
(→R) and (∧R) to obtain

ε ∇ (β1 → A1) ∧ . . . ∧ (βn → An)

from which by means of (→L)◦ we obtain the conclusion of (11).
The result is a sequent calculus, in which the common (→L) rule

(→L)
ε ∇ A ε, B ∇ C

ε, A → B ∇ C

16 This corresponds to functional completeness in the case of truth functions. In a further generalized
setting this way of establishing completeness of systems of constants by translating structural
operations into logical ones is used in [44] for many substructural logics.
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is replaced with (→L)◦. (→L)◦ introduces the spirit of rules into a sequent calculus
of the usual kind (i.e., without higher-level rules): From A we may pass over to B
by using (= assuming) A → B understood as a rule which licenses this transition.

It is obvious that (→L)◦ and (→L) are interderivable, if the letterC is understood
schematically and, thus, can be replaced with B. We call the sequent calculus with
(→L)◦ as the left introduction rule for implication the sequent calculus based on the
implications-as-rules interpretation, in short rule-style sequent calculus as opposed
to the standard sequent calculuswhich has (→L) as left introduction rule.As it results
by translation from the higher-level sequent calculus, we do not have cut elimination
for this system. As a translation of (10), the following is a counterexample:

A ∇ A(→L)◦
A, (A → B ∧C) ∇ B ∧C

B ∇ B(∧ L)
B ∧C ∇ B

(Cut)
A, (A → B ∧C) ∇ B

. (12)

However, corresponding to the weak proudness property of higher-level natural
deduction and the weak cut elimination theorem in the higher-level sequent calculus,
we have a weak cut elimination theorem for the rule-style sequent calculus, which
says that a situation such as (12) is essentially the only one where cuts must be
admitted.

Weak cut elimination for the rule- style sequent calculus:
Every derivation in the rule-style sequent calculus (with cut) can be transformed into
a derivation, in which cut occurs only in the situation where its left premiss is the
conclusion of (→L)◦, and where its right premiss results from introducing the cut
formula in the last step, i.e., in the following situation:

...(→L)◦
ε ∇ A

...(L inference for A)
β, A ∇ C

(Cut)
ε,β∇ C

.
(13)

In fact, if we consider a purely implicational system with (→L)◦ of the multi-ary
form

ε ∇ A1 . . . ε ∇ An

ε, A1 → (. . . (An → B) . . .) ∇ B

then we have full cut elimination, as remarked by Avron [1].17 Analogously, the
purely implicational natural deduction systemwith the following rule for implication

17 Avron also remarks that the standard (→L) rule is away of avoiding themulti-ary character of this
rule, which cannot be effected by means of (→L)◦ alone (if conjunction is not available). Negri and
von Plato [17] (p. 184) mention the rule (→L)◦ as a sequent calculus rule corresponding to modus
ponens, followed by a counterexample to cut analogous to (12), which is based on implication only.
This counterexample shows again that for cut elimination in the implicational system the multi-ary
form of (→L)◦ considered in [1] and the corresponding forms of rule introduction in the antecedent
considered in [30] and [7] are really needed.
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A1 → (. . . (An → B) . . .)→ B A1 . . . An

B

enjoys the full proudness property.
The rule-style sequent calculus satisfies the subformula principle, in spite of the

weak form of cut which cannot be eliminated. This result is also carried over from
the consideration of explicit higher-level rules. It is immediately plausible, too, as
the cut formula A in (13) is contained in an implication B → A which is introduced
by means of (→L)◦ and therefore belongs to ε.

8 Implications-as-Rules Versus Implications-as-Links18

We have seen that, when formalized as a sequent calculus, the interpretation of
implications as rules yields a system with (→L)◦ as the left introduction rule for
implication. This system enjoys the subformula property, but only a weak form
of cut elimination. Although the implications-as-rules view is very natural in the
natural deduction framework, the corresponding rule-style sequent calculus might
look strange at first glance, as one has become used to Gentzen’s rule (→L) and to
full cut elimination as a fundamental principle.

However, the alleged simplicity of (→L) is essentially a feature of technical
elegance. If we want to have full cut elimination at any price in order to derive
its corollaries such as the subformula property and other features with ease, then
(→L) is the rule of choice. In fact, it were these technical considerations that led
Gentzen to consider his sequent calculus. Unlike the calculus of natural deduction,
for which Gentzen coined the term ‘natural,’ and for whose rules he gave a detailed
philosophical motivation, the sequent calculus was not chosen by Gentzen for its
philosophical plausibility, but merely for its suitability for the proof of the Hauptsatz
(see [6], p. 191).

If we look at Gentzen’s rule (→L) from a philosophical or conceptual point
of view and compare it to the implications-as-rules view, then it loses some of its
plausibility. Whereas the implications-as-rules interpretation gives a direct meaning
to implication, as the notion of a rule is a very basic notion used to describe reasoning,
and acts in general, from an elementary perspective, this does not hold for Gentzen’s
notion of implication as formalized in the sequent calculus. One can even argue
that the feature of full cut elimination, which is distinctive of Gentzen’s sequent
calculus, is enforced by or at least embodied in his particular formulation of (→L), in
contradistinction to (→L)◦. Translated into natural deduction, an application (→L)◦
can be displayed as follows:

D1

A
A → B

B .
(14)

18 A more detailed exposition of the points made in this section can be found in [37].
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As it represents the implications-as-rules interpretation, we write A → B as
labelling the transition from A to B. The interpretation of implication underlying
(→L) would then be displayed as

D1

A
A → B

B
D2

C .

(15)

Whereas in the first case, A → B just licenses to continue from A to B by extending
D1, in the second case it links two derivations, namely the derivation D1 of A and
the derivation D2 from B. In this sense we can speak of the implications-as-links
interpretation as opposed to the implications-as-rules interpretation. Obviously, the
implications-as-links interpretation adds to the implications-as-rules interpretation
something that is expressed by the rule of cut, viz., the cutwith cut formula B. Passing
from (14) to (15) can be seen as requiring an implicit step which is expressed by
the cut rule. So the fact that the implications-as-links interpretation leads to full cut
elimination, is due to the fact that it embodies already some limited form of cut which
in the implications-as-rules interpretation would have to be added separately.

That an implications-as-links view underlies Gentzen’s sequent calculus is sup-
ported by the fact that even in systems, in which cut elimination fails, for example in
systems with additional axioms or rules, a cut with the formula A can be enforced by
adjoining A → A to the antecedent, as cut then then becomes an instance of (→L):

(→L)
ε ∇ A ε, A ∇ B

ε, A → A ∇ B
.

From the standpoint of the implications-as-rules interpretation this effect is quite
unplausible, as assuming the rule that allows one to pass over from A to A should
be vacuous and have no effect whatsoever. The fact that adding A → A immediately
enables cut with A shows that implication has received an interpretationwhich relates
it to cut.

This argument not only shows that the implications-as-rules interpretation is
more plausible than the implications-as-links interpretation, but also more ele-
mentary. As the implications-as-links interpretation adds certain features of cut to
the implications-as-rules interpretation, it is, from the philosophical point of view,
advisable to separate these two features, i.e., to use (→L)◦ as the more elementary
rule for implication, together with cut in a weakened form.

We should emphasize that these results apply to the intuitionistic case only. As
soon as we consider the linear or classical case with more than one formula permit-
ted in the succedent, different considerations apply which do not necessarily favor
the implications-as-rules view, but might speak for the implications-as links view,
due to the symmetry inherent in the multiple-succedent sequent calculus (see [39]).
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However, in such systems implication has a differentmeaning, and, froma conceptual
point, it can even be questioned if they contain a genuine notion of implication at all.

Concluding, the implications-as-links interpretation has substantial support from
the simplicity of the underlying sequent calculus and its cut elimination feature, so for
many technical considerations the implications-as-links interpretation is preferable.
However, the implications-as-rules interpretation has the conceptualmerit of carrying
over the naturalness of natural deduction and the naturalness of the concept of a rule
to the sequent calculus, including its natural extension with higher-level rules which
allows for a very general treatment of logical constants. Itmotivates a sequent calculus
which is not cut free, but needs a weak version of cut which does not obstruct the
subformula principle.
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Revisiting Zucker’s Work on the
Correspondence Between Cut-Elimination
and Normalisation

Christian Urban

Abstract Zucker showed that in the fragment of intuitionistic logic whose formulae
are build up from ∧, → and ⇒ only, every reduction sequence in natural deduction
corresponds to a reduction sequence in the sequent calculus and vice versa. Unfor-
tunately, the technical machinery in Zucker’s work is rather cumbersome and com-
plicated. One contribution of this chapter is to greatly simplify his arguments. For
example he defined a cut-elimination procedure modulo an equivalence relation; our
cut-elimination procedure will be a simple term-rewriting system instead. Zucker
also showed that the correspondence breaks down when the connectives ≤ or ∨ are
included. We shall show that this negative result is not because cut-elimination fails
to be strongly normalising for these connectives, as asserted by Zucker, rather it is
because certain cut-elimination reductions do not correspond to any normalisation
reduction.

Keywords Intuitionistic logic · Sequent calculus · Cut-elimination · Natural
deduction · Normalisation

1 Introduction

Already Gentzen [7] presented a mapping from sequent proofs to natural deduction
proofs, which however was later much improved by Prawitz [14]. According to this
(many-to-one) mapping, instances of the cut-rule in the sequent calculus correspond
to what is in natural deduction often called detours. From this observation arises
the obvious question how cut-elimination, the process of eliminating all instances of
the cut-rule from sequent proofs, and normalisation, the process of eliminating all
detours from natural deduction proofs, correspond to each other under this mapping.
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It seems Kreisel [10, p. 113] was the first who examined this “correspondence
question” when he wrote:

Consider…a calculus of sequents and a system of natural deduction. Inspection shows that
…the normalization procedure for systems of natural deduction does not correspond to a
particularly natural cut elimination procedure.

Indeed, if we employ Gentzen’s method of eliminating cut-rules, that is elim-
inating innermost cut-rules first, then there is in general no correspondence with
normalising natural deduction proofs. Consider for example the sequent proof

B B A A
B→A, B A

→L

B→A B→A
→R

B B A A
B→A, B A

→L

B→A, B A Cut•
B (B→A)→A

→R

A A
A, B A

WeakL

A B→A
→R A A

(B→A)→A, A A
→L

A, B A Cutβ

which maps to the following natural deduction proof.

B→A B→A B B
B→A, B A

→E

B→A B→A
→I

•
B B

B, B→A A
→E

•
B (B→A)→A

→I
β A, B A

A B→A
→I

A, B A
→E

β

Note that the cut marked with a star maps to the starred detour (similarly the cut
marked with a disc). Clearly we can remove the β-detour using the reductions intro-
duced in Prawitz [14]. In order to obtain a corresponding cut-elimination sequence,
we have to reduce the β-cut and move up the resulting smaller cuts, which is however
not permitted by Gentzen’s innermost strategy.

What Zucker [19] did is to remove the strategy and to introduce commuting con-
versions so that cuts can be eliminated independently from other cuts. A crucial
point however is that cut-elimination needs to be strongly normalising, otherwise
the correspondence fails: because Prawitz’s reduction rules for natural deduction are
strongly normalising, infinite cut-reduction sequences cannot be mapped to finite
normalisation sequences. Under these circumstances, obtaining a strongly normal-
ising cut-elimination procedure is rather tricky. As seen in the example above, the
cut-elimination procedure has to allow cut-rules to pass over other cut-rules. For this
consider the following cut-reduction, which allows a cut-rule (Suffix 2) to pass over
another cut-rule (Suffix 1).
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. . . . . .

. . . . . . . . . . . .

. . . . . .
Cut1

. . . . . .
Cut2

. . . . . .

. . . . . . . . . . . .

. . . . . .
Cut2

. . . . . .
Cut1

Clearly, this cut-reductionwould immediately break strong normalisation because
the reduct is again an instance of this reduction, and we can loop by constantly
applying it. Zucker found a (rather ad hoc) way round this problem of loops: he
considered only proper reduction sequences, that is reduction sequences which do
not include repetitions; see Zucker [19, p. 93]. This restriction ensures that there
are no infinite cut-reduction sequences in the (∧, →, ⇒)-fragment of intuitionistic
logic. In effect, he could give a positive answer to the correspondence question for
this fragment (he also considered ≥, which we however shall omit). He established
the following two facts (|___| stands for Prawitz’s translation from sequent proofs to
natural deduction proofs).

(i) Given a sequent proof M that reduces to N in one step. Then there is a (possibly
empty) sequence of reductions starting from the natural deduction proof |M | and
ending with |N |.

(ii) Given a sequent proof M . If the natural deduction proof |M | reduces to L , then
there exist a sequent proof N such that |N | is L and M reduces in one or more
steps to N .

With these facts in place, Zucker could show that each reduction sequence in one
system can be mapped to a reduction sequence in the other.

The restriction about proper, or non-repeating, reduction sequences fails, however,
to ensure termination of cut-elimination when the connectives ≤ or ∨ are included.
Figure1 shows a simplified version of the non-terminating, non-repeating reduction
sequence given by Zucker. Consequently, he gave a negative answer to the corre-
spondence question for fragments that include ≤ or ∨. He wrote [19, p. 97]:

We consider…a (natural) conversion rule in S for permuting cut with ≤L, which does not
correspond to identity (or even a reduction) in N. In fact, by use of this conversion rule, it
turns out that one can define a non-termination, non-repeating reduction sequence in S. It
follows that for any set of conversion rules for N (with ≤) for which strong normalisation
holds…the correspondence…between reductions in the two systems must fail.

In this paragraph S andN stand for Zucker’s sequent calculus and natural deduc-
tion, respectively.

The main difference between Zucker’s work and ours is that our cut-elimination
procedure is strongly normalising for all connectives. Therefore we shall tackle the
correspondence question again. In doing so we shall take care that the technical
machinery is simpler than Zucker’s. For example we shall not make use of an equiv-
alence relation, which in his work includes Kleene-like permutation rules for cuts as
well as rules for permuting contractions downwards in a sequent proof. Instead, we
shall use the term-rewriting system introduced in Urban [17]; for a shorter account
of this work see Urban and Bierman [18].
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Fig. 1 A slight variant of the non-terminating reduction sequence given by Zucker; see Ungar [16].
In the first step, the cut marked with a disc is reduced creating two cuts as well as introducing a
contraction. In the second step, the cut marked with a star is permuted with the contraction rule—
again creating two cuts. Now the cuts written in bold face have the same shape as in the first proof,
and we can repeat the reduction sequence infinitely many times

While the correspondence question seems to be of purely ‘syntactic’ interest, there
are in fact a number of interesting issues. Natural deduction is the system of choice
for any semantical investigation; to quote Girard et al. [8, p. 39]: ‘In some sense,
we should think of natural deductions as the true “proof” objects.’ This is because in
natural deduction (at least in some fragments) one can define a notion of equality of
proof that is preserved under reduction. Consider now the correspondence question
again: if cut-reductions do not match with normalisation reductions, then the sequent
calculus might contain features that are not accounted for in natural deduction. This
is particularly interesting, because in classical logic only sequent calculi seem to
provide a framework for studying non-deterministic features; see Barbanera and
Berardi [2], Urban [17] and Laird [11].

There are a number of earlier works that give an entirely positive answer to the cor-
respondence question for all connectives. For example Pottinger [13] solved Zucker’s
problem with non-terminating reduction sequences by introducing normalisation-
like reductions for the sequent calculus. Unfortunately, this work has a subtle defect:
because Pottinger annotated sequent proofs with lambda-terms and then formalised
cut-elimination as normalisation, the notion of normality for lambda-terms does not
coincide with the notion of cut-freedom; see Pottinger [13, p. 323]. We shall avoid
this problem by using proof annotations that encode precisely the structure of sequent
proofs and also implement precisely the (standard) rules for cut-elimination.
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More recently, Negri and von Plato [12] describe a natural deduction systemwith a
particular formulation for the elimination rules—they are called general elimination
rules. For this system a positive answer to the correspondence question can be given.
However, we find it is questionable to make the natural deduction calculus to be
‘sequent-calculus-like’, meaning that many proofs are distinguished that differ only
in the order of some inference rules. There is also work by Ungar [16] that modifies
the natural deduction calculus for obtaining a positive answer to the correspondence
question. His results build upon a very complicated, graph-like notion of natural
deduction proofs, which is also not very convincing. Therefore, we feel it is prudent
to reconsider the correspondence question.

The chapter is organised as follows: In Sects. 2 and 3 we shall describe a natural
deduction system and a sequent calculus. In Sect. 4 we shall address the correspon-
dence question for the (∧, →, ⇒)-fragment of intuitionistic logic. An example will
be given for why the correspondence breaks when ≤ is included. We shall conclude
and suggest further work in Sect. 5.

2 Natural Deduction

For studying the correspondence question, Zucker introduced in [19] a minor variant
of Gentzen’s natural deduction system. We shall also use a slight variant, namely
the system presented in (for example) Gallier [6]. It differs from Gentzen’s formu-
lation of natural deduction in that proofs are written in sequent style—that means
open assumptions are recorded explicitly in every inference step—and that terms are
annotated to proofs.

First we give the grammars for expressions and formulae (we use ‘expression’
instead of ‘term’ and moreover write expressions in a sans serif font in order to avoid
confusions with proof annotations we shall introduce later).

t :: = x | f t1 . . . tn
B :: = A t1 . . . tn | B∧B | B≤B | B→B | ⇒x.B | ∨x.B

In this grammar x is taken froma set of variables, f from a set of functional symbols
and A ranges over predicate symbols. As usual functional and predicate symbols have
an arity (a natural number) assigned specifying the number of arguments. We shall
often write x, y, z for variables and t for arbitrary expressions; square brackets (e.g.,
[x]) will indicate that a variable becomes bound; and capture avoiding substitution
for expressions and formulae is assumed as usual.

Next we define lambda-terms for annotating natural deduction proofs. Raw
lambda-terms are defined by the grammar
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p
M, N , P :: = x Var

| ⊃M, N 〉 And-I
| fst(M) | snd(M) And-Ei i = 1, 2
| inl(M) | inr(M) Or-Ii i = 1, 2
| case(P,λx : B ∇.M,λy : B ∇∇.N ) Or-E
| λx : B.M Imp-I
| M N Imp-E
| inx(t, M) Exists-I
| casex(M,λx :B.[y]N ) Exists-E
| [y]M Forall-I
| M t Forall-E

where y and t are expressions, and the Bs are formulae. Let us briefly mention
the conventions we shall assume for lambda-terms: free and bound variables are
as usual; for brevity we shall often omit the formulae on binders and simply write
λx .M ; a Barendregt-style naming convention for variables will always be observed
and lambda-termswill be regarded as equivalent up to renaming of bound variables.A
pleasing consequence of these conventions is that the notion of variable substitution
for lambda-terms can be defined without worrying about clashes and capture of
variables.

To annotate lambda-terms to natural deduction proofs, we shall have sequents
of the form α ◦ M : B in which M is a lambda-term, B is a formula and α is a
context—a set of (variable, formula)-pairs. We shall also employ some shorthand
notation for contexts: rather than writing for example {(x, B), (y, C), (z, D)}, we
shall write x : B, y : C, z : D. For contexts we have the convention that a context is
ill-formed, if it contains more than one occurrence of a variable. For example, the
context x : B, x : C is not allowed.

In the sequel we are only interested in lambda-terms, M , for which there is a
context α and a formula B such that α ◦ M : B is derivable given the inference rules
shown in Fig. 2. The following set is defined to contain all those lambda-terms.

N
def= {

M
∣
∣ α ◦ M : B is derivable using the rules given in Fig. 2

}

Apart from the initial sequent, the inference rules shown in Fig. 2 fall into two
groups: introduction and elimination rules. A detour is a sequence of neighbouring
inference rules beginningwith an introduction rule introducing a formula that is elim-
inated by the last one in the sequence (necessarily an elimination rule). Detours in
natural deduction proofs violate the subformula property; for a definition of this stan-
dard property see Troelstra and Schwichtenberg [15]. Normalisation is the process
of stepwise eliminating detours from natural deduction proofs, converting them into
normal forms for which the subformula property holds. Below we shall introduce
term-rewriting rules, commonly referred to as beta-reductions, which eliminate a
detour formed by an introduction rule and a neighbouring elimination rule.
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Fig. 2 Term assignment for intuitionistic natural deduction proofs

fst(⊃M, N 〉) β−⊥ M

snd(⊃M, N 〉) β−⊥ N

case(inl(P),λx .M,λy.N )
β−⊥ M(x/P)

case(inr(P),λx .M,λy.N )
β−⊥ N (y/P)

(λx .M) N
β−⊥ M(x/N )

casex(inx(t, M),λx .[y]N )
β−⊥ N (y/t)(x/M)

([y]M) t
β−⊥ M(y/t)

In order to ensure that the normal forms satisfy the subformula property, further
rewriting rules (we shall call them gamma-reductions) are needed for the term-
constructors case and casex. A lucid explanation for why further rules are neces-
sary is given in Girard et al. [8, p. 74]. We shall present the rewriting rules for case
only (the rules for casex are similar).

fst(case(P,λx .M,λy.N ))
γ−⊥ case(P,λx .fst(M),λy.fst(N ))

snd(case(P,λx .M,λy.N ))
γ−⊥ case(P,λx .snd(M),λy.snd(N ))

case(P,λx .M,λy.N ) Q
γ−⊥ case(P,λx .(M Q),λy.(N Q))

case(P,λx .M,λy.N ) t
γ−⊥ case(P,λx .(M t),λy.(N t))

case(case(P,λx .M,λy.N ),λu.S,λv.T )
γ−⊥ case(P,λx .case(M,λu.S,λv.T ),

λy.case(N ,λu.S,λv.T ))

casex(case(P,λx .M,λy.N ),λz.[y]S)
γ−⊥ case(P,λx .casex(M,λz.[y]S),

λy.casex(N ,λz.[y]S))
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We automatically assume that the reduction rules are closed under context forma-
tion, which is a standard convention in term rewriting. Properties of these reduction
rules such as subject reduction, strong normalisation and confluence are well-known
and therefore not further elaborated here.

3 Sequent Calculus

Zucker’s chapter is not very concise, in part because he formalises a sequent calculus
using the rather cumbersome notion of indexed formulae. A simpler formulation for
an intuitionistic sequent calculus is given in Urban [17]; for an overviw of this work
see Urban and Bierman [18]. The main idea is to formalise the sequent calculus in
a similar fashion as natural deduction using proof-annotations. This will mean for
example that contexts are sets, as in type-theory, and not multisets, as in Gentzen’s
LJ. A pleasing feature of ‘contexts-as-sets’ is that the structural rules are completely
implicit in the formof the logical rules. In the remainder of this section,we shall repeat
the basic definitions from Urban [17] in order to make this chapter self-contained.

Formulae and expressions are defined as in natural deduction. Sequents are of the
form

α ◦ M ◦ a : B

where α is a context, a : B is a labelled formula and M is a term. As in Sect. 2,
contexts are sets of labelled formulae. However, in the sequent calculus we shall call
the labels names; so contexts are sets of (name,formula)-pairs. Otherwise the same
conventions for contexts apply as given in Sect. 2. The formula on the right-hand
side of the sequent is labelled by a co-name. While co-names can be dispensed with
when formalising an intuitionistic sequent calculus (they are necessary for classical
logic), we shall not suppress them for reasons that will become clear later on when
we define the operation of proof substitution.

The raw terms for annotating sequent proofs are given by the grammar:

M, N :: = Ax(x, a) Axiom
| Cut(⊃a :B〉M, (x :B)N ) Cut
| AndR(⊃a :B ∇〉M, ⊃b:B ∇∇〉N , c) And-R
| Andi

L ((x :B)M, y) And-Li i = 1, 2
| Ori

R(⊃a :B〉M, b) Or-Ri i = 1, 2
| OrL ((x :B ∇)M, (y :B ∇∇)N , z) Or-L
| ImpR((x :B ∇)⊃a :B ∇∇〉M, b) Imp-R
| ImpL (⊃a :B ∇〉M, (x :B ∇∇)N , y) Imp-L
| ExistsR(⊃a :B〉M, t, b) Exists-R
| ExistsL ((x :B)[y]M, y) Exists-L
| ForallR(⊃a :B〉[y]M, b) Forall-R
| ForallL ((x :B)M, t, y) Forall-L
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in which x , y, z are taken from a set of names; a, b, c from a set of co-names; y and t
are expressions; and the Bs are formulae. We shall often write …,x , y, z for names,
and a, b, c, …for co-names. Round brackets signify that a name becomes bound and
angle brackets, that a co-name becomes bound. Again we have similar conventions
as in Sect. 2: we shall omit the types on the bindings; regard terms as equal up to
alpha-conversions and adopt a Barendregt-style convention for names and co-names.
These conventions are standard in term rewriting. Notice however that names and
co-names are not the same notions as a variable in lambda-terms: whilst a variable
can be substituted with a lambda-term, a name or a co-name can only be “renamed”.
Rewriting a name x to y in a term M is written as M[x ∀⊥ y], and similarly rewriting
a co-name a to b is written as M[a ∀⊥b]. The routine formalisation of these rewriting
operations is omitted. For the terms defined above we have the relatively standard
notions of free names and free co-names. Given a term, say M , its set of free names
and free co-names is denoted by F N (M) and FC(M), respectively. Another useful
notion is the following.

Definition 1 A term, M , introduces the name z or co-name c, if and only if M is of
the form

for z: Ax(z, c) for c: Ax(z, c)
Andi

L ((x )S, z) AndR(⊃a〉S, ⊃b〉T , c)
OrL ((x )S, (y)T , z) Ori

R(⊃a〉S, c)
ImpL (⊃a〉S, (x )T , z) ImpR((x )⊃a〉S, c)
ExistsL ((x )[y]S, z) ExistsR(⊃a〉S, t, c)
ForallL ((x )S, t, z) ForallR(⊃a〉[y]S, c)

A term freshly introduces a name, if and only if none of its proper subterms
introduces this name. In other words, the name must not be free in a proper subterm.
Similarly for co-names. ∃�

Aswe shall see later, this definition corresponds to the traditional notion of a main
formula of an inference.

Again we shall be interested in only well-typed terms; this means those M for
which there is a context α and a labelled formula a : B, such that α ◦ M ◦ a : B holds
given the inference rules in Fig. 3. The following set contains all such terms.

S
def= {

M
∣
∣ α ◦ M ◦ a : B is derivable using the rules given in Fig. 3

}

Whilst the structural rules are implicit in our sequent calculus, i.e. the calculus
has fewer inference rules, there are a number of subtleties concerning contexts. We
assume for the commas in Fig. 3 the following conventions: a comma in a conclusion
stands for set union and a comma in a premise stands for disjoint set union. Consider
for example the ∧Li -rule. This rule introduces the (name,formula)-pair y : B1∧B2

in the conclusion, and consequently, y is a free name in Andi
L((x )M, y). However,

y can already be free in the subterm M , in which case y : B1∧B2 belongs to α. We
refer to this as an implicit contraction. Hence the left-hand side of the conclusion of
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Fig. 3 Term assignment for sequent proofs

∧Li is of the form y : B1∧B2 ⊕ α where ⊕ denotes set union. Clearly, in the case
that the term Andi

L((x )M, y) freshly introduces y, then this context is of the form
y:B1∧B2 ⊗ α where ⊗ denotes disjoint set union. Note that x :Bi cannot be part of
the conclusion: x is intended to become bound in the term. Thus the context in the
premise must be of the form x :Bi ⊗ α.

There is one point worth mentioning in the cut-rule, because this is the only
inference rules in our sequent calculus that does not share the contexts, but requires
that two contexts are joined. Thus we take the cut-rule to be of the form

α1 ◦ M ◦ a:B x :B ⊗ α2 ◦ N ◦ b : C
α1 ⊕ α2 ◦ Cut(⊃a〉M, (x )N ) ◦ b : C

Cut

In effect, this rule is only applicable, if it does not break the convention about
ill-formed contexts, which can always be achieved by renaming some names appro-
priately. Notice however that we do not require that cut-rules have to be “fully”
multiplicative: the αi s can share some formulae.

Next we focus on the term-rewriting rules. One reason for introducing terms is
that they greatly simplify the formalisation of the cut-reduction rules, most notably
the rules for commuting cuts. In LJ for example there are 360 different cases of com-
muting cuts! Using the notion of proof substitution, which we shall introduce below,
the cut-reductions necessary for dealing with commuting cuts can be formalised in
only 24 clauses. Clearly, this is an advantage of our use of terms.

Before we give the definition of the substitution, it is instructive to look at some
examples. Commuting cuts need to permute to the placeswhere the cut-formula is the
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main formula. At the level of terms this means the cuts need to be permuted to every
subterm that introduces the cut-formula. This will be achieved with substitutions of
the form

P(x :B/⊃a:B〉Q) and S(b:B/(y:B)T ).

If a substitution is “next” to a term in which the cut-formula is introduced, the
substitution becomes an instance of the Cut-term constructor. In the following, two
examples we shall write [σ] and [τ ] for the substitutions (c/(x )P) and (x/⊃b〉Q),
respectively (we do not write the type annotations in substitutions provided they are
clear from the context).

AndR(⊃a〉M, ⊃b〉N , c)[σ] = Cut(⊃c〉AndR(⊃a〉 M, ⊃b〉 N , c), (x )P)

ImpL(⊃a〉M, (y)N , x)[τ ] = Cut(⊃b〉Q, (x )ImpL(⊃a〉 M[τ ], (y) N [τ ], x))

In the first term the formula labelled with c is the main formula and in the second
the formula labelled with x is the main formula. So in both cases the substitutions
“expand” to cuts, and in the second case, the substitution is also pushed inside the
subterms. This is because theremight be several occurrences of x (this name need not
have been freshly introduced).An exception applies to axioms,where the substitution
is defined differently, as shown below.

Ax(x, a)(x/⊃b〉P) =P[b ∀⊥a]
Ax(x, a)(a/(y)Q) =Q[y ∀⊥ x]

Recall that P[b ∀⊥a] stands for the term P in which every free occurrence of the
co-name b is rewritten to a (similarly Q[y ∀⊥ x]). We are left with the cases where
the name or co-name that is being substituted for is not a label of the main formula.
In these cases, the substitutions are pushed inside the subterms or vanish in case of
the axioms. Suppose the substitution [σ] is not of the form [z/ . . .] and [a/ . . .], then
we have the following clauses.

OrL((x )M, (y)N , z)[σ] = OrL((x ) M[σ], (y) N [σ], z)

Ax(z, a)[σ] = Ax(z, a)

Figure4 gives the complete definition of proof substitution. We do not need to
worry about inserting contraction rules when a term is duplicated, since our contexts
are sets of labelled formulae and thus contractions are made implicitly. Another
simplification is due to our use of the Barendregt-style naming convention, because
we do not need to worry about possible capture of free names or co-names.

We are now in the position to formalise our cut-elimination procedure. We shall
distinguish two kinds of cuts: logical cuts and commuting cuts. A cut of the form
Cut(⊃a〉M, (x )N ) is a logical cut provided M freshly introduces a and N freshly
introduces x ; otherwise the cut is a commuting cut. The corresponding reduction rules
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Fig. 4 Proof substitution

are given in Fig. 5. The side-conditions attached to each rule ensure that commuting
cuts cannot be rewritten using a rule for a logical cut. Again we automatically assume

that
c−⊥ and

l−⊥ are closed under context formation. We shall write
cut−⊥ whenever

we refer to both
c−⊥ and

l−⊥.
Urban [17] andUrban andBierman [18] present a detailed proof showing that

cut−⊥
is strongly normalising (even in the classical case). However,

cut−⊥ is not confluent!
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Fig. 5 Cut-reductions for logical and commuting cuts

4 The Correspondence Question

Before we can answer the correspondence question, we need to formalise the trans-
lation from sequent proofs to natural deduction proofs. Figure6 shows the standard
translation, which appeared first in Prawitz [14]. It translates inductively a sequent
proof so that right-rules aremapped to introduction rules on the root of natural deduc-
tion proofs, and left-rules to elimination rules at the top (except ≤L and ∨L which
translate like right-rules). It is not hard to show that this translation is onto, but a
proof is omitted. First we show that typed terms translate to typed terms.

Proposition 2 For all M ∈ S, if the sequent α ◦ M ◦ a : B is derivable, then
α ◦ |M | : B is derivable and vice versa.

Proof Routine induction on the structure of M . ∃�
Next we shall show how the symmetric operation of proof-substitution relates to

the usual lambda-term substitution. We shall first consider the (∧,→,⇒)-fragment.
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Fig. 6 Translation from sequent proofs to natural deduction proofs

Lemma 3 For all M, N ∈ S(∧,→,⇒) we have

(i) |M(x/⊃a〉N )| ≡ |M |[x/|N |]
(ii) |M(a/(x )N )| ≡ |N |[x/|M |] provided a ∈ FC(M).

Proof By induction on the structure of M . ∃�
Note that the side-condition in (ii) is always satisfied in intuitionistic logic for

proof-substitutions which arise from reducing commuting cuts. This lemma enables
us to show that every cut-elimination reduction maps to zero or more normalisation
reductions.

Theorem 4 For all M, N ∈ S(∧,→,⇒), if M
cut−⊥N, then |M | β−⊥∗|N |.

Proof By induction on the definition of
cut−⊥. ∃�

In particular we have that if M
c−⊥N then |M | ≡ |N |. This fact will be useful

for proving the following lemma, which relates normalisation steps to a sequence of
cut-elimination steps.

Lemma 5 Given an M ∈ S(∧,→,⇒) and |M | β−⊥L. Then there exists an N ∈ S(∧,→,⇒)

such that M
cut−⊥ +N and L

β−⊥∗|N |.
Proof By induction on M , but we can restrict the induction to Ms which have
only logical cuts. To see this apply as many

c−⊥-reductions as possible to M ,
obtaining a

c−⊥-normal form, say M ∇. We have that M
c−⊥∗M ∇ and |M | ≡

|M ∇|. Before we analyse one case, some useful terminology will be introduced.
Let us write P{x1, . . . , xn} for the lambda-term P having n free occurrences
of the variable x , and thus P{Q1, . . . , Qn} will stand for P[x/Q]. Notice that
if the outermost term-constructor of Q does not correspond to an introduction
rule, then a reduction in P{Q1, . . . , Qn} can occur only in the ‘P-part’ or in
one of the ‘Qi -parts’. With this fact in place, let us consider a ∧R/∧L1 -logical
cut having the form Cut(⊃c〉AndR(⊃a〉S, ⊃b〉T , c), (y)And1

L((x )R, y)). Then |M | =
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|R|[x/fst(⊃|S|, |T |〉)] which we can write equivalently as |R|{fst (⊃|S|, |T |〉)1,
. . . ,fst(⊃|S|, |T |〉)n}. There are three cases to be dealt with for a reduction occur-

ring in |M |. First, if the reduction occurs in the |R|-part, say |R| β−⊥|R∇|, then we can
conclude by appealing to the induction hypothesis. In this case N is M except R is
replaced by R∇. Second, if the reduction occurs in one of the subterms of ⊃|S|, |T |〉,
say |S| β−⊥|S∇| (the other subcase being similar), then we have the reduction

|M | β−⊥|R|{. . . ,fst(⊃|S∇|, |T |〉)i , . . . } β−⊥∗|R|{fst(⊃|S∇|, |T |〉)1,
. . . ,fst(⊃|S∇|, |T | 〉)n}. The last term is the term where all other ‘copies’ of |S|
have been reduced, too. Again we can appeal to the induction hypothesis and
conclude with N being M except S is replaced by S∇. In the third case one of

the fst(⊃|S|, |T |〉) reduces to |S|. Hence, we have the reduction |M | β−⊥|R|{. . . ,
|S|i , . . .} β−⊥∗|R|{|S|1, . . . , |S|n}. In this case we can conclude with

N ≡ Cut(⊃a〉S, (x )R) and M
c−⊥∗M ∇ l−⊥N as required. The other logical cuts are

treated similarly. ∃�
Unfortunately, this is a slightly weaker correspondence as obtained by Zucker

[19, p. 79, Theorem 2]. This is because of the way the translation |___| is set up and
also because we are not permuting contraction rules downwards in a sequent proof
as Zucker does. In effect, it is not true that every normalisation step is matched by a
series of cut-elimination steps, rather we have to consider ‘clusters’ of normalisation
steps. So in order to obtain a result concerning the correspondence question we prove
the following theorem.

Theorem 6 Given an M ∈ S(∧,→,⇒) and |M | β−⊥∗Lnf where Lnf is a normal form.

Then there exists an N ∈ S(∧,→,⇒) such that M
cut−⊥∗N and |N | = Lnf.

Proof We can use the fact that
β−⊥ is confluent and strongly normalising. The

induction is on the length of the longest reduction sequence starting from |M |. By
confluence we can repeatedly apply Lemma 5 until we reach the normal form Lnf

of |M |. In this way, we construct the reduction sequence M
cut−⊥∗N . ∃�

In effect we have given a positive answer to the correspondence question in the
(∧,→,⇒)-fragment: every cut-reduction sequencemaps to a beta-reduction sequence,
and every beta-reduction sequence leading to a normal form can be mapped to a cut-
reduction sequence. Let us now reflect on this answer and see whether the result
Theorem 6 can be improved and whether the answer can be extended to ≤ and ∨.

It has been suggested for example by Barendregt and Ghilezan [3], Herbelin
[9] and Espírito Santo [5] that lambda-calculi extended with explicit substitution
operators provide a better correspondence result, meaning that every beta-reduction
can be matched by a series of cut-elimination steps. As can be seen in Lemma 5 a
cut, say Cut(⊃a〉M, (x )N ), is translated as |N |{|M |1, . . . , |M |n}. Now if any of the
|M |i does a reduction, then this cannot be ‘matched’ in the cut. Instead if we translate
the cut using an explicit substitution operator, for example |N |⊃x := |M |〉, we can
avoid this problem. However we are not aware any work that points out that with
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explicit substitution calculi Theorem 4 fails—already in the (→)-fragment! We shall
demonstrate this phenomenon within the explicit substitution calculus λx; see for
example Bloo [4].

Example 7 The terms of λx are given by the grammar

x | λx .M | M N | M⊃x := N 〉 .

In contrast to the lambda calculus, inλx beta-reductions are split intomore atomic

steps: one step is the reduction (λx .M)N
β∇

−⊥M⊃x := N 〉 introducing the explicit
substitution operator, and the others involve reductions that permute this operator
inside the term M . As a consequence, the translation from sequent proofs to natural
deduction proofs can be modified as follows.

|Cut(⊃a〉M, (x )N )|∇ def= |N |∇⊃x := |M |∇〉
|ImpR((x )⊃a〉M, c)|∇ def= λx .|M |∇

|ImpL(⊃a〉M, (x )N , y)|∇ def= |N |∇⊃x := (y |M |∇)〉

To show that the correspondence with cut-elimination fails, consider the logical
cut-reduction for →R/→L . In Fig. 3 we defined this cut-reduction as

Cut(⊃b〉ImpR((x )⊃a〉M, b), (z)ImpL(⊃c〉N , (y)P, z))
l−⊥Cut(⊃a〉Cut(⊃c〉N , (x )M), (y)P) or
l−⊥Cut(⊃c〉N , (x )Cut(⊃a〉M, (y)P))

(1)

including a choice of how the cuts are arranged in the reduct (there is no reason to
prefer one choice over the other). Using the translation |___|∇ given above only the
first reduction is matched by reductions in λx; the other is not. The translations of
the reducts in (1) are:

|Cut(⊃a〉Cut(⊃c〉N , (x )M), (y)P)|∇ = |P|∇⊃y := |M |∇⊃x := |N |∇〉〉
|Cut(⊃c〉N , (x )Cut(⊃a〉M, (y)P))|∇ = |P|∇⊃y := |M |∇〉⊃x := |N |∇〉

With the (standard) reduction rules of λx, only the first reduct can be reached.
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|Cut(⊃b〉ImpR((x )⊃a〉M, b), (z)ImpL(⊃c〉N , (y)P, z))|∇
= |P|∇⊃y := z |N |∇〉⊃z := λx .|M |∇〉
−⊥ |P|∇⊃y := z |N |∇⊃z := λx .|M |∇〉〉
−⊥ ∗ |P|∇⊃y := (λx .|M |∇) |N |∇〉
−⊥ |P|∇⊃y := |M |∇⊃x := |N |∇〉〉

The theorem fails, if we try to reach the second reduct. Here one would need a
reduction of the form (x ∪∈ FV (P))

P⊃y := M⊃x := N 〉〉−⊥P⊃y := M〉⊃x := N 〉

which, as far as we know, has not been considered for any explicit substitution
calculus and indeed would be rather strange. ∃�

What is shown by this example is that the obvious candidate for a lambda calculus
with an explicit substitution operator and a natural translation from sequent proofs
to this lambda calculus gives a closer correspondence between cut-elimination and
normalisation, but not all cut-reductions are matched.

We shall encounter a similar phenomenon when trying to extend Theorems 4 and
6 to all connectives. In the (∧,→,⇒)-fragment all

c−⊥-reductions are mapped by
|___| onto an identity (see Lemma 2.3). This does not hold for the connectives ≤ and
∨. In consequence, the correspondence fails. The issues are again best explained with
an example.

Example 8 Consider the following sequent proof (where for brevity we have omitted
all terms and labels).

A A B B
A, B A∧B

∧R
A A B B
A, B A∧B

∧R

A≤B, B, A A∧B
≤L

A A A A
A A∧A

∧R

A∧B A∧A
∧L1

A≤B, B, A A∧A Cut (2)

To eliminate the cut, we need to apply Rule 8 from Fig. 5 giving

A A B B
A, B A∧B

∧R

A A A A
A A∧A

∧R

A∧B A∧A
∧L1

A, B A∧A Cut

A A B B
A, B A∧B

∧R

A A A A
A A∧A

∧R

A∧B A∧A
∧L1

A, B A∧A Cut

A≤B, B, A A∧B
≤L

(3)
where two copies of the cut have been created. The corresponding natural deduction
proofs are as follows: forming |(2)| we have the natural deduction proof
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A≤B A≤B
A A B B
A, B A∧B

∧I
A A B B
A, B A∧B

∧I

A≤B, A, B A∧B
≤E

A≤B, A, B A
∧E1

A≤B A≤B
A A B B
A, B A∧B

∧I
A A B B
A, B A∧B

∧I

A≤B, A, B A∧B
≤E

A≤B, A, B A
∧E1

A≤B, A, B A∧A
∧I

in which the ∧E1 -rules can be permuted with the ≤E -rules. This gives

A≤B A≤B

A A B B
A, B A∧B

∧I

A, B A
∧E1

A A B B
A, B A∧B

∧I

A, B A
∧E1

A≤B, A, B A
≤E

A≤B A≤B

A A B B
A, B A∧B

∧I

A, B A
∧E1

A A B B
A, B A∧B

∧I

A, B A
∧E1

A≤B, A, B A
≤E

A≤B, A, B A∧A
∧I

Here we are stuck! There is no reduction that would reduce to |(3)|—the natural
deduction proof below.

A≤B A≤B

A A B B
A, B A∧B

∧I

A, B A
∧E1

A A B B
A, B A∧B

∧I

A, B A
∧E1

A, B A∧A
∧I

A A B B
A, B A∧B

∧I

A, B A
∧E1

A A B B
A, B A∧B

∧I

A, B A
∧E1

A, B A∧A
∧I

A≤B, B, A A∧A
≤E

What is needed is a reduction rule which permutes ∧I with ≤E . On the level of
lambda terms the corresponding reduction rule is as follows.

⊃case(P, λx .M, λy.N ),case(P, λz.S, λw.T )〉
−⊥ case(P, λx .⊃M, S[z/x]〉, λy.⊃N , T [w/y]〉)

∃�
Again what is shown by this example is that a cut-reduction, which cannot be

dispensed with in our cut-elimination procedure, does not match with any of the
standard reductions for natural deduction. It requires a reduction which from the
term-rewriting point of view is very strange: first it breaks confluence of the lambda-
calculus and second it requires a ‘test’ that checks that two subterms are identical
before applying this rule. Nevertheless, from a semantical point of view the rule does
make sense: it appears as an equivalence in the work by Altenkirch et al. [1].

5 Conclusion

In this chapter we studied the correspondence question between cut-elimination and
normalisation. This was studied previously by Zucker [19]. He showed that in the
(
∧
, →, ⇒)-fragment of intuitionistic logic reductions sequences in the sequent cal-

culus can be mapped to reduction sequences in natural deduction and vice versa.
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Because his cut-elimination procedure is not strongly normalising when ≤ and ∨ are
included, he concluded that the correspondence must fail for these connectives. We
obtained a similar result, but using the cut-elimination procedure from Urban [17],
which is strongly normalising for all connectives. We gave a detailed example for
why certain cut-reductions do not match with the (standard) reductions of natural
deduction. Because we annotated proofs with terms our technical details are much
simpler than in Zucker’s work. We discovered that there is a rather pleasing inter-
play between the semantical work by Altenkirch et al. [1] and the correspondence
questions. However, details still remain to be investigated.
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Proofs, Reasoning and the Metamorphosis
of Logic

Jean-Baptiste Joinet

Abstract With the “mathematical watershed”, Logic had been transformed into a
foundational theory for mathematics, a theory of truth and proofs—far away from
its philosophical status of theory of the intellectual process of reasoning. With the
recent substitution of the traditional proofs-as-discourses paradigm by the proofs-
as-programs one, Logic is nowbecomming a foundational theory for computing.One
could interpret this newwatershed as being “yet another technological drift”, bringing
Logic always closer to practical ingeneering, always further from the human intellec-
tual process of reasoning. This article promotes the dual point of view: enlightened by
the contemporary analysis of the dynamic of proofs, which bring us to a new under-
standing of the semantic counterpart of processes operationality (including the links
between semantic dereliction due to inconsistency and computational exuberance),
Logic has never appeared so close to being, finally, the theory of reasoning.

Keywords Proof · Computation · Reasoning · Philosophy of logic

1 Introduction

When it comes to giving a short definition of Logic, one frequently hears (sometimes
even said by oneself) that Logic is “the theory of reasoning”. Yet, all contempo-
rary logicians know very well that Logic, as it is practiced today, is not properly
about reasoning, but about proofs. Reasoning indeed is a human intellectual process,
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whereas proofs—as logicians, from Aristotle to Gentzen, have investigated them—
are discourses: oral or written, maybe only formalized, but discourses nonetheless.

This shortcut made by logicians when presenting their discipline (or perhapsmore
accurately said: “the fantasy” of logicians when they are representing to themselves
the subject of their work) actually accompanied Logic, under various declensions,
all along its history. Moreover, as starts in the nineteenth century the process of
gradual absorption of Logic byMathematics, the view of Logic as being the “Theory
of thought” itself continues to prevail1 and, even after the birth of proper Proof
theory—actually by the pen of its promotor himself, David Hilbert—it is reiterated:
“The fundamental idea of my proof theory is none other than to describe the activity
of our understanding, to make a protocol of the rules according to which our thinking
actually proceeds” ([1], p. 475).

As those same logicians who present Logic choosing such words, in the mean-
time explicitly deny any psychological nature to logical principles, one sees that,
underlying such formulations, stands the somewhat confused idea that some kind
of isomorphism or interface would hold between the rules “according to which our
thinking proceeds” (or “has to proceed” as well2) and the rules linking sentences in
our deductive discourses, so would hold between reasonings and proofs.

To clarify how reasoning and proofs radically differ, it is useful to stress the three
following specific points,more or less traditionnally emphasizedwhen comparing the
two notions. First, as it is a process, reasoning is of a dynamic nature, whereas proofs,
as discourses and especially as texts, are static objects. Second, the intellectual,
rational process of reasoning would presuppose the grasping of meaning, the mental
representation of objects and structures, which is frequently summed up by speaking
of the “semantic” or “contentual” aspects of reasoning, whereas proofs articulate
sentences inferentially, according only to their shape, without regard for reference.
Third, whereas a wrong proof is not a proof, incorrect reasoning still is reasoning.

Dynamic character of reasoning versus Static character of proofs
Referential dimension of reasoning versus Inferential nature of proofs
Indeterminacy of reasoning versus Correctness of proofs

The reasons why contemporary Logic happens to deal with proofs instead of rea-
soning are numerous and varied. They are on the whole tied up with the fact that
the silent human process of reasoning remains mainly observable through private
mental self-introspection (or perhaps through some difficult to exploit but measur-
able side effects, e.g. those produced by neural activity etc.), so that consciousness
intervenes in its study, moreover, both as an object and as a tool for observation.

1 G. Boole’s Investigation of the Laws of Thought is here emblematic [2].
2 The fact that even the early intuitionistic tradition conceived explicitly Logic as a non-
psychological organon, as pure normativity (see for instanceKant,Logik, Introduction, first section),
does not obliterate its conception of Logic as the science of the laws of thought: that Logic studies
“the rules according to which our thinking must proceed”, rather than “how it proceeds” does not
make any difference here.
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Even if, disregarding the usual problem of subjectivity’s epistemological weakness,
one acknowledged as relevant a question such as: “what information could introspec-
tion reveal to us concerning reasoning?”, the following specific difficulties—which
match up with the three points stressed above—would have to be taken into account.

A first obstacle which prevents a direct approach to the intellectual process of rea-
soning is its introspective opaqueness. As David Hume so nicely says, “it is remark-
able concerning the operations of the mind that, though most intimately present to
us, yet, whenever they become the object of reflexion, they seem involved in obscu-
rity; nor can the eye readily find those lines and boundaries which discriminate and
distinguish them” ([3], Chap. 1). The complex temporality and profound structure of
reasoning, with its likely distributed interaction mechanisms, generally escapes our
consciousness. Because we can perceive at best only some of the epiphenomenal,
conscious effects of this internal process, we are unable to qualify directly its deep
technological nature and have a direct apprehension of its dynamic. In strong contrast
with this situation, rational discourses, and especially written ones, are by definition
communicable and completely observable objects, and so are describable phenom-
ena without any hidden parts, whose stability a contrario permits the manifestation
and study of their structure.

Another obstacle is just simply that we are not clearly able to even recognize
reasoning, unable “from the inside” to separate from the general streamof our thought
some sub-process which would constitute its “rational part” and be independent
of emotions and, especially when deliberation about practical choices is involved,
of desires, fears and social determinations. In any event, when considering human
thought in vivo, the traditional splitting of rational and non-rational aspects seems
rather arbitrary (this is also why the specific dynamic of wrong ormistaken reasoning
is so unclear). In strong contrast with this situation, proofs as opposed to reasoning,
or at least formalized proofs, are recognizable (for a text to be a proof is a decidable
property). In particular, once a list of “logical rules” has been set down, the borderline
between proofs and non-proofs becomes unambiguously determined.

Finally, a relevant theory of reasoning should cover the referential dimension of
the rational process, and hence would presuppose a theory of meaning as mental rep-
resentation. This usually leads to unclear metaphorical formulations such as intimate
“grasp” of semantic “content”, private, direct mental contact with concepts, and to
all manners of ambiguities that torment the philosophy of mind and consciousness.
In strong contrast with this situation again, the logical analysis of discursivity opens
onto a theory of objective, consciousness-independent meaning.

Among these issues, the last one constitutes the point of departure for analytic
philosophy (in the true sense, i.e. restricted to epistemological topics), whose dis-
missal of psychologism in favour of semantic analysis parallels the methodological
dismissal of reasoning as an object of study which de facto prevails in Logic. In
a conference given in 1987, in which he extricated the roots of the analytic water-
shed in philosophy, Michael Dummett deepened the question of this methodological
precedence of language over thought [4]. I am retaining from him, notably, the thesis
that because there is something objective in meaning (as communicability shows)
which is completely involved and keptwithin discursivity (as communication shows),
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the only objective knowledge about thought we can hope to grasp, if ever any, shall
be proportionate to what is objective in discursivity: its structure, the norms which
regulate our practice and use, or whatever …

In the present article, I will remain faithful to this analytic inspiration, which as I
understand it, does not disqualify inquiries into reasoning, butmerely postpones them
as questionswhich could be posed only afterwards, as “secondary” questions. Instead
of entering into the habitual debate over “truth conditions” which often comes down
to searching outside of discursivity for an objective foundation for semantics (facts
described by sets, worlds of concepts, human rational practices whose only criterion
is to be the ones humans happen to learn, etc.), I would like to focus my investiga-
tions upon objective features of discursivity and proofs that have been revealed by
recent proof-theoretical developments, beginning with Gentzen’s seminal work and
continuing through later work based on the so-calledCurry-Howard correspondance
between proofs and programs (i.e. the remark that the evaluation of simply typed
lambda-calculus and the normalization of minimal Natural Deduction are isomor-
phic), have revealed.

More specifically, my aim here is to evaluate to what extent these developments
give new insights into the relationship between “reasoning” (the human rationalmen-
tal process) and “proofs” (structured inferential texts). I will tackle this question by
successively taking up the three particular points recalled above which differenti-
ate reasoning and proofs, examining in each case how to articulate them in light of
recent proof-theoretical investigations (in particular those from the so-called proofs-
as-programs paradigm).

2 Dynamic Character of Reasoning Versus Static Character
of Proofs

Whereas reasoning is a process, and thus inseparable from its dynamic, proofs, as
usually taken into account by formal Logic, are traditionally apprehended as texts,
and at first glance lack any true dynamic dimension. Indeed, one occasionally finds
the absence of dynamic used against the formalist perspective in Logic, which is
then typically blamed for being only occupied with cold, lifeless, static things, thus
incomparable to human reasoning.3 Is it so true, however, that contemporary Logic
when working on proofs, does not deal with the dynamic?

First, there is still the old idea (dating back to at least the Aristotelian view on
syllogisms) that some dynamic is involved when one is accomplishing a deductive
step or reading a structured inferential discourse, insofar as one is indeed moving
from sentence to sentence following the orientation of the deduction. Nevertheless,
even those who consider inferential steps as imitating to a certain extent steps from
idea to idea (echoing the famous Cartesian description of reasoning in theRegulae, in
which themind travels through an ordered chain of ideas, fromdistinct representation

3 See Descartes, Hegel, Brouwer: actually, it is the anti-formalist topos par excellence.
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to distinct representation), do not assimilate the dynamic involved to the general,
complex process by which an individual deliberates, deduces and modifies his or her
abstract representations and concrete judgments.

There is, however, a second axis through which contemporary Logic investigates
directly what is undoubtedly a part of the dynamic process of reasoning, namely
heuristics. In a general sense, heuristics covers the search for proofs of a given
sentence from a given theory, hence includes the process of determinating which
relevant sentences should be proven beforehand in the search for success. Modern
formal Logic developed numerous techniques for tackling the heuristics challenge,
importing dynamic features into proof theory. To what extent can we conclude that
a dimension of human reasoning is here modeled? Of course, the way the heuristic
dynamic is realized at the technical level (often using specific ad hoc formal systems
suited to heuristic strategies, instead of systems such as Natural Deduction whose
devising from the start was explicitly guided by the aim to imitate, in some respects,
the way mathematicians “naturally” happen to write their proofs) renders difficult
any comparison of the human heuristic with an artificial one. Moreover, one could
object that contrary to the natural human heuristic dynamic which is part of the
rational process, the artificial one stays outside of the world of proofs, since with
respect to the search process, the produced proofs simply appear as outputs a priori
not involving any tracks of the process by which they have been produced, so as
by-products external to the dynamic.

Another kind of dynamic, though, also occupies the logical stage, namely proofs’
normalisation, that process (first studied by G. Gentzen) by which proofs are con-
verted into analytic ones (but more generally other processes of proofs’ conversion
such as, for instance, elimination, in relevant cases, of non-constructive components
of proofs), andwhich implements a dynamic completely internal to the proofs’world.
Besides the well-known epistemological value of the convertibility of proofs (which
legitimates abstract and—when applicable—non-constructive detours as safe proof-
theoretic means), the rational flavour of the conversion process itself deserves to be
pointed out.

First of all, one has to observe that proofs, as subject to conversion processes,
acquire a radically new status. In this light, the basic components of proofs, logical
rules, become, literally, programming instructions: they determine the precise way
evaluation works and controls the operational destiny of the conversion process. That
proofs have been historically first modeled, from a static point of view, as texts, turns
out to be but an epiphenomenal feature, beyond which appears their true nature as
operators acting on rational resources. (Incidentally, one may remark that in fact,
even as static objects—though now enlightened by the dynamic perspective and
adapted to it—proofs do no longer really fit within the proofs-as-discourses view.
Indeed, in recent proof systems like J-Y Girard’s proof-nets [5, 6], their correctness
depends on global geometrical properties of the proof-structures, and so is not a
locally checkable condition. Such an account of proofs is very far fromwhat logicians
have been accustomed to, namely textual structures linking rules of inference picked
out from a catalogue determined in advance, and of which Hilbert’s style systems or
sequents’ derivation systems are paradigmatic instances).
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Moreover, like ideas, proofs also happen to live very well together. Their “socia-
bility” is effective not only at the static level through their modularity (proofs can
be associated, combined, reused), but also dynamically, as normalization precisely
shows by ensuring, in case their combination increases the level of abtraction, that
analytical avatars of the abstract proof still remain “kept in sight”.

Thus far from being absent from proof-theory, the dynamic today has become the
central object of mainstream logical investigations, and a conceptual unification of
both dynamics—that of heuristics and that of proofs’ conversion—is even at hand.4

For all that, is the newfound centrality of the dynamic enough to conclude that
bridges between theory of proof and theory of reasoning are now in sight? A crucial
indication could come from assessing to what extent the intrusion of the dynamic
sheds light on the semantic aspects that reasoning reputedly involves.

3 Referential Aspects of Reasoning Versus
Inferential Nature of Proofs

The uses of sentences fall into two apparently discretemodes. In the inferential mode,
which is completely internal to discourse, sentences are used and linked together
according only to their form, no matter the interpretations they otherwise could
receive. In the referential mode, discourses are “discourses about”—they refer to—
and sentences then are used according to interpretations of their components by
referents external to discourse. The use of sentences in proofs5 provides the paradig-
matic instance of the inferential mode. At the opposite extreme, because reasoning
involves the mental handling of representations (of individuals, structures, concepts,
or whatever), it usually is taken to be an instance of the referential mode. This tra-
ditionally accepted dichotomy, whose unifying principle is given by ‘completeness
theorems’, actually has been deeply disturbed by (relatively) recent proof-theoretical
advances (which happen to confirm in a striking way the relevance of Michael Dum-
mett’s remarks about the replacement of the notion of truth by the notion of proof as
the central notion of the theory of meaning [7]).

As for the prevalence of the inferential mode in proofs, one first has to notice that
proofs, at least analytic (cut-free) ones, being, so to speak, extensional descriptions
of objects or structures, clearly involve ‘internal’ denotation in the sense that they are
but explicit constructions. One may first illustrate this by considering the particular
shape of the analytic proofs of the type of natural integers (or other data types) in
second-order intuitionistic Natural Deduction, namely “Church’s integers”. In this
first example, the reference is so to speak inferentially built: such a proof is but the
standard construction of a given integer (in the Leibniz-Peano sense). Another exam-
ple of such an inferential explicitation of reference is given by the fact that whenever

4 See J-Y Girard’s Ludics [8].
5 i.e. the variousways sentences are concretely handled in proofs (for instance, inNatural Deduction
systems, by such or such “introduction” and “elimination” rules).
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they are in a relevant form, analytic proofs literally describe models: think of the
model (the counter-model) that one literally ‘reads’ in the analytic (pseudo-)proof of
an (unprovable) sentence generated by the (here failed) proof-search strategy used
to prove the completeness theorem for first-order Logic.6

But, of course, the main point is elsewhere. Beyond this first kind of ‘inferential
reference’, subtler accounts of proofs’ denotation have been elaborated by contem-
porary proof theory, gradually realizing, at various levels and with always more
relevance, Heyting’s beautiful original idea of considering proofs as functions and
not simply as texts.

All these semantics are semantics of proofs (as opposed to semantics of sentences),
which means that they approximate the nature of proofs as operators, catching their
“being” as a “doing”7 and revealing the nature of argumentative dealings as com-
putations over rational resources (one recovers a universal operational meaning for
sentences themselves, in case one is able to identify an operational behavior common
to all proofs of a given sentence8).

At one pole, there is denotational semantics, where proofs are directly interpreted
by functions belonging to suited set-theoretically defined functions spaces (in such a
way that the interpretation of proofs is invariable during their normalization). How-
ever, semantics of this kind keep only a shadow of proofs’ dynamic: interpretation
remains too extensional and equalizes computations that should not be considered
as equal and so, semantics fail to spot many intentional dynamic features.

At the opposite pole, one finds operational semantics, the “behaviourist” approach
of thedynamicof proofs.A function is simply identifiedwith theparaphrastic descrip-
tion of the set of all computations steps (of all the sequences of states describing
possible evaluations). The defect in this case is converse to the former one: too much
intentionality also kills off intentionality.

Between these two extreme poles, there is the more recent interaction semantics
(“game semantics” and “ludics”), where dynamic (evaluation) is interpreted as a
structured interaction, described, in the language of Game-Theory, as plays between
processes whose rules structure their inter-communication (and where “conversion
dynamic” and “proof-search dynamic” tend to coincide).

On the other hand, as regards the prevalence of the referential mode concerning
reasoning and its “semantic contents”, etc., one must conversely observe that, while
one does not assume something like a “mental discourse” that would be used when
we are reasoning, the words “referential mode”, which, as they have been intro-
duced above, do only apply to discourses (not to “psychological entities” like ideas),
happen to be used here improperly and mistakenly. Yet, to assume the existence
of such a mental discourse somehow amounts to reduplicating the speaker “inside”
the speaker, thus adopting the old vain prosopopeia of intellectual faculties (whose
aporetic nature, being rather commonly acknowledged, do not require here deeper

6 See for instance: [9].
7 “Church’s integers” for instance, to continue with our example, dynamically appear as iterators.
8 Particular case of Krivine’s “specification problem” [10].
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presentation9). Only one way remains thus open: as soon as reasoning is concerned,
we must completely reverse the traditional view about meaning, now looking at it as
an issue addressed, no longer to sentences, but to processes themselves.

Of course, at first sight, such a radical shift seems to present more new problems
than answers. First of all because as we have seen, the notion of “process” seems very
tricky compared to that of “discourse” (at least insofar as reasoning is concerned), but
also because the account of meaning one henceforth must give in order to escape the
above “reduplication” difficulty could no longer be in terms of something external (as
referents did with respect to discourses), but of something completely internal to the
world of processes. Thus how could meaning generation be a property of processes?
As vague as the notion of process may be, it certainly is in their nature not only to
evolve (amongst the effects produced by a process appear its own transformations),
but also to produce effects on other processes, mutual effects. In short, processes
act and interact. Whatever its technological matter, whatever its implementation, the
essence of a process is completely involved in its (potential) dynamic behavior: not
only its own possible destinies under evaluation, but also the full set of possible
operational effects it will occasion in all possible processes’ interaction contexts.
With respect to semantics, the answer brought by processes is thus of a radically
new kind, which implements the performative way of meaning10: doing, is the way
processes speak.

Enlightened by the theory of proofs’ dynamic, the inferential mode is thus in the
end far from being non-referential. Moreover, the kind of semantics onto which it
opens, do not incur the two major reproaches that the usual modellings of reference
do, namely to award no proper status to abstraction (now caught by computational
complexity and non-analyticity of proofs) and to offer an evaluation-independent
approach to sense. In that connection, it is not the least of the virtues of the opera-
tional viewpoint in Logic that it sheds light not only on the analogy between proofs
conversion and rational dynamic, not only on the inseparability of evaluation and
sense, but even finally, as we are going to see now, on nonsense itself.

4 Correctness of Proofs Versus Indeterminacy of Reasoning

Reasoning in its general sense includes “wrong reasoning”: mistakes, inconsisten-
cies, errances, partiality, revision, interruption of reflection (because of abstruseness,
loops to be broken, breaks to be taken, emergencies or whatever). By contrast, when
proof theory was born at the beginning of the last century, it was certainly not con-
ceived of as including a theory of “non-proofs”. Admittedly, the definition of formal

9 For a synthetic presentation of the sophism of “homoncules”, see [11]. About the “mental lan-
guage” thema, see the beautiful book of Claude Panaccio: “Le discours intérieur” [12].
10 I am borrowing from [13], himself inspired by Austin terminology, the idea of “performativity”,
there used to qualify formal systems of proofs (like Krivine’s AF2) where proofs indeed do (as
programs) what the sentences they are proving “say” they should. For a more complete presentation
and a defense of the concept of “performativity” applied to the semantics of proofs, see [14, 15].
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proof systems that was provided by Logic supplied decision procedures separating
texts accepted as proofs from other texts (provided the catalogue of rules is set).
Although such a definition thus gave a de facto account of what “wrong proofs” are,
their status remained that of garbage, not worth studying.

On these issues, the recent transformations in proof theory, now focused not so
much on proofs themselves as on their dynamic, have broadened the outlook. The
first though not themain point: because once the dynamic is concretely implemented,
occasions for new kinds of mistakes may happen (in the real world, “un pas suffit
pour un faux-pas”11; the evaluation could be interrupted, etc). But overall, because
of the status of proofs having changed, that of non-proofs, as a result, also has
changed. From the proofs-as-programs viewpoint, a proof is no longer just a normed
discourse, but a process whose operationality, tamed by Logic, is “under control”.
This becomes clear once one tackles proofs in computational terms: then a proof is
a typed program, whose typability ensures that certain computational properties are
satisfied (typically: termination, complexity bounds,12 etc). Nevertheless, untypable
programs— those processes that do not correspond to proofs and that Logic fails to
civilize—share with proofs their life as dynamic entities, their computational nature.

The new status that paradoxes acquire when scrutinized from the belvedere of the
dynamic illustrates this radical change of viewpoint. The traditional reasons given to
reject inconsistency, from Aristotle (dialogue become impossible) to modern Logic
(every sentence becomes provable: all of them becoming equivalent, there could be
no meaning), may now be unifyingly reformulated: inconsistency permits the typing
of infinite—and even infinitely silent—computations.13 The point with paradoxical
theories is thus not so much that they violently equalize sentences, but that they
produce computational exuberance, and leads to the degeneration of the evaluation
of meaning.

5 Conclusion

The “naturalness” of Natural Deduction, akin to the way mathematicians historically
have come to write their proofs, is the fruit of the imitative intention which governed
its settlement by Gerhard Gentzen. Any extension of such a “figurative” attempt to
reasoning itself stumbles over our inability to describe and even recognize what we
are suppose to imitate. Because no criterion for the success of the imitation enterprise
is offered when the reasoning is on the line of sight, simulation, imitation, figurativity
have properly no methodological meaning. The best one can try then is, on the one
hand, to recover at most some of the features of this globally uncatchable phenom-
enon (e.g. dynamic features), and on the other hand, to reach some more abstract
form of naturalness appearing in “aesthetic” properties like simplicity, universality,

11 Carlo Goldoni (original italian version not recovered).
12 See [16] and [17].
13 Adding X = ¬X (X an atomic formula), non-normalizable λ-terms like ββ become typable.
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non-diffuseness (cf. proof nets’ sobriety), harmony (input / output rules [18]) or in
“architectonic” properties like modularity, transparent cutting-out into subsystems,
representational strength (complexity)…

Of course the need for such an “artificial naturalness”, could be interpreted as the
sign that, ever further from human thought, the drift of Logic—from its philosophical
origins tomathematics, and now frommathematics to theoretical computer science—
henceforth is, and with no return, consummated. Logic would just have become a
foundational theory of computing, a technical device for designing and studying
computation and programming languages.14 In this connection, the current extension
of the Curry–Howard style approach to new programming devices oriented towards
communication [10] instead of usual recursive computation of data (so ever closer
to technological issues, ever further from what was, century after century, the central
concern of Logic: rational thought) seems somehow to confirm this metamorphosis
of Logic towards technology.

However, the Logical Foundations of Computing could just as well be dually seen
“from the other side of the isomorphism” asComputational Foundations for Logic.15

From this complementary viewpoint, where studied objects are dynamic ones, with
an operationally, interactively built-in evaluation semantics, and among which even
paradoxes receive a relevant dynamic status, Logic has probably never appeared so
close to being the theory of reasoning.
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Natural Deduction for Equality: The Missing
Entity
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Abstract The conception of the very first decision procedures for first-order
sentences brought about the need for giving citizenship to function symbols (e.g.
Skolem functions). We argue that a closer look at proof procedures for first-order
sentences with equality brings about the need for introducing (function) symbols for
rewrites. This is appropriately done via the framework of labelled natural deduction
which allows to formulate a proof theory for the “logical connective” of propositional
equality. The basic idea is that when analysing an equality sentence into (i) proof
conditions (introduction) and (ii) immediate consequences (elimination), it becomes
clear that we need to bring in identifiers (i.e. function symbols) for sequences of
rewrites, and this is what we claim is the missing entity in P. Martin-Löf’s equal-
ity types (both intensional and extensional). What we end up with is a formula-
tion of what appears to be a middle ground solution to the ‘intensional’ versus
‘extensional’ dichotomy which permeates most of the work on characterizing propo-
sitional equality in natural deduction style. (Part of this material was presented at the
Logical Methods in the Humanities Seminar, Stanford University, and the authors
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1 Introduction

The clarificationof the notionof normal form for equality reasoning took an important
step with the work of Statman in the late 1970s [44, 45]. The concept of direct
computation was instrumental in the development of Statman’s approach. By way
of motivation, let us take a simple example from the λ-calculus.

(λx .(λy.yx)(λw.zw))v ∧η (λx .(λy.yx)z)v ∧β (λy.yv)z ∧β zv
(λx .(λy.yx)(λw.zw))v ∧β (λx .(λw.zw)x)v ∧η (λx .zx)v ∧β zv

There is at least a sequence of conversions from the initial term to the final term.
(In this case we have given two!) Thus, in the formal theory of λ-calculus, the term
(λx .(λy.yx)(λw.zw))v is declared to be equal to zv.

Now, some natural questions arise. Are the sequences themselves normal? Are
there non-normal sequences? If yes, how are the latter to be identified and (possibly)
normalized?

When it comes to equality, similar questions arise as to when a sequence of
application of equality principles should be taken to be ‘non-redundant’. Clearly,
successive applications of symmetry should be considered unnecessary. But there
are other combinations of applications of equality principles which will ultimately
prove to be useless as far as the actual proof of equality is concerned.

As rightly pointed out by Le Chenadec in [5], the notion of normal proof has been
somewhat neglected by the systems of equational logic: “In proof-theory, since the
original work of on sequent calculus, much work has been devoted to the normal-
ization process of various logics. Such an analysis was lacking in equational logic
(the only exceptions we are aware of are Statman [44], Kreisel and Tait [19])”. The
works of Statman [44, 45] and Le Chenadec [5] represent significant attempts to
fill this gap. Statman studies proof transformations for the equational calculus E of
Kreisel–Tait [19]. Le Chenadec defines an equational proof system (the LE system)
and gives a normalization procedure.

The intention here is to show how the framework of labelled natural deduction
can help us formulate a proof theory for the “logical connective” of propositional
equality.1 The connective is meant to be used in reasoning about equality between
referents (i.e. the objects of the functional calculus), as well as with a general notion

1 An old question is in order here: what is a logical connective? We shall take it that from the point
of view of proof theory (natural deduction style) a logical connective is whatever logical symbol
which is analysable into rules of introduction and elimination.
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of substitution which is needed for the characterization of the so-called term decla-
ration logics [2]. The characterization of propositional equality may be useful for
the establishment of a proof theory for ‘descriptions’.

In order to account for the distinction between the equalities that are:

definitional, i.e. those equalities that are given as rewrite rules (equations), or else
originate from general functional principles (e.g. β, η, etc.),

and those that are:

propositional, i.e. the equalities that are supported (or otherwise) by an evidence
(a composition of rewrites),

we need to provide for an equality sign as a symbol for rewrite (i.e. as part of the
functional calculus on the labels), and an equality sign as a symbol for a relation
between referents (i.e. as part of the logical calculus on the formulas).

Definitional equalities. Let us recall from the theory of λ-calculus, that:

Definition 1 ([16]) The formal theory of λβη equality has the following axioms:

(α) λx .M = λy.[y/x]M (y /→ FV (M))

(β) (λx .M)N = [N/x]M
(η) (λx .Mx) = M (x /→ FV (M))

(ξ)
M = M ⇒

λx .M = λx .M ⇒

(μ)
M = M ⇒

N M = N M ⇒

(ν)
M = M ⇒

M N = M ⇒N

(ρ) M = M

(σ)
M = N

N = M

(τ )
M = N N = P

M = P

Propositional equality. Again, let us recall from the theory of λ-calculus, that:

Definition 2 ([16], Definition 1.32) P is β-equal or β-convertible to Q (notation
P =β Q) iff Q is obtained from P by afinite (perhaps empty) series ofβ-contractions
and reversed β-contractions and changes of bound variables. That is, P =β Q iff
there exist P0, . . . , Pn (n ≤ 0) such that

P0 ∨ P, Pn ∨ Q,

(≥i ≤ n − 1)(Pi ∧1β Pi+1 or Pi+1 ∧1β PiorPi ∨α Pi+1).
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NB: equality with an existential force.

Remark 3 In setting up a set of Gentzen’s ND-style rules for equality we need to
account for:

1. definitional versus propositional equality;
2. there may be more than one normal proof of a certain equality statement;
3. given a (possibly non-normal) proof, the process of bringing it to a normal form

should be finite and confluent.

The missing entity. Within the framework of the functional interpretation (à la
Curry–Howard [17]), the definitional equality is often considered by reference to a
judgement of the form:

a = b : D

which says that a and b are equal elements from domain D. Notice that the ‘reason’
why they are equal does not play any part in the judgement. This aspect of ‘forgetting
contextual information’ is, one might say, the first step towards ‘extensionality’ of
equality, for whenever one wants to introduce intensionality into a logical system one
invariably needs to introduce information of a ‘contextual’ nature, such as, where
the identification of two terms (i.e. equation) comes from.

We feel that a first step towards finding an alternative formulation of the proof
theory for propositional equality which takes care of the intensional aspect is to
allow the ‘reason’ for the equality to play a more significant part in the form of
judgement. We also believe that from the point of view of the logical calculus,
if there is a ‘reason’ for two expressions to be considered equal, the proposition
asserting their equality will be true, regardless of what particular composition of
rewrites (definitional equalities) amounts to the evidence in support of the proposition
concerned. Given these general guidelines, we shall provide what may be seen as
a middle ground solution between the intensional [21, 22] and the extensional [23]
accounts of Martin-Löf’s propositional equality. The intensionality is taken care by
the functional calculus on the labels, while the extensionality is catered by the logical
calculus on the formulas. In order to account for the intensionality in the labels, we
shall make the composition of rewrites (definitional equalities) appear as indexes of
the equality sign in the judgement with a variable denoting a sequence of equality
identifiers (we have seen that in the Curry–Howard functional interpretation there
are at least four ‘natural’ equality identifiers: β, η, ξ and μ). So, instead of the form
above, we shall have the following pattern for the equality judgement:

a =s b : D

where ‘s’ is meant to be a sequence of equality identifiers.
In the sequel we shall be discussing in some detail the need to identify the kind of

definitional equality, as well as the need to have a logical connective of ‘propositional
equality’ in order to be able to reason about the functional objects (those on the left-
hand side of the ‘:’ sign).
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Term rewriting. Deductive systems based on the Curry–Howard isomorphism [17]
have an interesting feature: normalization and strong normalization (Church–Rosser
property) theorems can be proved by reductions on the terms of the functional cal-
culus. Exploring this important characteristic, we have proved these theorems for
the Labelled Natural Deduction—LND [41, 42] via a term rewriting system con-
structed from the LND-terms of the functional calculus [29]. Applying this same
technique to the LND equational fragment, we obtain the normalization theorems for
the equational logic of the Labelled Natural Deduction System [28, 30, 31].

This technique is used given the possibility of defining two measures of redun-
dancy for the LND system that can be dealt with in the object level: the terms on the
functional calculus and the rewrite reason (composition of rewrites), the latter being
indexes of the equations in the LND equational fragment.

In the LND equational logic [38], the equations have the following pattern:

a =s b : D

where one is to read: a is equal to b because of ‘s’ (‘s’ being the rewrite reason); ‘s’
is a term denoting a sequence of equality identifiers (β, η, α, etc.), i.e. a composition
of rewrites. In other words, ‘s’ is the computational path from a to b.

In this way, the rewrite reason (reason, for short) represents an orthogonal mea-
sure of redundancy for the LND, which makes the LND equational fragment an
“enriched” system of equational logic. Unlike the traditional equational logic sys-
tems, in LND equational fragment there is a gain in local control by the use of
reason. All the proof steps are recorded in the composition of rewrites (reasons).
Thus, consulting the reasons, one should be able to see whether the proof has the
normal form. We have then used this powerful mechanism of controlling proofs to
present a precise normalization procedure for the LND equational fragment. Since
the reasons can be dealt with in the object level, we can employ a computational
method to prove the normalization theorems: we built a term rewriting system based
on an algebraic calculus on the “rewrite reasons”, which computes normal proofs.
With this we believe we are making a step towards filling a gap in the literature on
equational logic and on proof theory (natural deduction).

Kreisel–Tait’s system. In [19] define the system E for equality reasoning as con-
sisting of axioms of the form t = t , and the following rules of inference:

(E1)
E[t/x] t = u

E[u/x]

(E2)
s(t) = s(u)

t = u
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(E3)
0 = s(t)

A
for any formula A

(E4n)
t = sn(t)

A
for any formula A

where t and u are terms, ‘0’ is the first natural number (zero), ‘s(-)’ is the successor
function.

Statman’s normal form theorem. In order to prove the normalization results for the
calculus E Statman defines two subsets of E : (i) a natural deduction-based calculus
for equality reasoning N E ; (ii) a sequent style calculus SE .

The N E calculus is defined as having axioms of the form a = a, and the rule of
substituting equals for equals:

(=)
E[a/u] a ⊃ b

E[b/u]
where E is any set of equations, and a ⊃ b is ambiguously a = b and b = a.

Statman arrives at various important results on normal forms and bounds for proof
search in N E . In this case, however, a rather different notion of normal form is being
used: the ‘cuts’ do not arise out of an ‘inversion principle’, as it is the case for the
logical connectives, but rather from a certain form of sequence of equations which
Statman calls ‘computation’. With the formulation of a proof theory for the ‘logical
connective’ of propositional equality we wish to analyse equality reasoning into its
basic components: rewrites, on the one hand, and statements about the existence of
rewrites, on the other hand. This type of analysis came to the surface in the context
of constructive type theory and the Curry–Howard functional interpretation.

Martin-Löf’s Equality type.There has been essentially two approaches to the prob-
lem of characterizing a proof theory for propositional equality, both of which origi-
nate in P. Martin-Löf’s work on Intuitionistic Type Theory: the intensional [22] and
the extensional [23] formulations.

The extensional version. In [23] and [24] presentations of Intuitionistic Type Theory
P. Martin-Löf defines the type of extensiona propositional equality ‘I ’ (here called
‘Iext ’) as:

Iext -formation
D type a : D b : D

Iext (D, a, b) t ype

Iext -introduction
a = b : D

r : Iext (D, a, b)
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Iext -elimination2
c : Iext (D, a, b)

a = b : D

Iext -equality
c : Iext (D, a, b)

c = r : Iext (D, a, b)

Note that the above account of propositional equality does not ‘keep track of
all proof steps’: both in the Iext -introduction and in the Iext -elimination rules there
is a considerable loss of information concerning the deduction steps. While in the
Iext -introduction rule the ‘a’ and the ‘b’ do not appear in the ‘trace’ (the label/term
alongside the logical formula), the latter containing only the canonical element ‘r’,
in the rule of Iext -elimination all the trace that might be recorded in the label ‘c’
simply disappears from label of the conclusion. If by ‘intensionality’ we understand
a feature of a logical system which identifies as paramount the concern with issues
of context and provability, then it is quite clear that any logical system containing
Iext -type can hardly be said to be ‘intensional’: as we have said above, neither its
introduction rule nor its elimination rule carry the necessary contextual information
from the premise to the conclusion.

And, indeed, the well-known statement of the extensionality of functions can be
proved as a theorem of a logical system containing the Iext -type such as Martin-
Löf’s Intuitionistic Type Theory [24]. The statement says that if two functions return
the same value in their common codomain when applied to each argument of their
common domain (i.e. if they are equal pointwise), then they are said to be (exten-
sionally) equal. Now, we can construct a derivation of the statement written in the
formal language as:

≥ f, gA→B .(≥x A.Iext (B,APP( f, x),APP(g, x)) → Iext (A → B, f, g))

by using the rules of proof given for the Iext , assuming we have the rules of proof
given for the implication and the universal quantifier.

The intensional version.Another version of the propositional equality, which has its
origins in Martin-Löf’s early accounts of Intuitionistic Type Theory [21, 22], and is
apparently in the most recent, as yet unpublished, versions of type theory, is defined
in [46] and [27]. In a section dedicated to the intensional versus extensional debate,
([46], p. 633) says that:

2 The set of rules given in [23] contained the additional elimination rule:

c : I (D, a, b) d : C(r/z)

J(c, d) : C(c/z)

which may be seen as reminiscent of the previous intensional account of propositional equality
[22].
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Martin-Löf has returned to an intensional point of view, as in [21], that is to say, t = t ⇒ → A
is understood as “t and t ⇒ are definitionally equal”. As a consequence the rules for identity
types have to be adapted.

If we try to combine the existing accounts of the intensional equality type ‘I ’ [22,
27, 46], here denoted ‘Iint ’, the rules will look like:

Iint -formation
D type a : D b : D

Iint (D, a, b) t ype

Iint -introduction

a : D

e(a) : Iint (D, a, a)

a = b : D

e(a) : Iint (D, a, b)

Iint -elimination

a : D b : D c : Iint (D, a, b)

[x :D]
d(x):C(x,x,e(x))

[x :D,y:D,z:Iint (D,x,y)]
C(x,y,z) t ype

J(c,d):C(a,b,c)

Iint -equality

a : D

[x : D]
d(x) : C(x, x,e(x))

[x : D, y : D, z : Iint (D, x, y)]
C(x, y, z) t ype

J(e(a), d(x)) = d(a/x) : C(a, a,e(a))

With slight differences in notation, the ‘adapted’ rules for identity type given
in [46] and [27] resembles the one given in [22]. It is called intensional equality
because there remains no direct connection between judgements like ‘a = b : D’
and ‘s : Iint (D, a, b)’.

A labelled proof theory for propositional equality. Now, it seems that an alterna-
tive formulation of propositional equality within the functional interpretation, which
will be a little more elaborate than the extensional Iext -type, and simpler than the
intensional Iint -type, could prove more convenient from the point of view of the
‘logical interpretation’. It seems that whereas in the former we have a considerable
loss of information in the Iext -elimination, in the latter we have an Iint -elimination
too heavily loaded with (perhaps unnecessary) information. If, on the one hand, there
is an overexplicitation of information in Iint , on the other hand, in Iext we have a
case of underexplicitation. With the formulation of a proof theory for equality via
labelled natural deduction we wish to find a middle ground solution between those
two extremes.



Natural Deduction for Equality: The Missing Entity 71

2 Labelled Deduction

The functional interpretation of logical connectives via deductive systems which use
some sort of labelling mechanism [11, 24] can be seen as the basis for a general
framework characterizing logics via a clear separation between a functional calculus
on the labels, i.e. the referents (names of individuals, expressions denoting the record
of proof steps used to arrive at a certain formula, names of ‘worlds’, etc.) and a logical
calculus on the formulas. The key idea is tomake these twodimensions as harmonious
as possible, i.e. that the functional calculus on the labels matches the logical calculus
on the formulas at least in the sense that to every abstraction on the variables of the
functional calculus there corresponds a discharge of an assumption-formula of the
logical calculus. One aspect of such interpretation which stirred much discussion in
the literature of the past 10years or so, especially in connection with Intuitionistic
Type Theory [24], was that of whether the logical connective of propositional equality
ought to be dealt with ‘extensionally’ or ‘intensionally’. Herewe attempt to formulate
what appears to be a middle ground solution, in the sense that the intensional aspect
is dealt with in the functional calculus on the labels, whereas the extensionality
is kept to the logical calculus. We also intend to demonstrate that the connective
of propositional equality (cf. [1] ‘

.=’) needs to be dealt with in a similar manner to
‘Skolem-type’ connectives (such as disjunction and existential quantification), where
notions like hiding, choice and -dependent variables play crucial rôles.

Our motivation: where did it all start? The characterization of a proof theory for
Labelled Deductive Systems has been the concern of some authors for some time
now [12, 39, 40]. Here we address two topics of special interest to logic and compu-
tation, namely substitution and unification. As a starting point, we posed ourselves
two interrelated questions: how could we incorporate the handling of rewrites and
function symbols into the proof theory, and how could we ‘give logical content’, so
to speak, to the procedures coming from unification algorithms?

For those not familiar with the LDS perspective, it suffices at this stage to say
that the declarative unit of logical systems is seen as made up of two components:
a formula and a label. The label is meant to carry information which may be of a
less declarative nature than that carried by the formulas. The introduction of such an
‘extra’ dimension was motivated by the need to cope with the demands of computer
science applications.

Indeed, with the diversification of computer science applications to problems
involving reasoning, there has been a proliferation of logics originated mainly from
the need to tailor the logical system to the demands of the particular application
area. If there were a number of ‘logics’ already developed and well established in
the mathematical and philosophical logic literature (relevant, intuitionistic, mini-
mal, etc.), the diversification was significantly increased with the contribution from
computer science.

Gabbay observed that many of the distinctive features of most logics being stud-
ied by logicians and computer scientists alike, stemmed from ‘meta-level’ consider-
ations: in order to consider a step to be a valid one, it was invariably the case that
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one had to take into account questions like: ‘whether the assumptions have actually
been used’; ‘whether they have been used in a certain order’; ‘whether the number
of times an assumption was used has been in keeping with the need to take care of
resources’; etc.

There are a number of inconveniences in having to cope with increasingly diverse
logical systems, and Gabbay set out a research programmewith at least the following
desiderata:

• to find a unifying framework (sequent calculus by itself would not do, and we shall
see why later on) factoring out meta- from object- level features;

• to keep the logic (and logical steps, for that matter) simple, handling meta-level
features via a separate, yet harmonious calculus;

• to have means of structuring and combining logics;
• to make sure the relevant assumptions in a deduction are uncovered, paying more
attention to the explicitation and use of resources.

The idea of labelled deduction seemed to be a natural evolution from the traditional
logical systems. The development of a novel approach to logic, namely Labelled
Deductive Systems, where the meta-level features would be incorporated into the
deductive calculus in an orderly manner, looked general enough to be an appropriate
candidate for such a unifying framework.

In summary, it seems fair to say that Labelled Deductive Systems offer a new per-
spective on the discipline of logic and computation. Arising from computer science
applications, it provides the essential ingredients for a framework whereby one can
study:

• meta-level features of logical systems, by ‘knocking down’ some of the elements
of the meta-level reasoning to the object-level, and allowing each logical step to
take care of what has been done so far;

• the ‘logic’ of Skolem functions and substitution (dependencies, term declaration).

Why sequent calculus by itself will not do. Boole did manage to formalize the
algebra of logical connectives, with the aspect of duality coming out very neatly.
The sequent calculus follows on this quest for duality:

negative ∇ positive
conjunctive ∇ disjunctive

Nevertheless, since Frege, logic is also about quantifiers, predicates, functions,
equality among referents, etc. In a few words: beyond duality, first-order logic also
deals with quantification in a direct fashion, instead of via, say, Venn diagrams. Thus,
a proof theory for first-order logic ought to account for the manipulation of function
symbols, terms, dependencies and substitutions, as Herbrand already perceived.

We shall see a little more about this later on when we come to a brief discussion
of the so-called ‘sharpened Hauptsatz’. But it seems appropriate to add here that we
are looking for strengthening the connections between Gentzen’s and Herbrand’s
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methods in proof theory. We believe that the two-dimensional approach of LDS is
the right framework for the enterprise. This is because, if, on the one hand:

(+) Gentzen’s methods come with a well-defined mathematical theory of proofs,

and

(+) Herbrand’s method show how to handle function symbols and terms in a direct
fashion,

on the other hand:

(−) in Gentzen’s calculi (plain natural deduction, sequent calculus) function sym-
bols are not citizens,

and

(−) Herbrand’s methods hardly give us means of looking at proofs (deductions)
as the main objects of study.

By combining a functional calculus on the labels (which carry along referents,
function symbols) with a logical calculus on the formulas, the LDS perspective can
have the (+)’s without the (−)’s.

The generality of Herbrand base. Let us take the example which Leisenring uses to
demonstrate the application of Herbrand’s decision procedure to check the validity
of the formula [20]:

◦x .≥y.(P(x) → P(y))

Herbrand’s ‘original’ procedure. The first step is to find the Herbrand resolution
(◦-prenex normal form), which can be done by introducing a new function symbol
g, and obtaining:

◦x .(P(x) → P(g(x)))

As this would be equivalent to a disjunction of substitution instances like:

P(a) → P(g(a)) ⊥ P(a⇒) → P(g(a⇒)) ⊥ P(a⇒⇒) → P(g(a⇒⇒)) ⊥ · · ·

the second step is to find a p-substitution instance (p finite) which is a tautology.
For that, we take the ‘Herbrand base’ to be {a, g}, where a is an arbitrary individual
from the domain, and g is an arbitrary function symbol which can construct, out of
a, further elements of the domain. Thus, the 1-substitution instance is:

P(a) → P(g(a))

which is clearly not a tautology. Now, we can iterate the process, and find the
2-reduction as a disjunction of the 1-reduction and the formula made up with a
2-substitution (taking a⇒ = g(a)), that is:
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P(a) → P(g(a)) ⊥ P(g(a)) → P(g(g(a)))

which is a tautology.
In summary:

1. ◦x .≥y.(P(x) → P(y))

2. take g as a unary function
3. ◦x .(P(x) → P(g(x)))

4. P(a) → P(g(a)) ⊥ P(a⇒) → P(g(a⇒)) ⊥ P(a⇒⇒) → P(g(a⇒⇒)) ⊥ · · ·
5. 1st substitution: P(a) → P(g(a))

6. take a⇒ = g(a)

7. 2nd substitution: P(a) → P(g(a)) ⊥ P(g(a)) → P(g(g(a))) (tautology)

In checking the validity of ◦x .≥y.(P(x) → P(y)) we needed the following extra
assumptions:

1. the domain is non-empty (step 4).
2. there is a way of identifying an arbitrary term with another one (step 6).

As we shall see below, the labelled deductionmethod will have helped us ‘to bring
up to the surface’ those two (hidden) assumptions.

Now, how can we justify the generality of the ‘base’ {a, g}? Why is it that it does
not matter which a and g we choose, the procedure always works? In other words,
why is it that for any element a of the domain and for any ‘function symbol’ g, the
procedure always works?

In a previous opportunity [39] we have already demonstrated the universal force
which is given to Skolem functions by the device of abstraction in the elimination
of the existential quantifier. The point was that although there was no quantification
over function symbols being made in the logic (the logical calculus on the formulas,
that is), an abstraction on the name for the Skolem function was performed in the
functional calculus on the labels. The observation suggested that, as in the statement
of Skolem’s theorem, for any (new) function symbol f we choose when Skolemizing
≥x .◦y.P(x, y) to ≥x .P(x, f (x)), if an arbitrary statement can be deduced from the
latter then it can also be deduced from the former, regardless of the choice of f . We
shall come back to this point later on when we will then demonstrate that in labelled
natural deduction the Herbrand function gets abstracted away thus getting universal
force.

Gentzen–Herbrand connections: the sharpened Hauptsatz. The connections
between the proof theory as developed by Gentzen and the work on the proof theory
of first-order logic by Herbrand are usually seen through the so-called ‘sharpened
Hauptsatz’.

Theorem (Gentzen’s sharpened Hauptsatz)
Given β ∇ α (prenex formulae), if β ∇ α is provable then there is a cut-free,
pure-variable proof which contains a sequent β⇒ ∇ α⇒ (the midsequent) with:

1. Every formula in β⇒ ∇ α⇒ is quantifier free.
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2. No quantifier rule above β⇒ ∇ α⇒.
3. Every rule below β⇒ ∇ α⇒ is either a quantifier rule, or a contraction or exchange

structural rule (not a weakening).

The theorem relies on the so-called permutability lemma which says that quantifier
rules can always be ‘pushed down’ in the deduction tree.

Lemma (Permutability [18])
Let π be a cut-free proof of β ∇ α (with only prenex formulas); then it is possible to
construct another proof π⇒ where:

every quantifier rule can be permuted with a logical or structural rule applied below it (with
some provisos).

(The interested reader will find detailed expositions of the sharpened Hauptsatz in
[18] and [13].)

Example For the sake of illustration, let us construct a sequent-calculus deduction
of the formula used in our original example, i.e. let us build proof of the sequent

∇ ◦x .≥y.(P(x) → P(y))

and see what the midsequent means in this case:

P(b), P(a) ∇ P(b), P(c)

P(b) ∇ P(a) → P(b), P(c)
P(b) ∇ P(c), P(a) → P(b)

∇ P(b) → P(c), P(a) → P(b)

∇ ≥y.(P(b) → P(y)), P(a) → P(b)

∇ ◦x .≥y.(P(x) → P(y)), P(a) → P(b)

∇ P(a) → P(b), ◦x .≥y.(P(x) → P(y))

∇ ≥y.(P(a) → P(y)), ◦x .≥y.(P(x) → P(y))

∇ ◦x .≥y.(P(x) → P(y)), ◦x .≥y.(P(x) → P(y))

∇ ◦x .≥y.(P(x) → P(y))

Note that every rule below the boxed sequent is either a quantifier rule, or a
contraction or exchange rule (no weakenings). Due to the eigenvariable restrictions
to the quantifiers rules (◦ on the left, and ≥ on the right), we had to use contraction
and choose the same b in different instantiations. (As we will see later on, when we
use labelled natural deduction the ‘assumption’ that the first used b is the same as
the other one is introduced as a logical formula using propositional equality.)

With such an example we intend to draw the attention to the fact that although
the sharpened Hauptsatz brings Gentzen’s methods closer to Herbrand’s methods, it
shows how less informative the former is with respect to the latter. The midsequent
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does not mention any function symbol, nor does it point to the inductive nature of
the generation of the so-called ‘Herbrand universe’: the fact that the proof obtains is
related to the ‘meta-level’ choice of the same instantiation constant b.

Back to Frege. The device of variable-binding, and the idea of having terms repre-
senting incomplete ‘objects’ whenever they contain free variables, were both intro-
duced in a systematic way by Frege in his Grundgesetze. As early as [9] developed
in his Grundgesetze I what can be seen as the early origins of the notions of abstrac-
tion and application, when showing techniques for transforming functions (expres-
sions with free variables) into value-range terms (expressions with no free variables)
by means of an ‘introductory’ operator of abstraction producing the Werthverlauf
expression,3 e.g., ‘ε’ f (ε)’, and the effect of its corresponding ‘eliminatory’ operator
‘∀’ on a value-range expression. For example, in ([9], Sect. 34, pp. 52ff), translated
in ([10], p. 92):

(...) it is a matter only of designating the value of the function ε(ξ) for the argument α, i.e.
ε(α), by means of “α” and “ε’ε(ε)”. I do so in this way:

“α ∀ ε’ε(ε)”

which is to mean the same as “ε(α)”.

Note the similarity to the rule of functional application, where ‘α’ is the argument,
‘ε’ε(ε)’ is the function, and ‘∀’ is the application operator ‘APP’.

Expressing how important he considered the introduction of a variable-binding
device for the functional calculus (recall that the variable-binding device for the
logical calculus had been introduced earlier in Begriffsschrift), Frege says:

The introduction of a notation for courses-of-values seems to me to be one of the most
important supplementations that I have made of my Begriffsschrift since my first publication
on this subject. (Grundgesetze I , Sect. 9, p. 15f.)

The idea of forming value-range function-terms by abstracting from the corre-
sponding free variable is in fact very useful in representing the handling of assump-
tions within a natural deduction style calculus. In particular, when the natural deduc-
tion presentation system is based on a ‘labelling’ mechanism the binding of free
variables in the labels corresponds to the discharge of respective assumptions. In the
sequelwe shall be using ‘abstractors’ (such as ‘λ’ in ‘λx . f (x)’) to bind free-variables
and discharge the assumption labelled by the corresponding variable.

Dividing the tasks: a functional calculus on the labels, a logical calculus on the
formulas. We have seen that the origins of variable binding mechanisms, both on the
formulas of logic (the propositions) and on the expressions of the functional calculus
(the terms), go back at least as far as Frege’s early investigations on a ‘language
of concept writing’. Although the investigations concerned essentially the estab-
lishment of the basic laws of logic, for Frege the functional calculus would have

3 Frege ([9], Sect. 3, p. 7), translated as course-of-values in ([10], p. 36), and value-range in most
other translations of Frege’s writings, including the translation of [8] where the term first appeared.
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the important rôle of demonstrating that arithmetic could be formalised simply by
defining its most basic laws in terms of rules of the ‘calculus of concept writing’.
Obviously, the calculus defined in Begriffsschrift, in spite of its functional style, was
primarily concerned with the ‘logical’ side, so to speak. The novel device of binding
free variables, namely the universal quantifier, was applicable to propositional func-
tions. Thus, Grundgesetze was written with the intention of fulfilling the ambitious
project of designing a language of concept-writingwhich could be useful to formalise
mathematics. Additional mechanisms to handle the functional aspects of arithmetic
(e.g. equality between number-expressions, functions over number-expressions, etc.)
had to be incorporated. The outcome of Frege’s second stage of investigations also
brought pioneering techniques of formal logic, this time with respect to the handling
of functions, singular terms, definite descriptions, etc. An additional mechanism of
variable bindingwas introduced, this time to bind variables of functional expressions,
i.e. expressions denoting individuals, not truth-values.

Summarising, we can see the pioneering work of Frege in its full significance if
we look at the two sides of formal logic he managed to formulate a calculus for:

1. the ‘logical’ calculus on formulas (Begriffsschrift)
2. the ‘functional’ calculus on terms (Grundgesetze).

As a pioneer in any scientific activity one is prone to leave gaps and loopholes to
be later filled by others. It happened with Frege that a big loophole was discovered
earlier than he would himself have expected: Russell’s discovery of the antinomies
of his logical notion of set was a serious challenge. There may be several ways
of explaining why the resulting calculus was so much susceptible to that sort of
challenge. We feel particularly inclined to think that the use of devices which were
designed to handle the so-called ‘objects’, i.e. expressions of the functional calculus,
ought to have been kept apart from, and yet harmonised with, the logical calculus on
the formulas. Thus, here we may start wondering what might have been the outcome
had Frege kept the two sides separate and yet harmonious.

Let us for a moment think of a connection to another system of language analysis
which would seem to have some similarity in the underlying ontological assumption,
with respect to the idea of dividing the logical calculus into two dimensions, i.e. func-
tional versus logical. The semantical framework defined in Montague’s [26] inten-
sional logic makes use of a distinction among the semantic types of the objects han-
dled by the framework, namely e, t and s, in words: entities, truth-values, and senses.
The idea was that logic (language) was supposed to deal with objects of three kinds:
names of entities, formulas denoting truth-values, and possible-worlds/contexts of
use. Now, here when we say that we wish to have the bi-dimensional calculus, we are
saying that the entities which are namable (i.e. individuals, possible-worlds, etc.) will
be dealt with separately from (yet harmoniously with) the logical calculus on the for-
mulas, by a calculus of functional expressions. Whereas the variables for individuals
are handled ‘naturally’ in the interpretation of first-order logic with labelled natural
deduction, the introduction of variables to denote contexts, or possible-worlds (struc-
tured collection of labelled formulas), as in [40], is meant to account for Montague’s
senses.
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Reassessing Frege’s two-dimensional calculus. In an attempt to reassess the ben-
efits of having those two sides working together, we would like to insist on the two
sides being treated separately. Thus, instead of binding variables on the formulas
with the device of forming ‘value-range’ expressions as Frege does, we shall have a
clear separation of functional versus logical devices. Cf. the following opening lines
of Grundgesetze I , Sect. 10:

Although we laid it down that the combination of signs “ε’ε(ε) = α’λ(α)” has the same
denotation as “–

a
�– ε(a) = λ(a)”, this by no means fixes completely the denotation of a

name like “ε’ε(ε)”.

Note that both the abstractor ‘’’ and the universal quantifier ‘–�–’ are used for
binding free variables of formulas of the logical calculus such as ‘ε’ and ‘λ’. In
labelled natural deduction we shall take the separation ‘functional versus logical’
more strictly than Frege himself did. While the abstractors will be used to bind
variables in the functional calculus, the quantifiers will be used to bind variables in
the logical calculus. Obviously, variables may be occurring in both ‘sides’, but in
each side the appropriate mechanism will be used accordingly.

We still want to have the device of forming propositional functions, so we still
need to have the names of variables of the functional calculus being carried over
to take part in the formulas of the logical side. That will be dealt with accordingly
when we describe what it means to have predicate formulas in a labelled system.
Nevertheless, abstractors shall only bind variables occurring in expressions of the
functional calculus, and quantifiers shall bind variables occurring in formulas of the
logical calculus. For example, in:

≥-introduction ◦-introduction
[x : D]

f (x) : P(x)

κx . f (x) : ≥x D .P(x)

t : D f (t) : P(t)

εx .( f (x), t) : ◦x D.P(x)

whilst the abstractors ‘κ’ and ‘ε’ bind variables of the functional calculus, the quan-
tifiers ‘≥’ and ‘◦’ bind variables of the logical calculus, even if the same variable
name happens to be occurring in the functional expression as well as in the logical
formula.

Notice that althoughwe are dealingwith the two sides independently, the harmony
seems to be maintained: to each discharge of assumption in the logical calculus there
will correspond an abstraction in the functional calculus. In the case of quantifier
rules, we observe that the introduction of the universal quantifier is made with the
arbitrary name x being bound on both sides (functional and logical) at the same time.
In the existential case the ‘witness’a is kept unbound in the functional calculus,whilst
in the formula the binding is performed.

Here is not really the place to discuss the paradoxes of Frege’s formalised set
theory, but it might be helpful to single out one particularly relevant facet of his
‘mistake’. First, let us recall that the development of mechanisms for handling both
sides of a calculus of concept writing, namely the logical and the functional, would
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perhaps recommend special care in the harmonising of these two sides. We all know
today (thanks to the intervention of the likes of Furth [10], Aczel [1], Dummett [6,
7], Sluga [43], and others) that one of the fundamental flaws of Frege’s attempt to
put the two sides together was the so-called ‘Law V’ of Grundgesetze, which did
exactly what we shall avoid here in such ‘functional interpretation’ of logics: using
functions where one should be using propositions, and vice versa. The ‘Law V’ was
stated as follows:

∇ (ε’ f (ε) = α’g(α)) = (–
a
�– f (a) = g(a))

Here we have equality between terms—i.e. ε’ f (ε) = α’g(α) and f (a) = g(a)—in
a par with equality between truth-values—i.e. the middle equality sign.

In his thorough analysis of Frege’s system, Aczel [1] makes the necessary dis-
tinction by introducing the sign for propositional equality:

(λx . f (x)
.= λx .g(x)) ∃ ≥x .( f (x)

.= g(x)) is true

where ‘
.=’ stands for propositional equality, and ‘∃’ is to mean logical equivalence

(i.e. ‘if and only if’).
Despite the challenges to his theories of formal logic, Frege’s tradition has

remained very strong in mathematical logic. Indeed, there is a tendency among the
formalisms of mathematical logic to take the same step of ‘blurring’ the distinction
between the functional and the logical side of formal logic. As we have already men-
tioned, Frege introduced in the Grundgesetze the device of binding variables in the
functional calculus,4 in addition to the variable-binding device presented in Begriff-
sschrift, but allowed variables occurring in the formulas to be bound not only by the
quantifier(s), but also by a device of the functional calculus, namely the ‘abstrac-
tors’. One testimony to the strength of Frege’s legacy which is particularly relevant
to our purposes here is the formalism described in Hilbert and Bernays’ [14, 15]
book where various calculi of singular terms are established. One of these calculi
was called the ε-calculus, and consisted of an extension of first-order logic by adding
the following axiom schema:

(ε1) A(a) → A(εx A(x)) (for any term ‘a’)
(ε2) ≥x .(A(x) ∃ B(x)) → (εx A(x) = εx B(x))

where any term of the form ‘εx A(x)’ is supposed to denote a term ‘t’ with the
property that ‘A(t)’ is true, if there is one such term.

Now, observe that the addition of these new axioms has to be proven ‘harmless’
to the previous calculus, namely the first-order calculus with bound variables, in
the sense that no formulas involving only the symbols of the language of the old

4 In fact, Frege had already introduced the device which he called Werthverlauf in his article
on ‘Function and Concept’ [8], which, in its turn, may have been inspired by Peano’s functional
notation.
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calculus which was not previously a theorem, is a theorem of the new calculus. For
that one has to prove the fundamental theorems stating that the new calculus is only
a ‘conservative extension’ the old calculus (First and Second ε-Theorems).

The picture becomes slightly different when we follow somewhat more strictly
the idea of dividing, as sharply as we can, the two tasks: let all that has to do with
entities to be handled by the functional calculus on the labels, and leave only what
is ‘strictly logical’ to the logical calculus on the formulas. So, in the case of ε-terms,
we shall not simply replace an existentially quantified variable in a formula (e.g. ‘x’
in ‘◦x .A(x)’) by an ε-term involving a formula (e.g. ‘A(εx A(x))’). Instead, we shall
use ‘ε’ as an abstractor binding variables of the functional calculus, as we have seen
from the rule of ◦-introduction shown previously. In other words, we do not have the
axioms (or rules of inference) for the existential quantifier plus other axiom(s) for
the ε-symbol. We present the existential quantifier with its usual logical calculus on
the formulas, alongside the ε-terms taking care of the ‘functional’ side. And so be it:

◦-introduction ◦-elimination

t : D f (t) : P(t)

εx .( f (x), t) : ◦x D .P(x)

e : ◦x D.P(x)

[u : D, g(u) : P(u)]
d(g, u) : C

INST(e, g’u’d(g, u)) : C

Notice that here the concernwith the ‘conservative extension’ shall be significantly
different from the one Hilbert and Bernays [14, 15] had. We have the ε-symbol
appearing on the label (the functional side, so to speak), and it is only introduced
alongside the corresponding existential formula [35]. (More details of a treatment of
the peculiarities of the existential quantifier are given in [39]. As for the reassessment
of Frege’s two-dimensional logical system and how it fits into the framework of the
Dummett–Prawitz analysis of Gentzen’s idea that the introduction rules give the
meaning of logical connectives, cf. [32–34, 36, 37].)

Identifiers for (Compositions of) Equalities

In the functional interpretation, where a functional calculus on the labels go hand in
hand with a logical calculus on the formulas, we have a classification of equalities,
whose identifications are carried along as part of the deduction: either β-, η-, ξ-, μ-
or α- equality will have been part of an expression labelling a formula containing
‘
.=’. There one finds the key to the idea of ‘hiding’ in the introduction rule, and

opening local (Skolem-type) assumptions in the elimination rule. (Recall that in the
case of disjunction we also have alternatives: either into the left disjunct, or into the
right disjunct.) So, we believe that it is not unreasonable to start off the formalization
of propositional equality with the parallel to the disjunction and existential cases in
mind. Only, the witness of the type of propositional equality are not the ‘a’s and ‘b’s
of ‘a = b : D’, but the actual (sequence of) equalities (β-, η-, ξ-, α-) that might
have been used to arrive at the judgement ‘a =s b : D’ (meaning ‘a = b’ because
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of ‘s’), ‘s’ being a sequence made up of β-, η-, ξ- and/or α-equalities, perhaps
with some of the general equality rules of reflexivity, symmetry and transitivity. So,
in the introduction rule of the type we need to form the canonical proof as if we
were hiding the actual sequence. Also, in the rule of elimination we need to open a
new local assumption introducing a new variable denoting a possible sequence as a
(Skolem-type) new constant. That is, in order to eliminate the connective ‘

.=’ (i.e. to
deduce something from a proposition like ‘

.=D (a, b)’), we start by choosing a new
variable to denote the reason why the two terms are equal: ‘let t be an expression
(sequence of equalities) justifying the equality between the terms’. If we then arrive
at an arbitrary formula ‘C’ labelled with an expression where the t still occurs free,
then we can conclude that the sameC can be obtained from the

.=-formula regardless
of the identity of the chosen t , meaning that the label alongside C in the conclusion
will have been abstracted from the free occurrences of t .

Observe that now we are still able to ‘keep track’ of all proof steps (which does
not happen with Martin-Löf’s Iext -type) [23, 24], and we have an easier formulation
(as compared with Martin-Löf’s Iint -type) [22] of how to perform the elimination
step.

The Proof Rules

In formulating the propositional equality connective, which we shall identify by ‘
.=’,

we shall keep the pattern of inference rules essentially the same as the one used for
the other logical connectives (as in, e.g. [39]), and we shall provide an alternative
presentation of propositional equality as follows:

.=-introduction
a =s b : D

s(a, b) : .=D (a, b)

.=-reduction

a =s b : D

s(a, b) : .=D (a, b)

.= −intr
[a =t b : D]

d(t) : C
REWR(s(a, b), t’d(t)) : C

.= −elim ∧β
[a =s b : D]
d(s/t) : C

.=-induction

e : .=D (a, b)

[a =t b : D]
t (a, b) : .=D (a, b)

.= −intr

REWR(e, t’t (a, b)) : .=D (a, b)

.= −elim ∧η e : .=D (a, b)

where ‘’’ is an abstractor which binds the occurrences of the (new) variable ‘t’
introduced with the local assumption ‘[a =t b : D]’ as a kind of ‘Skolem’-type
constant denoting the (presumed) ‘reason’ why ‘a’ was assumed to be equal to ‘b’.
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(Recall the Skolem-type procedures of introducing new local assumptions in order
to allow for the elimination of logical connectives where the notion of ‘hiding’ is
crucial, e.g. disjunction and existential quantifier—in [39]).

Now, having been defined as a ‘Skolem’-type connective, ‘
.=’ needs to have

a conversion stating the non-interference of the newly opened branch (the local
assumption in the

.=-elimination rule) with the main branch. Thus, we have:

.=-(permutative) reduction

e : .=D (a, b)

[a =t b : D]
d(t) : C

REWR(e, t’d(t)) : C
w(REWR(e, t’d(t))) : W

r ∧ζ
e : .=D (a, b)

[a =t b : D]
d(t) : C

w(d(t)) : W
r

REWR(e, t’w(d(t))) : W

providedw does not disturb the existing dependencies in the term e (themain branch),
i.e. provided that rule ‘r’ does not discharge any assumption on which ‘

.=D (a, b)’
depends. The corresponding ζ-equality is:

w(REWR(e, t’d(t))) =ζ REWR(e, t’w(d(t)))

The equality indicates that the operation w can be pushed inside the ’-abstraction
term, provided that it does not affect the dependencies of the term e.

Since we are defining the logical connective ‘
.=’ as a connective which deals with

singular terms, where the ‘witness’ is supposed to be hidden, we shall not be using
direct elimination like Martin-Löf’s Iext -elimination. Instead, we shall be using the
following

.=-elimination:

e : .=D (a, b)

[a =t b : D]
d(t) : C

REWR(e, t’d(t)) : C

The elimination rule involves the introduction of a new local assumption (and
corresponding variable in the functional calculus), namely ‘[a =t b : D]’ (where ‘t’
is the new variable) which is only discharged (and ‘t’ bound) in the conclusion of
the rule. The intuitive explanation would be given in the following lines. In order to
eliminate the equality

.=-connective, where one does not have access to the ‘reason’
(i.e. a sequence of ‘β’, ‘η’, ‘ξ’ or ‘ζ’ equalities) why the equality holds because ‘

.=’
is supposed to be a connective dealing with singular terms (as are ‘⊥’ and ‘◦’), in
the first step one has to open a new local assumption supposing the equality holds
because of, say ‘t’ (a new variable). The new assumption then stands for ‘let t be
the unknown equality’. If a third (arbitrary) statement can be obtained from this
new local assumption via an unspecified number of steps which does not involve
any binding of the new variable ‘t’, then one discharges the newly introduced local
assumption binding the free occurrences of the new variable in the label alongside
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the statement obtained, and concludes that that statement is to be labelled by the term
‘REWR(e, t’d(t))’ where the new variable (i.e. t) is bound by the ‘’’-abstractor.

Another feature of the
.=-connective which is worth noticing at this stage is the

equality under ‘ξ’ of all its elements (see second introduction rule). This does not
mean that the labels serving as evidences for the

.=-statement are all identical to a
constant (cf. constant ‘r’ inMartin-Löf’s Iext -type), but simply that if two (sequences
of) equality are obtained as witnesses of the equality between, say ‘a’ and ‘b’ of
domain D, then they are taken to be equal under ξ-equality. It would not seem
unreasonable to think of the

.=-connective of propositional equality as expressing
the proposition which, whenever true, indicates that the two elements of the domain
concerned are equal under some (unspecified, hidden) composition of definitional
equalities. It is as if the proposition points to the existence of a term (witness) which
depends on both elements and on the kind of equality judgements used to arrive at
its proof. So, on the logical side, one forgets about what was the actual witness. Cf.
the existential generalization:

F(t)

◦x .F(x)

where the actual witness is in fact ‘abandoned’. Obviously, as we are interested
in keeping track of relevant information introduced by each proof step, in labelled
natural deduction system the witness is not abandoned, but is carried over as an
unbounded name in the label of the corresponding conclusion formula.

t : D f (t) : F(t)

εx .( f (x), t) : ◦x D.F(x)

Note, however, that it is carried along only on the functional side, the logical side
not keeping any trace of it at all.

Now, notice that if the functional calculus on the labels is to match the logical
calculus on the formulas, then we must have the resulting label on the left of the
‘∧β’ as β-convertible to the concluding label on the right. So, we must have the
convertibility equality:

REWR(s(a, b), t’d(t)) =β d(s/t) : C

The same holds for the η-equality:

REWR(e, t’t (a, b)) =η e : .=D (a, b)

Parallel to the case of disjunction, where two different constructors distin-
guish the two alternatives, namely ‘inl’ and ‘inr’, we here have any (sequence
of) equality identifiers (‘β’, ‘η’, ‘μ’, ‘ξ’, etc.) as constructors of proofs for the
.=-connective. They are meant to denote the alternatives available.
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General rules of equality. Apart from the already mentioned ‘constants’ (identi-
fiers) which compose the reasons for equality (i.e. the indexes to the equality on the
functional calculus), it is reasonable to expect that the following rules are taken for
granted: reflexivity, symmetry and transitivity.

Substitution without involving quantifiers. We know from logic programming,
i.e. from the theory of unification, that substitution can take place even when no
quantifier is involved. This is justified when, for some reason a certain referent can
replace another under some condition for identifying the one with the other.

Now, what would be counterpart to such a ‘quantifier-less’ notion of substitution
in a labelled natural deduction system. Without the appropriate means of handling
equality (definitional and propositional) we would hardly be capable of finding such
a counterpart. Having said all that, let us think of what we ought to do at a certain
stage in a proof (deduction) where the following two premises would be at hand:

a =g y : D and f (a) : P(a)

We have that a and y are equal (‘identifiable’) under some arbitrary sequence of
equalities (rewrites) which we name g. We also have that the predicate formula P(a)

is labelled by a certain functional expression f which depends on a. Clearly, if a and
y are ‘identifiable’, we would like to infer that P , being true of a, will also be true of
y. So, we shall be happy in inferring (on the logical calculus) the formula P(y). Now,
given that we ought to compose the label of the conclusion out of a composition of the
labels of the premises, what label should we insert alongside P(y)? Perhaps various
good answers could be given here, but we shall choose one which is in line with our
‘keeping record of what (relevant) data was used in a deduction’. We have already
stated how much importance we attach to names of individuals, names of formula
instances, and of course, what kind of deduction was performed (i.e. what kind of
connective was introduced or eliminated). In this section we have also insisted on
the importance of, not only ‘classifying’ the equalities, but also having variables for
the kinds of equalities that may be used in a deduction. Let us then formulate our
rule of ‘quantifier-less’ substitution as:

a =g y : D f (a) : P(a)

g(a, y) · f (a) : P(y)

which could be explained in words as follows: if a and y are ‘identifiable’ due to
a certain g, and f (a) is the evidence for P(a), then let the composition of g(a, y)

(the label for the propositional equality between a and y) with f (a) (the evidence
for P(a)) be the evidence for P(y).

By having this extra rule of substitution added to the system of rules of inference,
we are able to validate one half of the so-called ‘Leibniz’s law’, namely:

≥x D .≥yD .(
.=D (x, y) → (P(x) → P(y)))
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The LNDequational fragment. As we already mentioned, in the LND equational
logic, the equations have an index (the reason) which keeps all proof steps. The
reasons is defined by the kind of rule used in the proof and the equational axioms
(definitional equalities) of the system.The rules are divided into the following classes:
(i) general rules; (ii) subterm substitution rule; (iii) ξ- and μ-rules.

Since the LND system is based on the Curry–Howard isomorphism [17], terms
represent proof constructions, thus proof transformations correspond to equalities
between terms. In thisway, theLND equational logic can dealwith equalities between
LND proofs. The proofs in the LND equational fragment which deals with equali-
ties between deductions are built from the basic proof transformations for the LND
system, given in [39, 41, 42]. These basic proof transformations form an equational
system, composed of definitional equalities (β, η and ζ).
General rules.

Definition (equation)
An equation in L N DE Q is of the form:

s =r t : D

where s and t are terms, r is the identifier for the rewrite reason, and D is the type
(formula).

Definition (system of equations)
A system of equations S is a set of equations:

{s1 =r1 t1 : D1, . . . , sn =rn tn : Dn}

where ri is the rewrite reason identifier for the i th equation in S.

Definition (rewrite reason)
Given a system of equations S and an equation s =r t : D, if S ∇ s =r t : D, i.e.
there is a deduction/computation of the equation starting from the equations in S,
then the rewrite reason r is built up from:

(i) the constants for rewrite reasons: { ρ,β, η, ζ };
(ii) the ri ’s;

using the substitution operations:

(iii) subL;
(iv) subR;

and the operations for building new rewrite reasons:

(v) σ, τ , ξ, μ.

Definition (general rules of equality)
The general rules for equality (reflexivity, symmetry and transitivity) are defined as
follows:
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reflexivity symmetry transitivity

x : D

x =ρ x : D

x =t y : D

y =σ(t) x : D

x =t y : D y =u z : D

x =τ (t,u) z : D

The “subterm substitution” rule. Equational logic as usually presented has the
following inference rule of substitution:

s = t

sθ = tθ

where θ is a substitution.
Note that the substitution θ “appeared” in the conclusion of the rule. As rightly

pointed out by Le Chenadec in [5], from the view point of the subformula property
(objects in the conclusion of some inference should be subobjects of the premises),
this rule is unsatisfactory. He then defines two rules:

I L
M = N C[N ] = O

C[M] = O
I R

M = C[N ] N = O

M = C[O]
where M , N and O are terms and the context C[_] is adopted in order to distinguish
subterms.

In [29] we have formulated an inference rule called “subterm substitution” which
deals in an explicit way5 with substitutions. In fact, the LND [41, 42] can be seen as
an enriched systemwhich brings to the object language terms, and now substitutions.

Definition (subterm substitution)
The rule of “subterm substitution” is framed as follows:

x =r C | y |: D y =s u : D⇒

x =subL(r,s) C | u |: D

x =r w : D⇒ C | w |=s u : D

C | x |=subR(r,s) u : D

where C is the context in which the subterm detached by ‘| |’ appears and D⇒ could
be a subdomain of D, equal to D or disjoint to D.

The symbols subL and subR denote on which side (L—left or R— right) is the
premiss that contains the subterm to be substituted.

Note that the transitivity rule previously defined can be seen as a special case for
this rule when D⇒ = D and the context C is empty.

5 In [41] de Queiroz and Gabbay recall Girard, who describes the intimate connections between
constructivity and explicitation, and claim that “...one of the aims of inserting a label alongside
formulas (accounting for the steps made to arrive at each particular point in the deduction) is
exactly that of making explicit the use of formulas (and instances of formulas and individuals)
throughout a deduction ...”
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The ξ- and μ-rules. In the Curry–Howard “formulae-as-types” interpretation [17],
the ξ-rule6 states when two canonical elements are equal, and the μ-rule7 states
when two noncanonical elements are equal. So, each introduction rule for the LND
system has associated to it a ξ-rule and each elimination rule has a related μ-rule.
For instance, the ξ-rule and μ-rule for the connective ∧ are defined as follows:

x =u y : A s =v t : B

⊕x, s⊗ =ξ(u,v) ⊕y, t⊗ : A ∧ B

x =r y : A ∧ B

FST(x) =μ(r) FST(y) : A

x =r y : A ∧ B

SND(x) =μ(r) SND(y) : B

Term rewriting system forLND with equality. In [30] we have proved termination
and confluence for the rewriting system arising out of the proof rules given for the
proposed natural deduction system for equality.

Back to our example. Having defined the proof rules for our formulation of propo-
sitional equality, the proof of the logically valid formula used in our example related
to the connections between Gentzen’s and Herbrand’s method would be as follows:

[a : D]

[a =g y : D] [ f (a) : P(a)]
g(a, y) · f (a) : P(y)

λ f.g(a, y) · f (a) : P(a) → P(y)

κy.λ f.g(a, y) · f (a) : ≥yD .(P(a) → P(y))

εx .((κy.λ f.g(x, y) · f (x)), a) : ◦x D.≥yD .(P(x) → P(y))

6 The ξ-rule is the formal counterpart to Bishop’s constructive principle of definition of a set ([4],
p. 2) which says: “To define a set we prescribe, at least implicitly, what we have (the constructing
intelligence) to do in order to construct an element of the set, and what we must do to show that
two elements of the set are equal.” Cf. also ([4], p. 12) Bishop defines a product of set as “The
cartesian product, or simply product, X ∨ X1 × · · · × Xn of sets X1, X2, . . . , Xn is defined to be
the set of all ordered n-tuples (x1, . . . , xn) and (y1, . . . , yn) of X are equal if the coordinates xi and
yi are equal for each i .” See also ([24], p. 8): “... a set A is defined by prescribing how a canonical
element of A is formed as well as how two equal canonical elements of A are formed”. We also
know from the theory of Lambda Calculus the definition of ξ-rule, see e.g. ([3], pp. 23 and 78):
“ξ : M = N ∈ λx .M = λx .N”.
7 The μ-rule is also defined in the theory of Lambda Calculus, see e.g. [25]: “The equational axioms
and inference rules are as follows, where [N/x]M denotes substitution of N for x in M . . . .

(μ)
β � M1 = M2 : σ ∈ τ β � N1 = N2 : σ⇒⇒

β � M1N1 = M2N2 : τ

and is divided into two equalities μ and ν in ([16], p. 66):

(μ)
M = M ⇒

N M = N M ⇒ (ν)
M = M ⇒

M N = M ⇒ N
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Notice, however, that the proof term ‘εx .((κy.λ f.g(x, y) · f (x)), a)’ contains 2
free variables, namely a and g, associated to, respectively, two assumptions:

1. the domain is nonempty: [a : D]
2. there is a way of identifying a term with another one: [a =g y : D]
The variable g, which denotes a sequence of rewrites taking from a to y, has to be
dealt with before the quantification of y. And, from our proof rules defined above,
the assumption ‘[a =g y : D]’ appears in the application of an elimination rule to a
statement like ‘

.=D (a, y)’. Thus, our formal derivation takes the following form:

[a:D]

[r : .=D(a,y)]
[a=g y:D] [ f (a):P(a)]

g(a,y)· f (a):P(y)
λ f.g(a,y)· f (a):P(a)→P(y)

REWR(r,g’λ f.g(a,y)· f (a)):P(a)→P(y)

λr.REWR(r,g’λ f.g(a,y)· f (a)): .=D(a,y)→(P(a)→P(y))

κy.λr.REWR(r,g’λ f.g(a,y)· f (a)):≥yD .(
.=D(a,y)→(P(a)→P(y)))

εx .((κy.λr.REWR(r,g’λ f.g(x,y)· f (x))),a):◦x D .≥yD .(
.=D(x,y)→(P(x)→P(y)))

where the assumption ‘a : D’ is still undischarged (the proof term still carries a
free occurrence of a), thus the proof still rests on the assumption that the domain is
nonempty.

3 Finale

The conception of the very first decision procedures for first-order sentences in the
1920s brought about the need for giving ‘logical’ citizenship to function symbols
(e.g., Skolem functions).Wehave taken the view that a closer look at proof procedures
for first-order sentences with equality brings about the need for introducing what we
have called the “missing entity”: (function) symbols for rewrites. This, we have
argued, is appropriately done via the framework of labelled natural deduction which
allows to formulate a proof theory for the “logical connective” of propositional
equality. The basic idea is that when analysing an equality sentence into (i) proof
conditions (introduction) and (ii) immediate consequences (elimination), it becomes
clear that we need to bring in identifiers (i.e. function symbols) for sequences of
rewrites, and this is what we have claimed should be the missing entity in P. Martin-
Löf’s equality types, both intensional and extensional. What we end up with is a
formulation of what appears to be a middle ground solution to the ‘intensional’
versus ‘extensional’ dichotomy which permeates most of the work on characterising
propositional equality in natural deduction style.
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Paul Hertz’s Systems of Propositions As a
Proof-Theoretical Conception of Logic

Javier Legris

Abstract Paul Hertz was an outstanding German physicist, who also devoted
himself to mathematical logic and wrote a series of papers that remained rather
unnoticed, even if they influenced the development of proof theory and particularly
Gentzen’s work. This chapter aims to examine Hertz’s logical theory placing it in
its historical context and remarking its influence on Gentzen’s sequent calculus. The
analysis of the formal structure of proofs was one of Hertz’s most important achieve-
ments and it can be regarded as an anticipation of a “theory of proofs” in the current
sense. But also, it can be asserted that Hertz’s systems played the role of a bridge
between traditional formal logic and Gentzen’s logical work. Hertz’s philosophical
ideas concerning the nature of logic and its place in scientific knowledge will be also
analysed in this chapter.

Introduction

During the 1920s of the twentieth century, PaulHertz (1881–1940) published in some
German mathematical journals, such as Mathematische Annalen, a series of papers
that influenced the development of proof theory and, particularly, Gentzen’s work.
The very idea of sequent calculi and of structural rules was first conceived in them.
This fact was explicitly acknowledged by Gentzen himself who devoted his first
published chapter to Hertz’s systems. As a matter of fact, the logical work of Hertz
and its influence on Gentzen remained rather unnoticed by logicians. However, Paul
Bernays had a highly positive appraisal of Hertz’s contributions. Alonzo Church
listed in his bibliography almost all of Hertz’s logical writings (see [6], p. 187),
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and also Haskell B. Curry pointed out the importance of Hertz’s contributions in a
historical note in his Foundations of Mathematical Logic ([7], p. 246 ff.).1

Hertz studied Physics and Mathematics in Göttingen, where he earned his PhD
in 1904. He taught in Heidelberg until 1912. In this period, he contributed essen-
tially to statistical mechanics and thermodynamics. According to Bernays, typical
of his research was its conceptual and methodological clarity (see Bernays 1969).
In 1913 he moved to Göttingen again, where he—under the influence of David
Hilbert’s program—became interested in Epistemology and Methodology of Sci-
ence. He edited, together with Moritz Schlick, the work of Hermann von Helmholtz
on Philosophy of Science,2 and received then an appointment to teach on “Metho-
den der exakten Naturwissenschaften” (Methodology of exact natural sciences) in
Göttingen. In 1933, his venia legendi in Göttingen was withdrawn and he received a
research grant from the American Rescue Committee for the University of Geneva
and—from 1936 on—for the German University of Prague. In 1939 Hertz emigrated
to the USA, where he died in 1940 (for further references see Bernays 1969).3

Hertz’s main contributions to logic could be summarized as follows:

1. An Analysis of the structure of proofs.
2. The idea of a system consisting exclusively of structural deductions.
3. The notion of sequent, anticipating GentzenÃŕs sequent calculus.
4. The development of methods for constructing minimal axiom systems.

Hertz’s original interest in logic was largely focused on the formal properties of
axiom systems and his goal consisted in developing reduction methods for axiomatic
systems from which some sort of “minimal” and independent system could be
obtained, that is, a system where proofs should be as elemental as possible. Tak-
ing into account the situation of diferent axiomatic systems for the same theory, he
explicitly thought about the possibility of developing reduction procedures to achieve

1 In his biographical article onHertz, Bernayswrote “DieseUntersuchungen [ofHertz] sindVorlüfer
verschiedener neuerer Forschungen zur mathematischen Logik und Axiomatik, insbesondere hat
G. Gentzens Sequenzenkalkul von den H.schen Betrachtungen über Satzsysteme seinen Ausgang
genommen” ([5], p. 712), and in a chapter on sequent calculi, Bernays asserted: “... in derHertz’schen
Theorie der Satzsysteme ein gewiss bei weitem noch nicht hinsichtlich der möglichen Fragestellun-
gen und Erkenntnisse ausgeschöpftes Forschungs-gebiet der Axiomatik und Logik vorliegt.” ([4],
p. 5, footnote). Haskell Curry in a historical note of his textbook on mathematical logic stated: “For
the present context it is worthwhile to point out that Gentzen was apparently influenced by Hertz
[...] This throws some light on the role of “Schnitt” in the Gentzensystem”. ([7], p. 246 f.). Vittorio
Michele Abrusci wrote an introductory chapter on Hertz’s logical work [1].
2 Together with Moritz Schlick edited Hertz in 1921 the epistemological writings von Helmholtz.
In some of these writings, problems concerning the philosophy and methodology of mathematics
were discussed, especially in relation to the evaluation of non-Euclidean geometry. In these editions
the following papers of von Helmholtz were included “über den Ursprung und die Bedeutung der
geometrischen Axiome”, “über die Tatsachen, die der Geometrie zugrunde liegen”, “Zahlen und
Messen” and “Die Tatsachen in der Wahrnehmung”.
3 Further information about Hertz can be found in the Nachlaβ of Paul Bernays (ETH Zürich),
the Nachlaβ of David Hilbert (Göttingen), biographical notes (not published) by Adriaan Rezus
(Nijmegen), and above all in Hertz’s Nachlaβ located at Archives for Scientific Philosophy, Uni-
versity of Pittsburgh.
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some sort of irreductible (“normal”) axiomatic system (see [10], p. 246). In doing so,
he initiated an investigation of the general properties of axiomatic systems. In this
respect, he referred to “the notion of axiom in general” ([13], p. 427). His research
led him to the idea of Satzsystem (system of propositions), undoubtedly his main
contribution to mathematical logic.

1 Hertz’s Conception of Logic

In Hertz’s sense, a “proposition”, related to a “basic domain” of elements, is an
expression of the forms:

1. a → b,
2. a1, a2, . . . , an → b.

where a1, a2, . . . , an are called the antecedent of the proposition and b its succedent
([12], p. 273). Propositions of the form (1) are called lineal (lineare) propositions,
i.e., they have only one antecedent. Apart from this, he distinguished between propo-
sitions with free individual variables (generally understood as universally quantified)
and propositions with constants which he called, respectively, ‘macropropositions’
(Makrosätze) and ‘micropropositions’ (Mikrosätze).

Hertz proposed different interpretations for these propositions, depending on the
nature of the basic domain (events or predicates). Basically, we can find the following
interpretations:

(i) elements as events (Ereignisse, see [13], p. 459);
(ii) elements as predicates: If the predicates a1, a2, . . . , an satisfy an object, then b

satisfies it too (see [12], p. 273);
(iii) propositions as formal implications “in the sense of Russell” (see [12], p. 247),

that is, they are to be understood as general valid implications between sentences.

According to this, the very symbol → is alternately interpreted either as a logical
relation (between events, predicates or sentences) or as a logical constant, and it
remains unclear which of these interpretations was privileged by Hertz. However,
he conceived the idea of system of propositions in a very abstract way, that is, as a
“complex” of elements.4

It should be noticed that in that time Hertz’s systems of propositions were mainly
seen as a contribution to positive logic (i.e. propositional logic restricted only to
conjunction, disjunction and material implication), which was analysed by Bernays
and others in Göttingen and for which its decidability had already been proved (see
[2], p. 11). In the Grundlagen der Mathematik by Hilbert and Bernays, Hertz is
mentioned related to this field of research (see [17] p. 68 n. 1).

4 “Unter Satz verstehen wir einen Inbegriff eines Komplexes, der auch nur aus einem ein einzigen
Element bestehen kann und antecedens heiβt, und eines Elementes, das succedens heiβt.” ([10],
p. 81)
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With systems of this kind, Hertz aimed to solve the problem of the deductive
closure of formal theories, which was discussed at that time, and probably it was
the main subject of Hertz’s investigations. This problem can be stated as the search
for a general way to determine that every theorem of a deductive system can be
proved. In other words, it consisted in assuring that every theorem is contained in the
system. It was also handled explicitly by Fritz London in his doctoral thesis Über
die Bedingungen der Möglichkeit einer deduktiven Theorie, published in 1923, and
later by Alfred Tarski (see [20], p. 70), but on a completely different background
than Hertz.

He established a minimal set of rules for closed systems of propositions
(geschlossene Satzsysteme), which constituted an antecedent of the structural rules
in Gentzen’s sequent calculus. He considered the case of an “inference system”
(Schlusssystem) consisting in proofs for a system of proposition through these rules.

Following the characterization of closed systems of propositions, they must con-
tain what Hertz called “tautological propositions”, of the form a → a, which are
“essentially logical” propositions.

Appart from this, Hertz realized that the closure of the system depends on both
the rules of the system and the proof procedures in it. In all the papers he wrote
on the subject in the 1920s he presented two basic inference rules, which not only
constituted the minimal set of rules for building closed systems but also played the
role of basic principles defining logical inference. The first rule was a generalization
of transitivity of the arrow and was called by Hertz with the traditional name of
syllogism (Syllogismus). It had the following structure:

a11, a12, . . . , a1n → b1
a21, a22, . . . , a2n → b2

. . .

am1, am2, . . . , amn → bm

a11, . . . , a1n, a21, . . . , a2n, am1, . . . , amn, b1 . . . bm → c

a11, . . . , a1n, a21, . . . , a2n, am1, . . . , amn → c

Hertz conceived this rule as a generalized form of the modus Barbara of the Aris-
totelian syllogistic (if we think the rule as applied to Makrosätze, that is, those propo-
sitions having free variables, which should be understood as universally quantified),
and for him it played a decisive role in the characterization of logic. It constituted
the basis of the whole deductive logic (see his later chapter of 1935). Moreover,
Hertz himself considered his systems of propositions as “the old theory about the
chained inferences according to theModus Barbara” (1929b, p. 178). He understood
‘chained-inferences’ (Kettenschlüsse) as the succesive application of the syllogism
rule in a system of propositions as some kind of sorites.

The second rule is the rule of ‘immediate inference’ (ummitelbarer Schluβ) having
the following form (see [13], p. 463):

a1, a2, . . . , an → b

a1, a2, . . . , am, a1, a2, . . . , an → b
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This rule permits the introduction of every antecedent in a proposition stating also
a kind of monotonicity principle for deductive inferences, another distinctive feature
of logic. When this rule is applied to tautological propositions, the results are logical
propositions, having the form a1, a2, . . . , an, a → a and called trivial propositions
by Hertz.

2 Hertz and Gentzen’s Sequent Calculus

If we restrict ourselves to sequents with only one succedent, the similarities between
Hertz’s rules of syllogism and immediate inference, on the one hand, and the cut rule
and thinning of Gentzen’s sequent calculus, on the other hand are obvious. More-
over, Hertz’s tautological propositions correspond to the logical axioms in Gentzen’s
sequent calculus. In his chapter of 1933 on Hertz, Gentzen fomulated a version of
Satzsysteme, which constituted an intermediate system between Hertz’s system and
the sequent calculus (see [8]). This system contained tautological propositions, a
version of immediate inference -called Verdünnung (thinning) by Gentzen- and the
following simplified version of syllogism:

L → u Mu → v

L M → v

which Gentzen called ‘cut’ (Schnitt).
To show that his rules provided closed deductive systems, Hertz had to analyse the

structure of the proofs generated by them. Thus, he devised a whole proof theory for
systems of propositions. He developed a specific terminology for the description of
proofs (see the second part of Hertz 1923). With the expression ‘chained-inference’
(Kettenschluβ) he referred to orderings in the applications of rules, and he called
‘inference systems’ (Schluβsystem, see [13], p. 467) the derivations resulting from
tautologies by applying the rules of syllogism and immediate inference. These infer-
ence systems have always a tree-structure.

In investigating the structure of proofs, Hertz identified two “proof-methods”
for systems of propositions with lineal propositions, which constitute two different
normal forms for proofs. Following the tradition in formal logic and the usage in logic
textbooks of that time, Hertz called these two forms ‘Aristotelian’ and ‘Goclenian’—
the latter after the German logician Rudolph Göckel (Rodolphus Goclenius, 1547–
1628), who had considered categorical syllogisms of an analogous form. An example
of an Aristotelian normal form is the following:

a→b b→m
a→m m → c

a → c

This normal form is characterized by the fact that the right premiss of each applica-
tion of the syllogism rule is an axiom (or “upper proposition”, see e.g. [13], p. 473 ff.).
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On the contrary, in the Goclenian normal form the left premiss of each application
is an axiom, that is,

a → b b→m m→c
b→c

a → c

That is, the last upper proposition in an Aristotelian normal form is first in a
Goclenian one, and vice versa: the last upper proposition in a Goclenian normal
form is an Aristotelian one.

Hertz devised a procedure for transforming Goclenian normal form into an Aris-
totelian one (see [13], p. 473). This procedure should be a decision method related
to these normal forms (see [13] Sect. 3). A reconstruction of these procedures can
be found in [19].

Thenotionof logical consequence is currently defined among logicians in amodel-
theoretical way, following Tarski’s ideas who defined it as an operation on sets of
formulas (see [20]). Now, if we take into account that syllogism and immediate
inference, togetherwith tautological propositions, determinewhatmust be counted as
closed deductive systems, wemust admit the decisive role they play in characterizing
logical consequence fromaproof-theoretical point of view.So,Hertz initiated another
direction in symbolic logic. By means of his sequent calculus, Gerhard Gentzen
provided a definition of logical consequence. The structural rules for sequent calculi
determine general conditions for deductive inferences and constitute a framework
for defining logical constants. In particular, the rules of cut and thinning, together
with logical axioms of sequent calculi give a characterization of logical consequence
(see [9]).

To some extent, the Tarskian usual definition of logical consequence by means of
the three basic conditions of reflexivity, monotonicity and transitivity was anticipated
by Hertz’s conception. These similarities were acknowledged by Tarski (see [20],
p. 62 fn.).5 Notwithstanding, Hertz has mainly and decisively influenced Gentzen’s
proof-theoretical view on logical consequence.

Hertz considered his rules as the “essence of logic”, as he stated in his contribution
to a conference on mathematical logic that took place later in Geneva in 1934.
According to Hertz, the rule of syllogismus specially disclosed a process that could
be summarized as the search for a middle-term, designated as interpositum by him,
in order to apply this rule (see [15], pp. 249 ff.). The assertion of an implication
S → A implies the existence of an interpositum C , so that S → C and C → A
can be asserted, and this process goes on until the subject finds basic propositions
of some kind. In this process lies the origin of logic. Here, a new formulation of
Aristotle’s main ideas on the nature of syllogism, and its methodological function,
can be found. These ideas were expressed by the inventio medii, the search for a
middle term to construct a syllogism in modus barbara (see [18] A26 43 a 16–24).
However, Hertz emphasized the epistemological aspects. Originally, Hertz regarded

5 Tarski wrote: “The discussion in Hertz, P. (27) has some points of contact with the present
exposition.” ([20], p. 62 fn 1).
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deduction as a kind of mental process. His epistemology book of 1923, Über das
Denken, made reference to logical processes in knowledge (see [11], p. 121).

It is interesting to notice that this process is not itself a deductive procedure. It can
be identified with what is generally called a regressive method, a method for finding
the grounds or justification of a proposition (which is then deduced from them). This
regressive method is opposed to the progressive method, which proceeds from the
grounds to the proposition in a synthetic way. Deduction should be a kind of such
method. The notion of regressive method was dicussed in Göttingen at that time
within Hilbert’s research group, and it should be an essential part of the axiomatic
method, its analytical part, consisting in the differentiation between what counts as
axiom and what as theorem in an axiomatic system, that is, it consists in establishing
the axioms of the system, according to statements of Hilbert (see [16]). The other
part of the axiomatic method would be the progressive part consisting in deducing
theorems from the axioms.

3 Conclusion

In his philosophical papers and in some letters to Paul Bernays, Hertz made reference
in several opportunities to synthetic moments or aspects in logic and it should be
understood in the sense of a combinatorial or progressive process, such as Bernays
stated as well in his philosophical chapter on Hilbert’s proof-theory [3].

Another point connected with this philosophical characterization of logic can
be found in the original motivations of Hertz. In his first paper on Satzsysteme,
Hertz introduced the notion of ideal elements (“ideale Elemente”) in an axiomatic
system to the effect that the number of axioms in the system can be reduced. The
expression “ideal element” was in vogue at that time and it came to be an important
notion in Hilbert’s programme, where a distinction between a real and an ideal part
in mathematics is made. In the case of Hertz, it can be said that he intended to
grasp only some of the purely formal aspects of this notion, excluding semantical
properties. This formal aspects consisted in its connecting real elements and in its
reductive power. He argued that these ideal elements (terms or formulas) serve as a
way to connect real elements. Moreover, these ideal elements provide “an accurate
representation of propositions with real elements”, “propositions with ideal elements
have no meaning in themselves (Bedeutung an sich). Only propositions including
exclusively real elements have meaning” ([10], p. 249).

Hertz gave the following example of a system with the elements a, b, c, d and e
constituting its domain and having the following axioms (on the left), and producing
the following simplified system through the ideal element i (on the right):
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a → d
a → e
b → d
b → e
c → d
c → e

=⇒

a → i
b → i
c → i
i → d
i → e

(see [10], p. 248).
Now, Hertz suggested that molecular propositions could also be seen as ideal

propositions:

Through introduction of ideal propositions, we avoid the use of the words ‘or’ in the
antecedents, and the use of the word ‘and’ in succedents. ([10], p. 262)

This idea can be easily illustrated through the following system:

A1 → B1
A1 → B2
A2 → B1
A2 → B2

which can be reduced alternatively to the systems

A1 → B1 ∧ B2
A2 → B1 ∧ B2

or
A1 ∨ A2 → B1
A1 ∨ A2 → B2

and finally to the system with the only proposition

β → α

where B1 ∧ B2 is the ideal element α and A1 ∨ A2 is the ideal element β. So, the
introduction of molecular propositions in systems of propositions serves the purpose
of reducing the number of axioms.

In this respect, it must be noticed that Hertz did not develop a theory about logical
constants, although it is in someway implicit in his reflexion on the nature of logic and
in the formulation of his systems of propositions. The case of implication is already
mentioned above. In different passages, he considered the case of the disjunction. As
he stated, “The disjuntive judgement is interesting only as a premiss in an inference”
([15], p. 250).6

6 As a whole, Hertz’s conception on logical constants has certain similarities with the idea of logical
constants as “puncuation marks”.
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It seems reasonable to connect these diferents aspects of finding ideal elements,
searching an interpositum, the regressive method and, finally, the existence of syn-
thetic processes in deduction, considering them as the key notions in epistemological
foundations of logic as it was pursued by Hertz.
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On the Structure of Natural Deduction
Derivations for “Generally”

Leonardo B. Vana, Paulo A. S. Veloso and Sheila R. M. Veloso

Abstract Logics for ‘generally’ were introduced as extensions of First-Order Logic
(FOL) for handling assertions with vague notions (e.g., ‘generally,’ ‘most,’ and ‘sev-
eral’) expressed by formulas with generalized quantifiers. Deductive systems have
been developed for such logics. Here, we characterize the structure of derivations in
natural deduction style for filter logic. This characterization extends the familiar one
for FOL.

Keywords Logics for ‘generally’ · Generalized quantifiers · Vague notions· Natural deduction · Derivation structure · Normalization · Minimum formula ·
Minimum segment

1 Introduction

Logics for ‘generally’ (LG’s) were introduced as extensions of First-Order Logic
(FOL) for handling assertions with vague notions (e.g., ‘generally,’ ‘most,’ and
‘several’) expressed by generalized formulas. Deductive systems have been devel-
oped for LGs [1–10].
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With derivation rules that reflect the diverse properties of ‘generally,’ we can
construct natural deduction systems for LGs. These systems, which are constructed
modularly (in that each one can be built from the basic one (BL) by adding appro-
priate rules) are correct, complete, and normalizable [11–14].

The equivalence rule, which characterizes BL , reflects extensionality (equal sets
have the same properties) and can be seen both as an elimination and an introduction
rule. Its interaction with the other ones affects the structure of the derivations, with
consequent loss of some usual properties, e.g., the subformula property.

In this chapter, we present a result analogous to the one of minimum formulas
for normal derivations [15]. Our result is obtained by controlling and minimizing
the number of applications of the equivalence rule, having as a consequence the
characterization of the structure of normal proofs.

The familiar structure of natural deduction derivations, an “hour-glass” form con-
sistingof elimination region and introduction region separatedbyminimumformulas,
is a particular case of our characterization.

In FOL, a path from hypothesis A to conclusion C uses elimination rules (∧) to
reach aminimum formula B and then introduction rules (→) to obtain the conclusion;
its structure can be represented as follows:

A C
∧ →

B

Now, LG’s also handle generalized information and the path structure becomes
as follows:

A C
∧ →

M, ..., N

Here, we now have a frontier region manipulating ‘generally’ (represented by
a quantifier), possibly with several applications of the equivalence rule (⇒): M(⇒
) · · · (⇒)N . In this chapter, we will characterize the inner structure of this frontier
region, roughly as generalized introductions (→) and eliminations (∧), separated
by a single application of the equivalence rule (⇒), namely:

(⇒)

→ ∧
M N

The structure of this chapter is as follows. In Sect. 2, we briefly review some
ideas about logics of ‘generally’ (motivation, syntax, and semantics) and introduce
the idea of marked formulas. In Sect. 3, we present natural deduction systems for
some logics of ‘generally.’ In Sect. 4, we examine the normalization result for the
natural deduction systems for ‘generally’. In Sect. 5, we analyze the structure of the
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normal derivations. Finally, we comment on themain features of our approach and on
on-going work in Sect. 6. The Appendix presents some details of our development.

2 Logics of ‘Generally’

In this section, we briefly review some ideas about logics of ‘generally’ (LGs)
[1, 2, 6]. Their goal is providing a framework for reasoning with distinct notions of
‘generally’ by means of (nonstandard) generalized quantifiers [16, 17].1

subsection*Motivation
Vague notions such as ‘generally,’ ‘rarely,’ ‘most,’ ‘several,’ etc., appear often in

assertions and arguments in ordinary language and in some branches of science [6,
20]. Logics of ‘generally’ (LG’s) are designed to capture distinct intuitive notions of
‘generally.’ We will now illustrate these ideas.

First, consider the universe of Brazilians and imagine that one accepts the two
assertions:

(α) “Brazilians generally shave their legs” and
(β) “Brazilians generally have their faces shaved.”

In this case, one is likely to accept also the assertion:

(≤) “Brazilians generally have their faces shaved or sport a moustache”;

but one is not likely to accept the following assertion:

(∨) “Brazilians generally shave their legs and their faces.”

Next, consider the universe of natural numbers and imagine that one accepts the
two assertions:

(γ) “naturals generally are larger than 15”, and
(δ) “naturals generally do not divide 12”.

Then, one would probably accept also the following two assertions:

(≥) “naturals generally are larger than 15 or even” and
(⊃) “naturals generally are larger than 15 and do not divide 12.”

LG’s provide a framework for capturing distinct notions of ‘generally.’ One builds
a specific logic depending on the particular notion one has in mind. Thus, we will
have a system that allows to conclude (≤) from {(α), (β)}, without obtaining (∨),
whereas a different one that enables one to conclude (≥) and (⊃) from {(γ), (δ)},
although (∩) and (⊃) have similar syntactic structures.

Expressions involving ‘generally,’ or similar vague notions, occur often in asser-
tions and arguments, as in the above examples. We wish to express such assertions
in a precise manner. To express “objects generally have a given property,” we add to
First Order Logic (FOL) a new quantifier ∇ to represent ‘generally.’

1 Actually, the starting point was ultrafilter logic [18] with the aim of providing an alternative
treatment for defaults [19].
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Syntax and Semantics

We now briefly examine syntax and semantics for ‘generally.’
The language for ‘generally’ is obtained by adding the new quantifier ∇ to the

usual FOL syntax.
Given a first-order language L , we will use L∇ for the extension of L by the new

quantifier∇. The formulas of language L∇ are built by the usual formation rules [21],
together with the new (variable binding) rule giving generalized formulas: if v is
variable and A is a formula of L∇ , then so ∇vA is a formula of L∇ . 2

The notions of variable occurring (free) in a formula are as usual. We shall use
the notations occ(A) for the set of variables occurring in formula A and f r(β) for
the set of variables with free occurrences in some formula in the set β of formulas.
We shall also use familiar notions concerning substitution of variables.

An assertion such as “Objects generally have property P” may be understood
as “the set of objects that have the property P is important (among the subsets of
the universe of discourse).” So, one gives the semantics for ‘generally’ by adding
families of sets (those that are considered important) to a usual first-order structure
and extending the definition of satisfaction to ∇.

A modulated structure MK = ◦M,K⊥ consists of a usual structure M together
with a complex K: a family of subsets of the universe M of M. We extend the
definition of satisfaction of a formula in a structure under an assignment s : V ∀ M
to the variables as follows: for a generalized formula ∇vF we define

MK |= ∇vA[s] iff {b ∃ M : MK |= A[s(v �∀ b)]}

belongs to the complex K.3

Other concepts, such as model (MK |= A and MK |= β), are as usual.
On the other hand, the concept of consequence depends on the specific notion of

‘generally’ involved. For instance, the assertions “Sport lovers watch SporTV” and
“Boys generally love sports” appear to lead to “Boys generally watch SporTV.” This
will be correct if the complexes are closed under supersets, which seems reasonable
in the case of ‘many.’ More precisely, we say that a formula A is an up-closed
consequence of a set β of sentences iff MK |= A whenever MK |= β, for every
modelMK whose complex K is closed under supersets (of its universe). We use the
notation β |=S A, where S is the class of up-closed complexes.

In this manner, each notion of ‘generally’ gives rise to a corresponding conse-
quence relation: β |=C A, where C is a given module, i.e., a class of complexes
(sharing some properties).4

2 For instance, the above assertions (α) and (∨) become ∇vlegs(v) and ∇v(legs(v)⊃ f aces(v)).
3 The updated assignment s(v �∀ b) is as usual: it agrees with s on every variable, except v.
4 These consequence relations are extensional: β |=C ⊕v(A ⊗ B) ∀ (∇vA ⊗ ∇vB).
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Besides the basic module B (complexes without restriction), we one can also con-
sider some specific modules, given by their characteristic properties. The following
table shows some properties of complexes.5

Name Property
(⊕) Universe M ∃ K
(∈) Nonvoid ∈ ≡∃ K
(∩) Intersection S ∃ K and T ∃ K∗ S ∩ T ∃ K
(∪) Union S ∃ K and T ∃ K∗ S ∪ T ∃ K
(⊇) Superset S ∩ T ∃ K∗ S ∃ K and T ∃ K

In principle, each combination α of properties from the above table can be used
to define a notion of ‘generally,’ giving rise to a consequence relation. Some of these
modules are familiar, among these we can mention the following ones.

(P) Proper: Universe (⊕) and Nonvoid (∈).
(S) Proper Up-closed: Universe (⊕), Nonvoid (∈) and Superset (⊇).
(L) Proper Lattices: Universe (⊕), Nonvoid (∈), Intersection (∩) and Union (∪).
(F) Proper Filters: Universe (⊕), Nonvoid (∈), Intersection (∩) and Superset (⊇).

Other modules (such as ultrafilters) can be introduced by means of similar prop-
erties. For proper modules, ∇ is between ⊕ and ∃ (the formulas ⊕vA ∀ ∇vA and
∇vA ∀ ∃vA hold), but∇’s do not commute (the formula∇x∇ y A ∀ ∇ y∇x A does
not hold).6 In this chapter, we will focus mainly on the case of filters. Our results
hold also for the cases of proper, up-closed and lattices.7

Marked Formulas

In the next section, we will present deductive systems, in natural deduction style, for
proper filters (‘many’), emphasizing the treatment of generalized formulas. For this
purpose, we will use marked formulas, which have the same intended meaning as
generalized formulas. The specific rules of the logics for ‘generally’ will discipline
the use of marked formulas [12, 22].

5 Note that S ⊆ T iff S = S ∩ T .
6 Formula ∇x∇ yx < y ∀ ∇ y∇xx < y is not satisfied in the naturals with the Fréchet filter (of
the cofinite sets) ([5], p. 158)
7 Note that Union (∪) can be obtained from Superset (⊇). So we have the following hierarchy
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The reason for using marked formulas is as follows. On the one hand, it is conve-
nient to view a generalized formula ∇x A(x) as indecomposable, because instantia-
tion of generalized variables does not hold in LG’s. On the other hand, the interplay
between the generalized quantifier ∇ and other logical constants, such as the propo-
sitional connectives and the usual universal and existential quantifiers, depends on
the specific LG at hand. Marked formulas turn out to be useful for expressing such
interplay.

Also, in the analysis of the structure of derivations, marked formulas play an
important role, highlighting the regions where generalized information is manipu-
lated.

A marked formula has the form ◦A(_)⊥ and is intended to represent a generalized
formula ∇x A(x). The idea is that ‘_’ represents a generic object and ‘◦’ and ‘⊥’
emphazise that A(x) is the scope of a generalized quantifier. More formally, we
consider a new symbol ‘_’ (not in L∇ ). Given a formula A and a variable v of
L∇ , a generic instance of formula A with respect to variable v is the result (noted
A[v/_]) of replacing every occurrence of v in A, if any, by the new symbol ‘_’. The
generic fragment associated to L∇ consists of all such generic instances A[v/_], for
a formula A of L∇ and a variable v. In the generic fragment associated to L∇ , we
allow substitution for the new symbol ‘_’: note that A[v/_][_/w] = A[v/w]. Now,
a marked formula has the form ◦M⊥, where M is a formula of the generic fragment
associated to L∇ . Let L_ be the set of all marked formulas associated to L∇ . We add
L_ to L∇ to obtain L∗, i.e. L∗ = L∇ ∪ L_.8

Wewill use Latin letters and capital Greek letters to denote, respectively, formulas
and sets of formulas of L∇ .9 We extend the familiar definition of rank of a formula
A (notation r(A))10 to formulas in L∗. We add to it the following two clauses:

(∇) for a generalized formula ∇vA: r(∇vA) := r(A)+ 1;
(◦⊥) for a marked formula ◦A[v/_]⊥: r(◦A[v/_]⊥) := r(A)+ 0.5.

8 Generic instances may have ∇ (e.g., ∇x∇ y A(x, y) gives ∇ y A(_, y)), but they have at most one
‘_’ (A(_, _) ≡∃ L_).
9 In general, we will denote formulas in L∇ by the first capital letters of the Latin alphabet (A, B,
C , …); formulas in L_ will be denoted by M , N , …, while formulas in L∗ will be denoted by F, G,
H, ….
10 Recall that the recursive definition of r(A) is as follows:

(Basis) if A is a atomic formula, ⊥ or ˙, then r(A) := 0;
(¬) if A is ¬B, then r(A) := r(B)+ 1;
(b) if A is (B1bB2), where b is a binary connective, then r(A) := r(B1)+ r(B2)+ 1;
(Q) if A is QvB, where Q is ⊕ or ∃, then r(A) := r(B)+ 1.
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3 Natural Deduction Systems for ‘Generally’

We will now review natural deduction systems for some logics of ‘generally’ [11,
12, 22].

We will start with a natural deduction system for the underlying FOL, and we will
extend it so as to cover new formulas: those with the generalized quantifier ∇ and
marked ones. The expected structure of a derivation is a FOL derivation with local
manipulations of ∇.

These systems will have two parameters. We will consider:

• a natural deduction system N D for the underlying FOL (concerning the connec-
tives and the quantifiers, other than ∇),11

• a particular logic of ‘generally’ (concerning the generalized quantifier ∇ and its
behavior with respect to the first-order connectives and the quantifiers).

We will then construct a natural deduction system N D(G), where rules with
marked formulas will serve to manipulate ∇.

The concept of a derivation is as usual and discharge of hypotheses is denoted as
in [23].12

For definiteness, we will consider Classical, Intuitionistic, and Minimal Logic as
underlying FOLs [15]. We will use the following versions of the natural deduction
system N D for the underlying FOL:

(ML) for Minimal Logic: system M L with the usual rules;
(IL) for Intuitionistic Logic: I L = M L ∪ {(Abs)};
(CL) for Classical Logic: C L := I L ∪ {(Ra A)};
Rules (Abs) and (Ra A) (for absurdity ⊥) are as follows:

(Abs) : ⊥
A

and (Ra A) :

β, [¬A]i
ε

⊥
A

i

Natural deduction systems for specific logics of ‘generally’ are obtained by
extending a basic system with appropriate rules.

Natural Deduction for Basic Logic of ‘Generally’

We will now present natural deduction rules for the basic logic of ‘generally’ (com-
plexes without restriction).

11 The rules for¬ and⊗ correspond to viewing¬A as A ∀⊥ and A ⊗ B as (A ∀ B)⊃(B ∀ A).

12 The notation
λ

ε

F
represents a derivation ε of the formula F from the set λ of formulas.
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We start with the rules of a natural deduction system N D for Classical, Intu-
itionistic, or Minimal Logic, and we will extend it to cover generalized and marked
formulas, thereby obtaining a system N D(B).

Since we have marked formulas, we extend some elimination rules of N D to
cover them. More specifically, we extend the elimination rules for disjunction and
existential quantifier to allow a marked conclusion:

(≥E) : A ≥ B

β, [A]i
ε1
F

�, [B]i
ε2
F

F
i (∃E) : ∃x A

β, [A]i
ε

F

F
i

We thus obtain the extended system N D∗ = N D ∪ {(≥E), (∃E)}.13
We have elimination and introduction rules for ∇ (to enter and leave an environ-

ment for ‘generally’):

(∇E) : ∇vA

◦A[v/_]⊥ (∇ I ) : ◦A[υ/_]⊥
∇z A[v/z] (with z ≡∃ occ(A[υ/_]))

We also have a transformation rule for marked formulas, which corresponds to the
extensionality property. The equivalence rule (⇒) is as follows (with v ≡∃ f r(β∪�)):

(⇒) :

β, [A]i
ε1
B ◦A[υ/_]⊥

�, [B]i
ε2
A

◦B[υ/_]⊥ i

In this rule (⇒), the marked formula ◦A[v/_]⊥ is called its major premise and the
discharged unmarked formulas A and B are called its minor premises; derivations
ε1 and ε2 are called lateral14

We can now describe our construction for a basic system by

N D(B) := ND∗ ∪ (B)(where (B) := {(∇I), (∇E), (⇒)}).

We can thus obtain the three basic systems:

M L(B) =ML∗ ∪ (B), IL(B) = IL∗ ∪ (B)] and CL(B) = CL∗ ∪ (B).

In these three basic systems, one can derive

• alphabetic variant: ∇vA ∀ ∇u A[v/u], for u ≡∃ occ[A] (by (∇E) and (∇ I ));

13 Note that in N D∗, the only rules that allow marked formulas in the conclusion are (≥E) and
(∃E).
14 One may regard this rule as eliminating the marked premise and introducing the marked conclu-
sion.
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• extensionality: ⊕v(A ⊗ B) ∀ (∇vA ⊗ ∇vB).

We also have a derivation κ showing that ⊕x⊕y(A(x, y) ⊗ B(x, y)) , ∇x∇ y
A(x, y) �N D(B) ∇x∇ y B(x, y).UsingC for the formula⊕x⊕y(A(x, y) ⊗ B(x, y)),
we can construct such a derivation as follows:

1. We have FOL derivations �′, from C and A(x, y) to B(x, y), and �′′, from C
and B(x, y) to A(x, y) (using (⊕E) and connective rules).

2. With these derivations �′ and �′′, we construct a derivation ε′ of ∇ y B(x, y)

from C and ∇ y A(x, y) to ∇ y B(x, y) (using (∇E), (⇒) and (∇ I )).15

3. Similarly, we construct a derivation ε′′ of ∇ y A(x, y) from C and ∇ y B(x, y).
4. With these derivations ε′ and ε′′, we construct a derivation κ of ∇x∇ y B(x, y)

from C and ∇x∇ y A(x, y) (using (∇E), (⇒) and (∇ I )).16

Natural Deduction for Specific Logics of ‘Generally’

We will now present natural deduction systems for specific logics of ‘generally’.
Natural deduction systems for specific logics of ‘generally’ are obtained by

extending the basic system N D(B) with appropriate rules. Such rules correspond to
the properties of complexes in 2.0 (in Sect. 2).

We wish to create new rules corresponding to the specific properties. The con-
struction hinges on adding new rules for handling marked formulas.

To introduce the basic idea for the construction of a specific logic of generally,
consider the intersection property (∩), expressed by A ∃ K and B ∃ K∗ A∩B ∃ K.
This property can be formulated as a rule:

(∇⊃)
∇vA ∇vB

∇v(A ⊃ B)
.

15 Derivation ε′ is as follows:

(∇ I )
(⇒)

C, [A(x, y)]1
�′

B(x, y)

(∇E)
∇ y A(x, y)

◦A(x, _)⊥
C, [B(x, y)]1

�′′
A(x, y)

◦B(x, _)⊥ 1

∇ y B(x, y)

16 This derivation κ is as follows:

(∇ I )
(⇒)

C, [∇ y A(x, y)]3
ε′

∇ y B(x, y)

(∇E)
∇x∇ y A(x, y)

◦∇ y A(_, y)⊥
C, [∇ y B(x, y)]3

ε′′
∇ y A(x, y))

◦∇ y B(_, y)⊥ 3

∇x∇ y B(x, y)
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This rule (∇⊃) can be reformulated as the following rule (⊃∗ I ) for introducing
⊃ in a marked environment:

(⊃∗ I ) : ◦A [v/_]⊥ ◦B [v/_]⊥
◦(A ⊃ B)[v/_]⊥ .

In a similar manner, one can obtain rules corresponding to the properties in 2.0.
For instance, corresponding to the nonvoid property (∈), one obtains the following
elimination rule, eliminating a marked absurdity:

(⊥∗E) : ◦⊥⊥⊥ .

We will consider the following operational rules corresponding to the properties
of complexes in 2.0:

(˙∗ I ) : ◦A ∀ A⊥ (⊥∗E) : ◦⊥⊥
⊥

(⊃∗ I ) : ◦M⊥ ◦N ⊥◦M ⊃ N ⊥ (⊃∗E) : ◦M ⊃ N ⊥
◦M⊥

◦M ⊃ N ⊥
◦N ⊥

(≥∗ I ) : ◦M⊥ ◦N ⊥◦M ≥ N ⊥
The correspondence between properties of complexes and rules is as follows:

Properties (⊕) (∈) (∩) (∪) (⊇)
Rules (˙∗ I ) (⊥∗E) (⊃∗ I ) (≥∗ I ) (⊃∗E)

Note that rules (˙∗ I ), (⊃∗ I ) and (≥∗ I ) serve to introduce a symbol in a marked
formula, while (⊃∗E) and(⊥∗E) serve to remove a symbol from amarked formula.17

We extend naturally the concepts of major and minor premises [15] to these
operational rules.

Now, a specific logic for ‘generally’s consists of

• an underlying logic L ,
• a particular logic for ‘generally’, with characteristic property set

α ⊆ {(⊕), (∈), (∩), (∪), (⊇)}(cf.2.0).

We can construct a natural deduction system for this logic by considering

17 Also, rules such as (⊃∗ I ) and (⊃∗E) may be regarded as marked versions of the familiar ones.
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• a natural deduction system N D for L ,
• the extension of N D(B) by the rules α∗ corresponding to the properties in α.

We thus obtain the system N D(α) = N D(B)∪α∗. For instance, we can add to the
basic system N D(B) := ND∗ ∪ {(∇I), (∇E), (⇒)} the specific rules
(P) (˙∗ I ) and (⊥∗E) to obtain N D(P) for proper logic;
(S) (˙∗ I ), (⊥∗E) and (⊃∗E) to obtain N D(S) for proper up-closed logic;
(L) (˙∗ I ), (⊥∗E), (⊃∗ I ) and (≥∗ I ) to obtain N D(L) for proper lattice logic;
(F) (˙∗ I ), (⊥∗E), (⊃∗ I ) and (⊃∗E) to obtain N D(F) for proper filter logic.

Example 1 In these specific systems,wehavederivations establishing someexpected
properties, such as ⊕v(A ∀ B),∇vA �N D(S) ∇vB and ∇v¬A �N D(F) ¬∇vA.
To obtain a derivation for the former, consider the following derivation κ (where
derivation ε is as expected):

(∇ I )
(⊃∗E)

(⇒)

[A]1,⊕v(A ∀ B)

ε

A ⊃ B
◦A[v/_]⊥ (⊃E)

[A ⊃ B]1
A

◦(A ⊃ B)[v/_]⊥ 1

◦B[v/_]⊥
∇vB

Derivation κ shows that ⊕v(A ∀ B), ◦A[v/_]⊥ �N D(S) ∇vB. We can now use
(∇E):

⊕v(A ∀ B)
(∇E)

∇vA

◦A[v/_]⊥
κ

∇vB

In the sequel, we will restrict our attention to a logic N D(α) = N D(B) ∪ α∗,
where

• the underlying logic N D is either Minimal Logic M L or Intuitionistic Logic I L ,
and

• α∗ ⊆ {(˙∗ I ), (⊥∗E), (⊃∗ I ), (⊃∗E), (≥∗ I )}.

4 Normalization in Logics for ‘Generally’

In this section, we will summarize the normalization process for our logics M L(α)

and I L(α), with operational rules α∗ ⊆ {(˙∗ I ), (⊥∗E), (⊃∗ I ), (⊃∗E), (≥∗ I )}
[11, 22].

For the systems N D(α) based on Minimal Logic M L or Intuitionistic Logic I L
one can obtain normalized derivations using the same strategies as in [15, 24] to
normalize derivations in M L or in I L .
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The notions of path and (maximal) segment in a derivation in a system N D(α)

are naturally adapted from those notions for the system N D [15].
The redundancies or deviations in a derivation are called maximal segments. A

segment S = (F1, . . . , Fn) in a derivation κ in N D(F) is a maximal segment iff

• either S is a maximal segment in the underlying system N D∗;
• or F1 is the conclusion of an application of one of the rules (Abs) or (⇒) and Fn

is the major premise of an application of an elimination rule or of the rule (⇒).

Examples of maximal segments consisting of a single formula F are as follows:

1. Formula F is both the conclusion of an application of an introduction rule of
N D∗ and the major premise of an application of an elimination rule of N D∗.

2. Formula F is both the conclusion and the major premise of an application of the
(⇒) rule.

Derivations in N D(α) may have other kinds of deviations, due to superfluous
applications of ≥-elimination or of ∃-elimination (involving marked or unmarked
formulas). An application (α) of the ≥-elimination or of the ∃-elimination rules
is superfluous iff there exists a subderivation of a minor premise of (α) from the
hypotheses β of the derivation, such that in β there is no discharged hypothesis of
the application (α). One can show that superfluous applications can be eliminated
[11, 22].

We will now examine more closely the maximal segments, considering the under-
lying logic of N D(α).

First, we will consider the maximal segments in M L(B).
When the underlying logic is Minimal Logic, besides the occurrences of the

maximal segments of M L , one can also have occurrences of maximal segments
involving generalized and marked formulas.

The maximal segments of length 1 (with only one formula) in the system M L(B)

which contain generalized or marked formulas are as follows.

(⇒); (⇒) A (⇒); (⇒) segment consists of a marked formula ◦B[x/_]⊥ that is
both the conclusion and the major premise of an application of the (⇒)

rule. The (⇒); (⇒) segments can be eliminated by and gluing lateral
derivations (after renaming variables properly).

(∇ I ); (∇E) A (∇ I ); (∇E) segment consists of a marked formula∇vA[_/v] which
is both the conclusion of an application of the rule (∇ I ) and the premise
of an application of the (∇E) rule. The (∇ I ); (∇E) segments can be
eliminated as follows:

(∇ I )

κ1
◦A[v/_]⊥

(∇E)
∇z A[v/z]

◦A[v/z][z/_]⊥
κ2

∗
κ1

◦A[v/_]⊥
κ2
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Note that for a maximal segment S = (A1, . . . , An), with n > 1, in a derivation
in M L(B), an application of an introduction rule of a connective or a quantifier c
or an application of the rule (⇒) does not immediately precede an application of the
c elimination rule or an application of the rule (⇒). Thus, none of the reductions
presented above can be applied. In order to eliminate S, we employ the following
procedure: first, reverse the order of the applications of the rules, by applying the
so called permutative reductions [11], to reduce S to a unary maximal segment S′;
then, by applying one of the reductions presented above, eliminate S′.

Now, in M L(α) = M L(B)∪α∗, we can have maximal segments having a marked
formula ◦M⊥ as the conclusion of an application of the rule (⊃∗ I ) (introduction of ⊃
within a marked formula) and the major premise of an application of the rule ⊃∗E
(elimination of ⊃ within a marked formula):

(⊃∗ I ); (⊃∗E) A (⊃∗ I ); (⊃∗E) segment consists of a marked formula ◦M1 ⊃ M2⊥
that is both the conclusion of an application of the (⊃∗ I ) rule and
premise of an application of the (⊃∗E) rule. One can eliminate such
maximal segments with the following reduction (where i ∃ {1, 2}):

(⊃∗ I )

κ1
◦M1⊥

κ2
◦M2⊥

(⊃∗E)
◦M1 ⊃ M2⊥
◦Mi ⊥
ε

∗
κi

◦Mi ⊥
ε

The reductions involving applications of ≥-elimination and ∃-elimination rules
(with marked or unmarked formulas) turn out to be permutative reductions.

Next, we will consider the case of I L(α) having intuitionistic logic as the under-
lying logic.

In the natural deduction system for Intuitionistic Logic [15, 24], applications of
rule (Abs) can be restricted to those whose conclusions are atomic formulas. In a
similar way, in the systems I L(B) and I L(α), applications of (Abs) are restricted
to those ones whose conclusions are atomic or generalized formulas.

The kinds of maximal segments that can occur in a derivation in I L(F) are as
follows:

(I L∗) Maximal segments of I L∗, namely

• maximal segments of M L(F) (eliminated as before), and
• maximal segments involving applications of the rule (Abs) (which can be elimi-
nated as well).

(Abs); (∇E); (⇒) A (Abs); (∇E); (⇒) segment consists of consecutive applica-
tions of (Abs), (∇E) and (⇒). One can eliminated such maximal
segments as follows:
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(⇒)

[A]i
ε′
B (∇E)

(Abs)

κ

⊥
∇vA

◦A[v/_]⊥

[B]i
ε′′
A

◦B[v/_]⊥ i ∗ (∇E)

(Abs)

κ

⊥
∇vB

◦B[v/_]⊥
A derivation without occurrences of maximal segments and without superfluous

applications of ≥-elimination or of ∃-elimination is said to be in normal form.
Thus, we have the normalization result for N D(α) (when N D is M L or I L and

α∗ is as above). Every derivation κ in N D(α) can be normalized: reduced to a
derivation κ′ in normal form.

5 Minimum Segment in Logics for ‘Generally’

Wewill now present the minimum segment result for our logics M L(α) and I L(α),
with operational rules α∗ ⊆ {(˙∗ I ), (⊥∗E), (⊃∗ I ), (⊃∗E), (≥∗ I )}.

First, we can naturally split a path of a derivation into sub-paths without applica-
tions of (⇒):

ρ1 (⇒) ρ2 (⇒) . . . (⇒) ρn

The next remark follows by a familiar argument.

Remark 2 Letκ be a normal derivation in N D(F). In every path ofκwithout appli-
cations of (⇒) an application of an introduction rule does not precede an application
of an elimination rule.

What about the general situation? To establish that a set belongs to a filter, it
suffices to show that it includes a finite intersection of sets in the filter. This natural
strategy provides derivations.

Example 3 For instance, one can show that ∇vA1,∇vA2,⊕v[(A1 ⊃ A2) ∀ B]
�N D(F) ∇vB as follows (where κ′ is like the derivation κ in Example 1 ??):

(∇ I )

(⊃∗ I )
(∇E)

∇vA1

◦A1[v/_]⊥ (∇E)
∇vA2

◦A2[v/_]⊥
◦(A1 ⊃ A2)[v/_]⊥

κ′
B

∇vB

The marked region of this derivation goes from ◦A1[v/_]⊥ and ◦A2[v/_]⊥ to
◦B[v/_]⊥. It begins with (⊃∗ I ) and proceeds with (⇒) followed by (⊃∗E), the latter
two within κ′ (cf. Example 1). So, the structure of each path from ◦Ai [v/_]⊥ to
◦B[v/_]⊥ is (⊃∗ I ); (⇒); (⊃∗E).
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We will examine the structure of normal derivations in N D(α) (when N D is M L
or I L and α∗ is as above). We will show that every such derivation (not entirely
within FOL) has paths with the following structure:

Here, these three regions (each one of them possibly empty) are as follows:

TM: The [T M] part generates marked formulas, entering the marked environment.
MS: The minimum segment [M S] manipulates marked formulas.
FM: The [F M] leaves the marked environment.

Now, a marked region may have several applications of (⇒). In this case, we can
convert the derivation to a normal one where each path has a central marked region
much as in Example3: applications of (⊃∗ I ), followed by at most one application
of (⇒) and ending with applications of (⊃∗E).

In this sequel, we will outline the steps for establishing our minimum seg-
ment result for derivations in a logic N D(α) = N D(B) ∪ α∗, where α∗ ⊆
{(˙∗ I ), (⊥∗E), (⊃∗ I ), (⊃∗E), (≥∗ I )} and N D is M L or I L .

The next result follows from the form of the rules of N D(α).

Lemma 4 Let κ be a normal derivation in N D(α). In every path of κ an applica-
tion of an introduction rule of N D∗ does not precede an application of an elimination
rule of N D∗.

Now, notice that the conclusion of an application of an introduction rule of N D∗
cannot be a marked formula or a generalized formula. Also, applications of the rule
(˙∗ I ) occur always at the top of a marked environment and applications of the rule
(⊥∗E) occur always at the bottom of a marked environment. Thus, one has just three
kinds of environments (sequences of formulas) in a path of a N D(α) derivation.

(UE) An environment of unmarked formulas that are premises of elimination rules
of N D∗.

(GM) An environment with generalized or marked formulas.
(UI) An environment of unmarked formulas that are premises of introduction rules

of N D∗.

Furthermore, the path will present the following pattern:
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The rules that can occur in the environment (GM) with generalized or marked
formulas are

• the basic rules (∇E), (∇ I ) and (⇒), as well as
• the operational rules (˙∗ I ), (⊥∗E), (⊃∗E), (⊃∗ I ) and (≥∗ I ).

Once again, the form of the rules gives the next remark.

Remark 5 Letκ be a normal derivation in N D(α). Consider the environment (GM)
with generalized or marked formulas in a path of κ.

• An application of (∇E) or (⊥∗E) cannot precede applications of the other rules.
• An application of (∇ I ) or (˙∗ I ) cannot be preceded by applications of the other
rules.

Thus, the environment (GM) with generalized or marked formulas has the fol-
lowing structure.

1. An application of (∇ I ) or (˙∗ I ) introducing the first marked formula.
2. Applications of (⇒), (⊃∗E), (⊃∗ I ) and (≥∗ I ), transforming marked formulas.
3. An application of (∇E) or (⊥∗E) eliminating the last marked formula.

Thus, the structure of a path is as follows.18

(U E)
︷ ︸︸ ︷
A E(N D∗) B

(G M)
︷ ︸︸ ︷
(

(∇E)

(˙∗ I )

)
M

{
(⊃∗E)

(⇒)

(⊃∗ I ), (≥∗ I )

}ω

N

(
(∇ I )

(⊥∗E)

)
(U I )

︷ ︸︸ ︷
C I (N D∗) D

Now, we may reorganize this structure as follows:

A E(N D∗) B

(
(∇E)

(˙∗ I )

)

︸ ︷︷ ︸
[T M]

M

{
(⊃∗E)

(⇒)

(⊃∗ I ), (≥∗ I )

}ω

N

︸ ︷︷ ︸
[M S]

(
(∇ I )

(⊥∗E)

)
C I (N D∗) D

︸ ︷︷ ︸
[F M]

18 We use () for alternative applications and {}ω for finitely many applications.
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These three regions are as follows:

TM The [T M] part has only applications of elimination rules of N D∗, possibly
followed by (∇E) or (˙∗ I ).

MS The minimum segment [M S] manipulates marked formulas by (⇒) as well as
(⊃∗E), (⊃∗ I ) and (≥∗ I ).

FM The [F M] part has possibly applications of (∇E) or (⊥∗E) followed by intro-
duction rules of N D∗.

If a derivation has no marked formulas, then it is a derivation in the underlying
logic N D.

Now, we will examine the minimum segment result for derivations in the basic
logic N D(B).

Consider a path in a normal derivation in N D(B) with marked formulas.
Imagine that the path has no application of the (⇒) rule. Then, it is as follows:

In this case, the formula ◦A[v/_]⊥ constitutes the minimum segment of the path.
Now, imagine that the path has an application of (⇒). Then, it is as follows:

In this case, the minimum segment of the path consists of the formulas ◦A[v/_]⊥
and ◦B[v/_]⊥.

Note that in a path of a normal derivation in N D(B) can have at most one appli-
cation of the rule (⇒).19

Therefore, a path of a normal derivation in N D(B) has one of the following forms.

(0) No marked formula: AE(N D∗)B = C I (N D∗)D, with [M S] = ∈ and mini-
mum formula B.

(1) One marked formula: AE(N D∗)B(∇E)M = N (∇ I )C I (N D∗) D, with mini-
mum segment (M).20

(2) Two marked formulas: AE(N D∗)B(∇E)M(⇒)N (∇ I )C I (N D∗ )D, with min-
imum segment (M, N ).21

In general, a minimum segment of N D(α) may have several applications of (⇒).
In this case, we wish to convert the derivation to a normal one where each path has a

19 Otherwise, the derivation would not be normal.
20 Here, B, M and C are respectively ∇vB ′, ◦B ′[v/_]⊥ and ∇u B ′[v/u].
21 Notice that M is obtained from A by elimination rules and C is obtained from N by introduction
rules.
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minimum segment with applications of (⊃∗ I ), followed by at most one application
of (⇒) and ending with applications of (⊃∗E).

To achieve this goal, we move applications of marked introductions (⊃∗ I ) and
(≥∗ I ) toward the beginning of the path and applications ofmarked elimination (⊃∗E)

toward the end of the path (this can be done by resorting to logical equivalences in the
underlying logic). We handle consecutive applications of (⇒) as before (cf. (⇒); (⇒)

segments in Sect. 4).

Example 6 Consider the following derivation κ (in N D(S)) with 2 applications of
(⇒).

(⇒)

β3, [C]2
κ3
D

(⊃∗E)

(⇒)

β1, [A]1
κ1

B ⊃ C

β
�

◦A[v/_]⊥
β2, [B ⊃ C]1

κ2
A

◦(B ⊃ C)[v/_] 1

◦C[v/_]⊥
β4, [D]2

κ4
C

◦D[v/_]⊥ 2

ε

We will eliminate this double application of (⇒) of derivation κ.
Reversing the applications of (⊃∗E) and (⇒), we obtain the following derivation

κ′:

(⊃∗E)

(⇒)

β3, [B ⊃ C]2
κ′3

B ⊃ D
(⇒)

β1, [A]1
κ1

B ⊃ C

β
�

◦A[v/_]⊥
β2, [B ⊃ C]1

κ2
A

◦(B ⊃ C)[v/_] 1
β4, [B ⊃ D]2

κ′4
B ⊃ C

◦(B ⊃ D)[v/_] 2

◦D[v/_]⊥
ε

Here, subderivations κ′
3 and κ′

4 are as expected.
22 Now, this derivation κ′ has 2

consecutive applications of (⇒), which we can handle as before.

In general, we can proceed as follows (where ◦ is ⊃ or ≥):
(⊃∗E); (◦∗ I ) To commute a marked elimination (⊃∗E) immediately followed by

amarked introduction (◦∗ I ), we use the logical equivalence between
(A⊃B)◦C and (A◦C)⊃(B ◦C). We can thus convert (⊃∗E); (◦∗ I )
to (◦∗ I ); (⇒); (⊃∗E), using FOL derivations �′, from (A ⊃ B) ◦ C
to (A◦C)⊃ (B ◦C), and�′′, from (A◦C)⊃ (B ◦C) to (A⊃ B)◦C ,
as follows:

(◦∗ I )
(⊃∗E)

κ1◦(A ⊃ B)[v/_]⊥
◦B[v/_]⊥

κ2◦C[v/_]⊥
◦(B ◦ C)[v/_]⊥

ε

⇓

(⊃∗E)

(⇒)

[(A ⊃ B) ◦ C]k
�′

(A ◦ C) ⊃ (B ◦ C)

(◦∗ I )

κ1 κ2◦(A ⊃ B)[v/_]⊥ ◦C[v/_]⊥
◦[(A ⊃ B) ◦ C][v/_]⊥

[(A ◦ C) ⊃ (B ◦ C)]k
�′′

(A ⊃ B) ◦ C

◦[(A ◦ C) ⊃ (B ◦ C)][v/_]⊥ k

◦(B ◦ C)[v/_]⊥
ε

22 For instance, κ′
3 starts with 2 (⊃E)’s, uses κ3 and ends with (⊃I ).
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(⇒); (◦∗ I ) To commute an application of (⇒) immediately followed by amarked
introduction (◦∗ I ), we use substitutivity of equivalents (A ⊗ B �
(A ◦ C) ⊗ (B ◦ C)). We can thus convert (⇒); (◦∗ I ) to (◦∗ I ); (⇒).

(◦∗ I )
(⇒)

β1, [A]i
�1
B

κ1
◦A[v/_]⊥

β2, [B]i
�2
A

◦B[v/_]⊥ i
κ2

◦C[v/_]⊥
◦(B ◦ C)[v/_]⊥

ε

⇓

(⇒)

β1, [A ◦ C] j

�′
1

B ◦ C
(◦∗ I )

κ1 κ2
◦A[v/_]⊥ ◦C[v/_]⊥
◦(A ◦ C)[v/_]⊥

β1, [B ◦ C] j

�′
2

A ◦ C

◦(B ◦ C)[v/_]⊥ j

ε

Here, derivations �′
1 and �′

2 are obtained from �1 and �2 as
expected.

(⊃∗E); (⇒) To commute a marked elimination (⊃∗E) immediately followed by
an application of (⇒), we use substitutivity of equivalents. We can
thus convert (⊃∗E); (⇒) to (⇒); (⊃∗E), as follows:

(⇒)

β1, [B]i
�1
C

(⊃∗E)

κ

◦(A ⊃ B)[v/_]⊥
◦B[v/_]⊥

β1, [C]i
�2
B

◦C[v/_]⊥ i

ε

⇓

(⊃∗E)

(⇒)

β1, [A ⊃ B] j

�′
1

A ⊃ C

κ

◦(A ⊃ B)[v/_]⊥
β2, [A ⊃ C] j i

�′
2

A ⊃ B

◦(A ⊃ C)[v/_]⊥ j

◦C[v/_]⊥
ε

Here, derivations �′
1 and �′

2 are obtained from �1 and �2 as
expected.

(⊃∗E); (⊃∗E) We can also eliminate consecutive applications of marked elimina-
tion (⊃∗E), by resorting to logical equivalence between A⊃(B⊃C)

and (A⊃B)⊃C . Thus,we can convert (⊃∗E); (⊃∗E)) to (⇒); (⊃∗E),
using FOL derivations �′, from A ⊃ (B ⊃ C) to (A ⊃ B) ⊃ C , and
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�′′, from (A ⊃ B) ⊃ C to A ⊃ (B ⊃ C), as follows:

(⊃∗E)

(⊃∗E)

κ

◦[A ⊃ (B ⊃ C)][v/_]⊥
◦(B ⊃ C)[v/_]⊥
◦C[v/_]⊥
ε

⇓

(⊃∗E)

(⇒)

[A ⊃ (B ⊃ C)]k
�′

(A ⊃ B) ⊃ C

κ

◦[A ⊃ (B ⊃ C)][v/_]⊥
[(A ⊃ B) ⊃ C]k

�′′
A ⊃ (B ⊃ C)

◦[(A ⊃ B) ⊃ C][v/_]⊥ k

◦C[v/_]⊥
ε

With these conversions, one can convert a derivation to one where the minimum
segments are as desired. Actually, one must be careful, as one may introduce new
maximal segments, but these in lateral paths (of higher order).23 So, one eliminates
these inversions frompaths of an order and normalizes the resulting derivation, which
may introduce new inversions, but of higher order. Paths of maximal order have no
application of (⇒). Thus, one can convert each normal derivation in our N D(α) to
a normal one where the minimum segments have at most one application of (⇒):
M{(⊃∗ I ), (≥∗ I }ω P (⇒) Q {(⊃∗E)}ωN .24

Hence, a normal derivation in N D(α)with nonempty minimum segment has one
of the following forms.

(0) No application of (⇒)

minimum segment [F M] = M {(⊃∗E)}ω P {(⊃∗ I ), (≥∗ I )}ω N , with minimum
formula P. path:

A E(N D∗) B

(
(∇E)

(˙∗ I )

)
[F M]

(
(∇ I )

(⊥∗E)

)
C I (N D∗) D

(1) One application of (⇒)
minimum segment [F M] = M {(⊃∗ I ), (≥∗ I )}ω P (⇒)Q {(⊃∗E)}ω N , mini-
mum formulas M and N ; possible maximal formulas P and Q. path

A E(N D∗) B

(
(∇E)

(˙∗ I )

)
[F M]

(
(∇ I )

(⊥∗E)

)
C I (N D∗) D

The case of one application of (⇒) has a simpler structure for some logics.

(B) For basic logic N D(B) ( as seen above):
minimum segment [F M] = M (⇒) N , minimum formulas M and N. path:

23 The definition of order of a path is as usual [15, 24].
24 See the appendix for more details.
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A E(N D∗) B (∇E) [F M] (∇ I ) C I (N D∗) D

(P) For proper logic ND(P)
minimum segment [F M] = M (⇒) N , path:

A E(N D∗) B

(
(∇E)

(˙∗ I )

)
[F M]

(
(∇ I )

(⊥∗E)

)
C I (N D∗) D

(S) For proper up-closed logic N D(S)

minimum segment [F M] = M(⇒) Q {(⊃∗E)}ω N , with minimum formulas
M and N; possible maximal formula Q. path:

A E(N D∗) B

(
(∇E)

(˙∗ I )

)
[F M]

(
(∇ I )

(⊥∗E)

)
C I (N D∗) D

(L) For proper lattice logic N D(L)

minimum segment [F M] = M {(⊃∗ I ), (≥∗ I )}ω P (⇒) N , with minimum
formulas M and N ; possible maximal formula P. path:

A E(N D∗) B

(
(∇E)

(˙∗ I )

)
[F M]

(
(∇ I )

(⊥∗E)

)
C I (N D∗) D

(F) For proper filter logic N D(F)

minimumsegment [F M] = M {(⊃∗ I )}ω P (⇒)Q {(⊃∗E)}ω N ,withminimum
formulas M and N ; possible maximal formulas P and Q. path:

A E(N D∗) B

(
(∇E)

(˙∗ I )

)
[F M]

(
(∇ I )

(⊥∗E)

)
C I (N D∗) D

These considerations can be summarized as follows:

Theorem 7 Every derivation in a logic M L(α) or I L(α), with α∗ ⊆ {(˙∗ I ),
(⊥∗E), (⊃∗ I ), (⊃∗E), (≥∗ I )} can be transformed into a normal one where each
path has at most one application of the rule (⇒).

In general, a path in a normal derivation in our N D(α) has one of the following
patterns:

−
A C
∧ →

F
with minimum formula F

−
A P (⇒) Q C
∧ → ∧ →

M N
with

minimum formulas Mand N
and possibly
maximal formulas Pand Q
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6 Conclusion

We now comment on the main features of our approach and on on-going work.
We have examined natural deduction systems for ‘generally.’ We have character-

ized the structure of normal derivations in such systems, generalizing the minimum
formula result in FOL [15].

Logics for ‘generally’ (LGs) were introduced as extensions of FOL for handling
assertions with vague notions (e.g., ‘generally,’ ‘most,’ ‘several’) expressed by gen-
eralized formulas. Deductive systems have been developed for LGs. With derivation
rules that reflect the diverse properties of ‘generally,’ we can modularly construct
natural deduction systems for LG’s, which are correct, complete, and normalizable.
In our deductive systems, we use marked formulas, to handle more easily the inter-
action of the ∇ quantifier with the other logical constants, since the behavior of ∇
depends on the logic for ‘generally’ being considered.

The equivalence rule, which characterizes BL , reflects extensionality (equal sets
have the same properties) can be seen both as an elimination and an introduction rule.
The interaction of this rule with the other ones affects the structure of the derivations,
with consequent loss of some usual properties, e.g., subformula property.

In FOL, a path from hypothesis A to conclusion C uses elimination rules (∧) to
reach aminimum formula B and then introduction rules (→) to obtain the conclusion;
its structure can be represented as follows:

A C
∧ →

B

Now, LGs also handle generalized information, and the path structure becomes
as follows:

A C
∧ →

M, …, N

The frontier region manipulates marked formulas, possibly with several applica-
tions of the equivalence rule (⇒). We have characterized the inner structure of this
frontier region, in terms of marked introductions (→) and eliminations (∧), as well
as the equivalence rule (⇒), as follows:

M N
∧ → or

(⇒)

→ ∧
M N

Thus, a path in a normal derivation in our N D(α), e.g. filter logic, has one of the
following patterns:
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−
A C
∧ →

F
with minimum formula F

−
A P (⇒) Q C
∧ → ∧ →

M N
with minimum formulas Mand N

This result extends the familiar one for FOLderivations [15].Our result is obtained
by controlling and minimizing the number of applications of the equivalence rule.

Here, we have restricted our attention to the cases where the underlying logic
is minimal or intuitionisitic logic. We expect to extend our analysis to the case of
classical logic bymeans of strategies as those in [25, 26].We also have sequent calculi
for ‘generally’ [14].Weplan to employ these ideas to provide a better characterization
of such sequent calculi derivations.

In conclusion, we have characterized the structure of derivations involving ver-
sions of (nonstandard) generalized quantifiers corresponding to some notions of
‘generally’. As such, this approach may be expected to pave the way for proof meth-
ods and automatic theorem provers for logics of ‘generally’ (cf. [3, 8]).

Appendix A

Now, we will present some details of our development.
The notions of path, thread and (maximal) segment in a system N D(α) are natural

adaptations of those notions for the system N D [15].
Consider a derivation κ in a system N D(α).
A sequence (F1, . . . , Fn) of formula occurrences is a thread in κ iff

1. F1 is a top-formula in κ;
2. Fi stands immediately above Fi+1 in κ for each i < n; and
3. Fn is the end-formula of κ.

A sequence (F1, . . . , Fn) is a path in κ iff

1. F1 is a top-formula inκ that is not discharged by an application of (≥E) or (∃E);
2. for each i < n, Fi is a minor premise of an application of (∀ E), and

(a) either Fi is not the major premise of (≥E) or (∃E), and Fi+1 is the formula
occurrence immediately below Fi ,

(b) or Fi is the major premise of an application α of (≥E) or (∃E), and Fi+1 is
an assumption discharged in κ by α;

3. the end-formula Fn is either a minor premise of (∀ E) or a major premise of an
application α of (≥E) or (∃E) such that α does not discharge any assumption.

A segment in κ is a sequence (F1, . . . , Fn) of consecutive formula occurrences
in a thread in κ such that
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1. F1 is not the consequence of an application of (≥E) or (∃E);
2. for each i < n, Fi is a minor premise of an application of (≥E) or (∃E); and
3. Fn is not the minor premise of an application of (≥E) or (∃E).

A segment S in a derivation κ is a maximal segment iff

• the first formula in S is the conclusion of an application of an introduction rule,
and the last formula in S is the major premise of an application of an elimination
rule.

• if S = (F1, . . . , Fn) (with n > 1), then:

– F1 is the conclusion of an application of one of the rules: (Abs), (Ra A), (⇒)

and Fn is the major premise of an application of an elimination rule; or
– F1 is the conclusion of an application of the (⇒) rule and Fn is the major premise
of an application of the (⇒) rule.

• if S = (F), then:

– F is both the conclusion of an application of one of the rules (Abs) or (Ra A)

and the major premise of an application of an elimination rule of N D∗; or
– F is both the conclusion and the major premise of an application of the (⇒) rule.

Let κ be a derivation of G from a set of formulas β in N D(α) and let ρ =
(F1, . . . , Fn) be a path in κ. Then, the order of ρ, denoted by o(ρ), is defined as
follows:

o(ρ) =
{
0 if Fn = G
o(ρ′)+ 1 if Fn is a minor premise of an applicationrule of path ρ′

The order of a derivation is the maximum order of its paths.
Consider a derivation κ of order M . For each n (0 ≤ n ≤ M), let multin(κ) be

the set consisting of all paths of order n with more than one application of rule (⇒).
Notice that multiM (κ) = ∈.

Now, consider a normal derivation κ with some multik(κ) ≡= ∈ and let n be
the least among these. For each path ρ ∃ multin(κ), apply the conversions in
Sect. 5 (including the reductions for (⇒); (⇒) in Sect. 4) to obtain a derivation κ′

n ,
in which every path of order up to n has at most one application of (⇒) and no
maximal segment. However, a path of order n + 1 ≤ M may have more than one
application of rule (⇒) as well as maximal segments. Now, normalize κ′

n to obtain
κn . In κn , every multik(κ), for 0 ≤ k ≤ n is empty. Applying this process, we
construct normal derivations κn, . . . , κM−1, where in κM−1 every path of order
up to M − 1 has at most one application of (⇒) and no maximal segment. Note that
multiM (κM−1) = ∈.
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Type Theories from Barendregt’s Cube
for Theorem Provers

Jonathan P. Seldin

Abstract Anybody using a theorem prover or proof assistant will want to have
confidence that the system involved will not permit the derivation of false results. On
some occasions, there is more than the usual need for this confidence. This chapter
discusses some logical systems based on typed lambda-calculus that can be used for
this purpose. The systems are natural deduction systems, and use the propositions-
as-types paradigm. Not only are the underlying systems provably consistent, but
additional unproved assumptions from which a lot of ordinary mathematics can
be derived can also be proved consistent. Finally, the systems have few primitive
postulates that need to be programmed separately, so that it is easier for a programmer
to see whether the code really does program the systems involved without errors.

Theorem provers and proof assistants are used for a variety of purposes. For some of
these purposes, including many cases of formal verification, these theorem provers
must be trusted. Among the conditions needed for a trusted system are the following:

• Consistency. It must not be possible to derive a contradiction in the system.
• Confidence in the implementation. The user must have good reason to believe that
the coding for the implementation really does accurately program the formal logic
involved, and does not accidently include extra principles.

In some cases, it is also necessary for the theorem prover to be small, for example
in proof carrying code (PCC) [1, 2]. PCC is designed to provide computer users
installing new software evidence that the software is safe: the software code is to
include a formal proof that the software satisfies certain safety conditions (such as
not writing to the wrong memory locations), and the computer on which the software
is installed is to have a theorem prover that checks this formal proof. In order not to
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interfere with other computer operations, the theorem prover needs to be small. In
order to provide the necessary assurance to the user, it must be trusted.

In this chapter, we look at some formal systems that can be used for theorem
provers or proof assistants of this kind.

I would like to thank Roger Hindley for his helpful comments and suggestions.

1 Barendregt’s λ-Cube

Definition 1 The λ-cube of Barendregt [3] is a collection of eight systems of type
assignment to λ-calculus. The systems all have the same syntax:

M −→ x |c|Prop|Type|(M M)|(λx : M . M)|(⇒x : M)M.

Here Prop and Type are special constants called sorts; s, s≤, and s1, etc., will be
used for sorts.1 Conversion will be β-conversion, generated by

(λx : A . M)N � [N/x]M,

where [N/x]M denotes the substitution of N for all free occurrences of x in M ,
with bound variables being changed to avoid conflicts. Judgements are of the form
β ∨ M : A, where β is

x1 : A1, x2 : A2, . . . , xn : An .

The systems all have the same axiom, namely

Prop : Type.

They all have the following general rules in common:

(start) If x ≥⊃ FV (β)
β ∨ A : s

β, x : A ∨ x : A

(weakening) If x ≥⊃ FV (β)

β ∨ A : B β ∨ C : s
β, x : C ∨ A : B

(application)
β ∨ M : (⇒x : A)B β ∨ N : A

β ∨ M N : [N/x]B

1 It is common to use * for Prop, � for Type. I formerly referred to sorts as kinds [21–25].
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(abstraction) If x ≥⊃ FV (β)

β, x : A ∨ M : B β ∨ (⇒x : A)B : s
β ∨ λx : A . M : (⇒x : A)B

(conversion)
β ∨ A : B β ∨ B ≤ : s B =β B ≤

β ∨ A : B ≤

The systems are differentiated by the following specific rules:

(ss≤ rule) If x ≥⊃ FV (β)

β ∨ A : s β, x : A ∨ B : s≤
β ∨ (⇒x : A)B : s≤ ,

where the different systems depend on the possible values of s and s≤. Here are some
of the specific systems:

• λ →, related to simple type assignment: Both s and s≤ must be Prop.
• λ2, related to second-order typed λ-calculus: s≤ must be Prop.
• λP , related to AUT-QE and LF: s must be Prop.
• λω, related to Girard’s Fω: If s is Prop, so is s≤.
• λC , Calculus of constructions: s and s≤ can both be of either kind.

HOL, which is Church’s simple type theory [9], which is not in the λ-cube, is a
subsystem of λC . λC is the strongest system in the λ-cube; all the other systems are
subsystems of it. Similarly, λ → is a subsystem of all other systems in the cube.

These systems all have some advantages for the purposes we consider in this
chapter:

• They can all be proved consistent by proving a strong normalization theorem. The
proof of this theorem varies from one system to another; the proof for stronger
systems is a stronger proof than that for weaker systems. As Gödel’s Second
Theorem tells us, each of these proofs uses means of proof which cannot be
formalized in the system involved.

• They all have a small number of primitive postulates, which means that when they
are implemented there are few places for programming errors to occur.2

They do have one feature which might be considered as a disadvantage: they are
impredicative. However, all the known predicative systems suffer from the disadvan-
tage that they have a large number of primitive postulates. It thus appears that we
can have the advantages of a small number of postulates (with the consequence of
a relatively small chance of an error in programming) or else predicativity. My own

2 Compare this to the system Nuprl [10], which has over one hundred primitive postulates, each of
which must be programmed separately in implementation.
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personal view is that a small number of primitive postulates is more important than
predicativity, especially since in practice, most clients for such systems will probably
never have heard of predicativity.

The formulation given here is the one given by Barendregt as a Pure Type System
(PTS) [3], and, in the case of the calculus of constructions, is much closer to the
original formulation of Coquand and Huet [11] than the formulation I used in my
previous chapters on this subject [21–25]. The main difference is that before an
environment β can appear in a deduction in the formulation given here, it must be
proved well-formed by proving that

β ∨ Prop : Type,

whereas in the formulation I formerly used, being well-formed was shown to be
necessary for the discharge of assumptions by conditions on the rules corresponding
to (abstraction) and the (ss≤ rule). For

x1 : A1, x2 : A2, . . . , xn : An

to be well-formed means that

• The variable xi does not occur free in A1, A2, . . . , Ai (but it may occur free in
Ai+1, . . . , An), and

• x1 : A1, x2 : A2, . . . xi−1 : Ai−1 ∨ Ai : s for some sort s.

From now on, all environments will be assumed to be well-formed.

2 Representing Logic with Equality

Logic is represented in these typed systems by the propositions-as-types interpreta-
tion, which is also known as the Curry-Howard isomorphism [14]. The idea is that
the types are interpretated as formulas or propositions, and the terms are interpreted
as proofs or deductions. It is not hard to see that deductions in any of these systems
using the rules for (application) and (abstraction) follow the constructions of the
terms involved, and the other rules play the auxiliary role of determining when these
two rules, and especially the rule for (abstraction), can be legally applied.

The notation A →B is used for the type (⇒x : A)B when x does not occur free
in B. As a type, A →B is the type of functions whose arguments are in type A and
whose values are in type B. When A : Prop and B : Prop, the type A →B will be
interpreted as the implication from A to B, and the notation A ⊃ B will often be
used for this. The rule (application) gives us modus ponens, and the rule (abstraction)
gives us implication introduction in the usual sense of natural deduction.
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The other connectives and quantifiers are defined to the extent that they can be
defined in the various systems of the λ-cube3:

Definition 2 The connectives and quantifiers are defined as follows:

• If A : Prop and B : Prop, use A ∇ B for (⇒w : Prop)((A ⊃ B ⊃ w) ⊃ w). The
terms of type A ∇ B are pairs with projections, and their types give us the usual
properties of conjunction in natural deduction.

• If A : Prop and B : Prop use A ◦ B for

(⇒w : Prop)((A ⊃ w) ⊃ ((B ⊃ w) ⊃ w))

Terms of type A ◦ B are disjoint unions with injections, and their types give us
the usual properties of disjunction in natural deduction.

• Define void ⊥ ∀ ⊥ (⇒x : Prop)x . If A : Prop, use ¬A for A ⊃ ∀. This
gives us the usual properties of intuitionistic negation. Furthermore, it follows
from the strong normalization theorem that there is no closed term M such that
∨ M : void.

• If A : Prop and x : A ∨ B : Prop, then use (∃x : A)B for

(⇒w : Prop)((⇒x : A)(B →w) →w).

Terms of type (∃x : A)B are pairs (differently typed from those of type A ∇ B)
with a left projection but (for technical reasons) no right projection. The types
involved give us the usual natural deduction rules for the existential quantifier.

• If A : s, M : A and N : A, use M =A N for

(⇒z : A →Prop)(zM ⊃ zN ).

This is called Leibniz equality. It is easy to prove that it satisfies the reflexive,
symmetric, and transitive laws and that equals under this equality can always be
replaced by equals.

With these definitions, we have a higher-order intuitionistic logic.
We can also define a Boolean type:

Bool ⊥ (⇒u : Prop)(u →u →u),

T ⊥ λu : Prop . λx : u . λy : u . x,

F ⊥ λu : Prop . λx : u . λy : u . y.

Here T and F have distinct normal forms. The usual truth functions are easy to
define, but none of them are identified with the connectives and quantifiers defined
above.

3 See [22, Sect. 6].
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3 Adding Unproved Assumptions

The higher-order intuitionistic logic with equality that we have seen above is not
enough for practical theorem provers and proof assistants. We will also need to allow
for new postulates in the form of unproved assumptions. Adding such assumptions
is easy: to make A an assumption, just add c : A as a new assumption, where c
is a new atomic constant. New atomic constants can be obtained from variables by
simply deciding not to make substitutions for them. In an implementation, variables
and constants are just identifiers anyway, and any computer implementation allows
for any number of those.

However, adding unproved assumptions in this way can cause problems with
consistency. The basic system is consistent, as noted above. However, it is easy to
come up with a set of new assumptions which leads to a contradiction:

c1 : Prop, c2 : c1, c3 : ¬c1.

The contradiction that follows from these assumptions does not in any way negate
the consistency that follows from the strong normalization theorem. Nevertheless, it
is important to avoid them in any practical application.

Definition 3 A set β of assumptions is consistent if there is no term M such that
β ∨ M : ∀. This is equivalent to: there is no term N such thatβ, x : Prop ∨ N : x ,
where x ≥⊃ FV(β).

We now want to prove consistent sets of assumptions that are useful in practical
applications of theorem-proving. The best way to do this is to prove these consis-
tency results for the strongest system we are considering, namely the calculus of
constructions. The results so obtained will then follow for all those weaker systems
in which the assumptions can be typed. In some weaker systems, the results can be
used to justify assuming new assumptions. For example, in λ →, our definition of
conjunction cannot be typed. However, we can add a new constant α, take A ∇ B as
an abbreviation for αAB, and then add the following assumptions:

• α : Prop →Prop →Prop.
• and.in : λx : Prop . λy : Prop . x →y →αxy.
• and.left : λx : Prop . λy : Prop . αxy →x .
• and.right : λx : Prop . λy : Prop . αxy →y.

The fact that the resulting system can be interpreted in a stronger system (the
calculus of constructions) in which these assumptions are interpreted as provable
results shows that adding them to λ → will not lead to contradiction.
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4 The Consistency of Unproved Assumptions

In order to obtain the consistency results we desire, we need to consider normalizing
deductions as well as terms.

Deduction Normalization A deduction of the form

where x ≥⊃ FV(β, A), A =β C , and B =β D, reduces to

β, x : A ∨ M : B
β ∨ N : C
β ∨ N : A

(conversion)

β ∨ [N/x]M : [N/x]B
(substitution lemma)

β ∨ [N/x]M : [N/x]D.
(conversion)

The substitution lemma is proved for all systems of the λ-cube in [3, Lemma
5.1.11].

Strong normalization holds for deductions with this reduction relation.
Note that this kind of reduction step is related to the kind of implication reduction

step considered by Prawitz in [20]:

1[A]
D1
B

A ⊃ B
⊃ I − 1D2

A
B

⊃ E

D3
C

reduces to D2
A
D1
B
D3
C.

Here, as part of the reduction step, the deduction

D2
A
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is placed above all occurrences of A as an undischarged assumption in

A
D1
B.

This part of the reduction step corresponds to the use of the Substitution Lemma
above. But the use of the substitution lemma is more complicated. This is because in
order to make use of an assumption in a deduction, it must be made the conclusion
of the (start) rule, and so, unlike ordinary natural deduction, the assumption does not
occur at a leaf of the tree. In fact, the only way to make as assumption occur at the
top of a branch is to define a branch to start at the conclusion of an inference by rule
(start).

One of the main features of normalized deductions used in [20] is that if the
deduction ends in an elimination rule, then the only inferences which can occur in
the main branch are other inferences by elimination rules, and so the assumption at
the top of the main branch is not discharged. This form of reasoning applies here as
well, provided that we understand that the assumption at the top of the main branch
is on the right side of the conclusion of an inference by (start). The rules are written
here so that the main branch is always the leftmost branch, so the main branch will
sometimes be referred to as the “left branch”.

There are certain kinds of inferences that we want to avoid in the main branch of
a deduction if we are to have consistency. Let β be

A : Prop, w : (⇒z : A →Prop)(zN ), x : Prop.

What we want to avoid is the following:

β ∨ w : (⇒z : A →Prop)(zN )

...
β ∨ λy : A . x : A →Prop

β ∨ w(λy : A . x) : (λy : A . x)N
(application)

β ∨ w(λy : A . x) : x .
(conversion)

In order to avoid this, we define a class of assumptions that cannot occur undis-
charged at the top of the main branch in which such an inference occurs:

Definition 4 Let β be an environment of the form

x1 : A1, x2 : A2, . . . , xn : An .

For each i , let Ai convert to

(⇒yi1 : Bi1)(⇒yi2 : Bi2) . . . (⇒yimi : Bimi )Si ,
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where Si , the tail of Ai , does not convert to a term of the form (⇒z : C)D.4

Then β is strongly consistent if for each Ai for which mi > 0 and Si converts
to zi Mi1Mi2 . . . Mil , if zi is a variable, then the tail of its type does not convert to
Prop.

A strongly consistent environment is consistent.
This definition is very weak. A strongly consistent environment cannot contain

any types of the form A ∇ B, A ◦ B, ∀, ¬A, (∃x : A)B, or M =A N .
Although a strongly consistent environment cannot contain negations of types,

there are consistent environments that can. See [22, Definition 27].

Theorem 5 Let β1 be a well-formed environment in which each type is the negation
of an equation between terms with distinct normal forms, and let β2 be strongly
consistent. Then if, for B : s and a closed term R,

β1, β2 ∨ R : M =B N ,

then M =β N.

This is [22, Theorem 20]. The idea behind the proof is to show that the deduction
ending in R : M =B N must have the form

In this deduction, the inference by (conversion) is only valid if M =∗ N and R1 is u.
In showing that the deduction is of this form, it is necessary to show in each case that
the formula in question cannot be the conclusion of an inference by (application),
and this is shown by reasoning about the assumption at the top of the main branch if
it is: the assumptions z : B →Prop and u : zM can both be in a strongly consistent
environment, and it cannot be any of those, and if it is in β1, then the minor premise
would have to have a conclusion of the form M ≤ =B≤ N ≤, contrary to the hypothesis
that we are dealing with the shortest deduction of that kind.

Note that a consequence of this theorem is the following corollary:

Corollary 1 If β is a strongly consistent environment, then

β, c : ¬(T =Bool F)

is consistent.

Note also that the theorem identifies Leibniz equality with conversion.
Berardi [5] assumes that Leibniz equality is extensional in the sense that, for terms

M and N of type (⇒x1 : A1)(⇒x2 : A2) . . . (⇒xm : Am)Prop,

4 It can be shown that every type in a well-formed environment converts a term of this form.
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(⇒x1 : A1)(⇒x2 : A2) . . . (⇒xm : Am)(Mx1x2 . . . xm ⊕ N x1x2 . . . xm) ⊃

M =B N ,

where B is (⇒x1 : A1)(⇒x2 : A2) . . . (⇒xm : Am)Prop and A ⊕ B is (A ⊃ B)∇(B ⊃
A). This assumption has unusual consequences when m = 0. For let A be any
inhabited type. Then A is provable. But so is A →A. It follows from this assumption
that A =Prop (A →A) is provable. It follows from this that A is a model of the
untyped λ-calculus, and so any function of type A →A has a fixed point. Since the
type N defined in the next section is inhabited and since the successor functionσ has
type N →N, σ has a fixed point! This is a highly unusual and counterintuitive result,
and it is undesirable in small trusted theorem provers and proof assistants. For this
reason, this assumption of extensionality will not be made here.

Classical logic can be obtained by adding the assumption

cl : (⇒u : Prop)(¬ ¬ u ⊃ u),

where cl is a new constant. This assumption can be proved consistent with strongly
consistent assumptions plus negations of equations between distinct normal forms
by means of a variation of the double-negation translation. See [22, Corollary 22.1].

5 Representing Arithmetic

It is standard to represent arithmetic in this system with the following definitions:

• N ⊥ (⇒A : Prop)((A →A) →(A →A))

• 0 ⊥ λA : Prop . λx : A →A . λy : A . y
• σ ⊥ λu : N . λA : Prop . λx : A →A . λy : A . x(u Axy)

Here, N is the type of the natural numbers, 0 is the number zero, and σ is the
successor function. Then a natural number n is represented by

n =β λA : Prop . λx : A →A . λy : A . x(x(. . . (x︸ ︷︷ ︸
n

y) . . .))

It is possible to define π so that

π0 =β 0

π(σn) =β n

Using this π, it is possible to define R so that if A : Prop, M : A, and N :
N →A →A,
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RM N0 =β M

RM N (σn) =β Nn(RM Nn)

We can prove

∨ N : Prop

∨ 0 : N

∨ σ : N →N

This is an example of an inductively defined datatype. This particular representa-
tion is an example of the kind of datatype treated in [6, 8].

We would naturally like to prove mathematical induction for N, which is

(⇒A : N →Prop)((⇒u : N)(Au ⊃ A(σu)) ⊃ A0 ⊃ (⇒x : N)(Ax)),

but there is a major problem about this. It says that every term of type N is Leibniz
equal to a term representing a natural number. However, the theoremwe proved above
identifies Leibniz equality with conversion, which in these systems is β-conversion.
But there is a term in type N that does not β-convert to a term representing a natural
number: λA : Prop . λx : A . x . The term does η-convert to a term representing
a natural number, but we are not using η-conversion here.5 Pfenning and Paulin-
Mohring [19] give an example of a recursive datatype represented this way in which
there is a term in the type which does not β- or η-convert to anything constructed
from the constructors of the datatype. For this reason, it appears that this form of
mathematical induction is false in these systems and that it would be a mistake to
assume it.

Instead, we can get the principle of mathematical induction by using Dedekind’s
definition of the natural numbers [13]:

N ⊥ λn : N . (⇒A : N →Prop)((⇒m : N)(Am ⊃ A(σm)) ⊃ A0 ⊃ An)

We can prove

∨ N : N →Prop,

∨ N0,

∨ (⇒n : N)(Nn ⊃ N (σn)),

∨ (⇒A : N →Prop)((⇒m : N)(Am ⊃ A(σm)) ⊃ A0 ⊃,

(⇒n : N)(Nn ⊃ An)).

Thus, by relativizing the quantifiers toN , we can obtain the use of mathematical
induction. Furthermore, we have used only definitions; there are no new unproved

5 The rule for η-reduction is that λx : A . U x � U if x is not free in U .
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assumptions. Thus, if we are working within an environment known to be consistent,
we retain consistency.

We can extend these results to the other Peano axioms. For example, using π we
can prove

∨ (⇒n : N)(⇒m : N)(Nn ⊃ Nm ⊃ σn =N σm ⊃ n =N m).

Also, usingBool : Prop,T : Bool, andλn : N . λx : Bool . F : N →Bool →Bool,
all of which are provable, we can define

Iszero ⊥ RT(λn : N . λx : Bool . F)

Then for n : N, since ∨ Nn,

Iszero 0 =β T,

Iszero (σn) =β F.

Hence, we can prove

Bool : ¬ T =Bool F ∨ (⇒n : N )(Nn ⊃ ¬ σn =N 0).

This means that arithmetic in a typed system is consistent.
In a recent chapter [24], this is extended to a large class of abstract recursively

defined data types. But not all: only those for which the type of each constructor has
the form

A1 →(A2 →· · · (An →D) · · · )

where D is the type of the database and each Ai is either D or is the type of another
such database or is a variable of type Prop. All of these datatypes are covariant
in the sense of [1]. A method of representing non-covariant datatypes is given by
Appel and McAllester in [2]. I believe that a more natural method is to extend
Dedekind’s definition to arbitrary datatypes by defining a predicate for any set of
constructors which says that an object (of a suitable type) is an object of the datatype
if it satisfies every predicate which is closed under the constructors.6 To deal with
recursive definitions (i.e., definitions of recursive functions), I propose to use the logic
to prove that valid definitions do, indeed, define functions. For the case of definitions
corresponding to primitive recursive functions of natural numbers, I propose to adapt
a proof that primitive recursive definitions define total functions of natural numbers
that was given by Lorenzen [18] and Kalmár [17].7

6 As I write this, I have not yet found a general way of writing this predicate, but I have succeeded
for an example which is not covariant.
7 The adaptation of this proof seems to work in the case of the example mentioned in the preceding
footnote.
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This approach to inductive definitions, as well as the approach of [1, 2], has the
advantage that it is carried out by making definitions, and not by adding new rules
to the type theory as is done in [7, 12, 26]. When extra rules are added, there are
existential committments that follow from them, and this means that restrictions
must be placed on the rules in advance in order to avoid inconsistency. When new
definitions are used without new unproved assumptions, there is more flexibility.
And with the approach I am advocating, merely extending Dedekind’s approach to
defining the natural numbers does not, in itself involve any existential committments.
The worst that can happen if a definition is given that does not correspond to a real
inductive structure is that it will be impossible to prove that anything satisfies the
definition, and this causes noproblemswith consistency. Furthermore,when the proof
of Lorenzen and Kalmár that primitive recursive definitions define total functions is
adapted to this kind of theory, the theorem that is proved has an existential hypothesis,
so this theorem only proves that something exists if it can be proved that there is
an object of the right type satisfying the inductive definition. With this approach,
the logic itself will take care of these problems, and this, in my opinion, makes the
approach more general than the others.

6 Representing Sets as Predicates

In [15, Chap.5] and [16], Huet proposed to represent a significant part of elementary
set theory by means of predicates. The idea is to take a type U : Prop8 as a universe
and to defineSetU to beU →Prop. Then if A : SetU , x ⊃ A is just Ax . Furthermore,
for P : Prop, the set {x : U |P} is λx : U . P . In addition, we have the following
definitions:

A ⊗ B ⊥ (⇒x : U )(x ⊃ A ⊃ x ⊃ B),

A =ex B ⊥ (A ⊗ B) ∇ (B ⊗ A),

∈ ⊥ {x : U | ∀},
{x} ⊥ {y : U |y =U x},

A ≡ B ⊥ {x : U | x ⊃ A ∇ x ⊃ B},
A ∗ B ⊥ {x : U | x ⊃ A ◦ x ⊃ B},

∧ A ⊥ {x : U | ¬ x ⊃ A},
PA ⊥ λB : SetU . B ⊗ A,

ClassU ⊥ SetU →Prop.

Note that if A : SetU , then PA : ClassU . Other definitions involving classes are

8 The definition will also work if U : Type, but this is not needed here.
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⋂
C ⊥ {x : U |(⇒A : SetU )(C A →x ⊃ A)},

⋃
C ⊥ {x : U |(∃A : SetU )(C A ∇ x ⊃ A)}.

If A, B : SetU , we can represent the collection of functions from A to B by

λ f : U →U . (⇒x : U )(x ⊃ A ⊃ f x ⊃ B).

This is a lot of set theory. In [22, Remark 17], it is shown that all the axioms
of the constructive set theory IZF ([4], p. 164) except for ⊃-induction and power
set are provable in this representation. The axiom of ⊃-induction is the constructive
replacement for the axiom of foundation, whose role is to prevent infinite descending
⊃-chains, but here such chains are prevented by the type structure. So the important
axiom that cannot be proved here is the axiom of power set. But power sets may be
taken any finite number of times, and this is enough for many practical purposes.

7 Conclusion

We have seen that with only two unproved assumptions, namely

c1 : ¬(T =Bool F), (1)

cl : (⇒u : Prop)(¬¬u ⊃ u), (2)

we can obtain classical arithmetic and a good deal of set theory. Furthermore, the
combination of these assumptions has been proved consistent. This shows that we
have systems which

• are small;
• have few primitive postulates;
• are provably consistent; and
• are sufficient for a lot of mathematical reasoning.

These systems should be useful for a number of applications of theorem proving.
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What is Propositional Logic a Theory
of, if Anything?

Oswaldo Chateaubriand

Abstract In this chapter I discuss some traditional philosophical questions relating
to propositional logic, among which are the following: (1)Must the objects of propo-
sitional logic (propositions, sentences, thoughts, judgments, etc.) have structure? (2)
What is the nature of quantification in propositional logic? (3)What is the connection
between material implication and the material conditional? (4) What is the role of
the material conditional in propositional logic? (5) What is the role of truth-values?

1 Motivation

In Chap.11 of Mates’ Elementary Logic he introduces first-order theories, and gives
as one of his examples the theory of Aristotelian syllogistic. He formulates Aris-
totelian syllogistic by means of four binary relations (A, E, I, O) and axiomatizes it
with seven axioms, including counterparts of the well-known syllogisms of the first
figure. This is quite interesting because we normally do not present logical theories
as theories, but present them in a different way. Also, it emphasizes something which
I think is quite correct, namely, that Aristotelian logic is a theory of four logical rela-
tions: universal subordination, exclusion, partial subordination, and partial exclusion.
These are basically second-order relations that apply to first-order properties. Thus,
we have a very nice view of the character of Aristotle’s logic. Evidently, that does not
take into account the character of Aristotle’s logic as a deductive system, which has
to be developed in a different way. Another interesting thing about Mates’ formula-
tion is that if one looks at the (natural) models of the theory, the individual variables
need not range over properties. They may range over sets, or predicates, or mental
concepts, or any other entities that may be said to be instantiated.
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In my view, Frege generalized this idea of logic, and I think his notation is very
interesting in this respect. For, whereas Aristotle had four second-order relations—
which could also be higher-order—Frege had infinitelymany logical relations, which
are all those properties and relations expressed by the combinations of the universal
quantifier, the conditional, and negation which appear as the purely logical part of
his formulas. And one could actually axiomatize Frege’s logic as a first-order theory
in the same spirit in which Mates axiomatizes Aristotelian logic.

What I want to discuss in this chapter is the analogous question for propositional
logic. If propositional logic is presented as a theory, what is it a theory of?What kind
of theory is it? I will now mention some arguments and puzzles that were part of my
motivation for pursuing this issue.

One argument that has been insistently presented in the literature, especially by
Quine, is the argument that one should not confuse the conditional with a notion
of implication. For, says Quine, whereas the conditional connects sentences into a
sentence, implication is a relation between sentences, and one should use names of
these sentences as terms of the relation. An interesting thing, however, is that if we
look at the truth-conditions for the material conditional and for material implication,
they are exactly the same. In both cases, the whole is true if the left sentence is false
or the right sentence is true. So, what is the role of the conditional? Why do we need
it? Why not simply work with material implication? Thus, a question that worried
me was how to account for the role of the material conditional in propositional logic.

Another argument that puzzled me as I lectured in elementary logic courses, is
an argument Quine uses, and Mates also develops to some extent at the beginning
of his book, which maintains that in order to do propositional logic we must have
“things” that have structure. And since they don’t see that propositions have any
clear structure, one should work with something like sentences, where one can see
the negations, conjunctions, disjunctions, etc. In other words, the claim is that in
order to do propositional logic it is essential that the stuff we are dealing with has a
structure. (I was convinced by this argument for about 30years, I think.) Of course,
there are also other arguments used by Quine and by Mates against propositions,
thoughts, judgments, etc., which are of a metaphysical character; namely, questions
about individuation, abstractness, and so on. In this way propositional logic became
sentential logic and people don’t talk about propositions anymore. The question I
want to raise is whether we really need to have structure in order to do propositional
logic. Do the things we talk about in propositional logic need to have any kind of
structure?

An important puzzle that also comes up is the use of quantification in propositional
logic. There is something very odd when one writes something like

∧pp

which does not seem to make any sense. For, as Frege taught us, quantification is
a higher order predication, and thus we must have a predicate in order to quantify.
What happens is that people have an implicit predicate like “holds,” or “is true,” or
something like that. In fact, it is interesting that one of the people Quine considers
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responsible for the “confusion” between the conditional and implication is Rus-
sell, whereas Russell is quite rightly very explicit about using “is true,” “is false,”
“implies,” etc. in connection with quantified formulas. In the reading of the formula

∧p∧q((p → q) ⇒ (p ≤ q))

the conjunction and disjunction are read as term builders (connectives) whereas the
arrow is read as the relation of material implication.

Another interesting issue is the use of truth-values in propositional logic. Frege
introduced truth-values as two objects, but whereas everybody uses truth-values in
propositional logic, almost nobody agrees with Frege that they are objects. So, truth-
values are elliptical for something like truth and falsity as predicates, but how is that
to be interpreted?

One more question that motivated me while teaching logic courses is the large
variety of non-equivalent ways inwhich propositional logic is presented in textbooks,
both elementary and advanced. In each case the logical system is the same, but the
interpretation of the symbols and formulas is quite different. Inwhat follows I hope to
shed some light on these and other issues that seem to me relevant for understanding
the character of propositional logic.

2 Introduction

Mathematicians and mathematician-logicians often read the propositional ‘⇒’ as
‘implies’, and have been chastened by philosophers for doing so. Thus Quine claims
that this reading confuses the object language conditional ‘if-then’ with the metalog-
ical notion of implication—a form of use-mention confusion.1 There is a confusion,

1 Quine’s explanation for the confusion is as follows ([17], p. 43):

Now when we say that one statement or schema implies another... we are not to write
‘implies’ between the statements or schemata concerned, but between their names. In this
way we mention the schemata or statements, we talk about them, but use their names. These
names are usually formed by adding quotation marks....

When on the other hand we compound a statement or schema from two others by means of
‘if-then,’ or ‘∨,’ we use the statements or schemata themselves and not their names. Here
we do not mention the statements or schemata. There is no reference to them; they merely
occur as parts of a longer statement or schema.

According to Quine the main culprits for the confusion were Whitehead and Russell (Ibid., p. 44):

The distinction that was stressed just nowwaswoefully neglected byWhitehead and Russell,
who accorded ‘p ∨ q’ the readings ‘if p then q’ and ‘p implies q’ indifferently. The old
controversy over the material conditional... was, in consequence, aggravated. The truth-
function ‘−(pq)’ meets some opposition as a rendering of ‘if-then’; it meets more, and
rightly, as a rendering of ‘implies’. Certainly implication must be preserved as a strong
relation, dependent upon the structure of the related statements and not just the truth-values.
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as a matter of fact, and it runs deep, but it is a confusion in propositional logic itself,
and the mathematician’s reading is a rather sensible one.

Let us consider the language of propositional logic in one of its usual presenta-
tions.2 We have:

• Propositional variables: p, q, r, s, t, p1, q1, . . .;
• Connectives: ¬,&,≤,⇒,≥;
• Parentheses: (, ).

The connectives are treated as functional operators that build up complex propo-
sitions from simpler ones, and the notion of formula is defined as usual with the
parentheses as punctuation marks to avoid ambiguities. To economize on parenthe-
ses we may use Polish notation, which being a form of functional notation also
emphasizes the functional character of the connectives.3 If p is a proposition, then
¬p is the negation of that proposition; if p and q are two propositions, then p ⇒ q
is the conditional proposition with antecedent p and consequent q; and so on. Each
propositional formula is a term that refers to or describes a proposition with a certain
amount of (propositional) structure.

An arithmetical analog of this propositional language is the following:

• Numeral variables: i, j, k, l,m, n, i1, j1, . . .;
• Operations: ⊃, +, ·;
• Parentheses: (, ).

The notion of formula is defined as before, and Polish notation can also be used
to economize on parentheses. And again each formula is a term.

How should we interpret this language? By analogy with the sentential interpre-
tation of propositional logic, we can interpret the numeral variables as ranging over
such English expressions as ‘zero’, ‘one’, ‘two’, ‘three’, and so on, or over the actual
numerals ‘0’, ‘1’, ‘2’, ‘3’, and so on. If ‘i’ is interpreted as ‘two’ and ‘ j’ is interpreted
as ‘three’, then ‘i ⊃’ is interpreted as ‘the successor of two’, and ‘i + j’ is interpreted as

2 I will use ‘proposition’ throughout but I could use ‘sentence’ (or ‘statement’) instead.When I want
to talk about propositions as opposed to sentences, or about sentences as opposed to propositions,
I will indicate this explicitly.
3 Everybody agrees that the connectives are functions, although there are disagreements as to
whether they are functions of propositions, or sentences, or statements, or whatever. Under the
heading “The fundamental functions of propositions,” ([23], p. 6) Whitehead and Russell say:

An aggregation of propositions, considered as wholes not necessarily unambiguously deter-
mined, into a single proposition more complex than its constituents, is a function with
propositions as arguments. The general idea of such an aggregation of propositions, or of
variables representing propositions, will not be employed in this work. But there are four
special cases that are of fundamental importance, since all the aggregations of subordinate
propositions into one complex proposition which occur in the sequel are formed out of them
step by step.

They are (1) the Contradictory Function, (2) the Logical Sum, or Disjunctive Function, (3)
the Logical Product, or Conjunctive Function, (4) the Implicative Function.
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‘two plus three’. We can also use the numerical symbols themselves as interpretation
of the operations and write ‘two⊃’ and ‘two + three’; and if we are using the actual
numerals as interpretation, we will have expressions ‘2⊃’ and ‘2+3’. If we also have
numerical constants as part of our language, then it may become difficult to discern
whether we are talking about expressions or about numbers. We could start using
this arithmetical language to describe the building up of arithmetical terms and then
find ourselves talking about numbers and functions.

This is a standard practice in logic of not distinguishing use and mention—or, as
Church puts it, of using logical symbols autonymously. Which means that when we
describe the language of propositional logic as object language, in our metalanguage
we use certain variables—say ‘ϕ’, ‘ψ’, etc.—to vary over expressions of the object
language, butweuse ‘¬’, ‘⇒’, etc., as names of themselves.4 Thus, themetalinguistic
expression ‘ϕ ⇒ ψ’ may describe the expression ‘p ⇒ q’ of the object language.
This does not need to lead to any problems, but since the object language is also
supposed to be describing linguistic constructions, the same idea is also applied
(implicitly) to the object language in relation to what it describes—so that the object
language expression ‘p ⇒ q’ can describe something like ‘John went to the movies
⇒ Mary went to the movies’. This is where the trouble comes, because we now say
that this sentence is true if and only if the antecedent ‘John went to the movies’ is
false or the consequent ‘Mary went to the movies’ is true. And this is explained as
the standard truth-functional analysis of the connectives.

We categorize this move as a semantic interpretation of the language of proposi-
tional logic, but what it involves is a re-interpretation of the language of propositional
logic (the object language) as follows:

• truth-value variables: p, q, r, s, t, p1, q1, . . .;
• truth-functions: ¬,&,≤,⇒,≥;
• parentheses: (, ).

Since we have only changed the names of the categories, our formulas stay the
same and we can switch from one version to the other without seeming to. The truth-
value variables range over truth-values, which are referred to as ‘T’ and ‘F’, and are
usually conceptualized as the very letters ‘T’ and ‘F’—or as some arbitrary objects
such as 1 and 0. The truth-functions are operations on the set {T, F}. Our language
is still a language of terms though, except that instead of these terms referring to
propositions they refer to truth-values.

This could be a coherent interpretation of the language of propositional logic if
we gave an account of the truth-values. In Fregean terms we can say that we are
describing certain operations on the objects the True and the False. Mathematically

4 Church formulates the following practical principle ([5], p. 63):

The primitive symbols of the object language will be used in the syntax language as names
of themselves, and juxtaposition will be used for juxtaposition.

Church ([5], pp. 61–63) discusses Frege’s use-mention distinction but decides to disregard it, and
argues for his principle on the grounds that it accords with mathematical practice and that it does
not need to lead to use-mention confusions if one observes certain precautions.
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minded philosophers may say that we are developing the Boolean algebra of truth
and falsity. This is a mistake though, because what we have is not a Boolean algebra;
there are no relations. The problem to which I referred above is related to this.

We have two different understandings of the propositional language: one as a
description of a structure of propositions, and the other as certain operations on so-
called truth-values. When we decide to call the second an interpretation of the first
we give room for misinterpretation.

We now have an interpretation that assigns T to ‘p’ and T to ‘q’, say, and hence in
which ‘p ⇒ q’ is also assigned T due to the interpretation of ‘⇒’ as a truth function.
And we say that the formula ‘p ⇒ q’ is true in that interpretation. This switch seems
innocent enough, but it identifies the object T (or ‘T’, or 1) with the property of being
true in an interpretation, which is an entirely unjustified and illegitimate move. It
seems all right because we are now taking the formula ‘p ⇒ q’ to be a conditional
of two propositions that is true when both propositions are true. As a matter of fact,
we are taking the conditional as a relation between two propositions; a relation that
holds in all cases except when the antecedent is true and the consequent is false. This
is part of the answer as to why mathematicians talk about implication; it is a relation
that can be asserted or denied of two propositions.

The confusion essentially derives from Frege’s introduction of truth-values,
although Frege himself was not confused, because for him conditionality is a relation.
In Begriffsschrift the relation relates judgment contents and is characterized in terms
of the affirmation and denial of those contents [9]. Even if we interpret affirmation
and denial as truth and falsity, it is still a relation and not a propositional connective.
The same goes for negation and for the other “connectives” that Frege defines. In
Grundgesetze conditionality is introduced as a function of objects whose values are
the truth-values the True and the False, and it seems to be a generalization of what
we are talking about when we talk of ‘⇒’ as a truth-function. We must remember,
however, that in Grundgesetze there are only functions and objects; everything that is
not an object is a function, including relations. Concepts and relations are functions
whose value is always a truth-value [8]. Thus, even in Grundgesetze, conditionality
is a relation, not a connective. Conditionality holds (or does not hold) for any two
objects, including thoughts, and this holding is analyzed functionally in terms of the
objects the True and the False.

Going back to the modern version, we can see the confusion in action in a rather
pristine form when we consider the extended propositional calculus, now quite out
of fashion. Let us consider Church’s presentation in ([5], p. 151) where he begins
to discuss quantification in propositional logic. He adds the quantifiers ‘∧’ and ‘∃’
to the propositional language and we are told that the result of prefixing a quantifier
followed by a variable to a formula is a formula. Thus we can write such formulas as

∧pp,

which Church then uses as a definition of the constant ‘f’ (for falsity). This is actually
quite extraordinary, if one thinks about it.
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Suppose that someone introduces quantification in the arithmetical language and
writes

∧i i.

Suppose, moreover, that this formula is used to define a constant ‘f.’Wewould surely
complain that quantification can only be applied to predicates and not to names or
to variables for objects. We would argue, reasonably, that it does not make sense to
say such things as ‘for every numeral i , i’, or ‘for every number i , i’. ‘Nonsense,’
we are told, ‘what it means is that for any numeral i , i denotes the number 1; and
since this is false, we can define the constant ‘f’ (for falsity).’

Church’s quantification
∧pp,

is supposed to mean that for every proposition p, p is the case; and since this is
false, we can define ‘f’ from it. We have variables that vary over propositions (or
sentences) but when we write them down by themselves, as in

p

we are writing down something that means

it is the case that p.

An invisible predicate manifests itself.5 How can this be?
One explanation is that Frege was wrong when he maintained that variables are

mere letters; rather, propositional variables are variable propositions. Thus when
we write ‘p’ we are writing down a variable proposition that is or is not the case.

5 The classic paper on these questions is [12], where the quantifier is introduced as follows (p. 54):

For the universal quantifier Łukasiewicz uses the sign ‘
∏
’ which was introduced by Peirce.

With this notation the formula ‘
∏

pq’ is the symbolic expression of the sentence ‘for all p,
q (holds).’

Church describes the calculus but does not see anything odd about it. In fact, Church is consistent
in reading ‘⇒’ as ‘(materially) implies’ and in treating it as a relation between truth-values. In this
connection he remarks ([5], note 89, p. 38):

As a matter of fact, the words “if...then” and “implies” as used in ordinary non-technical
English often seem to denote a relation between propositions rather than between truth-
values. Their possible meanings when employed in this way are difficult to fix precisely and
we shall make no attempt to do so. But we select the one use of the words “if...then” (or
“implies”) – their material use, we shall call it – in which they may be construed as denoting
a relation between truth-values, and we assign this relation as the associated function for the
connective [∨].

This is fine, except that if ‘p’ ranges over truth-values, which is Church’s ([5], p. 73) principal
interpretation of propositional logic, then the qualification ‘it is the case that’ makes no sense—and,
therefore, quantification makes no sense.
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Moreover, we can quantify it by interpreting the quantifier as a kind of metalinguistic
qualification. What we are saying with

∧pp

is:
p (is the case),

for every proposition p.
Another explanation—the correct one, I think—is that we are confusing different

interpretations of the language of propositional logic.
Suppose I write

(1) ∧p∃q(p ⇒ q).

What does this mean? It means that for any proposition p there is a proposition q
such that p implies q. It is quite clear here that ‘⇒’ is being interpreted as a relation
between propositions. If we do not like the word ‘implies,’ or if we want to avoid
confusion with logical implication, then we can read ‘(p ⇒ q)’ as ‘p materially
implies q’—or even as ‘if p is the case, then q is the case.’ The point though, is that
on these alternative readings we still have a relation between propositions.

Suppose now that we want to justify (1), and that we do it by arguing that we can
pick ‘p’ itself as a value for ‘q’ because

(2) p ⇒ p

always holds; i.e., because the conditional proposition

p ⇒ p

is a tautology (a logical truth). We are now switching to the interpretation of ‘⇒’
as a propositional connective, rather than as a relation. Of course, we can interpret
‘⇒’ in (2) as a relation, but then our argument is not by instantiation to a particular
formula that the truth-value analysis has shown to be tautologous. Rather, we are
identifying the value of ‘p’ with the value of ‘q’ and it is not so clear that we have
established

(3) ∧p(p ⇒ p)

for the relation of material implication.
If we are honest about it we begin to realize that the interpretation of the connec-

tives as propositional connectives that result in terms describing complex proposi-
tions, and the interpretation of the connectives as relations between propositions are
becoming inextricably mixed up. We see this very clearly when we use conjunction
and disjunction together with conditional (or implication). If we write
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(4) ∧p∧q((p&q) ⇒ (p ≤ q)),

the natural tendency is to read it as asserting that the proposition that is the conjunction
of p and q implies the proposition that is the disjunction of p and q; so that ‘&’ and
‘≤’ are treated as functions (term builders) and ‘⇒’ is treated as a relation.

Let us go back now to the quantification

∧i i.

We can make good the earlier explanation of the meaning of this quantification by
explicitly introducing a predicate ‘D1( )’—to be read as ‘( ) denotes the number
1’—into the language, and rewriting the quantification as

∧iD1(i).

Similarly, if we try to understand what we are doing in the extended propositional
logic, we may introduce a unary predicate ‘H( )’ into the language; where ‘H(p)’
is to be read as ‘p holds’, or as ‘p is the case’, or simply as ‘p is true’.6 For any
interpretation, as an assignment of truth-values to the propositional variables, the
extension of ‘H( )’ will be the set of formulas that receive the value T in that inter-
pretation. But this only solves one confusion by exposing another: the use-mention
confusion between language and metalanguage. What happens is that we start think-
ing of the very formulas of the object language, which are the subject matter of the
metalanguage, as being what the object language is about. Thus, propositional logic
is about those ‘p”s and ‘q”s and ‘¬”s and ‘&”s, and their combinations. But if we do
this, then we do not have propositional variables anymore and we certainly cannot
quantify without further ado.What we have to do is to clear the air bymaking explicit
what we are talking about. I list some standard options below.

Option 1 We really want to stick to truth-values. Then our variables range over
truth-values and our connectives are truth-functions. In order to avoid
ambiguities let us use Polish notation with the letters ‘N ’, ‘K,’ ‘A,’ ‘C,’
and ‘E’ for the connectives and keep the symbols introduced earlier for use

6 This is Russell’s reading in his early paper “The Theory of Implication”. Russell is quite consistent
in reading ‘∨’ as ‘implies’, and this serves him well when he introduces quantification in Section
*7. Thus, in p. 193 he reads

∇: . ◦ p. ∨: p. ∨ .(q).q

as “For any value of p, not-p implies that p implies that, for all values of q, q is true.” And a little
later in the page he says:

Note that (q).q is an absolute constant, meaning “everything is true”. Thus the formula

∇: . ◦ p. ∨: p. ∨ .(q).q

may be read: “If p is false, then p implies that everything is true.”

I shall comment on these readings of Russell’s later on.
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in the metalanguage. We have many complex terms for truth-values, but if
we want to make any assertions about them, we must introduce predicates
that we can apply to truth-values.We can introduce a relation ‘Imp( , )’, for
instance. As amatter of fact, we can introduce a predicate corresponding to
each connective: False( ), Conj( , ), Disj( , ), Imp( , ), Eq( , ). In addition we
can still have the predicate ‘True( )’. These predicates have the following
sets as their extension: {F}, {<T, T>}, {<T, T>,<T, F>,<F, T>}, {<T,
T>, <F, T>, <F, F>}, {<T, T>, <F, F>}, and {T}.
According to this option propositional logic treats of a domain {T, F} over
which vary the propositional variables and where the truth functions and
the truth predicates are interpreted in a fixedway—i.e., are logical notions.
An interpretation is a specific assignment of truth-values to the proposi-
tional variables, making it possible thereby to treat their free occurrences
as constants.7 We are actually embedding propositional logic into a first-
order logic (say) where the formulas of the object language are terms, the
various truth predicates are the atomic predicates, and where we can use
the quantifiers and connectives of themetalanguage to build upmore com-
plex expressions. Given that we have restricted our interpretation in the
ways indicated above, certain formulas of our first-order logic are clearly
valid. For instance:

(5) ∧pTrue(C pp),
(6) ∧pImp(p, p),
(7) ∧p∧q(Imp(p, q) ≥ ∧r(Imp(q, r) ⇒ Imp(p, r))),
(8) ∧p∧qImp(Kpq,Apq).

When mathematicians develop the Boolean algebra of {T, F} they are
working essentially within this option, and they manage to clear things up
to some extent by an appropriate choice of notation. Suppose that we use
the arithmetical languagewith the variables interpreted as ranging over {0,
1}, and that we add constants ‘t’ and ‘f’ (denoting 1 and 0, respectively)
and a binary predicate ‘Eq( , )’—which we can also call ‘=’. We can then
define Imp(i , j) as Eq(i+ j , j)—andwe can call it ‘⊥’.We see now thatwe
have negation (⊃), conjunction (·), and disjunction (+) as truth functions, we
have the constants as names of the truth-values, and we have equivalence
(=) and implication (⊥) as truth relations. We leave out the conditional
and the biconditional as truth functions so as not to mix things up, but we
can define them if we wish.8

7 That is the role of interpretations in general, as a matter of fact. We have certain variables that
we want to treat as if they were constants—we may even call them ‘constants’—so we assign a
fixed meaning to them (an object as denotation, a set as extension, etc.) and call this assignment an
‘interpretation.’
8 Usually people do not work with the pure Boolean algebra of {T, F} (or {0, 1}), but combine this
with propositional logic treated as a language of formulas or of sentences of a certain sort. See, for
instance, [14], or [20] See also Option 4.
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Option 2 We leave out the connectives as functions and only have the predicates.
The rest is exactly the same.Wecannot say such things as (5) or (8), but
(6) and (7) are still valid. In fact, for any tautology we have something
like (6). For instance, corresponding to the tautology ‘CKpqApq’ we
have

(9) ∧p∧q∧r∧s(((Conj(p, q) ≥ True(r))&(Disj(p, q) ≥ True(s))) ⇒
Imp(r, s)).

This is analogous to doing arithmetic with relations S( , ), A( , , ) and
M( , , ) instead of using the operations ⊃, + and ·.

Option 3 In this option we leave out the truth-values and decide to take propo-
sitions (or sentences, or statements, etc.) as the range of the propo-
sitional variables. An interpretation consists of a domain of proposi-
tions for which the operations of negation, conjunction, disjunction,
conditional, and biconditional are always defined. We keep within
classical two-valued logic by requiring that each proposition in the
domain must be either true or false, and not both, and we characterize
the extensions of the truth predicates as sets of propositions, or of
ordered pairs of propositions, that satisfy the standard conditions. We
can do everything as in the first option; in fact, if we collapse all true
propositions into one proposition (denoted by the constant ‘t’) and all
false propositions into one proposition (denoted by the constant ‘f’),
then we get the first option as a special case. Since the choice of the
objects T and F is supposed to be arbitrary, they might as well be two
propositions.
When mathematicians apply logic to mathematics in the ordinary
course of events, they are working within this option. They have the
propositions of arithmetic as an interpretation, for instance, and they
talk about a proposition implying another, being true, etc. What is
confusing is that the notations for the propositional connectives and
for the truth predicates are not clearly distinguished—but they are kept
separate by mathematical horse sense. We saw this in the treatment
of the Boolean algebra of the truth-values, and another indication of
it is the reading of ‘⇒’ as ‘implies.’ The reason that this seems to be
a confusion is because mathematical truths are necessary truths and,
therefore, if a mathematical proposition materially implies another,
then it necessarily implies it. This suggests that mathematicians are
confusing material implication with necessary implication. Maybe
they are, but with their subject matter it does not make any differ-
ence. They are definitely not confusing this implication with logical
implication (or with logical consequence), however.

Option 4 Instead of treating ‘p’, ‘q’, ‘r ’, etc., as variables we treat them as
dummy symbols, or schematic letters, or non-logical constants, or
place-holders, etc. The basic idea is that we are developing linguistic
structures that are built up from certain sentences (ordinary or formal)
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thatwe can put in place of the place-holders ‘p’, ‘q’, ‘r ’, etc., using the
symbols ‘¬’, ‘&’, ‘≤’, etc. (or, actually, ‘N ’, ‘K’, ‘A’, etc.). So these
symbols are being used autonymously (i.e., as names of themselves)
when we describe the language of propositional logic. This is really
a language schema, therefore, that becomes an actual language when
the place-holders are filled with actual something-or-others. In other
words, given a stock of something-or-others to take the place of ‘p’,
‘q’, ‘r ’,…, then we get a (propositional) language.
A better way of looking at this option is to see the letters ‘p’, ‘q’,
‘r ’,…, as variables that vary only over certain sentences of a spe-
cific language, or over formulas of a specific formal language, and
not have any variables that vary over sentences, propositions, etc., in
general. Our propositional language then describes certain more or
less artificial languages that can be built from those atoms (or atomic
sentences). There is no need for the connectives to be used autony-
mously, for this just confuses the issue. The connectives will be names
of certain words, or word combinations, or symbols that can be cho-
sen in each specific case. For instance, if the variables vary over a
certain range of English sentences (finite or infinite), then the word
combinations denoted by the connectives may be ‘not’, ‘and’, ‘or’,
‘only if’ and ‘if and only if’. If ‘Jane went to the movies’ and ‘Peter
went to the movies’ are in the range of the variables, then we can get
a construction such as ‘(not(Jane went to the movies) only if (Peter
went to the movies))’. This is not an English sentence, but it bears a
certain relation to English.
In whichever way we conceive it, the important point is that we are
using the language of propositional logic to describe the construction
of certain grammatical structures. It is essentially what we do when
we build the numerals from a symbol ‘0’ and an accentuation con-
struction. How we do the interpretations and the semantics will vary,
but we will need some truth predicates in order to do it. The usual
confusion tends to set in, however, because when dealing with the
syntax the dummy letters (or non-logical constants) stand for state-
ments or sentences, whereas when doing the semantics they stand for
truth-values.9

The options I have listed are not the only possibilities, of course, and if one looks
at various books on logic (especially books that go beyond themost elementary level)
one finds a number of other alternatives and variations. Thus in [6], Chap. 1 Enderton
proceeds as follows. He lists

¬,&,≤,⇒,≥, (, ),

9 This is the option that fits most treatments nowadays. For example, [13] (non-logical constants),
[17] (dummy schematic letters), [14] (atomic sentences).

http://dx.doi.org/10.1007/978-94-007-7548-0_1
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and
A1, A2, A3, . . .

as names of symbols—I have changed his notation slightly. So, ‘¬’ is a name of
the symbol ¬, which is not specified, and similarly for the other names. He charac-
terizes expressions as finite sequences of symbols in the set-theoretic sense, and he
uses juxtaposition of names of symbols to denote expressions—i.e., ‘((¬A2)&A2)’
denotes< (, (,¬, A2, ),&, A2, ) >. The only assumption he needs is that no symbol
is a finite sequence of other symbols. He then introduces certain (formula-building)
operations, E¬, E&, E≤, E⇒, E≥, on expressions such that, e.g., for any expressions
α =< α1, . . . ,αn > and β =< β1, . . . ,βm >,

E&(α,β) =< (,α1, . . . ,αn,&,β1, . . . ,βm, ) > .

Thus,
E&((¬A2), A2) = ((¬A2)&A2) .

The set of well-formed formulas is the set inductively generated from the sentence
symbols A1, A2, A3,…by the formula-building operations. Since the symbols are
not specified, this amounts to introducing an abstract algebra. This abstract algebra
can be characterized in several (more or less) equivalent ways, and even the set-
theoretic treatment of expressions can be left aside in favor of certain assumptions
that are necessary for applying the Recursion Theorem to the set of well-formed
formulas—which is used, among other things, to justify mathematically the truth-
value interpretation. The explicit use of the Recursion Theorem shows very clearly
the distinction between the formula building operations and the Boolean functions
(truth-functions).10

There are many reasons, historical and other, for the differences in the interpreta-
tion of propositional logic. One reason is that there is no real advantage in taking the
third option over the first, because we never make any logical use of the features of
propositions that are additional to their truth-value. This was actually Frege’s fault,
because his arguments in [7] and his treatment of logic in Grundgesetze began the
replacement of propositions by truth-values in logic. Just as the simple theory of
types collapsed all the definability distinctions that Russell built into the ramified
hierarchy, two-valued extensional logic collapsed all the distinctions of sense that
Frege built into his account of logic.

10 Aside from this algebraic treatment, Enderton also introduces a notion of “translation” from
English to the formal language. Thus, the English sentence

(a) The evidence obtained is admissible, and the suspect need not be released from custody,
can be translated as

(b) (A1&(¬A2)).

This is problematic because even if we have a function from a certain set of English sentences
to sentence symbols, it is not at all clear how to extend this function so that a “complex” English
sentence is assigned a well-formed formula. What is the relation between (a) and (b)?
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3 Material Implication and the Material Conditional

Let us nowgo back to the beginning. Is there really a confusion about the conditional?
A typical student question is: ‘Why do you call the conditional ‘material’? Material
as opposed to what?’ The standard answer is that the conditional is material because
it is analyzed in terms of truth and falsity, and that this is opposed to a meaning
analysis, or a “contentual” analysis, or a causal analysis, or something like that.
One usually appeals to the subjunctive conditional to make the point. If on top of
that one brings in logical implication, then one feels like walking on quicksand.
Why should anyone confuse the conditional with logical implication? Because, goes
the standard answer, logical implication amounts to validity of a conditional. But a
conditional of the ordinary variety is (almost) never logically valid; it must contain
logical structure in order to be valid. Inwhat sense is logical implication notmaterial?
It is not because it is causal, or contentual, but because it is formal. Yet, if we look
up ‘formal implication,’ we are told that it is something like

∧x(Fx ⇒ Gx) ,

which is not valid.11 It seems right that there should be a contrast between material
and formal, though not in these terms.

11 This is how Church introduces formal implication in ([5], p. 44). Of course, if ‘F’ and ‘G’ were
to range over formulas (or forms) rather than over classes (which is how Church takes them), then
it would be more appropriate to talk about formal implication—as Church himself remarks in note
104:

The names formal implication and formal equivalence are those used by Whitehead and
Russell in [23], and have become sufficiently well-established that it seems best not to
change them—though the adjective formal is perhaps not very well chosen, and must not be
understood here in the same sense that we shall give it elsewhere.

In [23], Whitehead and Russell justify their use of ‘formal implication’ as follows (pp. 20–21):

When an implication, say ϕx .∨.ψx , is said to hold always, i.e., when (x) : ϕx .∨.ψx , we
shall say that ϕx formally implies ψx ; and propositions of the form “(x) : ϕx .∨.ψx” will be
said to state formal implications. In the usual instances of implication, such as “‘Socrates is
a man’ implies ‘Socrates is mortal”’, we have a proposition of the form “ϕx .∨.ψx” in a case
in which “(x) : ϕx .∨.ψx” is true. In such a case, we feel the implication as a particular case
of a formal implication. Thus it has come about that implications which are not particular
cases of formal implications have not been regarded as implications at all. There is also a
practical ground for the neglect of such implications, for, speaking generally, they can only
be knownwhen it is already known either that their hypothesis is false or that their conclusion
is true; and in neither of these cases do they serve to make us know the conclusion, since in
the first case the conclusion need not be true, and in the second it is known already. Thus
such implications do not serve the purpose for which implications are chiefly useful, namely
that of making us know, by deduction, conclusions of which we were previously ignorant.
Formal implications, on the contrary, do serve this purpose, owing to the psychological fact
that we often know “(x) : ϕx .∨.ψx” and ϕy, in cases where ψy (which follows from these
premises) cannot easily be known directly.
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I always felt that I did not know what I was talking about when I answered
that question about the conditional. It does not sound right. And the reason that
it does not sound right is because the distinction is not between the conditional
and something else, but it is a distinction between various kinds of implication
relations. Material implication is a relation that holds between propositions in terms
of their truth-values; formal implication is a relation that holds between propositions
in terms of their logical form; and besides these there are also generalized implication
relations, necessary implication relations, and so on.12 I think that what is confused,
and confusing, is Quine’s account of this issue.

Quine discusses it at some length in Sect. 5 of Mathematical Logic, and makes
two main points about material implication. One is that as a relation it “is so broad as
not to deserve the name of implication at all except by analogy” (p. 29). The other is
that as a relation that connects sentences it should be stated of specific sentences by
naming them—in order to accompany Quine, I shall now switch from ‘proposition’
to ‘sentence.’ That is, one should say

(10) ‘John is tall’ materially implies ‘Mary is blonde’,

and not

(Footnote 11 continued)
The distinction between formal and material implication is also discussed in ([21], pp. 36–41) and
in ([22], pp. 161–162, 194).
12 Bochenski discusses this question in several sections of [1]. In Sections 20.5–20.13 he discusses
implication in Megarian-Stoic logic. He distinguishes Philonian implication, which is material
implication as I characterized it in the text, from Diodorean implication, which he formulates as
follows (p. 118):

If p, then q, if and only if, for every time t it is not the case that p is true at t and q is false
at t .

There is also connexive implication, which is a form of strict implication. Bochenski quotes Dio-
genes Laertius (p. 118):

A connected (proposition) is true in which the opposite of the consequent is incompatible
with the antecedent, e.g. ‘if it is day, it is light’. This is true, since ‘it is not light’, the opposite
of the consequent, is incompatible with ‘it is day’. A connected (proposition) is false inwhich
the opposite of the consequent is not incompatible with the antecedent, e.g. ‘if it is day, Dion
walks about’; for ‘Dion is not walking about’ is not incompatible with ‘it is day’.

In Sections 30.12–30.16 Bochenski discusses various scholastic authors who distinguish material
from formal implication. An interesting passage is the following from Albert of Saxony (p. 193):

Of consequences, one kind is formal, anothermaterial. That is said to be a formal consequence
to which every proposition which, if it were to be formed, would be a valid consequence, is
similar in form, e.g. ‘b is a, therefore some a is b’. But a material consequence is one such
that not every proposition similar in form to it is a valid consequence, or, as is commonly
said, which does not hold in all terms when the form is kept the same; e.g. ‘a man runs,
therefore an animal runs’. But in these (other) terms the consequence is not valid: ‘a man
runs, therefore a log runs’.
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(11) John is tall materially implies Mary is blonde.

Therefore, he concludes, one cannot equate (10) with

(12) If John is tall, then Mary is blonde.

In other words, as a grammatical construction the conditional connects the sentences
themselves and not their names. And from this it follows that if the logical symbol
‘⇒’ can be written between sentences, as in

(13) John is tall ⇒ Mary is blonde,

then ‘⇒’ should be equated to the conditional and not to material implication. Quine
is very consistent about this, and it is one of the reasons that he treats propositional
logic in terms of dummy letters—as in Option 4.

The problem comes in the semantics. If one holds, with Frege, that sentences
literally denote truth-values, then there is a clear sense in which ‘⇒,’ as analyzed
by Quine, is a truth-function. If the individual sentences in (13) denote the True,
then (13) denotes the True. And the same holds for other combinations. But Quine,
like most philosophers and logicians, does not hold that sentences literally denote
truth-values—i.e., they hold that there are no such things as the objects the True and
the False. Talk of truth-values is supposed to be elliptical for something else. What
is it elliptical for? Presumably, it is elliptical for talk of truth and falsity, using ‘true’
and ‘false’ as predicates. So one should say that (12) is true if and only if either ‘John
is tall’ is false or ‘Mary is blonde’ is true. But, given this analysis, we should say
that to assert (12) is to assert

(14) ‘John is tall’ is false or ‘Mary is blonde’ is true,

which suggests that what we are asserting is that the relation of material implication
holds between ‘John is tall’ and ‘Mary is blonde.’

In fact, to take the general case, how do we give the truth conditions for a condi-
tional using ‘true’ and ‘false’ as predicates? We say

(Footnote 12 continued)
Another interesting passage he quotes is from Ockham (p. 192):

Of consequences, one kind is formal, another material. Formal consequence is twofold, since
one holds by an extrinsic medium concerning the form of the proposition, such as these
rules: ‘from an exclusive to a universal (proposition) with the terms interchanged is a correct
consequence’, ‘from a necessary major and an assertoric minor (premiss) there follows a
necessary (conclusion)’, etc. The other kind holds directly through an intrinsic medium and
indirectly through an extrinsic one concerning the general conditions of the proposition,
not its truth, falsity, necessity or impossibility. Of this kind is the following: ‘Socrates does
not run, therefore some man does not run’. The consequence is called ‘material’ since it
holds precisely in virtue of the terms, not in virtue of some extrinsic medium concerning the
general conditions of the proposition. Such are the following: ‘If a man runs, God exists’,
‘man is an ass, therefore God does not exist’ etc.

The first kind of formal implication is what I meant in the text by ‘formal implication’; the second
kind of formal implication is what I meant by ‘generalized implication,’ that we find in Russell as
formal implication.
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(15) p ⇒ q is true if and only if p is false or q is true,

which again suggests that ‘p’ and ‘q’ are variables that range over sentences and
that ‘⇒’ is either a relation among sentences or is an operator which applied to
two sentences yields a sentence as result. If ‘p’ and ‘q’ were to stand for sentences,
i.e., be place-holders for sentences, then we should use quotation marks; or, rather,
quasi-quotation marks.13

One of the great difficulties in getting through the material analysis of the con-
ditional to logic students, and not only to logic students, is that it seems hardly
credible that the ordinary English conditional is truth-functional. One forces the
truth-functional analysis down their throats, and eventually gets to the point of say-
ing that by (13) one “just means” (14)—“take it as a convention, if you wish,” is
the usual tack. The intuition that people have about the English conditional is that
it operates on “contents”—i.e., on meanings, or on senses, or on something like
that—and not on truth-values. This suggests that the ordinary conditional is really
an intensional operator; and, in fact, it does not pass the usual substitutional test
for extensionality. But material implication is also a relation between contents (i.e.,
propositions); only, it is material. That is, we can formulate (13) as

(16) That John is tall materially implies that Mary is blonde.

Of course, if we think of sentences as denoting truth-values, and expressing senses,
thenwe can formulate (16) as (13) and substitutivity salva veritate will always hold—
which does not mean that the sense will be preserved, however. This is Frege’s
analysis of conditionality.

If in (16) we substitute ‘necessarily’ or ‘logically’ for ‘materially,’ there will be
no (grammatical) problem. But if we switch to a formulation like (13) substitutivity
salva veritate will not hold anymore. Although Quine is right that it would be odd to
say in English

(17) If John is tall, then logically Mary is blonde,

it is perfectly correct to say in English

(18) If John is tall, then necessarily Mary is blonde.

Why should Quine’s reformulation of (17) as

(19) ‘John is tall’ logically implies ‘Mary is blonde’

13 See [15, Sect. 6]. One would say:
(Footnote 13 continued)

�p ⇒ q� is true if and only if �p� is false or �q� is true,

which, for a specific choice of sentences for the place-holders ‘p’ and ‘q,’ would become:

‘John is tall ⇒ Mary is blonde’ is true if and only if ‘John is tall’ is false or

‘Mary is blonde’is true.
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count in favor of his analysis of the conditional, and the reformulation of (18) as

(20) ‘John is tall’ necessarily implies ‘Mary is blonde’

not count in favor of an analysis of the conditional as expressing various forms of
implication?

I think there is an important confusion about the conditional, but that it is not the
confusion Quine emphasizes. What is one talking about in sentence (12)? I believe
there are two main options. Either one is talking about John and Mary, or one is
talking about the sentences ‘John is tall’ and ‘Mary is blonde.’14 If the former, then
one is predicating something of John and Mary; namely the predicate ‘[x is not tall
or y is blonde](x, y)’. In this case (12) should be interpreted as

(12’) [x is not tall or y is blonde](John, Mary).

If the latter, then one is predicating something of the sentences ‘John is tall’ and
‘Mary is blonde’; namely, the predicate ‘[p is false or q is true](p, q)’. In this case
(12) should be interpreted as

(12”) [p is false or q is true](‘John is tall’,‘Mary is blonde’).

What is Quine’s analysis of the conditional? What is his so-called “connection”?
The distinction I just made can be reformulated in terms of the distinction between

de re and de dicto. Is Quine’s analysis of the conditional de re or is it de dicto?
His truth-functional analysis suggests that it is de dicto, yet he wants to claim that
the conditional is not de dicto. But if it is de re, then it cannot be analyzed truth-
functionally—and Quine gives no other analysis. In terms of the distinction between
de re and de dicto, we can also see why (17) is incorrect and (18) is correct. Logical
implication is a de dicto relation (between sentences, or propositions, or whatever),
and therefore (17) cannot be interpreted as being about John andMary—i.e., it cannot
be interpreted de re. Necessary connections, on the other hand, have both a de re and
a de dicto interpretation; hence the distinction between (18) and (20).

14 This is Boole’s distinction between primary and secondary propositions. In ([2], pp. 52–53) he
says:

Every assertion that we make may be referred to one or the other of the two following kinds.
Either it expresses a relation among things, or it expresses, or is equivalent to the expression
of, a relation among propositions. An assertion respecting the properties of things, or the
phaenomena which theymanifest, or the circumstances in which they are placed, is, properly
speaking, the assertion of a relation among things. To say that “snow is white,” is for the
ends of logic equivalent to saying, that “snow is a white thing.” An assertion respecting
facts and events, their mutual connexion and dependence, is, for the same ends, generally
equivalent to the assertion, that such and such propositions concerning those events have a
certain relation to each other as respects their mutual truth or falsehood. The former class
of propositions, relating to things, I call “Primary;” the latter class, relating to propositions,
I call “Secondary.” The distinction is in practice nearly but not quite co-extensive with the
common logical distinction of propositions as categorical or hypothetical.

See also the discussion in ([4], pp. 203–204).
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Although the fundamental issue seems to me to be an issue about logic, I do not
think that the situation in English is as Quine thinks it is. The kind of sentential
analysis Quine favors is mostly based on the rejection of propositions and on the
view that, therefore, logic reflects grammatical and semantic features of language.
But the analysis of sentences as denoting truth-values, even if not literally, and the
truth functional analysis of the conditional that depends upon it, do not seem to
reflect the most significant features of conditionality in English—as shown by the
reactions of elementary logic students, among others. Quine’s first objection that
material implication would be a trivial implication relation (too broad), is precisely
what people feel about the material interpretation of the English conditional. In fact,
I think that there is an analogical process there, but that the bad analogy is to interpret
the conditional by analogy to material implication. And the main reason for this is
the misunderstanding of Frege’s analysis of conditionality.

Far from being trivial, material implication is one of the fundamental relations
upon which logic is based in its attempt to formulate general laws of truth and of
truth preservation. The basic idea of material implication is that it is a relation of
truth preservation: if a proposition p materially implies a proposition q, then if p
is true, q is also true. This is what we want to guarantee. Hence, if p is false, the
relation holds independently of q; and if q is true, the relation holds independently
of p. Classical propositional logic is an attempt to analyze the most general laws of
truth preservation taking into account only the truth and falsity of propositions, and
assuming that each proposition is either true or false and not both. What we may
call ‘pure propositional logic’ is the most general theory of material implication. It
involves no analysis whatever of the structure of propositions, or any assumptions
as to the relations that propositions may have to each other. All it assumes, in the
classical formulation, is that propositions are either true or false and not both. On
this basis it formulates laws of material implication.

In order to carry out the propositional analysis of the laws of truth and of truth
preservation it is not necessary to have any analysis of the structure of propositions.
That is what gives propositional logic its generality. All we need do is suppose that
propositions can have certain truth relations to each other. We can consider a relation
N(p, q)which holds if p is true when and only when q is false; a relation K(p, q, r)
which holds if p is true when and only when q and r are both true; and so on. As
I shall argue below, this is what classical propositional logic is about. And the laws
are formulated in terms of material implication precisely because what we want to
figure out are the broadest laws of truth preservation.

There are no propositional logical forms in this sense—and, therefore, there is
no notion of logical implication either in the strict sense of a proposition imply-
ing another in virtue of its propositional logical form. There are only forms of
truth. Of course, if we have a certain realm of propositions that are structured in
some way, and such that this structure determines certain truth relations among
them, then we can talk about logical implication among these propositions. And
to the extent that sentences express propositions we can apply this to sentences.
In fact, as long as we have the notion of truth for sentences, we can do everything
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directly in terms of sentences, and it gives a better account of propositional logic also
in that case.

The account of propositions I gave in [4] includes propositions that are nei-
ther true nor false, and it seems to me that this will be a feature of any general
account of truth either for propositions or for sentences. It seems best, therefore,
to formulate propositional logic both on the assumption that bivalence holds and
without that assumption. Since my view of propositional logic is that it is a theory
about truth, I will formulate it as a first-order theory with the propositional vari-
ables as individual variables. The basic predicates are ‘T’ (for ‘is true’) and ‘F’
(for ‘is false).

4 Classical Propositional Logic as First-Order Theory

Themost general case is the casewherewedo not assume anything about the structure
of propositions. The two fundamental laws of truth, which are axioms of classical
two-valued propositional logic, are the principles of excludedmiddle (bivalence) and
of non-contradiction. Excluded middle can be stated as

(21) ∧p(Tp ≤ Fp),

or, equivalently, as

(22) ∧p(¬Tp ⇒ Fp).

Non-contradiction can be stated as

(23) ∧p¬(Tp &Fp),

or, equivalently, as

(24) ∧p(Tp ⇒ ¬Fp).

If we take them together, they can be formulated as the axiom

(A1) ∧p(Tp ≥ ¬Fp).

Even if we assume absolutely nothing about the structure of propositions, we can
define the following predicates:

(D1) ∧p∧q(Npq ≥ (Tp ≥ Fq))
(D2) ∧p∧q∧r(Kpqr ≥ (Tp ≥ (Tq &Tr)))
(D3) ∧p∧q∧r(Apqr ≥ (Tp ≥ (Tq ≤ Tr)))
(D4) ∧p∧q∧r(Cpqr ≥ (Tp ≥ (Tq ⇒ Tr)))
(D5) ∧p∧q∧r(Epqr ≥ (Tp ≥ (Tq ≥ Tr))).

These definitions amount to the truth table characterization of the standard connec-
tives. Since we do not have connectives, we can read the predicates as follows (in
order): p negates q, p conjoins q and r , p disjoins q and r , p conditionalizes r on
q, p biconditionalizes q and r . On the basis of these definitions and axiom (A1) we
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can develop the theory of classical propositional logic.15 This is the usual semantic
analysis of propositional logic, and we can prove all the “tautologies.” For example:

(25) ∧p∧q(Cpqq ⇒ Tp)
(26) ∧p∧p1∧q∧q1∧q2∧r∧s∧t ((Cqrs &Cq1st &Cq2r t &Kp1qq1 &Cpp1q2)

⇒ Tp)
(27) ∧p∧q∧r((Nqr &Apqr) ⇒ Tp)
(28) ∧p∧q∧q1∧r∧s((Kqrs &Aq1rs &Cpqq1) ⇒ Tp).

We can do more, in fact, because we can not only show that if a proposition has
certain truth relations to others then it “must” be true, but we can also do the same
thing for falsity. For example:

(29) ∧p∧q∧r((Cqrr &Npq) ⇒ Fp)
(30) ∧p∧q∧r((Nqr &Kpqr) ⇒ Fp).

We cannot define tautologous structure in general, but the totality of theorems like
(25)–(28) gives us a certain characterization of tautologous structure, and the total-
ity of theorems like (29)–(30) gives us a certain characterization of contradictory
structure (in the propositional sense).

Suppose now that we do have some operations on propositions such as negation,
conjunction, disjunction, etc. We can then add function symbols to our theory—for
example, the script Polish notation I used earlier on—and axiomatize it in the same
spirit. We can have the following axioms—I will use parentheses with the predicates
‘T’ and ‘F’ applied to terms to avoid confusions:

(A2) ∧p(T(N p) ≥ Fp)
(A3) ∧p∧q(T(Kpq) ≥ (Tp &Tq))
(A4) ∧p∧q(T(Apq) ≥ (Tp ≤ Tq))
(A5) ∧p∧q(T(C pq) ≥ (Fp ≤ Tq))
(A6) ∧p∧q(T(E pq) ≥ (Tp ≥ Tq)).

These are the truth tables again, and on the basis of these axioms we can prove all the
tautologies. In fact, the tautologies are the terms τ for which we can prove T(τ ); the

15 From (A1) we cannot prove that there is at least one true proposition and at least one false
proposition, but this does not affect the theory. If we add

(E) ∃pTp &∃ pFp

as a further axiom, then using (A1) we can prove that there are at least two propositions. We can
also prove:

(E1) ∧q∃pNpq
(E2) ∧q∧r∃pKpqr
(E3) ∧q∧r∃pApqr
(E4) ∧q∧r∃pCpqr
(E5) ∧q∧r∃pEpqr .
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contradictions are the terms τ for which we can prove F(τ ); the term τ tautologically
implies τ ⊃ if we can prove T(Cττ ⊃).16

Since we can define the truth predicates just as we did before, we can see that
for everything we can prove in this theory there is an exact analog (or translation)
we can prove in the earlier theory. From which it follows that it would be a mistake
to suppose that by introducing the operations we are analyzing the structure of
propositions in a more explicit way than we did before. In other words, in a model
of this theory the proposition denoted by a term of the form Cττ ⊃ need not have any
kind of recognizable “conditional” structure aside from the truth relations it has to
the propositions denoted by τ and by τ ⊃.

It does seem, however, that if we interpret the theory with sentences rather than
with propositions, then we get something we can sink our teeth into. But this is really
an illusion that derives from a very peculiar interpretation that has no universality
at all. This is Option 4 above, which consists of starting with a stock of English
sentences, say, and then defining a structure of sentences, which are not generally
English anymore, through certain constructions that mimic the syntax of the logical
theory we have been discussing. Thus, if p and q are part of our stock of atomic
sentences, we get such things as

(31) not-not-not-p,
(32) (not-p only if q) or (not-q and p),

and so on. As far as English is concerned, however, and language more generally,
this gets us nowhere unless we can relate these structures to the actual sentences of
the language. Even a sentence like ‘Quine is not a dentist,’ which is the standard
negation of ‘Quine is a dentist’ in English, does not fit our format. Unless we can
map sentences of English onto those forms, we cannot talk about the logical form
of English sentences; thus the problem of translation, symbolization, regimentation,
etc. And if we can so map them, then we do not need those phony structures because
the mapping will give us an interpretation of the logical theory. Thus, either this
nominalistic attempt to conceive of logic through language does not get us anywhere,
or is a verymisleadingway of presenting a theory of the truth relations of propositions
(or sentences) as if it were a theory of linguistic forms.17

One can complain against my formulation that it does not make much sense
to present propositional logic as a first-order theory. I shall discuss this later, but

16 Since N is an operation(totally defined), from (A1) and (A2) we can prove (E) in the previous
note.
17 That Quine’s motivation was ontological can be seen from his early paper [19], which contains
all the fundamental ideas of his interpretation of propositional logic. Thus (pp. 267–268):

In the theory of deduction the signs ‘p,’ ‘q’, etc., are customarily construed as proposition
variables, i.e., as signs ambiguously denotative of propositions, i.e., as signs ambiguously
denotative of the things that sentences denote. We now cancel this circuit through denoted
entities, and explain the signs ‘p’, ‘q’, etc., directly as ambiguously abbreviated sentences—
which comes to the same thing as before except that the existence of denoted entities,
propositions, is no longer presupposed.
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to clear the air temporarily I would point out that this is what everybody does,
except that generally the theory is not made explicit but left in the background
(meta)language. All I did was to formulate the usual truth analysis explicitly as a
first-order theory. What people generally use is a second order-theory (or set theory),
which is indispensable for characterizing the syntax of propositional languages, and
also for characterizing the linguistic forms I discussed in the previous paragraph. But
let us go back to the issue about material implication.

5 Material Implication (Continued)

Just as I introduced the truth relations in (D1)–(D5), we can introduce the earlier
truth relations: Conj, Disj, Imp, and Eq. The definitions are:

(D6) ∧p∧q(Conj(p, q) ≥ (Tp &Tq))
(D7) ∧p∧q(Disj(p, q) ≥ (Tp ≤ Tq))
(D8) ∧p∧q(Imp(p, q) ≥ (Tp ⇒ Tq))
(D9) ∧p∧q(Eq(p, q) ≥ (Tp ≥ Tq)).

Of these, the last two correspond to material implication and to material equivalence.
We can still do everything we could do before. Instead of (25) and (26), for example,
we can state

(33) ∧qImp(q, q)
and

(34) ∧r∧s∧t ((Imp(r, s)& Imp(s, t)) ⇒ Imp(r, t)).
(27) can be stated as

(35) ∧q∧r((Tq ≥ Fr) ⇒ Disj(q, r)),
and (28) as

(36) ∧r∧s(Conj(r, s) ⇒ Disj(r, s)).

In fact, since (D1)–(D9) are definitions, anything we can do by means of them we
can also do by using directly the two truth predicates in the primitive notation. In (35)
I used the truth predicates to “help out” in stating the principle of excluded middle.

Suppose, however, that we only have the truth relations introduced in (D6)–(D9)
and do not have the truth predicates; can we state everything we could before? The
answer is no; we cannot state (35). And even if we had the relation of negation intro-
duced in (D1), the answer would still be no—although we can now state something
like (35) as

(37) ∧q∧r(N(q, r) ⇒ Disj(q, r)).

Take the usual law of propositional logic

(38) p ⇒ (q ⇒ p).

There is no way to state this just using material implication. And we should not
fool ourselves that we can state it by using the operations (connectives) of the second
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formulation. If we do not have the truth predicates, then in that formulationwe cannot
state anything at all. We can write down

(39) C pCqp,

but unless we take this writing down as involving an implicit qualification ‘is true,’
all we are writing down is a term. It is for this reason that the usual formulation of
quantified propositional logic is confused; it combines, without telling us straight,
connectives and relations. The confusion derives from propositional logic itself,
however, not from the introduction of quantification. The Boolean algebra treatment
is not confused because it explicitly combines operations (connectives) and relations
(material implication, material equivalence).

But why can we not axiomatize the relation of material implication directly as a
relation among propositions and define the truth predicates by

(D10) ∧p(Tp ≥ ∧qImp(q, p))
and

(D11) ∧p(Fp ≥ ∧qImp(p, q))?

We can, actually, although neither (D10) nor (D11) are good definitions unless we
make certain existential assumptions about propositions. If all propositions are truth-
valueless, then what (D10) and (D11) define is ‘not false’ and ‘not true.’ If some
propositions are true and some not true, then (D10) defines ‘true’ but (D11) still
defines ‘not true.’ If all propositions are either true or false, then (D10) and (D11)
define ‘true’ and ‘false.’

As a propositional relation, material implication has two basic features that are
characteristic of all implication relations; i.e., it is reflexive and transitive. In other
words, it satisfies the two principles

(I1) ∧pImp(p, p)
(I2) ∧p∧q∧r((Imp(p, q)& Imp(q, r)) ⇒ Imp(p, r)).

Although these principles state necessary features of any implication relation, they
are not sufficient to characterize an implication relation.What characterizes an impli-
cation relation is that, in addition, it must be truth-preserving; i.e.,

(I3) ∧p∧q(Imp(p, q) ⇒ ¬(Tp &¬Tq)).18

Material implication is the broadest implication relation (as Quine says) that satisfies
these conditions. That is, we can state (I3) as the biconditional

(MI) ∧p∧q(Imp(p, q) ≥ ¬(Tp &¬Tq)).

Given the usual classical assumptions about the truth and falsity of propositions
(stated in (A1)), we can formulate (I3) and (MI) as

18 The rule of Modus Ponens (from p and Imp(p, q), infer q), which holds for any implication
relation, is a way of stating (I3) without appealing to the truth predicate.



What is Propositional Logic a Theory of, if Anything? 169

(I3’) ∧p∧q(Imp(p, q) ⇒ ¬(Tp &Fq))

and

(MI’) ∧p∧q(Imp(p, q) ≥ ¬(Tp &Fq)).

The latter is Frege’s characterization of conditionality, and implies that material
implication has the features (I1) and (I2) as well.

We can avoid the use of the ‘T’ predicate by means of the following axioms:

(I4) ∧p(∧qImp(q, p) ≤ ∧qImp(p, q)),

and

(I5) ∃p∃q¬Imp(p, q).

(I5) implies that there is at least one true proposition and at least one proposition
that is not true. This is important because (I1), (I2), and (I4) hold if all propositions
are true or if all propositions are truth-valueless, as can be seen by the characterization
(MI) of material implication. We can then use (D10) as definition of ‘T.’ (I4) implies
(I1) directly, and using (D10) it implies the converse of (I3) aswell. And, using (D10),
(I2) implies (I3). Thus, (I2), (I4), (I5), and (D10) axiomatize material implication
as characterized by (MI). But since (D11) still defines ‘not true’ rather than ‘false,’
this is not an axiomatization of (MI’). In fact, there is no way to define falsity and
axiomatize (MI’) unless we exclude truth-valueless propositions. But let me go back
to the conditional now.

6 The Material Conditional (Continued)

That the material interpretation of the conditional is simply an analogy to material
implication follows from the fact that the only assignment of a truth-value for the
material conditional one can actually justify is the assignment of falsity for the
combination of true antecedent and false consequent. And the reason one can justify
that categorically is because it holds for every implication relation, and because the
conditional “represents” an implication relation. In fact, the ordinary conditional can
represent any implication relation; that seems to be its fundamental function in the
language. It is precisely this feature of the conditional that leads to the common
intuition that one should make it truth-valueless for every combination except the
combination of true antecedent and false consequent. Since this obviously will not
do, for several reasons, one hits upon the idea of making it true for every other
combination. Why will it not do? Well, for one thing, if a sentence is true (false),
then the conditional of the sentence and itself should be true. That is because of (I1).
But from this it does not follow that the conditional of any two true (false) sentences
should be true. Similarly, the conditional of a false sentence with a true sentence
that the former unquestionably implies should be true, without the truth-value of the
combination of false antecedent and true consequent being always true.
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I think the usual idea that the proper analysis of the truth conditions of an ordinary
conditional depends on “meaning” (in some sense) is essentially correct, except there
is not a unique correct analysis because the meaning of an ordinary conditional is
very strongly context dependent. The context may be such that a material analysis
is appropriate, or a causal analysis, or a necessity analysis, or a logical analysis,
etc.19 It is for this reason I said that the function of the conditional is to “represent”
(or express) any implication relation. What is this representational feature of the
conditional?

Consider the formulation of propositional logic purely in terms of connectives.
By the bit of cheating (or interpretation) that consists of viewing the writing down
of something like (39) as asserting the truth of a (complex) proposition, we gain a
tremendous amount of power. We cannot match that using the relation of material
implication, but we can if we appeal to the construction ‘that.’ Leaving the qualifi-
cation ‘materially’ implicit, we can state (39) as

(40) p implies that q implies p.

Something more complicated, such as

(41) (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ r)),

can be stated as

(42) that p implies that q implies r , implies that p implies q implies that p implies
r .

This is a little messy, but readable; it would be a lot messier if we tried to use the
‘if-then’ construction or the ‘only if’ construction. For example:

(43) If if p then if q then r , then if if p then q, then if p then r
(44) p only if, q only if r ; only if p only if q, only if p only if r .20

19 The context dependence of the conditional is seen very clearly when we switch to the subjunctive
mood. Goodman’s idea that a counterfactual conditional is true if the consequent follows by law
from the antecedent and an appropriate set of relevant conditions is an expression of this contextual
dependence—see [10]. But the idea that ‘law’ here refers to something like physical laws seems to
me quite mistaken. The “laws” in question are also context dependent.
20 Quine actually thinks that part of the reason for the mathematician’s reading of ‘⇒’ as ‘implies’
has to do with word order. He says ([17], p. 44):

The habit of pronouncing ‘⇒’ as ‘implies’ still persists, and is to be deplored. Partly it is
encouraged by the trivial circumstance that ‘if’ breaks the word order, while ‘implies’ falls
into the position of ‘⇒’. Anyone thus tempted should observe that ‘⇒’ can be read without
change of position as ‘only if’.

(44) seems to show that the problem has nothing to do with word order but, rather, with the fact
that we want to state implications that involve other implications. ‘Implies’ combined with ‘that’ is
rather good for that; ‘only if’ is a total loss unless we use parentheses—my use of semicolon and
commas was a poor attempt to avoid the ambiguities. Parentheses are what we use combined with
‘⇒,’ and their function is precisely the function of the ‘that.’

The idea that parentheses are “mere” punctuation marks is a rather misleading idea, because
combined with other features of the notation they can serve various (hidden) functions. It is just like
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In fact, the most natural way to state (42) is:

(45) If p implies that q implies r , then if p implies q, p implies r ,

which is essentially Russell’s reading.
In any case, the point of the ‘that’ construction can be seen as follows. Suppose

that in our language we can not only assert that a proposition materially implies
another, but we can assert that material implication holds or does not hold between
twopropositions, andwe can iterate this any number of times. In otherwords, suppose
we have a term building operator ‘that’ (which we can also read ‘it is the case that’)
that applied to any formula gives us a term—i.e., gives us something that behaves
like the propositional variables, which are the only terms we have. Then, we can state
(40) as

(46) ∧p∧qImp(p, thatImp(q, p));

and we can state (42) as

(47) ∧p∧q∧r(Imp(p, thatImp(q, r)) ⇒ (Imp(p, q) ⇒ Imp(p, r))).

This is essentially what we want, and we can achieve precisely the same effect
if we have a term building operator that applied to any two propositions gives us
a proposition whose truth amounts to the holding or not holding of the material
implication of these propositions. Something like ‘C’ fits the bill, and with it (40)
and (42) look like this

(48) ∧p∧qImp(p, C pq)
(49) ∧p∧q∧r(Imp(p,Cqr) ⇒ (Imp(p, q) ⇒ Imp(p, r))).

The point is that what we get from all these constructions are iterations of the truth
relations; and this amounts to iterations of the truth predicates ‘T’ and ‘F.’ In the
first formulation of propositional logic I gave above, I used the logical machinery
of first-order logic to iterate the truth relations at will via the definitions (D1)–(D5).
But I did not need to; I could have done the same thing by repeated use of the truth
predicates.

The usual formulation of propositional logic in terms of sentential structures is
essentially a cumulative theory of the truth relations via the truth-functional inter-
pretation of the connectives. If we use sentences, then we have to use quotation

(Footnote 20 continued)
the idea that juxtaposition is “merely” placing symbols next to each other. The juxtaposition of ‘F’
and ‘x’ in ‘Fx’ serves to indicate predication—i.e., a logical operation—and it does this no matter
what the arity of the predicate variable (or constant) ‘F’; so, in fact, we get an infinity of logical
operations subsumed under one form of notation. Syntactically all we are doing is juxtaposing,
but semantically we interpret some juxtapositions in one way and others in other ways. Similarly,
when we juxtapose quantifiers and read their dependence from right to left (through the definition
of truth), there is a lot more there than meets the eye. If all quantifiers were totally independent of
each other, we would not be able to do much logic because we would not be able to distinguish
between ‘∧x∃y Rxy’ and ‘∃y∧x Rxy’, for instance. If we introduced distinctions of scope for the
quantifiers in relation to other quantifiers (to indicate their dependence), as we do for the variables
they bind, then the “punctuation” symbols we may use would not be “mere” punctuation marks.
What is a punctuation mark, in fact, if not the expression of some sort of operation?
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marks throughout both with the truth predicates and with the truth relations. Using
quasi-quotation, we can state (40) as

(50) ∧p∧q(�p�implies ��q�implies�p��),
which in a particular case reads

(51) ‘John is tall’ implies ‘‘Mary is blonde’ implies ‘John is tall’’.

Thismeans thatwewill have to iterate these quotation constructions anyfinite number
of times. Ifweuse the connectives and the truth predicates—i.e., do the usual semantic
analysis—then we can avoid all but the first use of quotation and truth predicates
by treating each sentential formula as a complex construction out of a stock of
given sentences. The truth functional interpretation of negation, conjunction, and
disjunction as sentential connectives is quite natural and easy to justify. But the truth
functional interpretation of the conditional is completely unnatural and can only be
justified as some sort of convention.Bymaking that conventionweget the conditional
to represent material implication but we get stuck with a two-valued interpretation
of the basic stock of sentences and we lose the power of the conditional to express
other implication relations.21 To see this let us go back to the logic.

7 Truth-Value Gaps

Let us formulate it now for the case where there may be propositions (or sentences)
that are neither true nor false. Let us assume we have the function symbols as above.
Axiom (A1) must be weakened to

(B1) ∧p(T(p) ⇒ ¬F(p),

because we do not have excluded middle (or bivalence) anymore. The other axioms
are:

(B2) ∧p(T(N p) ≥ Fp)
(B3) ∧p(F(N p) ≥ Tp)
(B4) ∧p∧q(T(Kpq) ≥ (Tp &Tq))
(B5) ∧p∧q(F(Kpq) ≥ ((Tp &Fq) ≤ (Fp &Tq) ≤ (Fp &Fq)))
(B6) ∧p∧q(T(Apq) ≥ ((Tp &Tq) ≤ (Tp &Fq) ≤ (Fp &Tq)))
(B7) ∧p∧q(F(Apq) ≥ (Fp &Fq))
(B8) ∧p∧q(T(C pq) ≥ ((Tp &Tq) ≤ (Fp &Tq) ≤ (Fp &Fq)))
(B9) ∧p∧q(F(C pq) ≥ (Tp &Fq))
(B10) ∧p∧q(T(E pq) ≥ ((Tp &Tq) ≤ (Fp &Fq)))
(B11) ∧p∧q(F(E pq) ≥ ((Tp &Fq) ≤ (Fp &Tq))).

21 The sentential logic of order ω at the end of Chap.6 of [4] was built up like that to avoid the
two-valued interpretation. It amounted to an embedding of a three valued logic (the sentences could
be neither true nor false) into a two-valued predicate logic with the predicate ‘T’.
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These conditions amount to saying that a “complex” proposition is either true
or false only when all its “component” propositions are either true or false—this is
Kleene’s weak interpretation of three-valued logic.22 Material implication should be
defined by (MI), however; i.e., material implication holds or does not hold for any
propositions, including truth-valueless propositions.

Although in this theory the conditional has been characterized materially, it does
not express material implication anymore. In other words, we do not have

(52) ∧p∧q(T(C pq) ≥ Imp(p, q)).

On the contrary, we can prove that, for example,

(53) ∧p∧q((Fp &¬Tq &¬Fq) ⇒ (Imp(p, q)&¬T(C pq))).

Of course, for any term τ for which we can prove T(τ ) or F(τ ) in the earlier formu-
lation, we can now prove ¬F(τ ) or ¬T(τ ). And if for every propositional variable ρ
that appears in τ we relativize our theorems by adding the qualification ‘Tρ ≤ Fρ’,
then we can prove T(τ ) or F(τ ) just as before. Thus, although we cannot prove

(54) ∧pT(C pp),

we can prove

(55) ∧p¬F(C pp)

and

(56) ∧p((Tp ≤ Fp) ⇒ T(C pp)).

Therefore we lose nothing we had before.
What we lose is the connection between the conditional as connective and mate-

rial implication, because material implication continues to behave exactly as before.
In fact, the laws of material implication are axiomatized in the implicational propo-
sitional calculus by means of the principles (38), (41), and Peirce’s law

(57) ((p ⇒ q) ⇒ p) ⇒ p,

which can be interpreted as expressing the idea that a false proposition (or a non-true
proposition) materially implies any proposition. If we introduce the operations on
propositions as in (D1)–(D5), then the theory of material implication is the same
in both formulations. That is, we can prove the analogs of (38), (41) and (57). For
example, (38) becomes

(58) ∧p∧q∧r∧s((Crqp &Cspr) ⇒ Ts).

But we cannot prove the analogs of the fundamental principles of negation, such as

22 See ([11], p. 334). I emphasize that the first-order logic I am using to describe all of this is just
ordinary first-order logic, however.
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(59) (¬q ⇒ ¬p) ⇒ (p ⇒ q),

which would give us the usual formulations of classical two-valued propositional
logic.

As a theory of truth relations between propositions classical propositional logic
is a theory of extreme generality one of whose aims can be characterized as the for-
mulation of laws of truth preservation. It is actually independent of any assumptions
as to the nature of the bearers of truth, since it applies equally well to propositions,
sentences, thoughts, beliefs, etc. The only assumption is that these things can be true
or false and cannot be both. Of course, as we add assumptions as to the structure
that the bearers of truth may have and we add operations on them, then our theory
becomes more specific and more complex. The usual idea that propositional logic
has to do with sentences by analyzing their structure in certain ways seems to me to
confuse the general aims of propositional logic with one of its important domains of
application. This confusion goes hand in hand with the rejection of abstract analyses
of reality and of its fundamental traits, and at the end one even loses sight of what
the actual aims are.

Suppose we want to make sure that our domain of application of propositional
logic consists of sentences, or of things that keep the same distinctions as the imag-
inary sentences molded upon the actual formalism of propositional logic. As is well
known we will not be able to guarantee this if our theory of propositional logic is
formulated as a first-order theory. Many nominalists and quasi-nominalists believe
theirs is an ontologically simpler account on the grounds that sentences are good old
material objects one can see and kick around. This is basically an illusion, however,
resulting from lack of care in the formulation of their theory.

For the second-order formulation, corresponding to Option 4 above, we add a
unary predicate ‘At’ to pick out the atomic sentences. We then have the following
axioms that correspond to the usual inductive definitions (using ‘∀’ for exclusive
disjunction):

(S1) ∧p(At(p) ∀ ∃q(p = Nq) ∀ ∃q∃r(p = Kqr ∀ p = Aqr ∀ p = Cqr ∀ p =
Eqr))

(S2) ∧p∧q(N p = Nq ⇒ p = q)
(S3) ∧p∧q∧r∧s(Kpq = Krs ⇒ (p = r & q = s))
(S4) ∧p∧q∧r∧s(Apq = Ars ⇒ (p = r & q = s))
(S5) ∧p∧q∧r∧s(C pq = Crs ⇒ (p = r & q = s))
(S6) ∧p∧q∧r∧s(E pq = Ers ⇒ (p = r & q = s))
(S7) ∧Z((∧p(At(p) ⇒ Z(p))& ∧p(Z(p) ⇒ Z(N p))& ∧p∧q((Z(p)& Z(q))

⇒ (Z(Kpq)& Z(Apq)& Z(C pq)& Z(E pq))) ⇒ ∧pZ(p))).

The last axiom is the usual axiom of induction for propositional “formulas.” It
is a second-order axiom that cannot be replaced by first-order axioms. We can join
these axioms either to (A1)–(A6) or to (B1)–(B11), depending on whether we want
to exclude truth-valueless sentences or not.

Quine’s formulation of propositional logic is a model of this, but English (even
idealized English) is not. But, we may ask, what is the advantage of restricting
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propositional logic to the models of this theory? And, as a matter of fact, as far as
good old material objects are concerned, those we can get our teeth into, there aren’t
any models at all. What there are, are certain rough finite approximations, which are
better approximations as models of the earlier theories.

8 Philosophical Foundations

Let us go back now to the idea that presenting propositional logic in these ways—
whether as first-order theories or as second-order theories—inverts the natural order
of things because these theories “presuppose” propositional logic. The idea behind
the ‘presuppose’ is that we start out from scratch building up the systems of logic
in a more and more inclusive way. At the bottom is propositional logic; the most
superficial analysis of logical form in terms of connectives. Then we start digging
deeper and deeper into the structure of sentences to reveal subjects and predicates,
quantifiers, identity, etc., and in this way we get richer and richer analyses of logical
form and, consequently, we get richer and richer logical systems. This is what the
foundations of logic are supposed to look like.

This picture is challenged by the beginner student’s question: “How can you use
‘not’ to characterize the properties of ‘¬’?” (And the same for the other connectives.)
“Aren’t you presupposing logic in order to characterize logic?”23 Although these are
goodquestions, the students do not get a good answer. Either they donot get an answer
at all, or else they get something like: “Well, I am not making up logic, I am just
characterizing it; and for that I use language, including such words as ‘not’, ‘and’,
‘or’, and so forth.”

Very well, we can start from there. What does it mean to characterize something,
and what is it we claim to be characterizing? When mathematicians characterize
topological spaces, say, they are building a theory about them, or they are defining
them as being certain kinds of mathematical structures as part of building a the-
ory about them. But in either case, as logicians and philosophers always insist, the
mathematician uses logic. Similarly, when logicians or philosophers characterize
propositional logic, or first-order logic, or any other kind of logic, they are either
building a theory about something or they are defining something, and in both cases

23 Quine raises the question in ([16], p. 40) in connection with Tarski’s definition of truth:

A reasonable way of explaining an expression is by saying what conditions make its vari-
ous contexts true. Hence one is perhaps tempted to see the above satisfaction conditions as
explaining negation, conjunction, and existential quantification. However, this view is unten-
able; it involves a vicious circle. The given satisfaction conditions for negation, conjunction,
and quantification presuppose an understanding of the very signs they would explain, or of
others to the same effect... If we are prepared to avail ourselves thus of ‘not’, ‘and’, and
‘some’ in the course of explaining negation, conjunction, and existential quantification, why
not proceed more directly and just offer these words as direct translations?
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they are also using logic. In fact, they generally use a lot of logic—or set theory,
which for some reason seems less problematic.

At this point there are two main lines that can be taken; or, at any rate, variations
on two main themes. The adepts of the formalist line claim they are using informal
logic and language to build up formal languages and systems of logic. They claim,
moreover, that this is essential for precision and rigor, and that this precision and
rigor are essential for mathematics, science, and philosophical understanding. They
should not object, therefore, if one brings their more or less informal process of
characterization of logic up to their standards of precision and rigor.

But, anyway, what is this informal logic? Is it propositional logic? First-order
logic? Set theory? A combination of everything? There are many possibilities here,
but the most popular among mathematical logicians seems to be that since logic is
part of mathematics one can use any mathematical techniques in building up logical
systems. This is quite natural because logic is mostly conceived as syntactic and
semantic structures, and these are mathematical structures. Formal constructivists
will balk at this, of course, andwill restrict themselves to various inductive techniques
they consider more primitive than set theory.

The linguistic analysis line claims that logic is something that is part of our
language—it derives from grammar, for example, or from our use of language, or
both. One approach is that ‘not’ has a certain meaning, and so do ‘and,’ ‘or,’ etc. Part
of the meaning of ‘not’ is that it transforms truths into falsehoods, and falsehoods
into truths. That is just how the word ‘not’ is used in our language, and logic goes on
to analyze this use systematically. So ‘syntax’ and ‘semantics’ are really straightfor-
ward words in the logical vocabulary. Logic builds up certain theories of linguistic
use, both syntactic and semantic. Linguists, however, have no qualms about using
logic in formulating their theories. So why should logicians and philosophers of this
persuasion object to a formal presentation of their theory of informal logical use?

Is this avoidance merely a didactic technique? In some cases it is, especially in
elementary presentations. Inmore or less advanced presentationsmathematicians are
generally not afraid to be explicit about the logic and set theory they are using—and
this even if they accept the basic claims of this linguistic view. But in philosophical
presentations, people do try to hide any insinuations that logic is presupposed by
logic. What are they afraid of?

They smell a rat, I think, a circle that may be vicious and will disturb an epistemo-
logical structure built upon language that sees logic as its greatest initial achievement.
This is a view put together in the beginning decades of the twentieth century by the
logical positivists, among others, and that is sometimes even attributed to Frege.24

Knowledge and science are founded on logic, which is founded on language,
which is founded on meaning, which is founded on use, and practice, and behavior.
This epistemological structure received a few hard blows from Quine and others,

24 It is really ironic that after fighting so hard against the view that logic studies or formulates the
laws of thinking, Frege should get landed with the view that logic formulates the laws of talking.
In fact, all the same arguments that he used against the former view, and more, can be used against
the latter view.
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but in one way or another it has kept together, at least as far as the connection
between logic and language is concerned. And, ironically, Quine has become the
major proponent of a revised version of it (for logic)wheremeaning has been replaced
by syntax, or grammar—which, in effect, amounts to switching to a version of the
earlier formalist line.25

In spite of claims to the contrary, this line reflects the quest of an epistemology
based onfirst principles. They are not the kind of absolute first principles philosophers
of old were looking for, but they are still the philosopher’s stone. Our essence is to
talk, therefore the laws of logic are the laws of talking. There is a certain grain of
truth in this view, of course, because language does reflect logic inmany fundamental
ways. But the attempt to build logic from language is very much like the attempt
to lift oneself by one’s own bootstraps. To use logic to characterize logic would be
cheating on this view; so one leaves it in the nebulous background language hidden
behind a lot of double-talk.

It is quite obvious that if logic is universal in theway that it is usually assumed, then
it must be necessary to formulate one’s theory of anything, including one’s theory
of logic itself. Since language does indeed embody logic in fundamental ways, the
mere use of language in describing logic does involve logic; we can make it explicit
or not, but it does not change anything. The student’s question is whether this process
involves some sort of vicious circularity. Trying to make logic result from language,
in one way or another, does seem circular in this way. That is the reason for the appeal
to practices, uses, etc., which would make logic result from linguistic behavior—but
the practices, uses, etc., are quickly idealized to fit a prior idea of what should or
should not be logical.

Or else the appeal to a formalist account that is ultimately a conventional account.
As happened with geometry, logic becomes meaningful only relative to some inter-
pretation, formal or informal. This leads to a nice cozy relationship between all sorts
of people who for quite a while thought they were disagreeing about such things as
the nature of reality. They all gang up on the metaphysician and hold the view that
just as Beauty failed to lead the way for aesthetics, Truth (i.e., Reality) failed to lead
the way for logic.

If logic is about some of the broadest traits of reality, then there is no circularity
in describing these traits and theorizing about them by means of linguistic theories
that involve logic. If what one is describing is not linguistic at all and if the way

25 This is Quine’s conclusion to the remarks I quoted in note 20 (Ibid., p. 40):

Tarski, to whom the three satisfaction conditions are due, saw their purpose the other way
around; not as explaining negation, conjunction, and quantification, which would be unten-
able, but as contributing to a definition of satisfaction itself and so, derivatively, of truth.

But what about negation, conjunction, and quantification, keep wondering the beginning students—
and not only them.

If the idea is that a definition of satisfaction somehow “justifies” having those logical notions,
then a definition of satisfactionwould justify having anything as a logical notion—asQuine objected
to Carnap in ([18], p. 125). The formalism comes in by appealing to a logical grammar given by
fiat, that includes what one wants and excludes what one does not want.
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in which language involves logic is by reflecting and expressing these features of
reality, then language is a perfectly legitimate tool for the description of logic. The
logician need not fear the logical features of language just as the physicist need not
fear the physical features of language and the biologist need not fear the biological
features of language.

9 Propositional Logic as Theory

In my earlier discussion I sought to separate pure propositional logic from applied
propositional logic. Pure propositional logic is an absolute theory about reality, given
a certain conception of it, which is completely independent of language. It is a theory
about truth and truth preservation based on a certain analysis of truth and on the
principles of non-contradiction and of excluded middle.

We can distinguish among propositions those that determine a state of affairs, and
call them ‘true,’ from those that do not. If we say that a true proposition denotes the
state of affairs it determines, then truth preservation amounts to the preservation of
denotation. The point of the relation of material implication is to assure us that we
do not lose the connection with reality. In other words, if we have some propositions
that are hooked up to reality, and they materially imply another proposition, then
we are still hooked up to reality. Material implication is quite important, therefore,
because it prevents us from starting up with our feet on the ground and wandering
off. This is one of the true foundations of logic.

In fact, if we think of propositional logic in this way, then we see how we can
formulate it in terms of states of affairs, although involving propositions as a second
component. Aside from propositional variables we would have variables ‘s’, ‘u’, ‘v’,
etc. over states of affairs and one fundamental binary predicate ‘Den( , )’ to express
the relation of denotation. Classical propositional logic will involve in addition a
propositional operator ‘N ’ for negation. Our axioms are

(C1) ∧p∧u∧v((Den(p,u)&Den(p, v)) ⇒ u = v),

which expresses the uniqueness of denotation (or propositional instantiation), and
the principle of non-contradiction

(C2) ∧p¬(∃uDen(p,u)& ∃uDen(N p,u)).

We can define truth as

(C-D1) ∧p(Tp ≥ ∃uDen(p,u)),

and falsity as

(C-D2) ∧p(Fp ≥ T(N p)).

Material implication can be characterized by

(C-D3) ∧p∧q(Imp(p, q) ≥ ¬(∃uDen(p,u)&¬∃uDen(q,u))).
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This is classical propositional logic in that it involves a classical conception of truth
as what is real, a classical conception of discourse (logos) as propositions, and a
classical conception of falsity (as opposed to what is not true) through the operation
of negation. It does not require, however, that every proposition be either true or
false.

The theory of material implication is the most fundamental part of pure propo-
sitional logic. But we can study all truth relations among propositions that we can
define purely in terms of truth and falsity. It is not a question of choosing alternative
definitions of the truth relations that may be more to our taste, but of studying them
all. And we can study how they behave for propositions that are either true or false,
and how they behave for propositions more generally. We can study infinitary truth
relations as well, of course; for example a relation of material implication that holds
between denumerablymany propositions and a proposition. The same for disjunction
relations, conjunction relations, etc. We can introduce operations from propositions
to propositions, finitary or infinitary, as long as they are characterized in terms of
truth and falsity. All of this is pure propositional logic and, by considering one or
another aspect (or part) of it, we get practically everything that logicians have done
so far in their analysis of truth.

In this sense of pure propositional logic there are no really alternative systems
of propositional logic.26 It is truly universal and can reasonably be said to study
some of the broadest features of reality. Where we get particularity is at the level of
applications.

There are many applications of propositional logic, both to abstract entities such
as linguistic propositions (in one conception or another), and to more or less con-
crete entities such as sentences, statements, utterances, inscriptions, etc.—also in
one conception or another. There are also applications to formal or informal theo-
ries, including logical theories, of one or another aspect of reality. We can apply it
to English, for example, and to various simulations of English, both at the level of
meaning and at the level of syntax; we can apply it to mathematics; we can apply
it to first order logic; we can apply it everywhere where we have some sort of dis-
course. The specific features of one or another applicationwill varywidely, of course,
depending on the structure of the things which we are considering, on the operations
that we can actually define for these structures, etc. But these applications are not
arbitrary; they have to tie up to the absolute theory.

Pure propositional logic, as just characterized, belongs to ontological logic and
it does not include a theory of deduction as a human activity. This would be part
of epistemological logic and is more closely connected to the applications of pure
propositional logic. Systems of deduction can also be seen as systematizations of
the laws of material implication and of the other truth relations, however, and in this
sense deduction is also a part of ontological logic.27

26 I am not referring here to intuitionistic logic or to propositional logics such as modal logic that
study other implication relations, of course.
27 I was very happy to be able to participate in the Rio 2000 Natural Deduction conference in honor
of Dag Prawitz. The talk I gave at the conference (on logical deduction and logical consequence)
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Abstract This note compares several notions of categorical model of intuitionistic
linear logic in the literature. The emphasis is on explaining why choices can be made
and what they amount to. My conclusion is that despite being an older and more
complicated notion, linear categories are still the best way to describe models of
linear logic, if one wants the correspondence between syntax and semantics to be as
tight as possible.

1 Introduction

This chapter is a survey of results on categorical modeling of linear logic, oriented
toward logicians, interested in proof theory, category theory, and linear logic, but not
experts in either of these. There are other such surveys available [12, 14, 16] and
hence there is a need to explain why another such. The explanation is simple: I find
the other surveys too hard to read, going too deeply into the details of definitions
and proofs, when an interested, but not committed reader, would prefer to have
intuitive explanations of which (and why) choices were made. Of course what is an
intuitive explanation for some, will be considered glib glossing over by others. But if
it convinces the reader that the categorical modeling of the linear modality ‘!” is an
interesting, albeit subtle, problem, this note will not have been a pointless exercise.
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2 The Problem

What are the requirements for a categorical model of linear logic? There are several
solutions to this question in the literature. How do we compare and relate these
solutions? That is, how do we compare and relate the several possible notions of
‘categorical model of linear logic’ available? This is the problem we want to address
in this chapter.

To solve this problem, first we must discuss what are categorical models, why
should we bother with them and what are the requirements for a categorical model
of linear logic in particular. Then we must explain why there are several solutions to
this question and what these solutions are. Finally we must compare these solutions,
pointing out the trade-offs between approaches.

The question “what is a modal of linear logic?” has been around for a while and
there are many proposals available. For a while the best answer was the very clear
chapter of Bierman entitled exactly “What is a categorical model of intuitionistic
linear logic?” [5], but more work ensued and there is a need to incorporate the new
work into a coherent framework. This has been done in a series of recent articles [12,
14, 16] which aim at a categorically sophisticated audience. This chapter attempts
to explain to a practicing logician, in simple terms, using as little mathematics as
possible, what is known about the categorical semantics of linear logic: as such it
is a simplification of the work in [12, 14, 16], which have the same goals, but are
more technical, presuppose more knowledge of category theory, and leave many of
their conclusions to be worked out by the reader. Practicing logicians may brush up
on their basic category theory in “Category Theory for Linear Logicians,” [6] which
has similar goals, and defines all categorical notions necessary for this chapter. Note
however that [6] avoids the discussion of what is required to deal the linear logic
exponentials (cf. page 31), the main object of this work simply remarking that “the
structure seems less canonical.”

3 Categorical Modeling: What and Why

There are two main uses of “categorical modeling”: The first one considers the
notion of a structure valued in a category C , the analogue of the classical model-
theoretical notion of structure, except that one generalizes from (the category of) sets
and functions to an abstract category C with morphisms. This leads to what may be
called “categorical model theory.”

The second use, the one that concerns us here, is when we want to model more
than theorems, we want to model different proofs of a given theorem. The idea,
which has been called the “extended Curry-Howard isomorphism,” is that since we
can associate terms in a typed lambda calculus with derivations in Natural Deduction
and with morphisms in certain appropriate classes of categories, we can model these
terms or “proofs” as morphisms in the categories and we can then use equality of
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morphisms to induce a notion of equality of proofs in Natural Deduction for the
logic in question. This is sometimes called “categorical proof theory.” Applications
of categorical proof theory include foundations of functional programming, proofs of
correctness of compiler optimizations, new insights into expressive type systems, etc.

However, while the situation for categorical proof theory of (a Natural Deduction
formulation of) intuitionistic propositional logic can be summarized in one sentence
“categorical models of intuitionistic propositional logic are cartesian closed cate-
gories with coproducts,” the situation for categorical proof theory of propositional
linear logic is more complicated. In an ideal world onewould define a special class of
categories, perhaps called linear categories (some sort of analogue of cartesian closed
categories), prove that linear categories are sound and complete for linear logic, and
have one or two corollaries showing that other notions of model of linear logic in
the literature are equivalent to (or subsumed by) the definition of a linear category.
This kind of situation obtains for the modality-free (or exponential-free) fragment
of intuitionistic linear logic, where the appropriate class of categories are symmetric
monoidal closed categories (with products and coproducts to model additives). But
the modalities pose some real problems. For the modality “!” (which Girard calls
the exponential “of course!”), it is possible to prove soundness and completeness for
several, in principle very different, notions of categorical model and the corollaries
relating these different notions of model are confusing. Hence this note.

Before dealing with the mathematics of the modality, let us first settle some
smaller issues. First, it is clear that even if one is interested in classical linear logic,
producing the appropriate requirements for modeling intuitionistic linear logic is
sufficient, as categorical duality will produce a model of classical linear logic from
one of intuitionistic linear logic, automatically.

Second, the logic in question, presented as a sequent calculus byGirard andLafont
[8] is pretty much uncontroversial. Part of the problem here is an adequate Natural
Deduction formulation of the sequent calculus for intuitionistic linear logic plus
a term assignment for this Natural Deduction formulation satisfying some natural
type-theoretical properties, like ‘subject reduction’, normalization, confluence,1 etc.
The rest of the problem is how to phrase the categorical concepts in the simplest,
more direct way possible.

Third, one could perhaps be tempted to ‘ditch’ the modality “!” (pronounced
‘plink’, ‘shriek’, or ‘of course!’) given the mathematical difficulties associated with
it. This is not sensible, as it is the modalities that make Linear Logic so useful as a
logical system. While Linear Logic is a resource sensitive logic, where one can pay
attention to how many times resources like premises are used, Girard’s translation
of usual (intuitionistic or classical) logic into Linear Logic allows us to forget this
resource-consciousness, if desired. Since “!” is the way to recover classical logic
expressivity in a linear setting, we must deal with it. Not modeling the exponential
is not an option. The question is how to do it as pain-free as possible.

1 While logicians may not be worried about confluence or subject reduction, they should care that
the Natural Deduction produced satisfies at least normalization.
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The fundamental idea of a categorical treatment of proof theory is that propositions
should be interpreted as the objects of an appropriate category and (natural deduction)
proofs of propositions should be interpreted asmorphisms of that category.Weuse the
traditional notational simplification of using the same name for a proof/proposition
and its representation in the category. Fixing notation we say:

Definition 1 A category C is said to be a categorical model of a given logic L, iff
1. For all proofs β ∧L M : A in L there is a morphim [[M]] : [[β]] → [[A]] in C.
2. For all equalities β ∧L M = N : A it is the case that [[M]] =C [[N ]], where

=C refers to equality of morphims in the category C.

We say a notion of categorical model is complete if for any signature of the logic L
there is a category C and an interpretation of the logic in the category such that:

If β ∧ M : A and β ∧ N : A are derivable in the system then M and N are interpreted as the
same map β → A in the category C just when M = N : A is provable from the equations
of the typed equational logic defining L.

As a reminder, recall the categorical modeling of the fragment of intuitionistic
linear logic consisting only of linear implications and tensor products, plus their iden-
tity, the constant I . (This fragment is sometimes called rudimentary linear logic.)
For this fragment, the natural deduction formulation of the logic is uncontroversial.
The rules for linear implication are like the rules for implication in intuitionistic
logic (with the understanding that variables are always used a single time). The rules
for tensor are slightly different from the rules for usual cartesian product, as tensor
products A ⇒ B, unlike cartesian products (A × B), do not have projections (A ⇒ B
does not prove A or B) and do not allow for duplication (A does not prove A ⇒ A).
While such structures are less common than usual cartesian products, they are not
uncommon in mathematics. Moreover, structures consisting of linear-like implica-
tions and tensor-like products had been named and investigated by category theorists
where many years before the introduction of Linear Logic. They are called symmet-
ric monoidal closed categories or smccs. Symmetric monoidal closed categories are
sound and complete for rudimentary linear logic.

4 Modeling the Modality

The original sequent rules for the modality ‘!’ are intuitive. One should think of !A
in linear logic as a formula which one is allowed to duplicate and erase at will, unlike
a plain formula A. Duplicating and erasing formulae prefixed by “!” correspond to
the usual structural rules of weakening and contraction:

α ∧ B

α, !A ∧ B

α, !A, !A ∧ B

α, !A ∧ B

But to make ‘!” a proper connective we must also introduce it to the right and to
left of the turnstile. These rules are more complicated, but familiar from Prawitz’s
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work on S4. !α ∧ B

!α ∧!B
α, A ∧ B

α, !A ∧ B

(Note that !α means that every formula in α starts with a ! operator.)
To transform the rules above into Natural Deduction ones with a sensible term

assignment is not hard [3]. We obtain rules like:

α ∧ M : !A
α ∧ derelict(M) : A

α1 ∧ M : !A α2 ∧ N : B

α1,α2 ∧ discard M in N : B

α1 ∧ M : !A α2, a : !A, b : !A ∧ N : B

α1,α2 ∧ copy M as a, b inN : B

α1 ∧ M1 : !A1, . . . ,αk ∧ Mk : !Ak a1 : !A1, . . . , ak : !Ak ∧ N : B

α1,α2, . . . ,αk ∧ promote Mi for ai in N : !B
The upshot of these rules is that each object !A has morphisms of the form

er : !A → I and dupl : !A →!A⇒!A, which allow us to erase and duplicate the
object !A. These morphisms give !A the structure of a (commutative) comonoid (a
comonoid is the dual of a monoid, intuitively like a set with a co-multiplication and
co-unit).

Also each object !A has morphisms of the form eps : !A → A and delta : !A →
!!A that provide it with a coalgebra structure, induced by a comonad. How should the
comonad structure interact with the comonoid structure? This is where the picture
becomes complicated and different choices can be made.

Lafont’s Models

Even before Girard’s original article in Linear Logic appeared, Lafont had come up
with a very elegant suggestion for a categorical model of intuitionistic linear logic.
He suggested that one should model !A via free comonoids.

Definition 2 A Lafont category consists of

1. A symmetric monoidal closed category C with finite products,
2. For each object A of C, the object !A is the free commutative comonoid

generated by A.

Freeness (and cofreeness) of algebraic structures gives very elegant mathematics,
but concrete models satisfying cofreeness are very hard to come by. None of the
original models of Linear Logic satisfies this strong requirement.2 Moreover, as
remarked byMellies, in categories of games, researchers are interested in co-existing
notions of ‘!’, to model particular memory management paradigms. But if we use
Lafont’s notion of model there is only one cofree comonoid. Luckily there was

2 The notable exception being dialectica categories [7].



186 V. de Paiva

already another proposed set of requirements, that came to be known as the Seely
model.

Seely’s Models

Seely’s notion ofmodel [17] ismuchmore encompassing,mostmodels of linear logic
(with additive conjunction) satisfy it. Instead of giving comonoids the prominent
position they had in Lafont’s definition, it takes the view, originally put forward by
Girard, that linear logic is the basic logic and intuitionistic logic is to be considered
a derived logic. Thus, because intuitionistic implication A → B can be decomposed
into an use of the modality and one of linear implication, A → B =def (!A) � B
via Girard’s translation we must model the interaction between linear logic and
intuitionistic logic via the notion of a comonad ! relating these systems.

Seely’s definition of a categorical model of intuitionistic linear logic requires the
presence of additive conjunctions in the logic and it depends both on named natural
isomorphims

m : !A⇒!B ≤=!(A&B) and p : 1 ≤=!T

and on the requirement that the functor part of the comonad ‘!’ take the comonoid
structure of the cartesian product to the comonoid structure of the tensor product.
This notion of model had been in use for a few years, when, surprisingly, Bierman
pointed out that Seely’s definition missed one crucial condition. This meant that the
comonoid structure of !A and its comonad structure did not interact as well as needed
to make it a sound categorical model. The condition missing can be simply added
via what Bierman called a new-Seely category.

Definition 3 (Bierman) A new-Seely category, C, consists of

1. A symmetric monoidal closed category C, with finite products, together with
2. A comonad (!, ε, λ) to model the modality, and
3. Two natural isomorphism, n : !A⇒!B ≤=!(A&B) and p : I ≤=!T,

such that the adjunction between C and its co-Kleisli category is a monoidal adjunc-
tion.

Soundness of new-Seely categories is proved by showing that every new-Seely
category is a linear category.

Linear Categories

Linear categories were introduced by Benton, Bierman, de Paiva, and Hyland in [2]
and carefully investigated by Bierman in his dissertation [4]. The original definition
of a linear category is a bit of a mouthful, as it spells out the relationship between the
comonoid and the comonad structure of !A as fully as possible. It also unpacks into
quite a collection of diagrams that need to be checked. But it does what it is meant
to do and the soundness of the model is fully proved in [4, 5].

Another ways of describing linear categories, championed by Hyland and Schalk
[9] is to say that
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Definition 4 (Hyland/Schalk) A linear category is a symmetric monoidal closed
category S with products and equipped with a linear exponential comonad.

This is certainly easier to say, but to prove that it is indeed equivalent to linear
categories as originally defined requires some work, done by Schalk in [16].

Similarly, the following reformulation of the original definition was given by
Maneggia in her thesis [13], where it is also proved equivalent to the original defin-
ition. This is the simplest formulation of the concept I know of, but it does require
introducing the category of Eilenberg-Moore coalgebras. This definition was used
by Maietti et al. [12] which we discuss later.

Definition 5 (Maneggia)A linear category is a symmetricmonoidal closed category
S together with a symmetric monoidal comonad such that the monoidal structure
induced on the associated category of Eilenberg-Moore coalgebras is a finite product
structure.

All the notions of model that we have seen so far agree on having a basis, which
is a symmetric monoidal closed category S modeling the linear propositions. They
also agree that there must be a functor ! : S → S modeling the modality ‘of course!’
They differ from each other on how they model the action of the modality functor.
Basically linear categories (and new-Seely models) consider minimal conditions
on some given monoidal comonad to make sure that the conditions guarantee the
existence of an associated cartesian closed category modeling intuitionistic logic.

A different proposal came from ideas discussed independently byBenton, Plotkin,
and Barber. They suggested modeling the system more symmetrically, giving linear
logic and intuitionistic logic the same status. This required introducing a new kind
of term calculus, somewhat similar to Girard’s Logic of Unity, where sequents have
different kinds of contexts.But as far as themodels are considered this is not such a big
step. Having a monoidal comonad on a category C means that this comonad induces
a spectrum of monoidal adjunctions spanning from the category of Eilenberg-Moore
coalgebras to the co-Kleisli category. (This is basic category theory, cf. MacLane’s
textbook—[10], 144.) Now putting linear logic and intuitionistic logic on the same
footing, corresponds to saying that we decide to consider as the model of the system
the monoidal adjunction itself, instead of the inducing comonad.

Monoidal Adjunctions

Benton first suggested taking the monoidal adjuction (between a cartesian closed
category C and a symmetric monoidal closed category S) as the mathematical def-
inition of model of the interaction between linear logic and intuitionistic logic. He
called these kind of monoidal adjunctions LNL models (for linear–nonlinear models)
and designed a term calculus corresponding to these models that he proved sound
and complete.

This, more than simply a simplification of the notion of model of linear logic,
corresponds to a shift of paradigms. While before one was trying to model a system
of linear logic and it so happened that to model one of its connectives we needed
a bridge to a different logical system, intuitionistic logic, now we are talking about



188 V. de Paiva

modeling pairs of logical systems, with some important relationships between them.
Moreover, since the whole of intuitionistic logic can be coded up inside linear logic
via Girard’s translation, in principle by modeling the systems side-by-side we have a
wholesale duplication of the intuitionistic proofs. This can be seen both as a good or
a bad thing. In the one hand, one of the hopes for linear logic was that it would point
out where duplication and erasing were necessary in specific constructive proofs. In
the LNL system this ability to pinpoint where duplication and erasing are required,
disappears. But on the other hand, thinking of programming in the type system, it
allows you to keep and use all the libraries and optimizations that you may have
created for intuitionistic logic previously. Moreover, the definition of a LNL model
is so simple it almost does not require a definition.

Definition 6 A linear-non-linear (LNL) category consists of a symmetric monoidal
closed category S, a cartesian closed category C and a symmetric monoidal adjunc-
tion between them.

Benton also proved that linear categories and LNL models are equivalent, in the
specific sense that given a LNL model one obtains a linear category and conversely,
given a linear category one can obtain a LNL model. But there is no uniqueness of
the categories obtained. Moreover, the category of LNL models and the category of
linear categories are not equivalent, see below.

Barber andPlotkin improvedonBenton’s suggestion, by showing that onedoes not
need to require closedness of the cartesian category. Function spaces in the cartesian
category can be induced from the linear ones. They also produced a term calculus,
called DILL for Dual Intuitionistic and Linear Logic, that looks much more like
intuitionistic linear logic than LNL and satisfies all essential syntactic properties of
LNL. To model DILL they considered the notion of a DILL-category, which differs
from aLNL-category only on not requiring the cartesian closed structure to be given a
priori. You only need to start with a cartesian structure and you then prove it cartesian
closed.

Definition 7 A dual intuitionistic linear logic (DILL) category is a symmetric
monoidal adjunction between S a symmetric monoidal closed category and C a
cartesian category.

By now we have one definition of a categorical model of a generic logic L and
six slightly different definitions of a model of intuitionistic linear logic. How do they
compare? Which one is best? Why?

5 Comparing Models

As discussed before we know that Lafont models are very specific instances of linear
categories. We also know that new-Seely categories are linear categories. Further
we know that Hyland and Schalk’s symmetric monoidal categories with a linear
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exponential comonad are linear categories. Also Benton, Barber, and Mellies have
proved, independently, that given a linear category we obtain a DILL-category and
given a DILL-category we obtain a linear category. Are all these notions of model
equivalent then?

Maietti et al. [12] set out to prove some kind of categorical equivalence of mod-
els and discovered that the situation was not quite as straightforward as expected.
To wit: Bierman proved that linear categories are sound and complete with respect
to ILL. Barber proved that DILL-categories are sound and complete with respect
to DILL. Maietti et al. proved (Theorem 18 in [12]) that the category of theories
of ILL is equivalent to the category of theories of DILL. So we have two calculi,
ILL and DILL, which are sound and complete with respect to their models, whose
categories of theories are equivalent. One would expect their categories of mod-
els (linear categories and symmetric monoidal adjunctions) to be equivalent too.
But when we consider the natural morphisms of linear categories and of symmetric
monoidal adjunctions (to construct categories Lin and SMA), we do not obtain a cat-
egorical equivalence. Instead we obtain only a retraction (Theorem 41 in [12]). Sowe
faced with the somewhat paradoxical situation of calculi with equivalent categories
of theories, whose classes of model are not equivalent.

This led Maietti et al. to conclude that soundness and completeness of a notion
of categorical model are not enough to determine the “most apropriate” notion of
categorical models for a calculus. More than simply soundness and completeness we
should say a class of categories is a model for a type theory when we can prove an
internal language theorem relating the category of models to the category of theories
of the calculus.

What does it mean to prove an internal language theorem for a typed calculus and
a class of categorical models? Given a type calculus L, one can consider its category
of theories, Th(L) and its category of sound and complete models, together with
model morphisms M(L).

Definition 8 We say that a typed calculus L provides an internal language for the
class of models in M(L) if we can establish an equivalence of categories between
the category of L-theories, Th(L), and the category of L-models M(L).

The functors establishing this equivalence, say, L : M(L) → Th(L) and C :
Th(L) → M(L) allow us to move freely between categorical syntax and categorical
semantics. So L assigns to a model M inM(L) its specific internal language L(M).
The functor C associates to each specific L-theory V its syntactic category C(V ) in
such way that M ≤= C(L(M)) and V ≤= L(C(V )).

We note that this definition of internal language is more restrictive than the one
(in Barr and Wells—[1] for example) which requires only one of the equivalences,
namely M ≤= C(L(M)) to hold.

Tightening their definitions as above, Maietti et al. obtain the desired situa-
tion that equivalent calculi (DILL and ILL), with equivalent categories of theories
(Th(DILL) ≤= Th(ILL)) have equivalent classes of models. But this necessitates
postulating that despite being sound and complete for DILL, symmetric monoidal
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adjunctions between a cartesian and a symmetric monoidal closed category (the cate-
gory SMA) are not the models for DILL. Instead we must take as models for DILL a
subcategory of SMA, the symmetric monoidal adjunctions generated by finite tensor
products of free coalgebras. (This idea originally due to Hyland was expanded on
and explained by Benton and Maietti et al.)

With hindsight one can see that the reasonwhy the calculusDILL does not provide
an internal language for all the natural symmetric monoidal adjunctions is that the
cartesian category of a given symmetric monoidal adjunction (S, C, F, G ∨) may
have objects and morphisms that are not in the domain of functor F and hence
no DILL-theory can provide syntax corresponding to these objects and morphisms.
They are genuinely not part of the linear–nonlinear picture.

Thus the price to pay for the expected result that equivalent categories of theories
imply equivalent categories of models is high: not only we have to keep the more
complicated notion ofmodel of linear logic, but we need also to insist that categorical
modeling requires soundness, completeness, and an internal language theorem. This
last requirement makes sense in general: when using categorical models one would
want to move between syntax and semantics as easily and freely as possible. But
while the notion of satisfying an “internal language theorem” is somewhat up for
grabs in the categorical proof theory literature, it seems that in the case of linear logic
we really must pay attention to it. Otherwise we end up with ‘paradoxical’ results
as above. This seems the main “take home message” from the work on comparing
categorical models of linear logic.

As a side remark, in Maietti et al’s work this conclusion comes about from a
syntactic perspective, one that enforces very restrictive notions of morphisms of
linear categories.

Definition 9 Given linear categories C and S (with respective comonoads ! and !≥)
a linear functor between C and D is a strong symmetric monoidal closed functor
K : C → D such that K ! =!≥K as monoidal functors.

By the equality as monoidal functors we mean that K ε = ε≥
K , K λ = λ≥

K , and

two other diagrams relating the monoidal natural transformations m! and m!≥ that
make “!, !≥ ”monoidal comonads. Hyland and Schalk, coming from a perspective less
syntactic, geared toward categories of games, came up with a more relaxed notion
of linear morphism.

Definition 10 LetC andD be two linear categories. A functor F : C → D is linearly
distributive if and only if F is monoidal and is equipped with a distributive law
κ : !F → F ! respecting the comonoid structure.

Maietti et al. show that their more strict notion of linear functor is actually a
linearly distributive functor as above.

A slightly different approach to carving out the relevant part of the category of
symmetric monoidal adjunctions is taken by Møgelberg et al. [15]. They call linear
adjunctions the symmetric monoidal adjunctions between an smcc and a cartesian
category and say that DILL-models are the full subcategory of the category of linear
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adjunctions on objects equivalent to the objects induced by linear categories, when
performing the product of free coalgebras construction.

A very different semantic approach to put together a linear–nonlinear logic is
pursued by Maietti et al. [11], who follow the lead of Plotkin and Wadler, consider a
calculus (called ILT for Intuitionistic and Linear Type theory) without the modality
‘!’, but with interaction between linear and a intuitionistic implications. Comparison
between that approach and the ones in this note is left to future work.

Models with Products

So far we discussed models of a calculus consisting of only tensor products, linear
implications, and modalities ‘!’. If our calculus also has finite cartesian products (or
additive conjunctions) the mathematical structures simplify considerably. The point
is that a linear category with products yields a co-Kliesli category with products and
this is actually cartesian closed. This means that linear categories with products are
Seely categories and it makes it easy to show that models of ILL with products and of
DILL with products are equivalent, as expected (proposition 54 in [12]. Somewhat
surprisingly, given that DILL was conceived after LNL, Maiettti et al. also show
that models of DILL with products are only a subcategory of models of LNL with
products.

6 Conclusions

We surveyed several notions of categorical model of intuitionistic linear logic and
compared them, as categories. The main comparison was between linear categories
(in its various guises) and symmetric monoidal adjunctions as proposed by Ben-
ton and Barber and Plotkin. The summary is that while the notion of a symmetric
monoidal adjunction (between a symmetric monoidal closed category and a carte-
sian category) is very elegant and appealing, the category of these SMA is too big,
has objects and morphisms that do not correspond to objects and morphisms in dual
intuitionistic and linear logic. We also tried to explain the point, made by Maietti
et al. [12], that categorical modeling should be about soundness, completeness, and
(essentially) internal language theorems. While we agree that this extra criterion is
a sensible one, we feel that the only kind of evidence provided (that without it, we
have an example of two calculi ILL and DILL with equivalent theories that do not
have equivalent classes of models) is not very strong. A traditional logician may
prefer to think that the problem discussed is a problem of intuitionistic linear logic,
which is not as well behaved as it should be. This is not our conclusion. The problem
with modeling the modality ‘of course!’ of linear logic is similar to the problem of
modeling any other modalities and these are pervasive in logic. More research in
other modalities should clarify the criteria for categorical modeling, in general. Also
new concrete mathematical models, like games, for other logical systems, should
help.
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Assertions, Hypotheses, Conjectures,
Expectations: Rough-Sets Semantics
and Proof Theory

Gianluigi Bellin

Abstract In this chapter bi-intuitionism is interpreted as an intensional logic which
is about the justification conditions of assertions and hypotheses, extending C. Dalla
Pozza and C. Garola’s pragmatic interpretation [18] of intuitionism, seen as a logic
of assertions according to a suggestion byM. Dummett. Revising our previous work
on this matter [5], we consider two additional illocutionary forces, (i) conjecturing,
seen as making the hypothesis that a proposition is epistemically necessary, and (ii)
expecting, regarded as asserting that a propostion is epistemically possible; we show
that a logic of expectations justifies the double negation law. We formalize our logic
in a calculus of sequents and study bimodal Kripke semantics of bi-intuitionism
based on translations in S4. We look at rough set semantics following P. Pagliani’s
analysis of “intrinsic co-Heyting boundaries” [40] (after Lawvere). A Natural De-
duction system for co-intuitionistic logic is given where proofs are represented as
upside downPrawitz trees.We give a computational interpretation of co-intuitionism,
based on T. Crolard’s notion of coroutine [16] as the programming construction cor-
responding to subtraction introduction. Our typed calculus of co-routines is dual to
the simply typed lambda calculus and shows features of concurrent and distributed
computations.

1 Introduction

This chapter aims at developing an intensional logic of the justification conditions
of some illocutionary acts, namely, asserting, making hypotheses, conjecturing and
expressing an epistemic expectation, where the intended interpretation of the logical
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connectives and of the forms of inference are those of intuitionistic logic1,2.Ourwork
belongs to the project of a Logic for Pragmatics, initiated by the philosopher Carlo
Dalla Pozza and by the physicist Claudio Garola [18] and later continued by Dalla
Pozza and Bellin [7] and others, in particular Bellin and Biasi [5]. Characteristic of
our approach with respect to similar ones, e.g., S. Artemov’s justification logic, is the
focus on illocutionary forces in the elementary expressions of our language, where
propositions in the classical sense are never presented without an illocutionary force
and thus an “illocutionary mood” (e.g., assertive or hypothetical) is inherited also
by composite expressions of the language. This fact is essential in our case study
here, bi-intuitionistic logic, where intuitionstic and its dual co-intuitionistic logic are
joined together. In natural language the acts of asserting, on one hand, and of making
hypotheses and expressing a doubt, on the other, may in some sense be regarded
as dual. Thus we have an interpretation of bi-intuitionism as an intensional logic of
assertions and of hypotheses, where the dual intuitionistic and co-intuitionistic parts
are “polarised” and kept separate. In this framework it is perfectly appropriate and
unproblematic that the law of non-contradiction and the disjunction property hold for
the assertive notions of intuitionistic negation, conjunction, and disjunction, while
the law of excluded middle and para-consistency hold for the hypothetical notions
of co-intuitionistic negation, conjunction, and disjunction.
In this chapter we revised and sharped the discussion of the logical properties of
assertions and conjectures in Bellin and Biasi [5], by distinguishing between conjec-
tures and hypotheses. In a nutshell, the justification of an assertion requires epistemic
necessity of the truth of the propositional content p, which is given, e.g., by a proof
of p; making a hypothesis is justified by the epistemic possibility of the truth of the
propositional content; similarly, expressing a doubt about a statement is justified by
the epistemic possibility that the statement may be unjustified. But for the justifica-
tion of a conjecture we need the possibility of the epistemic necessity of the truth
of its propositional content, not just epistemic possibility. Dually, we are led to the
distinction between assertions and epistemic expectations: for the justification of an
expectation, it suffices to have the necessity of epistemic possibility, which we regard

1 Wewish to thank Prof Andrew Pitts and Dr Valeria de Paiva for their comments on various aspects
of this research and Dr Piero Pagliani for his expert support in the Rough Sets semantics. We are
indebted with Prof Tristan Crolard for his intriguing work on bi-intuitionistic and classical logic
and with Dr Hugo Herbelin for suggestions about our calculus of coroutines for co-intuitionistic
logic. Thanks to Dr Carlo Dalla Pozza, Dr Kurt Ranalter, Dr Corrado Biasi, and Dr Graham White
for their cooperation in the “logic for pragmatics” enterprise. I am grateful to Prof Dag Prawitz, my
first marvellous supervisor in Stockholm 1978 and to Dr Luiz Carlos Pereira, a fellow student then
and a supportive colleague now.
2 Since April 2011 when significant revisions were made to this chapter, categorical models of
bi-intuitionism have been studied based on monoidal categories. In particular, if the term assign-
ment to a Gentzen system for co-intuitionistic logic is used in building a categorical model, then
disjunction is best given multiplicative rules rather than additive ones, as it is done in this chapter.
Further work on the mathematical structure and the philosophical interpretation of “polarized bi-
intuitionism” is inG. Bellin,M. Carrara, D. Chiffi, andA.Menti, A pragmatic dialogic interpretation
of bi-intuitionism, submitted to Logic and Logical Philosophy, 2013.
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as the assertion that in all situations it will be possible for the propositional content
to be true. It turns out that a logic of expectations satisfies the law of double negation,
a feature of classical logic.
There is a philosophical question about the nature of the epistemicmodal notions used
here. Every expression of our logic for pragmatics has an interpretation in classical
S4, the assertion ∧p and hypothesis Hp of a proposition p are interpreted as �p and
♦p, respectively; similarly, the conjectureCp and the expectationEpbecome♦�p and
�♦p. Thus we have an intensional counterpart of all modalities of S4; but we do not
regard such correspondence with classical S4 as a definition of the new “illocutionary
forces” of conjecture and expectation. Indeed,we intend the pragmatic interpretations
of intuitionistic and bi-intuitionistic logic as bona fide representations of such logics
from the viewpoint of an intuitionistic philosopher; moreover, we intend our “logic
for pragmatics” to be compatible with the rich proof-theory of intuitionistic logic,
including the Curry–Howard correspondence and categorical interpretations. Thus,
we are inclined to regard conjectures and expectations as examples of how a theory
of intuitionistic modalities can be developed starting from the illocutionary forces
of assertions and hypotheses as basic. However, this investigation is left for another
occasion.

1.1 Logic for Pragmatics: Dalla Pozza and Garola’s Approach

The aim of Dalla Pozza and Garola’s “logic for pragmatics” is to capture the logical
properties of what are called illocutionary acts—asserting, conjecturing, command-
ing, promising, and so on. Consider assertions. In their framework there is a logic
of propositions and a logic of assertions. Propositions can be either true or false, ac-
cording to classical semantics, assertions are acts that can be justified or unjustified,
felicitous or infelicitous. They propose a two-layer theory with a distinctive informal
interpretation, according to which propositions have truth conditions, i.e., a seman-
tics, whereas assertions have justification conditions, belonging to pragmatics. As a
consequence, we can form logical combinations of propositions, which are given a
classical semantics as usual, but we can also form logical combinations of assertions,
and interpret these combinations along the familiar lines of Heyting’s interpretation
of intuitionistic connectives. This is Dalla Pozza and Garola’s pragmatic interpreta-
tion of intuitionistic logic: if λ denotes a proposition, the elementary expression ∧λ
stands for an assertion and ∧λ is justified just in case we have conclusive evidence
that λ is true; in the case of a mathematical statement λ, “conclusive evidence” is a
proof of λ. Moreover, an assertive expression of conditional type A → B is justified
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by providing a method that transforms a justification of an assertive type A into a
justification of an assertive type B.3,4

It should be noticed that intuitionistic logic is represented inDalla Pozza andGarola’s
framework as a theory of pragmatic validity only if the justification of elementary
expressions ∧ λ does not depend on the logical structure of the radical expression
λ as a classical proposition—e.g., we shall not allow λ to be p ⇒ ¬p. Thus in
every investigation of intuitionistic theories within the framework of Dalla Pozza
and Garola [18] it is assumed that elementary expressions have atomic radicals,
i.e., λ = p. This convention is essential also for the present investigation of our
co-intuitionistic and bi-intuitionistic logic.
The novelty of Dalla Pozza and Garola’s work is that Heyting’s semantics is applied
to illocutionary types of acts, not to propositions; if the justification of an assertion
of atomic type ∧ λ is related to the semantics of the propositional content λ, a
complex type has only a pragmatic justification value, not a semantic one. To recover
propositions and semantic values one considers semantic projections given by the
Gödel, McKinsey, Tarski and Kripke’s translation:

( ∧λ)M = �λ (A → B)M = �(AM ≤ BM)

This modal formalism can be given the usual interpretation through an epistemic
view of Kripke S4 semantics. Thus in a Kripke model (W , R,�) for S4 every w ∨ W
is seen as a stage of human knowledge and the accessibility relation expresses ways
in which our knowledge may evolve; at each stage atomic propositions are locally
true or false according to �; reflexivity of R means that what we know must be true
also locally and transitivity of R expresses the fact that human knowledge cannot be
forgotten or falsified, and so on.5

3 We wish to thank Prof Andrew Pitts and Dr Valeria de Paiva for their advice on various aspects of
this research and Dr Piero Pagliani for his expert support in the Rough Sets semantics. We are much
indebted toTristanCrolard for his intriguingwork on bi-intuitionistic and classical logic and toHugo
Herbelin for important suggestions about the distributed calculus for co-intuitionistic logic. Thanks
to Carlo Dalla Pozza, Kurt Ranalter, Corrado Biasi, and Graham White for their cooperation in the
“logic for pragmatics” enterprise and thanks to Ugo Solitro for useful discussions. I am grateful to
Dag Prawitz, my first marvellous supervisor in Stockholm 1978 and to Luiz Carlos Pereira, a fellow
student and a supportive colleague.
4 Since April 2011 when revisions were made to this chapter, categorical models of bi-intuitionism
have been studied based on monoidal categories. In particular, if the term assignment to a Gentzen
system for co-intuitionistic logic is used in building a categorical model, then disjunction is best
given multiplicative rules rather than additive ones, as it is done in this chapter. For the conceptual
significance of such a choice, seeG. Bellin,M. Carrara, D. Chiffi andA.Menti. A pragmatic dialogic
interpretation of bi-intuitionism, submitted to Logic and Logical Philosophy, 2013.
5 The interpretation of intuitionistic logic as a logic of assertions appears already in Dummett’s
work. Martin-Löf regards his intuitionistic theory of types as expressing judgements about the truth
of propositions; in his system well-formed complex types are propositions and the terms inhabiting
them are witnesses of their truth, intuitionistically understood. This view is disputed byDalla Pozza:
for him only atomic types assert the truth of propositions, but complex types neither are propositions
nor assert propositions. To recover a proposition corresponding to the complex type
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The basic approach of Dalla Pozza and Garola seems to stand as a helpful conceptual
clarification, following Quine saying that a change of logic reflects a change of the
subject matter of the logic. The remarkable technical developments of the proof-
theory of classical logic in the last decades suggest the possibility of a pragmatic
interpretation of classical methods of inference; despite some hints in [5], Sect. 5,
and the result in Sect. 2.5, this remains an essentially unfinished business.

Justification and Felicity Conditions

Going back to the basic texts of modern pragmatics, such as Austin [2] and Levin-
son [31], every speech act has a propositional content, an illocutionary force (or
pragmatic mood) and perlocutionary effects. Now it seems that the felicity or
infelicity conditions of a speech act essentially depend on the actual circumstances
of its performance and on its intended or unintended perlocutionary effects. Thus a
formalization of the felicity or infelicity conditions of a statement would be based on
a formal theory of actions including a representation of the agent and the addressees
of a speech act and also its preconditions and postconditions (for a first formulation
of such a theory, see [60]).
On the contrary, the contributionof the illocutionary mood to the pragmatics of speech
acts can be characterized by abstracting away from the actual agents and addressees
and from their specific context, effects, and goals. Thus an impersonal illocutionary
operator of an intensional logic may suffice to express illocutionary force, if the
justification of the illocutionary mood of such type of acts makes reference to a
relatively stable and uniform context (e.g., scientific knowledge in a given time,
obligations within an established legal system, unambiguous linguistic acts within a
linguistic community, and so on).
In this framework, several works have explored the “logic for pragmatics” of oblig-
ations [19] and then the logic of assertions, obligations with causal reasoning [6, 7,
48, 49]. In general, the development of such logics requires an identification of the
appropriate modal operators or non-classical connectives used in the modal projec-
tion and their Kripke semantics; then one proceeds to a more abstract treatment of
the proof theory, as in Ranalter’s work.

(§) ∧λ → ( ∧β →∧λ)

we need a semantic projection, i.e., �(�λ ≤ �(�β ≤ �λ)); but justification of the assertion
type

(§§) ∧ �(�λ ≤ �(�β ≤ �λ))

is a semantic argument for a sentence of classical S4 while (§) is justified by something like a
program γx.γy.x, where x : ∧ λ and y : ∧ β are variable ranging over proofs of the truth of λ and
of β.
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2 PART I. Conceptual Analysis: Assertions, Hypotheses,
and Conjectures

In extending Dalla Pozza and Garola’s framework to a logic of hypothetical and
conjectural moods, we encounter a variety of moods with different linguistic and
logical properties.6 It is familiar the distinction in Latin between three kinds of if
clauses, the first one using the indicative to express the condition as a matter of fact,
the second the present subjunctive to express possibility of the condition and, finally,
the third one using the past subjunctive for counterfactuals. Also consider the theory
of argumentation. Here six proof-standards have been identified from an analysis of
legal practice: no evidence, scintilla of evidence, preponderance of evidence, clear
and convincing evidence, beyond reasonable doubt, and dialectical validity, in a
linear order of strength [24].7

It is essential to remember that “legal reasoning is not primarily deductive, but rather
a modelling process of shaping an understanding of the facts, based on evidence, and
an interpretation of the legal sources, to construct a theory for some legal conclusion”
([12] cited in [24]). More precisely, in order to decide whether to accept or reject
each element of a given set of “claims,” one constructs a consistent “theory of the
generalizations of the domain and the facts of the particular case,” together with “a
proof justifying the decision of each issue, showing how the decision is supported
by the theory” [24].
Thus in Argumentation Theory one starts with an inconsistent knowledge base and
a set of claims and proceeds to build a consistent theory from them; later, when
deriving the claims from such a theory one uses (some fragment of) classical logic.
But in this stage it might be desirable to use a logic that retains essential pragmatic
information such as the standards of evidence of the premises, rather than classical
logic that omits it. Thus some refinement of our logic may have applications to Argu-
mentation Theory to establish a closer correspondence between “theory searching”
and deductive reasoning. Here we use the notion of “standards of proof” in an infor-
mal way and regard the possibility of developing a theory of positive evidence for
hypotheses in our framework as a suggestion for future work.

6 The conceptual development traced results from cooperation with other researchers, in particu-
lar with Corrado Biasi, whose doctoral dissertation at Queen Mary University of London is still
unfinished.
7 In the formal treatment of Carneades model of argumentation, proof-standards occur
in the definition of what it means for an argument with conclusion c from premises P
and exceptions E to be applicable in a Carneades argument evaluation structure S =
≥arguments, assumptions, weights, standard⊃. The definition relies on a non-logical real-valued
function weights ranging over arguments. The notion of applicability is recursive, as it depends
on the notion of a proposition p being acceptable in an argument evaluation structure S. Here a
proposition p is acceptablewith a scintilla of evidence if there is at least one applicable argument for
p and p is acceptable as dialectically valid if there is an applicable argument for p and no applicable
argument against p. All other proof standards require comparing the weights of arguments for and
against p. See [13, 24].
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2.1 First Attempt: Assertive and Hypothetical Types

In Bellin and Biasi [5] we have given a logic of hypothetical types parallel to Dalla
Pozza and Garola’s logic of assertions. We start with elementary illocutionary acts
of hypothesis, denoted by Hλ: here λ is a proposition which is presented as possibly
true; such an act is justified if there are grounds for believing that λ may be true in
some circumstances.Nextwe consider connectives building up complex hypothetical
types from elementary ones. For instance, through the connective of subtraction we
build the hypothetical expression possibly C but not D (written C � D); such an
expression is justified if it is justified to believe the truth of the hypothetical expression
C while also believing that the hypothesisD may never be true; the disjunctionC�D
of the hypothetical expressions C and D is also a hypothetical expression, and so on.
The modal projection of hypothetical expressions is also in classical S4:

(Hλ)M = ♦λ (C � D)M = ♦(CM ∧ ¬DM)

Namely, the modal translations of assertions AM and hypotheses CM are both inter-
preted in models (W , R,�) where R is transitive and reflexive. This choice is crucial
for the approach of [5]: other modal candidates are possible as discussed in [5] and
in more detail below.
In natural language, illocutionary acts of hypothesis may be embedded into a context
consisting of illocutionary act of assertion, for instance,

Arturo is the best pianist of his generation and will not refuse to play in this town, although
the audience may be slightly noisy;

an assertive conjunction of two assertions and a hypothetical statement; conversely,
assertions may be embedded in a hypothetical context:

We may not hear Arturo playing, because he has very high standards and if the audience is
slightly noisy then he may refuse to play.

containing a hypothetical implication with an assertive antecedent and hypothetical
consequent. Taking this idea seriously, one obtains a rather unmanageable family
of mixed connectives [5]; in this chapter we shall consider only the role of mixed
negations turning assertive expressions into hypothetical ones and conversely.

Three Methodological Principles

Our logical treatment of assertions and hypotheses is based on the notion of a duality
between these two illocutionary moods: informally it is a familiar idea, since a proof
of a propositionmaybeobtained as a refutation of the conjecture that its dual is true. In
a formal treatment, there aremany aspects to this duality, which are certainly satisfied
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by the modal translation in S4. In [5], Sect 1.1, three methodological principles are
stated for a logic expressing the duality between assertive and hypothetical types:

1. The grounds that justify asserting a proposition λ certainly suffice also for
conjecturing it, whatever these grounds may be;

2. in any situation, the grounds that justify the assertion of λ are also necessary and
sufficient to regard the conjecture that ¬λ as unjustified;

3. the justification of non-elementary assertive or hypothetical types, built up from
elementary types using pragmatic connectives, depends on the justification of
the component types, possibly using intensional operations.

The third principle requires a sort of compositionality of justification: this is certainly
satisfied by the intended informal interpretation of the connectives.
As it stands, the second principle is inadequate. On one hand, it is indisputable that
the grounds allowing one to regard the assertion of λ as justified must override any
ground in favor of the conjecture of ¬λ; on the other hand, it is wrong and contrary
to common sense to say that if the conjecture of ¬λ is unjustified then the assertion
of λ is justified: the grounds we may have to dismiss the conjecture that ¬λ may be
the case may not be strong enough to justify the assertion that λ is true. There are at
least two issues here.
First, we must distinguish between the illocutionary force of a mere hypothesis and
that of a conjecture, a distinction we shall develop later in this chapter. Let us split
the second principle into two parts, replacing “hypothesis” for “conjecture”:

2.i If the assertion of λ is justified, then the hypothesis that ¬λ is true cannot be
justified.

2.ii If the hypothesis that¬λ is true is unjustified, then the assertion ofλ is justified.

Except for the case of counterfactuals, which are not our concern here, (2.i) is still
correct; as for (2.ii), it becomes plausible if we assume that a hypothesis H¬λ may
be justified by a mere cognitive possibility of a situation, no matter how unlikely it
may be, in which¬λ is true. The epistemic interpretation of the modal interpretation
in S4 validates this reading of (2.ii).
This raises a second issue: in our framework there is no theory of positive evidence;
nevertheless we must be able to distinguish illocutionary forces whose justification
depends on different strengths of evidence. Thus the logic of hypothetical reasoning
in [5] reduces to a refutation calculus; although pure refutation does correspond to
common-sense reasoning—indeed it seems to be very close to the medieval practice
of disputation [1]8—it may not suffice for applications, e.g., to a theory of laws and
to legal reasoning.
Finally, the first principle is true for any reading of Hλ, e.g., as hypothesis or con-
jecture. Also it is true in argumentation theory: the assertion ∧λ must be justified by

8 We are grateful to an anonymous referee to [5] for making the point clear and for indicating the
reference. The same referee, acknowledging that our “refutation calculus” is dual to intuitionistic
logic, questionedwhether a calculus based on a theory of positive evidence could be co-intuitionistic:
we come back to this issue below.

http://dx.doi.org/10.1007/978-94-007-7458-0_1
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“standards of proof” at least as strong as those justifying the hypothesis Hλ. Notice
that this principle shows a basic asymmetry between assertions and hypotheses.

A Logic of Assertions and Hypotheses: The Language LAH

The core fragment of the logic of assertions and hypotheses in [5] is a propositional
language built from a countable set of atomic formulas p, p1, p2, . . . and symbols of
illocutionary force yielding elementary formulas ∧p (certainly p) and Hp (perhaps
p). It consists of two dual parts:

• an assertive part LA built from elementary assertions ∧p, a sentential constant for
validity (�), using assertive conjunction (∇) and assertive implication (→) and

• a hypothetical partLH built from elementary hypotheses Hp and a constant for ab-
surdity (�), using hypothetical disjunction (�), and hypothetical subtraction (�).

ThusLA andLH are negation-free fragments of the language of intuitionistic and co-
intuitionistic logic. Let abs be an absurd statement in LA and val is a valid statement
in LH . Then ◦ X =def X → abs expresses assertively the existence of a method to
turn a justification ofX into a justification of an absurdity. Similarly� Y =def val�Y
expresses the doubt that Y may be true, namely, the hypothesis that a valid statement
val may be compatible with the negation of Y . Thus we have four negations:

1. if X is an assertive expression, then ◦ X is the usual intuitionistic negation;
2. if Y is a hypothetical expression, � Y is co-intuitionistic supplement;
3. if X is a hypothetical, then the mixed expression X → abs is an assertive type;
4. if Y is assertive, then val � Y is a hypothetical type.9

Our logic is therefore bi-intuitionistic, in the sense that it has intuitionistic and
co-intuitionistic connectives, but it is polarized, as elementary formulas are either
intuitionistic ( ∧p) or co-intuitionistic (Hp), but not both, and connectives, with the
possble exception of negations, preserve the polarity. Thus we have the following
grammar of the language of polarized bi-intuitionistic logic for the pragmatics of
assertions and hypotheses LAH :

A, B := ∧p � A → B A ∇ B ◦ C
C, D := Hp � C � D C � D � A

9 As in [5], to these pragmatic negations one should add classical negation in the radical part ¬λ;
but no logical property of the radical part can be used in the treatment of intuitionistic pragmatics.
To avoid confusions with the “polarized classical logic” in [5], Sect. 5, in the treatment of dualities
we shall assume that the atoms occurring in the radical part are either positive p+

i or negative p−
i ,

i.e., that there is an involution without fixed point on atoms exchanging p+
i and p−

i .
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2.2 Second Attempt: More General Modal Translations

In order to approximate alternative treatments of a logic of assertions, hypotheses
and conjectures, we consider more general modal translations in bimodal S4.

Translations in Bimodal S4

Definition 1 (i) Let p range over a denumerable set of propositional variables Var
= {p1, p1, . . .}. The bimodal language L�,� is defined by the following grammar.

λ := p | ¬λ | λ ∧ λ | λ ⇒ λ | λ ≤ λ | �λ | � λ

Define ♦λ =df ¬�¬λ and ♦ λ =df ¬ � ¬λ.
(ii) LetF = (W , R, S) be a multimodal frame, where W is a set, R and S are preorders
on W. Given a valuation function V : Var ≤ β(W), the forcing relations are defined
as follows:

• w � �λ iff ⊥w∀.wRw∀ ∃ w∀ � λ,
• w � � λ iff ⊥w∀.wSw∀ ∃ w∀ � λ.

(iii) We say that a formula A in the language L�,� is valid in bimodal S4 if A is valid
in all bimodal frames F = (W , R, S) where R and S are preorders.

Lemma 1 Let F = (W , R, S) be a multimodal frame, where R and S are preorders.
(i) The following are valid in F

���λ ≤ �λ and ���λ ≤�λ

(ii)(a) The following are equivalent:

1.a: S ⊆ R;
2.a: the following scheme is valid in F:

. (Ax.a) �λ ≤ � � �λ;
3.a: the following rule is valid in F:

. (R.a)
♦ β ∃♦ ¬�λ

�λ ∃ �¬ ♦ β

(ii)(b) The following are equivalent

1.b: R ⊆ S;
2.b: the following scheme is valid in F:

. (Ax.b) � λ ≤� � � λ
3.b: the following rule is valid in F:

. (R.b)
�¬ ♦ β ∃ �λ

♦ ¬�λ ∃♦ β
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Proof of (ii)(a). (1.a ∃ 2.a) is obvious. (2.a ∃ 1.a): If S is not a subset of R, then
given wSv and not wRv define a model on F where w∀ � p for all w∀ such that wRw∀
but v ⊕� p; thus �p ≤ � � �pis false at w. (2.a ∃ 3.a): If ♦ β ∃♦ ¬�λ is valid in
F then so is �¬ ♦ ¬�λ ∃ �¬ ♦ β and the conclusion of (R.a) is valid because of
(Ax.a). From the conclusion of (R.a) the premise follows using part (i). (3.a ∃ 2.a):
(Ax.a) is obtained by applying (R.a) downwards to ♦ ¬�λ ∃♦ ¬�λ. The other
parts are similar.

2.3 Bimodal Interpretations of LAH

Definition 2 The interpretation ( )M of LAH into � is defined inductively thus:

(�)M =df ⊗ (�)M =df ∈
( ∧p)M =df �p (Hp)M =df ♦p

(A → B)M =df �(AM ≤ BM ) (C � D)M =df ♦(CM ∧ ¬DM )

(A1 ∇ A2)
M =df AM

1 ∧ AM
2 (C1 � C2)

M =df CM
1 ⇒ CM

2
(◦ C)M =df �¬CM (� A)M =df ♦¬AM

It is easy to prove that AM ≡∃ �AM and CM ≡∃ ♦ CM in the semantics of
(bimodal) S4.

(i) The propositional theory PBL (polarized bi-intuitionistic logic) is the set of all
formulas σ in the language LAH such that σM is valid in every preordered bimodal
frame (i.e, in any frame (W , R, S) where R and S are arbitrary preorders).

(ii) The propositional theory APBL (asymmetric polarized bi-intuitionistic logic) is
the set of all formulas σ in the languageLAH such that σM is valid in every preordered
bi-modal frame (W , R, S) where S ⊆ R.

(iii) The propositional theory AHL (bi-intuitionistic logic of assertions and hypothe-
ses) is the set of all formulas σ in the language LAH such that σM is valid in every
preordered bi-modal frame (W , R, S) where R = S. In other words, in the modal
translation let ♦ X =df ¬�¬X; then σ is in AHL if and only if σM is valid in S4.

Remark 1 (i) PBL is the most abstract theory of bi-intuitionistic logic where all
formulas are polarized as assertive or hypothetical. PBL is not a suitable candidate
for our logic of assertions and hypotheses, since the pair ( ∧p)M , (� ∧p)M is consistent
in bi-modal S4, contrary to the accepted principle (2.i). We will not speculate about
the possibility of interpreting � ∧p as a counterfactual.

(ii) On the contrary, the asymmetric logic APBL satisfies (2.i), but not (2.ii).10 Thus
APBL may be the right context for studying assertive and hypothetical reasoning

10 Condition S ⊆ R guarantees that if w � �p then w ⊕�♦ ¬p. To see that w � �p is not a
valid consequence of w ⊕�♦ ¬p, consider a model M = (W , R, S, �) with W = {w, w∀}, R and
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where hypothetical statements have different degrees of positive evidence and thus
are not representable in a pure refutation calculus.

(iii) Finally, our canonical system is the bi-intuitionistic logic of assertions and
hypotheses AHL—poorly named intuitionistic logic for pragmatics ILP in [5]—
satisfying both conditions (2.i) and (2.ii). It is motivated by the epistemic interpre-
tation of (uni-modal) S4, where hypotheses are seen as mere epistemic possibilities
and assertions as epistemic necessities.

Dualities

Definition 3 Let ( )⊗ : Atoms ≤ Atoms be an involution without fixed points on
the atomic formulas pi. Intuitively, we may think of p⊗

i as ¬pi, but intuitionistic
dualites are defined best without any reference to the classical part. We extend ( )⊗
to maps F : LA ≤ LH and G : LH ≤ LA letting

(a) F( ∧p) =Hp⊗ G(Hp) =∧p⊗
(b) F(A ∇ B) = F(A) � F(B) G(C � D) = G(C) ∇ G(D)

(c) F(A → B) = F(B) � F(A) G(C � D) = G(D) → G(C)

Lemma 2 In AHL let F(A) =� A and G(C) =◦ C. Then

1. if we interpret (p⊗)M as ¬p, then the modal translations of conditions (a)–(c) are
valid equivalences in S4;

2. GF(A) ∗ A and FG(C) ∗ C;

3.
A ∃ G(C)

C ∃ F(A)
and

G(C) ∃ A

F(A) ∃ C

Proof. By definition of the modal translation we have

(1)(a): (�∧p)M = ♦¬�p ∗ ♦¬p = (Hp⊗)M

(◦Hp)M = �¬♦p ∗ �¬p = ( ∧p⊗)M

(1)(b):
(
� (A ∇ B)

)M = ♦¬(AM ∧ BM) ∗ (♦¬AM ) ⇒ (♦¬BM ) = (
(� A) � (� B)

)M

(◦ (C � D)
)M = �¬(CM ⇒ DM ) ∗ (�¬CM) ∧ (�¬DM ) = (

(◦ C) ∇ (◦ D)
)M

(1)(c):
(
� (A → B)

)M = ♦¬�(AM ≤ BM ) ∗ ♦(♦¬BM ∧ ¬♦¬AM ) = (
(� B) � (� A)

)M

(◦ (C � D)
)M = �¬♦(CM ∧ ¬DM ) ∗ �(�¬DM ≤ �¬CM ) = (

(◦ D) → (◦ C)
)M

(2): The conditions

S reflexive and transitive and such that wRw∀ but not wSw∀, and w � p but w∀ � ¬p. Notice that
H¬p is not an expression of the language LAH , but the same remark applies to ( ∧p)M = �p and
(�∧p)M =♦ ¬�p.
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◦� A ∗ A and C ∗�◦ C (1)

follow from Lemma 1 .(i) and (ii). The conditions in (3) follow from rules (R.a) and
(R.b) in Lemma 1 .(ii).

Remark 2 (i) Lemma 2 fails for PBL and APBL.
(ii) As the only mixed formulas in LAH are negations, Lemma 2 gives us a (meta-
theoretic) “method for eliminating mixed formulas in AHL” modulo the atomic
involution ( )⊗, (interpreted in the modal translation as classical negation ¬p). e.g.,
the mixed expression A ∇ ◦ (Hp� Hq) is equivalent in the S4 semantics to the
purely assertive expression A ∇ ( ∧p⊗∇ ∧q⊗).

(iii) Sometimes we shall write A⊗ and C⊗ for F(A) and G(C), respectively.

Proposition 1 (restricted substitution) Let τ be a map

∧pi ∪≤ Ai Hpj ∪≤ Cj

sending a vector νa of assertive elementary formulas to a vector A of assertive
formulas and a vector νh of hypothetical elementary formulas to a vector C of
hypothetical formulas. Then X(νa, νh) is a theorem of AHL [PBL, APBL] if and
only if X(τ(νa),τ(νh)) is a theorem of AHL [PBL, APBL].

On the other hand, the theories AHL, PBL and APBL are not closed under substitu-
tion of hypothetical formulas for assertive elementary formulas (and symmetrically).
An example is the following:

◦◦◦∧p ∃◦∧p is valid, but ◦◦◦Hp ∃◦Hp is not.
Indeed �♦�♦¬p ∃ �♦¬p is valid, but �♦�¬p ∃ �¬p is invalid in S4.

2.4 Sequent Calculi for PBL, APBL, AHL

The logics PBL, APBL, AHL can be formalized in G3-style sequent calculi [59],
where the rules ofWeakening and Contraction are implicit, as in [5]. One then proves
that the rules of Weakening and Contraction are admissible preserving the depth of
the derivation.

Definition 4 All the sequents S are of the form

α ; ρ ∃ ρ∀ ; ε (2)

where

• α is a sequence of assertive formulas A1, . . ., Am;
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• ε is a sequence of hypothetical formulas C1, . . ., Cn;
• ρ is hypothetical and ρ∀ is assertive and exactly one of ρ, ρ∀ occurs.

The bi-intuitionistic logic of assertions and conjectures AHL is formalized in the
sequent calculus given by the axioms and rules in the Table1.11 Let us call this
fragment standard AH-G3.

The polarized bi-intuitionistic logic PBL and the asymmetric polarized bi-intuitioni-
stic logic APBL are formalized by restricting the rules of canonical AH-G3 as
indicated below: the restrictions only modify the rules →-right, ◦-right, � -left and
� -left. Let us call the resulting sequent calculi abstract PB-G3 and asymmetric
APB-G3, respectively.

To see why in the asymmetric APB-G3 and in the canonical AH-G3 systems the
formulas in α are allowed in the antecedent of the sequent-premise of �-left and of
�-left, notice that by the valid scheme (Ax.a) of Lemma 1 .(ii)(a)

A ∃◦� A is valid in the semantics of APB and of AHL (3)

Thus the unrestricted rule�-left ofAP-G3 andAH-G3 becomes derivable in PB-G3
using cut with scheme (1) taken as axiom:

(1)
B ; ∃ ◦� B

B ; ∃ A ; ε�-R ; ∃ A ; ε,� B�-L (¶); � A ∃ ; ε,� B◦-L ◦� B ; � A ∃ ; ε
cut

B ; � A ∃ ; ε

Similarly, using the fact that

�◦ C ∃ C is valid in the semantics of AHL (4)

we show that in AH-G3 ε is allowed in the succedent of the sequent premise of
→-right and of ◦-right.

Using the methods of [5] one may prove the following result:

Theorem 1 The sequent calculi PB-G3 [APB-G3, AH-G3] without the rules of cut
are sound and complete with respect to the interpretation of PBL [APBL, AHL,
respectively] in bimodal S4.

11 This calculus is essentially the system Intuitionistic Logic for Pragmatics ILP presented and
studied in [5], Sect. 3, restricted to the language LAH - namely a sequent calculus with axioms and
rules for assertive validity, implication and conjunction, hypothetical absurdity, subtraction and
disjunction and two mixed negations.
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Table 1 The sequent calculus AH-G3

IDENTITY RULES
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AH-G3:
α, A1 ; ∃ A2 ; ε⊇

→-R
α ; ∃ A1 → A2 ; ε

α⊇⊇ ; C1 ∃ ; C2, ε
�-L

α ; C1 � C2 ∃ ; ε

α ; C ∃ ; ε⊇
◦-R

α ; ∃ ◦ C ; ε

α⊇⊇ ; ∃ A ; ε�-L
α ; � A ∃ ; ε

ε⊇ not allowed in PB-G3, APB-G3 α⊇⊇ not allowed in PB-G3

2.5 First Conclusions: Assertions and Conjectures

Although our approach to the logic for pragmatics does not provide a theory of
positive evidence, the epistemic readingof themodal interpretation inS4does suggest
a way to characterize different degrees of evidence, through the essential distinction
between hypotheses and conjectures. While “epistemic possibility,” namely the mere
knowledge of a situation inwhichλ happens to be true, does provide enough evidence
to justify the hypothesis ofλ, conjecturing the truth ofλ requires knowing conditions
inwhichλwould be “epistemically necessary.”WewriteCλ to express the conjecture
that λ is true.

Moreover, consider circumstances in which it is unjustified to conjecture the truth of
λ. This is certainly the case when no matter how our present knowledge evolves, it
always reaches a state in whichλ fails to be true: wemay call this epistemic condition
safe expectation that ¬λ eventually becomes true. We write Eλ to express the safe
expectation of λ.

Setting (Cλ)M = ♦�λ and (Eλ)M = �♦λ, we have a modal interpretation in S4
that fits nicely in the above informal interpretation. In Table2 we find the map of all
distinct modalities in S4; arrows indicate valid implications between non-equivalent
modalities.

Table 2 The modalities of S4
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Table3 presents all pragmatic expressions corresponding to modalities of S4 and the
valid implications between them.

We shall not develop a full theory of assertions, hypotheses, conjectures and expec-
tation with four corresponding types of pragmatic connectives. We are interested
in theories obtained by extending the polarized language LAH of assertions and
hypotheses with new elementary expressions Cp for conjectures and dually, expres-
sions Ep for expectations. Let us write LAHC [LAHCE] for the extension of LAH with
elementary expressions Cp for conjectures [and Ep for expectations].

Let AHCE be the set of all expressions in LAHCE that are valid in the S4 modal
translation.Weconjecture in order to axiomatizeAHCE in a cut-free sequent calculus
it suffices to extend AH-G3 with the following rules:

Duality Between Safe Expectations and Conjectures

Clearly the S4 translations of conjectures and of assertions are not dual from the
viewpoint of modal logic, but the modal translations of conjectures and safe expec-
tations certainly are; if in Definition 3 and in Lemma 2 we replace the illocution-
ary operators “C” (conjectures) and “E” (safe expectations) for the operators “H”
(hypotheses) and “ ∧” (assertions), respectively, then clearly the conditions of duality
are expressible through negations within a logic AHCEL of assertions, hypotheses,
conjectures and safe expectations. For instance, the base case becomes:

The Logic of Safe Expectations is Classical

Let LE be the language defined by the grammar

E, F := Ep | � | E → F | E ∇ F

and let bf EL be the set of all formulas σ in the language LE such that the modal
translation σM is valid in S4.

Table 3 Assertions, conjectures, expectations and hypotheses
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α ; ∃ ∧p ; εC-R
α ; ∃ ; Cp, ε

α, ∧p ; ∃ ; εC-L
α ; Cp ∃ ; ε

α ; ∃ ; Hp, εE-R
α ; ∃ Ep ; ε

α ; Hp ∃ ; εE-L
α, Ep ; ∃ ; ε

(a) setting F(Ep) = Cp⊗ and G(Cp) = Ep⊗
we have � Ep ∗ Cp⊗ and ◦ Cp ∗ Ep⊗
since ♦¬�♦p ∗ ♦�¬p and �¬♦�p ∗ �♦¬p.

Proposition 2 The theory EL (logic of safe expectations) is closed under the double
negation rule, i.e., ◦◦ E ∃ E is a valid axiom of EL.

The proof shows by induction on the logical complexity that the double negation
rule for molecular formulas can be reduced to applications of the double negation
rule for elementary formulas (essentially, as in [46]). The base case is then given by
the following equivalence:

(◦◦ Ep)M = �♦�♦p ∗ �♦p = (Ep)M .

On the other hand, if we extend LE with intuitionistic disjunction (∪), then E∪ ◦ E
is not a theorem of the logic of safe expectations extended in this way. Indeed

(Ep∪ ◦ Ep)M = �♦p ⇒ �♦�¬p

is not valid in S4.

Historical Note

InAppendix B of [46] Prawitz considers an extension of the language of intuitionistic
logic with an involutory negation ¬ and then extends intuitionistic natural deduction
NJ→∇ with rules ¬→-I, ¬→-E, ¬∇-I and ¬∇-E; these new rules are presented as
an axiomatization of Nelson’s logic of constructible falsity [38].12 Thomason [58]
provides aKripke semantics forNelson’s logic of constructible falsity, wherew � ¬p
if and only if w∀ � ¬p for all w∀ with wRw∀; this implies that the evaluation function
must be partial.Miglioli et al. [37] introduce an operatorTwhich represents classical
truth within the context of Nelson’s logic of constructive negation: in particular we
have A is classically valid if and only if ◦◦ A is intuitionistically valid (by Gödel’s
translation) if and only if TA is valid in the constructive extended system. In [37]
a Kripke semantics for the constructive logic with T operator is presented, where
Thomason’s semantics is restricted to frames satisfying the additional condition that
from each world w a terminal world w∀ is reached where all atoms and negations
of atoms are evaluated. Then the forcing conditions for Tp by Miglioli et al. are

12 The negation “¬” corresponds to the orthogonality ( )⊗, as in Remark 2.
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expressible as w � Tp if and only if w � �♦p and w � ¬Tp if and only if in all w∀
withwRw∀ wehave that p is either not evaluated or false inw∀. Comparing the operator
T to our operator E of safe expectation, when applied to atomic formulas, we can
say that their properties are similar, but in the context of a polarized bi-intuitionistic
system they can be expressed in a simpler way. We cannot discuss the intriguing
work by Miglioli and his co-workers in more detail here; a recent discussion of their
approach is in Pagliani’s book [39].

3 PART II. Rough-Set Semantics

Proofs and Refutations

The idea that a characterization of constructive logic must include a definition not
only of what proofs of a formula A are but also of refutations of A goes back at least
to Nelson [38] and comes up in various contexts related to game semantics and in
particular the construction of Chu spaces. Thus we may say that a proof of A → B is
a method transforming a proof of A into a proof of B and that a refutation of A → B
is a pair consisting of a proof of A together with a refutation of B; in some contexts
instead of proofs and refutations we may speak of evidence for and against A. To
study bi-intuitionistic logic and its dualities one may say that a proof of C � D is
a pair consisting of a proof of C and of a refutation of D and that a refutation of
C � D is a method transforming a proof of C into a proof of D. But we will not
go very far if the spaces of proofs and of refutations of A coincide with the spaces
of refutations and of proofs of A⊗, respectively. This is certainly not the case if we
consider the semantics of assertions, hypotheses, and conjectures rather than that of
assertions and hypotheses, as discussed informally in Sect. 2.1. Moreover, it turns
out that Rough-Set semantics applied to our canonical polarized system AHCB does
provide new insight and also a bridge to geometric models [57].

3.1 Rough Sets

As pointed out in [5], any topological space provides a mathematical model of
bi-intuitionistic logic, thus also of our canonical system AHL, if we interpret the
assertive expressions by open sets and the hypothetical ones by closed sets. A more
interesting suggestion comes from the interpretation in terms of Rough Sets, fol-
lowing Piero Pagliani’s work (in particular, see [40, 41] and Lech Polkowski’s book
[45], Chap.12).

Definition 5 Given an indiscernibility space (U, E), where U is a finite set and
E ⊆ U × U an equivalence relation, identifying objects that may be indiscernible

http://dx.doi.org/10.1007/978-94-007-7548-0_12


212 G. Bellin

from some point of view, let AS(U) be the atomic Boolean algebras having the set of
equivalence classes U/E as atoms; then (U, AS(U)) is a topological space, called
the Approximation Space of (U, E), which induces an interior operator and a closure
operator I, C : β(U) ≤ AS(U). If two subsets G∀, G∀∀ ⊆ U have the same interior
and the same closure, then they are roughly equal, i.e., indistinguishable either by the
coarsest classification given by C, or by the finest classification I; thus each subset
G is a representative of a class of subsets identified by the pair (I(G), C(G)); only
a clopen G for which I(G) = C(G) is fully characterized in (U, E).

For our purpose it is more convenient the disjoint representation (I(G),−C(G))

using the complement of the closure of G, the set of object different from G even
for the coarser classification, instead of C(G). Thus we may regard the two clopen
sets (I(G) and −C(G)) as representing the space of proofs and of refutations of an
intuitionisitc formula.

Following Pagliani, we can define the following data and operations on pairs

1 1 = (U,⊆), 0 = (⊆, U);
2 (X+, X−) ∧ (Y+, Y−) = (X+ ∇ Y+, X− ∪ Y−) (conjunction);
3 (X+, X−) ⇒ (Y+, Y−) = (X+ ∪ Y+, X− ∇ Y−) (disjunction);
4 (X+, X−) ≤ (Y+, Y−) = (−X+ ∪ Y+, X+ ∇ Y−); (Nelson’s implication)
5 − (X+, X−) = (−X+, X+) (weak negation or supplement);
6 (X+, X−)⊗ = (X−, X+) (orthogonality);
7 (X+, X−) ∃ (Y+, Y−) = ((−X+ ∪ Y+) ∇ (−Y− ∪ X−),−X− ∇ Y−) (Heyting’s implication);
8 − (X+, X−) = (X+, X−) ∃ (⊆, U) = (X−,−X−) (intuitionistic negation);
9 (X+, X−) � (Y+, Y−) = (X+ ∇ −Y+), (−X+ ∪ Y+) ∇ (−Y− ∪ X−) (co-intuitionistic

subtraction).

(see Pagliani [41], Polkowski [45], p. 363—with an equivalent definition of Heyting
implication).13

Of course one will not obtain a complete semantics for intuitionistic logic starting
from a finite base of clopen sets. Thus we need to look at general topological spaces.
Since the language of our logic of assertions, hypotheses, and conjectures AHCL is
polarized, in order to turn Pagliani’s operations into a topological model of AHCL

13 Notational decisions are nightmarish if we try to match the uses in the literature of Rough Sets,
in Rauszer’s bi-intuitionistic logic and our own.
In our polarized bi-intuitionistic logic [5] we used ◦ A for intuitionistic negation and � C for
co-intuitionistic supplement, leaving ¬λ for classical negation, as required in Dalla Pozza and
Garola’s framework and following the meaning originally given to the symbol “¬” by Frege.
C.Rauszer uses − A for intuitionistic negation and − A for co-intuitionistic supplement; but in the
later literature on bi-intuitionistic logic ◦A is used for co-intuitionistic supplement.
In the literature on Rough Sets, weak-negation is sometimes written ¬C; intuitionistic negation is
written in various ways (Pagliani uses ÷A, in Polkowski’s book there is †A), while the symbol ◦ A
is used exactly in the sense of orthogonality A⊗.
However, it is unnecessary to make notations uniform across three areas, where similar connectives
have different meanings: e.g., in Rough Sets negations are defined in a more general algebraic
setting than Heyting algebras.
Hence it seems reasonable for us to retain the notation of [5] for our polarized logic, while using
“− ,” “ − ,” and “( )⊗” for intuitionistic negation, co-intuitionistic supplement and orthogonality in
Rough Sets.
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we need to make sure that the interpretation of an assertive expression is an open
set and a hypothetical expression is assigned a closed set; this is not always the case
for Pagliani’s operations, in particular implications and negations, which have to be
modified as follows.

Definition 6 Let (U, O) be a topological space, where O is the collection of open
sets on U, and I(X) and C(X) are the interior and the closure of X,14 respectively. We
write (A+

o , A−
c ) and (C+

c , C−
o ) for pairs of disjoint sets of the types (open, closed) and

(closed, open), respectively. We define the rough set interpretation ( )R of the language
of assertions, hypotheses, and conjectures LAC (in the disjoint representation) as
follows.

Fix an assignment R : ( ∧ pi)
R = (Ai

+
o , Ai

−
c ) and (H pi)

R = (Ci
+
c , Ci

−
o ) to the

elementary expressions of LAH. Then

1 �R = (U,⊆) and �M = (⊆, U) (clopen, clopen);
2 (A ∇ B)R = (A+

o , A−
c ) ∧ (B+

o , B−
c ) = (A+

o ∇ B+
o , A−

c ∪ B−
c ) ;

3 (C � D)R = (C+
c , C−

o ) ⇒ (D+
c , D−

O) = (C+
c ∪ D+

c , C−
o ∇ D−

o );
4 (A+

o , A−
c ) ≤ (B+

o , B−
c ) = (I(−A+

o ∪ B+
o ), C(A+

o ∇ B−
c )

)
15;

5 (� C)R = −(C+
c , C−

o ) = (C(−C+
c ), I(C+

c )
)

and
. (� A)R = −(A+

o , A−
c ) = (−A+

o , A+
o );

6 (A+
o , A−

c )⊗ = (A−
c , A+

o ) and (C+
c , C−

o )⊗ = (C−
o , C+

c )16;

7 (A → B)R = (A+
o , A−

c ) ∃ (B+
o , B−

c ) =
. = (I(−A+

o ∪ B+
o ) ∇ I(−B−

c ∪ A−
c ), C(−A−

c ∇ B−
c )

)
;

8 (◦ A)R = − (A+
o , A−

c ) = (I(A−
c ), C(−A−

c )
)

and
. (◦ C)R = − (C+

c , C−
o ) = (C−

o ,−C−
o );

9 (C � D)R = (C+
c , C−

o ) � (D+
c , D−

c ) =
. = (C(C+

c ∇ −D+
c ), I(−C+

c ∪ D−
c ) ∇ I(−D−

o ∪ C−
o )

)
.

Let LAHC a language of assertions, hypotheses, and conjectures built from a set of
propositional atoms p0, p1, . . . and let ( )⊗ be an involution without fixed points on
the atoms. A rough set interpretation M = (U, O, R) of the language LAHC (with
an involution ( )⊗ on the atoms) is a topological space (U, O) together with an
assignment R to the elementary expressions of disjoint pairs of the following forms:

( ∧p)R = (A+
o , A−

c );
(Hp)R = (C+

c , C−
o );

(Cpi)
R =

(C(X+), I(X−)
)
, where ( ∧pi)

R = (X+, X−).

14 The notation CX is overloaded, for the illocutionary operator of conjecture in the syntax of the
language of pragmatics and for the closure operator in a topological space. No confusion is possible,
given the difference in context.
15 There is no connective to represent Nelson’s implication as distinct from intuitionistic implication
in LAH .
16 There is no specific connective for orthogonality in LAH .
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Lemma 3 Let M = (U, O, R) be an interpretation of LAHC, with an involution
( )⊗ on the atoms. Then M is a model of AHCL if and only if the assignment R to
elementary expressions of LAHC satisfies the following duality conditions:

( ∧p⊗)R = (C−
o , C+

c ) = (C+
c , C−

o )⊗ where (Hp)R = (C+
c , C−

o )

(Hp⊗)R = (A−
c , A+

o ) = (A+
o , A−

c )⊗ where ( ∧p)R = (A+
o , A−

c )

and moreover for every (A+
o , A−

c ) and (C+
c , C−

o ) in R we have

A−
c = −A+

o and C−
o = −C+

c . (5)

Proof. Concerning conditions ◦� A ∗ A and �◦ C ∗ C of Lemma 2, notice that

− − (A+
o , A−

c ) = − (−A+
o , A+

o ) = (A+
o ,−A+

o ) = (A+
o , A−

c )

if and only if A−
c = −A+

o and similarly

−− (C+
c , C−

o ) = − (C−
o ,−C−

o ) = (−C−
o , C−

o ) = (C+
c , C−

o )

where the last equality holds if and only if C+
c = −C−

o . Moreover, the conditions

(b)−(c) in the definition of duality betweenLA andLH (Definition 3) are clearly sat-
isfied by the standard Rough Set definition. As for condition (a), given the involution
( )⊗ on the atoms, we have

(� ∧p)R = − (A+
o , A−

c ) = (−A+
o , A+

o ) = (A−
c , A+

o ) = (Hp⊗)R

where the third equality holds by condition (5) and the fourth by the condition of
duality in a model. Similarly,

(◦ Hp)R = − (C+
c , C−

o ) = (C−
o ,−C−

o ) = (C−
o , C+

c ) = ( ∧p⊗)R

as required.

Remark 3 In a model M = (U, O, R) for AHCL intuitionistic negation and Nel-
son’s negation coincide:

(A+
o , A−

c ) → (B+
o , B−

c ) = (I(−A+
o ∪ B+

o ) ∇ I(−B−
c ∪ A−

c ), C(−A−
c ∇ B−

c ))

= (I(A−
c ∪ B+

o ), C(A+
o ∇ B−

c ))

Thus to exploit Rough-Set semantics in full, we may want to consider notions of
duality where condition (5) does not hold.
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Fig. 1 “Kripke model”

3.2 Algebra of Regions

Amain reason of interest in bi-intuitionistic logic are its topos-theoretic models stud-
ied by Lawvere [32] Reyes and Zolfaghari [52], recently reconsidered by Stell and
Worboys [57] in their “algebra of regions.” It is clearly impossible here to compare
Reyes and Zolfaghari’s modal logic to our polarized bi-intuitionistic systems, but we
must say something about Stell and Worboys’ geometric examples.

The first one is Reyes and Zolfaghari’s motivating example [52]: it provides a model
of bi-intuitionistic logic based on the subgraphs of arbitrary undirected graphs. It
ought to be possible to define graphic models of AHL and PBL, but we shall not
attempt this here. On the other hand, “two stages sets” in the second example are just a
geometric representation of the basic notion of “rough equality”: in an approximation
space each subset G of the universe is identified only by the pair (I(G), C(G))—or
with (I(G),−C(G)) in the disjoint representation—where the interior and closure
operator result from two stages of process of classification.

Now it is evident that condition (5) on models of AHL restricts the interpretation to
setsG that are fully characterized in (U, E), i.e., such thatI(G) = C(G).We illustrate
more interesting semantics applications with an example. Consider the Kripkemodel
K for S4 obtained from the reflexive and transitive closure of the graph in Fig. 1.

Writing λK for the set of possible worlds satisfying λ, we have ( ∧ p)K = {w1},
(Cp)K = {w0, w1} and (Hp)K = {w0, w1, w3, w4, w5} = K \ {w2}. We are satis-
fied with the Rough Set interpretation of assertions in the disjoint representation
as ( ∧ p)R = ({w1}, K \ {w1}): after all, the grounds for an assertion ought to be a
“stable” state of knowledge; by duality the representation of hypotheses as (Hp)R =
(K \ {w2}, {w2}) is appropriate. On the other hand, the state of knowledge justifying
conjectures is “unstable”; thus there seems to be a meaningful “two-stage set” rep-
resentation of conjectures of the form (Cp)R = ({w1}, K \ {w0, w1}), of type (open,
open). We notice that such an interpretation is possible for the logic AHCL of asser-
tions, conjectures, and hypotheses, as it does not interfere with the basic symmetry
between assertions and hypotheses. It remains an open problem whether these very
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Table 4 Natural Deduction NJ��

conjectural remarks can be developed into an interesting rough-set semantics of a
logic of assertions, hypotheses, conjectures, and expectations.

4 PART III. Proof Theory

We shall start with the definition of a sequent-style single-assumption multiple-
conclusions natural deduction system for the subtractive-disjunctive fragmentNJ��
of co-intuitionistic logic. We have sequents of the form

A ∧ C1, . . . , Cm

where A indicates the only open assumption in a derivation with the multiset C1, . . .,
Cm of open conclusions. The rules of inference are in Table 4.

Definition 7 We say that C1, . . . , Cm is derivable from A if there is a natural deduc-
tion derivation of the sequent A ∧ λ where all formulas in the multiset λ are among
C1, . . . , Cm.

Remark 4 (i) Looking at the deduction rules in Table4, notice that �-introductions,
�-eliminations and�-eliminations discharge the open assumption(s) of the sequent-
premise(s) to the right, but a �-elimination discharges also a multiset of open con-
clusions. As a consequence, �-eliminations are the only inferences that cannot be
permuted freely with other inferences. From another point of view, here we have a
limit to the “parallelization of the syntax,” a box in the sense of Girard. To remove
such a box, a device is needed to discharge open conclusions preserving as much
as possible the geometry of proofs. In this section we recover Prawitz trees as an
appropriate representation of proofs in NJ��.
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(ii) As in Prawitz’s natural deduction weakening is not explicitly represented in
proof-trees and contraction appears only in the discharging of conclusions in a �-E
inference.

Definition 8 (i) (active and passive formula-occurrences) In assumptions and in
rules of inference the indicated formula-occurrences in the succedent of a sequent are
active and all occurrences in the multisets λ, λi, � are passive. Also the discharged
assumptions in a �-I, �-E and �-E are active, all other assumptions are passive. An
active formula in the sequent-conclusion of an inference is also called the conclusion
of the inference.

(ii) (segments) If ε occurs in the premise and in the conclusion of an inference then
an occurrence Di ∨ ε in the premise is the immediate ancestor of the occurrence Di

in the conclusion. Then as in Prawitz [46] we define a segment as a sequence D1,
. . ., Dm of occurrences of the same formula where D1 and Dm are active, and Di is
the immediate ancestor of Di+1, for i < m.

(iii) Thus we may speak of a segment as the conclusion or the premise of some
inference.

(iv) A maximal segment is the conclusion of an introduction rule which is premise
of an elimination. A derivation is normal if it does not have maximal segments.

4.1 Structure of Normal Proofs

The structure of normal deductions in co-intuitionistic logic NJ�,� mirrors that of
normal deductions in intuitionistic logic NJ→,∇.

Definition 9 (i) A Prawitz path in a normal deduction is a sequence C1, . . ., Ci, . . .,
Cn of segments such that

• C1 is an assumption, either open or discharged by a �-introduction;
• for j with 1 ≤ j < i, Cj = C � D is a premise of a �- or �-elimination and

Cj+1 = C is an assumption discharged by the inference;
• for j with i ≤ j < n, Cj is a premise of a �- or �-introduction with conclusion

Cj+1;
• Cn is a conclusion of the derivation, either open or discharged by a �-E.

(ii) The collection of all Prawitz paths in a derivation is a graph, called the tree of
Prawitz paths τ . If we collapse segments to their formulas, the resulting tree yields a
graphical representation of proofs which we shall call Prawitz tree for NJ��. Such
trees are similar to those in Prawitz-style Natural Deduction derivation for NJ→∇,
but in NJ�� the logical flow goes from the root to the leaves, rather than from the
leaves to the root as in NJ→∇.
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(iii) The definition of the depth of a path π in a tree τ is familiar: the depth of π
is 0 if its first formula C1 is open; the depth of π is n + 1 if C1 is discharged by a
�-introduction with conclusion in a path of depth n.

From this analysis we derive as usual the subformula property for normal deductions:

Proposition 3 Every formula occurring in a normal deduction of A ∧ C1, . . . , Cm

is a subformula either of A or of Ci for some i.

Example We constuct a derivation d in NJ�� of

C � A ∧ ((C � (B � D)) � A, ((B � A) � (D � A))2

It may be helpful to think of the dual derivation in NJ→∇ of

(A → B) ∇ (A → D), A → ((B ∇ D) → C) ∧ A → C.

We write F for (B � A) � (D � A) and G for C � (B � D).

C ∧ C B � D ∧ B � D
�-I

C ∧ C � (B � D), B � D B ∧ B D ∧ D �-E
C ∧ C � (B � D), B, D A ∧ A

�-I
C ∧ G � A, A, B, D

C � A ∧ C � A

.

.

. A ∧ A
�-I

C ∧ G � A, (A)2, B � A, D A ∧ A
�-I

C ∧ G � A, (A)3, B � A, D � A A ∧ A �0-I
C ∧ G � A, (A)3, (B � A) � (D � A), D � A �1-I

C ∧ (A)3, G � A, (F)2
�-E

C � A ∧ G � A, (F)2

In Fig. 2 we find the tree-structure of “Prawitz’ paths” of the derivation d.

4.2 Sequents with Tail Formula

A very perspicuous representation of derivations in co-intuitionistic logic is through
sequent calculus with tail formula q-LJ��, the exact dual of the well-known sequent
calculus with head formula t-LJ→∇.17 Here sequents have the form

17 The “q” in q-LJ�� stands for queue, tail, as the “t” in t-LJ→∇ stands for tête, head.
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Fig. 2 A Prawitz tree

E ∃ ε ; C

with one formula in the antecedent, a multiset in the ordinary area, and at most
one formula in the linear area (stoup) of the succedent. The principal formulas of
the right-rules are in the stoup and left-rules require empty stoup in the sequent-
premies.18 The rules of q-LJ�� are given in Table5.
The following fact is the dual of a well-known correspondence between Natural
Deduction derivations in NJ→∇ and Sequent Calculus derivations in t-LJ→∇. For
sequent calculi with head formulas or tail formulas see, for instance, [20].

Proposition 4 There is a bijection between trees of Prawitz paths of normal deriva-
tions in NJ�� and cut-free derivations in q-LJ�� (modulo the order of structural
inferences).

Proof. Given a Prawitz tree τ , by induction on τ we construct a q-LJ�� derivation
with the property that the formula in the stoup (tail formula), if any, is the conclusion
of a path of depth 0 (main path) of τ . If τ begins with an elimination rule, the
result is immediate by the inductive hypothesis applied to the immediate subtree(s)
from the top, since we may assume that the corresponding cut-free derivations have
conclusions with empty stoup. If τ begins with an introduction rule, then there is
only one main path and we remove the last inference of it: if the conclusion was a
formula C � D, the inductive hypothesis yields two q-LJ�� derivations; in one the
endsequent must have C in the stoup, since C belongs to the main path; in the other

18 It ought to be clear that the use of focalization in the sequent calculus q-LJ�� and in the dual
t-LJ→∇ (see Table8, Appendix III), is unrelated to the use of the “stoup” in our sequent calculi
AH-G3, PB-G3, and APB-G3 for bi-intuitionistic logic, where it is used simply to highlight the
restrictions of intuitionistic systems.
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Table 5 The sequent calculus q-LJ��

the endsequent has D in the antecedent and we may assume that it has no formula
in the stoup, by applying dereliction if necessary. Therefore we may apply �-R to
obtain the desired derivation. The other cases are obvious.
The fact that two derivations d∀ and d∀∀ corresponding to the same tree τ can only
differ for the order of structural inferences is due to the fact that in q-LJ�� logical
inferences cannot be permuted with each other. Indeed, the principal formulas of all
inferences occur either in the antecedent or in the stoup, and the rule of dereliction
is irreversible.

Example (cont.) The following sequent derivation dq corresponds to the natural
deduction derivation d:
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C ∃; C

B ∃; B

A ∃; A
der

A ∃ A ;
�-R

B ∃ A ; B � A �0-R
B ∃ A ; F

der
B ∃ A, F ;

D ∃; D

A ∃; A
der

A ∃ A ;
�-R

D ∃ A ; D � A �1-R
D ∃ A ; F

der
D ∃ A, F ;

B � D ∃ A, A, F, F ;
�-R

C ∃ A, A, F, F ; C � (B � D)

A ∃ ; A
der

A ∃ A ;
C ∃ A, A, A, F, F ; G � A

contr, der
C ∃ A, F, G � A ;

�-L
C � A ∃ F, G � A ;

5 PART IV.Term Assignment for Co-intuitionistic Logic

In a tantalising pair of papers [42, 44] Michel Parigot introduced Free Deduction, a
formalism consisting of elimination rules only, with the property that both Natural
Deduction and the Sequent Calculus could be represented in it simply by restricting
the order of deduction, e.g., by permutations of inferences. Free Deduction was
conceived to study the computational properties of classical logic, but it can be
adapted to intuitionistic and co-intuitionistic logic through the analog of Gentzen’s
restrictions on sequents.

For instance, although they do not appear in this form in [42], the rules for multi-
plicative implication and subtraction can be formulated as follows:

multiplicative implication
λ, A ≤ B ∧ � κ, A ∧ B, (ω¶) ≤ elim left

λ,κ ∧ �,ω

λ ∧ �, A ≤ B κ ∧ ω, A κ∀, B ∧ ω∀
≤ elim right

λ,κ,κ∀ ∧ �,ω,ω∀

multiplicative subtraction
λ, A � B ∧ � κ ∧ ω, A κ∀, B ∧ ω∀

� elim left
λ,κ,κ∀ ∧ �,ω,ω∀

λ ∧ �, A � B (κ¶), A ∧ B, ω
� elim right

λ,κ ∧ �,ω

The intuitionistic restriction (ω¶), namely that ω is empty, applies to the secondary
premise of the ≤-left elimination rule, and the dual restriction holds for �-right
elimination. The sequent calculus rules are obtained by killing the main premise
(i.e., keeping it only as an axiom). Here are the rules for subtraction:
Natural Deduction, on the other hand, is given by keeping all inputs on the left.
Namely: for left elimination rules, we kill the main premise; for right elimination
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subtraction rules, as in the sequent calculus
A � B ∧ A � B κ ∧ ω, A κ∀, B ∧ ω∀

�-R
κ,κ∀ ∧ A � B, ω,ω∀

A � B ∧ A � B [κ¶], A ∧ ω, B
�-L

A � B,κ ∧ ω

rules, we kill the secondary premises which have only a left active formula. Thus no
premise is killed in subtraction elimination right.

subtraction rules, as in natural deduction
A � B ∧ A � B κ ∧ A, ω κ∀, B ∧ ω∀

� intro
κ,κ∀ ∧ A � B, ω∀

λ ∧ A � B,� [κ¶], A ∧ B, ω
� elim

λ,κ ∧ �,ω

Since Free Deduction yields amultiple conclusion natural deduction system in a very
straightforward way, one would expect that a term assignment to Free Deduction
might be distributed to all formula in the succedent of sequents. On the contrary in
1992Michel Parigot introduced the γ-μ calculus as “an algorithmic interpretation of
classical Natural Deduction,” which is based on a notion of “central control.” In the
last part of this chapter we propose a distributed term assignment to co-intuitionistic
logic.

5.1 Term Assignment to the Subtraction Rules in the λ-μ Calculus

Recently the proof theory of bi-intuitionistic (subtractive) logic has been studied by
Crolard [15, 16]: in [16] a Natural Deduction system is presented with a calculus
of coroutines as term assignment.19 Crolard works in the framework of Parigot’s
γμ-calculus: sequents may be written in the form20 λ ∧ t : A | �, with contexts λ =
x1 : C1, . . . , xm : Cm and � = λ1 : D1, . . . ,λn : Dn, where the xi are variables and
the λj are μ-variables. In addition to the rules of the simply typed lambda calculus,
there are naming rules

λ ∧ t : A | λ : A,�

λ ∧ [λ]t : ⊗ | λ : A,�
[λ] λ ∧ t : ⊗ | λ : A,�

λ ∧ μλ.t : A | �
μ

19 This part is joint work with Corrado Biasi and incorporates important contributions from his still
unfinished doctoral dissertation at Queen Mary, University of London.
20 Parigot and Crolard actually write sequents in the form t : λ ∧ �; A, where the term t is given
the type of the formula A in the stoup, if such a formula exists. If the stoup is empty, the notation
allows one to think of t as being assigned to the entire sequent or to a formula ⊗ implicitly present
in the stoup.
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It is well-known that the γμ-calculus provides a computational interpretation of
classical logic and a typing system for functional programs with continuations (see,
e.g., [17, 54]).

Crolard extends the γμ calculus with introduction and elimination rules for sub-
traction21:

λ ∧ t : A | �

λ ∧ make-coroutine(t,β) : A � B | β : B,�
� I

λ ∧ t : A � B | � λ, x : A ∧ u : B | �

λ ∧ resume t with x ∪≤ u : C | �
� E

The reduction of a redex of the form resume(make-coroutine(t,β)) with x
∪≤ u : C yields μπ.[β]u[t/x], where the μ-variables are typed as β : B and π : C.
Namely

λ ∧ t : A | �
�-I

λ ∧ make-coroutine(t,β) : A � B | β : B,� λ, x : A ∧ u : B | �
�-E

λ ∧ resume (make-coroutine(t,β))with x ∪≤ u : C | β : B,�

reduces to
λ ∧ t : A | � λ, x : A ∧ u : B | �

substitution
λ ∧ u[t/x] : B | � [β]

λ ∧ [β]u[t/x] : ⊗ | β : B, π : C,�∀
μ

λ ∧ μπ.[β]u[t/x] : C | β : B,�∀

Working with the full power of classical logic, if a constructive system of bi-
intuitionistic logic is required, then the implication right and subtraction left rules
must be restricted by considering relevant dependencies.22 Crolard is able to show
that the term assignment for such a restricted logic is a calculus of safe corou-
tines, namely terms in which no coroutine can access the local environment of an-
other coroutine.

21 In Crolard [16] the introduction rule corresponds to the more general form �-I given above,
and more general continuation contexts occur in place of β; the above formulation suffices for our
purpose here.
22 For instance, in the derivation of the right premise of a subtraction elimination (�E), there should
be no relevant dependency between the formula B and the assumptions in λ, but only between B
and A.



224 G. Bellin

5.2 A Distributed Term Assignment for the Subtractive Fragment

When we consider a term assignment for the Natural Deduction system NJ�� of
dual intuitionistic logic only, we are led to askwhat Crolard’s calculus becomeswhen
separated from its γμ context. Indeed the naming rules of the γμ calculus allow us to
represent the action of an operating system jumping from one thread of computation
to another: when a name β for a coroutine has been created by make-coroutine,
it can be later accessed by the system and the coroutine executed.

On the contrary in our proposal different terms are simultaneously assigned to the
multiple conclusions of a sequent in a sequent-style Natural Deduction, (or in the
SequentCalculuswith tail formula). There is nomechanism to simulate the passage of
control from one “thread” to another. A process is stopped by the operator assigned to
subtraction elimination (called here postpone rather than Crolard’s resume) and
becomes active only in the normalization process. Thus in the presence of different
processes running in parallel, one wonders whether our system can still be regarded
as a calculus of coroutines: it is perhaps closer to an abstract representation of a
multiprocessing system.

Before giving formal definitions, let us survey the most distinctive features of our
calculus for the terms assignment to the subtractive fragment only. Most character-
istic is the treatment of variables: there is no operator for explicitly binding variables
or delimiting the scope of an implicitly binding operation. We may say that a compu-
tational context is characterized by exactly one free variable and that a free variable a
becomes bound when its computational context Sa is plunged into the computational
context Sb associated with another variable b. In this case, the variable a is replaced
everywhere by a(t) for some term t containing b; here the function a is vaguely
reminiscent of a Herbrand function. In the normalization process the term a(t) may
later be replaced by another term u throughout the new computational context; thus
we assume that a mechanism is in place for broadcasting substitutions throughout
an environment.

We have the following operators:

• the term mkc(t,y), which is assigned to the conclusion of a �-introduction,
connects two disjoint computational contexts, say, Sx and Sy. Every term in Sx

contains exactly one free variable x, and we assume that the term t represents a
thread starting from x.23 The computational context Sy contains the free variable
y and all threads starting from y. When the term mkc(t,y) is introduced, the
substitution y := y(t) must be performed throughout the environment Sy. Thus
the term mkc(t,y) represents a jump extending the thread t to all threads in
Sy{y := y(t)}; the substitution of y(t) for y throughout Sy has the effect that the
extended computational context contains only the free variable x. Here we retain

23 Here we use the term “thread” in the sense of Prawitz [46], p. 25; namely, a thread is a branch in
the proof-tree from the a leaf to the root. The equivalent notion here is that of a branch in Prawitz’
tree τ from the root to the leaf. No claim is made here about the computer science usage of the term
“thread.”
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Crolard’s name make-coroutine for historic reasons; a more precise but more
redundant description would be the following:

mkc(t,y) stands for extend thread t from y(t).

• The term postp(z ∪≤ 	, t), which is assigned to the conclusion of a �-
elimination, takes a computational context Sz containing the only free variable
z, and plunges it into another context Sx where the only free variable is x; this is
done by selecting the list 	 of threads starting from z and the term t with free vari-
able x, replacing z with z(t) throughout Sz and freezing 	{z := z(t)} until through
normalization the term t is transformed to a term of the form extend thread.
A fuller description is therefore the following:

postp(z ∪≤ 	, w) stands for postpone subthreads 	{z := z(w)} until w.

Let M be mkc(t,y) and let P(v) be postp(z ∪≤ 	, v). Then

P(M) = postp(z ∪≤ 	,mkc(t,y))

is a redex. The main idea of a reduction is to replace the jump from t to y(t) with
each one of the subthreads in 	. But such an operation has important side effects. A
redex P(M) occurs in a computational context Sx of the form

Sx : postp(z ∪≤ 	,mkc(t,y)), ε, ζy, θz

where ζy is a sequence of terms containing y(t), θz a sequence of terms containing
z(mkc(t,y)) and ε a sequence containing neither y(t) nor z(mkc(t,y)). Thus the
side effects consist in the replacement of z(mkc(t,y)) with t in θz and in each
subthread sk of 	; let 	∀ = s∀

1, . . . , s∀
n be the resulting sequence. Finally, we replace

y(t) in ζy with each one of the subthreads s∀
k , thus expanding the sequence ζy in a

sense to be made precise below. To indicate such a rewriting process we shall use
the notation

S ∀ = Sx − P(M) {z := t} {y := 	{z := t}}

where z = z(mkc(t,y)) and y = y(t).
In an enterprise where notation is in danger of growing out of control, readability
is essential. The notations mkc(t,y) and postp(z ∪≤ 	, w) are already effective
abbreviations, as from them we can recover the terms y(t) and z(w) present in the
context. Further simplification is given by Corrado Biasi’s elegant notations:

t ≤ y for mkc(t,y) and t
z ∪≤	�� for postp(z ∪≤ 	, t).
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If we consider the typed version of the above rewriting we have the following reduc-
tion. Let us write24

Sx : � for π0 : • | ε : �

Sy : ε for π1 : • | ζ : ε

Sz : 
 for π2 : • | θ : 

and also

Sx : �,Sy : ε,Sz : 
 for π0,π1,π2 : • | ε : �, ζ : ε, θ : 
.
Next

let Sy : ε be Sy{y := y(t)} : ε ,
let Sz : 
 be Sz{z := z((mkc(t,y))} : 
.

Then we have:
x : E ∧ Sx : �, t : C y : D ∧ Sy : ε

�-I
x : E ∧ Sx : �,Sy : ε, mkc(t,y) : C � D z : C ∧ Sz : 
, 	 : D

�-E
x : E ∧ postp(z ∪≤ 	,mkc(t,y)) : •,Sx : �,Sy : ε,Sz : 


reduces to

x : E ∧ Sx : �, t : C z : C ∧ Sz : 
, 	 : D
subst

x : E ∧ Sx : �,St : 
, 	{z := t} : D y : D ∧ Sy : ε
subst

x : E ∧ Sx : �,S	{z:=t} : ε,St : 


where St = Sz{z := t}, S	{z:=t} = Sy{y := 	{z := t}}

6 A Distributed Term Assignment for Co-intuitionistic Logic
NJ��

We present the grammar and the basic definitions of our distributed calculus for the
fragment of co-intuitionistic logic with subtraction and disjunction.

Definition 10 We are given a countable set of free variables (denoted by x, y, z . . .),
and a countable set of unary functions (denoted by x,y,z, . . .).

(i) Terms and lists of terms are defined by the following grammar:

t := x | x(t) | inl(t) | inr(t) | casel(t) | caser(t) | mkc(t,x)

	 := () | t · 	

(ii) Let t1, t2, . . . an enumeration in a given order of all the terms freely generated
by the above grammar starting with a special symbol ⊇ and no variables (a selected
variable a would also do the job). Thus we have a fixed bijection ti ∪≤ xi between
terms and free variables.

24 The expression • is not a formula, but a non-logical expression, which cannot be part of other
formulas; its meaning could be though of as an absurdity.
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(iii) Moreover, if t is a term and 	 is a list such that for each term u ∨ 	, y occurs in
u, then postp(y ∪≤ 	{y := y(t)}, t) is a p-term.

We use the abbreviations (t ≤ y) for mkc(t,y) and wz ∪≤	�� for postp(z ∪≤
	, w).

Thus a p-term cannot be a subterm of other terms. In the official definition above
lists appear only as arguments of postp,25 It is notationally convenient to extend
the above definition so that our operators apply to lists in addition to terms:

Definition 11 Let op( ) be one of x( ), inl( ), inr( ), casel( ), caser( ),
mkc(( ),x), postp(x ∪≤ 	, ( )).
Then the term expansion op(	) is the list of terms defined inductively thus:

op(()) = () op (t · 	) = op (t) · op (	)

Remark 5 By term expansion, a term consisting of an operator applied to a list of
terms is turned into a list of terms; thus terms may always be transformed into an
expanded form where operators are applied only to terms, except for expressions 	

occurring in terms of the form postp(y ∪≤ 	, u).

Definition 12 (i) The free variables FV(	) in a list of terms 	 are defined as follows:

FV(()) = ⊆
FV(t · 	) = FV(t) ∪ FV(	)

FV(x) = {x}
FV(x(t) = FV(t)

FV(inl(t)) = FV(inr(t)) = FV(t)

FV(casel(t)) = FV(caser(t)) = FV(t)

FV(mkc (t,x) = FV(t)

FV(postp(x ∪≤ 	, t) = FV(	) ∪ FV(t).

(ii) A computational context Sx is a set of terms and p-terms containing the free
variable x and no other free variable.

Definition 13 Substitution of a term t for a free variable x in a term u is defined as
follows:

25 In our definition we use lists of terms where multisets are intended. Amultiset can be represented
as a list 	 = (t1, . . . , tn) with the action of the group of permutations τ : n ≤ n given by 	τ =
(tτ(1), . . . , tτ(n)).
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x{x := t} = t, y{x := t} = yifx ⊕= y;
y(u){x := t} = y(u{x := t});

inl(r){x := t} = inl(r{x := t}), inr(r){x := t} = inr(r{x := t});
casel(r){x := t} = casel(r{x := t}), caser(r){x := t} = caser(r{x := t});

mkc(r,y){x := t} =mkc(r{x := t},y),

postp(y ∪≤ (	), s){x := t} =postp(y ∪≤ (	{x := t}), s{x := t}).

We define substitution of a list of terms 	 for a variable x in a list of terms ε:

(){x := 	} = () (t · ε){x := 	} = t{x := 	} · ε{x := 	}
t{x := ()} = () t{x := u · 	} = t{x := u} · t{x := 	}

If ζ is a vector of lists 	1, . . . , 	m, then ζ{x := 	} = 	1{x := 	}, . . . , 	m{x := 	}.
Definition 14 β-reduction of a redexRed in a computational context Sx is defined
as follows.
(i) If Red is a term u of the following form, then the reduction is local and consists
of the rewriting u �β u∀ in Sx as follows:

casel (inl(t)) �β t; caser (inr(t)) �β t.

casel (inr(t)) �β (); caser (inl(t)) �β ();

(ii) If Red has the form (t ≤ y)
z ∪≤	�� , i.e., postp(z ∪≤ 	,mkc(t,y)), then Sx

has the form
Sx = Red, ε, ζy, θz

wherey(t) occurs in ζy andz((t ≤ y)) occurs in θz and neithery(t) norz((t ≤ y))

occurs in ε. Writing y = y(t) and z = z((t ≤ y)), a reduction of Red transforms
the computational context as follows:

Sx � ε, ζ{y := 	{z := t}}, θ{z := t}.

Thus for ζ = u1, . . . , uk, for θ = r1, . . . , rm and for 	 = s1, . . . , sn we have:

θ{z := t} = r1{z := t}, . . . , rm{z := t};
ζ{y := 	{z := t}} = u1{y := s1{z := t}}, . . . , u1{y := sn{z := t}}, . . .

… uk{y := s1{z := t}}, . . . , uk{y := sn{z := t}};
= ζ{y := s1{z := t}}, . . . , ζ{y := sn{z := t}}.

Given the correspondence between Prawitz style Natural Deduction derivations in
NJ→∇ and sequent derivations in t-LJ→∇, and the dual correspondence between
Prawitz trees for co − NJ�� and sequent derivations in q-LJ��, we find it conve-
nient to define the term assignment directly to sequent calculus in q-LJ��, given in
Appendix III, Table7.
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Definition 15 (term assignment) The assignment of terms of the distributed cal-
culus to sequent calculus derivation in q-LJ�� is given in Appendix III, Table7. In
Table8 we give the familiar assignment of γ-terms to sequent calculus with head
formulas t-LJ→∇.

Remark on free variables and α conversion. Since in our calculus the binding
of a free variable x is expressed through its substitution with a term x(t), the so-
called “capture of free variables” takes a different form. Suppose a free variable y
has been replaced by y(t) in the construction of a term M = mkc(t,y) or P(t) =
postp(y, 	{y := y(t)}, t): all other occurrences of y in the previous context have
been replaced with y(t) in the current context, represented, say, by a vector 	, and
we may say that M or P(t) is a binder of y(t) in 	.

In the process of normalization such a “bound” term y(t)may be replaced by another
term u. It would be natural to think of such a replacement as a two-step process,
first recovering the free variable y and then applying a substitution {y := u} to the
current computational context. However, it may also happen that in the process of
normalization different occurrences of the term y(t) evolve to y(t∀) and to y(t∀∀) so
that distinct variables y∀ and y∀∀ are needed for distinct substitutions. For this reason
we have established a bijection between freely generated terms and free variables.

This may not solve all problems: indeed in the untyped formulation of our calculus
it might happen that the same free variable y has been replaced with y(t) in the
construction of two distinct terms of 	: our syntax may not have tools to disam-
biguate the “scope” of the bindings and some further restrictions may be needed
to block such pathologies. However, if the calculus is used for assigning term to
derivations in NJ��, then to avoid “capture of free variables” it is enough to set the
following condition.

Convention. We assume that

• Derivations have the pure parameter property, i.e., that in a derivation free vari-
ables assigned to distinct open assumptions are distinct;

Since to distinct free variables x, y there correspond distinct unary functionsx,y, then
it is clear that in the term assignment to derivations with the pure parameter property
the above indicated ambiguity cannot occur. Moreover, a derivation resulting by
normalization from a derivation with the pure parameter property can be transformed
again into a derivation with the pure parameter property. Indeed, the set of terms
assigned to a NJ�� derivation encode a tree-structure, and it is easy to see that if
different occurrences of the term y(t) evolve to y(t∀) and to y(t∀∀) in a tree, then the
terms t∀ and t∀∀ are distinct as they encode distinct threads. Thus once again applying
the bijection between terms and free variables can be used to produce a derivation
with the pure parameter property.

Example (i) Assigning terms to the derivation dq in Sect. 4.2we obtain the following
assignment to the endsequent:
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z : C � A ∃ z
c ∪≤(a∀,a∀∀,a∀∀∀)�� : • | (t∀, t∀∀) : F, ((c(z) ≤ e) ≤ a∀∀∀) : G � A

where we have

a∀ = a1(casel(e(c(z)))), a∀∀ = a2(caser(e(c(z)))), a∀∀∀ = a3((c(z) ≤ e)) : A;
t∀ = inl((casel(e(c(z))) ≤ a1)), t∀∀ = inr((caser(e(c(z))) ≤ a2)) : F,

F = (B � A) � (D � A), G = (C � (B � D)).

(ii) Applying cut-elimination to the derivation

a : A ∃ ; a : A
a : A ∃ : inl(a) : A � B

.

.

.

a∀ : A ∃ ; a∀ : A
b : B ∃ ; b : B c : C ∃ c : C ;
b : B ∃ c(b) : C ; (b ≤ c) : B � C

e : A � B ∃ casel(e) : A,c(caser(e)) : C, (caser(e) ≤ c) : B � C ;
a : A ∃ t1 : A, t2 : C, t3 : B � C ;

we obtain the following rewritings: t1 = casel(inl(a)) � a;

t2 = c(caser(inl(a))) � (), t3 = (caser(inl(a)) ≤ c) � ()

and the term assignment

a : A ∃ a : A, () : C, () : B � C ; .

6.1 Duality Between the Distributed Calculus and the Simply
Typed λ Calculus

Consider the term assignment in Appendix III, Tables 7 and 8. In this setting the
following facts are clear:

• given a sequent S in q-LJ��, there is a dual sequent S⊗ in h-LJ→∇, and con-
versely;

• given a derivation d of S in q-LJ��, there is a dual derivation d⊗ of S⊗ in
h-LJ→∇, and conversely.

Therefore any cut-elimination procedure in h-LJ→∇ induces a cut-elimination proce-
dure for q-LJ��; clearly the steps of such reduction procedure for q-LJ�� must be
seen as “macro” instructions for several steps of rewriting, which may nevertheless
be seen as a unit. Thus we have the following fact:
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Theorem 2 There is a correspondence between reduction sequences starting from
a derivation d of S in q-LJ�� and reduction sequences from a derivation d⊗ of S⊗,
and conversely.

In the present setting this result seems obvious and its proof straightforward. Going
through the details of the construction, as done in [8], does give an insight into the
structure of terminating computations in our distributed calculus. Assigning terms
to derivations in q-LJ�� as in in Appendix III, Table 7 makes the structure of the
calculus clearer and provides a bridge to the representation of computations in the
graphical notation of Prawitz trees as in Appendix II.

7 Conclusions

In this chapter we have given an account of research in the logic for pragmatics of
assertions and conjectures, following the paper Bellin and Biasi [5] and also of work
in the proof-theory of co-intuitionistic logic aiming at defining natural deduction
system and a distributed term-assignment for it.

A conceptual clarification of the distinction between hypotheses and conjectureswith
respect to their interpretation in epistemic S4, where hypotheses are justified bymere
epistemic possibility of the truth of their propositional content and conjectures require
possible necessity, has shown connections with other areas of logic and semantics.
On one hand, within our framework we can make distinctions which may be relevant
to work on standards of evidence in the theory of argumentation [13, 24]. On the
other hand, the semantics of rough sets and the notion of an approximation space
provide another semantics to a theory of assertions, hypotheses, conjectures, and
expectations, in addition to Kripke models through the translation in epistemic S4
and in bimodal S4, as in [5]. Rough sets point at promising connections with research
by Pagliani [40, 41].

Abstract relations between functional programming and concurrent programming
have been studied extensively, e.g., through translations of the γ calculus into
R. Milner’s π-calculus. Abstract forms of the continuation-passing style, e.g., as
in Thielecke’s work, have been typed in classical logic, suggesting an interpretation
of these relations as a logical duality between classical and intuitionistic logic. In
this way, the γμ calculus is naturally invoked here. In [8] and this chapter we pro-
pose the duality between intuitionistic and co-intuitionistic logic as the most basic
type theoretic setting for studying the relations between distributed and functional
programming calculi. Our calculus distributed displays exactly the programming
features that are required in order to implement such a logical duality. In this way
this chapter and other still unpublished work by Corrado Biasi give a type-theoretic
framework for studying the relations between safe and unsafe coroutines in the
sense of Crolard: typically, safe coroutines are those which can be represented as
constructs of a distributed calculus without making essential use of the γμ calculus
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and can be typed in co-intuitionistic logic. Thus the term assignment to proofs in
co-intuitionistic logic can be seen as a contribution to a challenging problem, namely
providing a logical foundation to distributed calculi by means of a typing system, in
the Curry-Howard approach. Clearly solving such a problem has a clear interest in
computer science, if only to ensure properties of such systems such as termination
and confluence.

All the paths followed in this research are open and point at possible directions of
work, as already suggested. Other projects could explore the proof-net representa-
tion of co-intuitionistic logic and the construction of a term model for co-Cartesian
Closed Categories. The proof theory of classical logic is the framework of Crolard’s
investigations [15, 16] and the concern of Bellin, Hyland, Robinson, and Urban
[9]: it is expected that eventually research in bi-intuitionistic logic may improve our
understanding of classical logic. But this is now a good point to take a rest.

Appendix I. Polarized Rauszer’s Logic

The main stream of bi-intuitionistic logic follows the tradition of Cecylia Rauszer,
who created the theory of bi-Heyting algebras [50, 51], and defined its Kripke se-
mantics, later studied with categorical methods by Lawvere [32], Makkai, Reyes
and Zolfaghari [33, 52]; more recently, proof theoretic treatments of subtractive or
bi-intuitionistic logic have been given by Rajeev Gore [25], Tristan Crolard [14, 15]
and others.

In Rauszer’s possible-world semantics the forcing conditions for implication refer to
up-sets of possible worlds with respect to the accessibility relation, while the forcing
conditions for subtraction refer to down-sets. Namely, (A → B)M = �(AM ≤ BM)

is true in a world w if for all w∀ such that wRw∀ AM ≤ BM is true in w∀; on the other
hand, (C � D)M = ♦ (CM ∧¬DM) is true in a world w if for some w∀ such that w∀Rw
we have CM ∧ ¬DM is true in w∀; in other words, modal translations are interpreted
in models M = (W , R, S,�) where R and S are pre-orders such that S = R−1. This
suggests a temporal dimension in the bi-modal translation: the forcing condition for
the operator � may be seen as referring to “future knowledge” and those for ♦ to
“past knowledge.”

We see at once that Rauzer’s bi-intuitionistic logic is as inadequate for a represen-
tation of assertions and hypotheses as PBL: letting ∧p = �p and H¬p =♦ ¬p, it is
consistent to assert p (with respect to “the future”) and also to conjecture ¬p (in the
past). Although the issue is beyond the range of the present chapter, it may be interest-
ing to catch a glimpse of what polarized Rauszer’s logic looks like in our framework.

Tense-Sensitive Polarization

Is there a pragmatic interpretation of dual intuitionistic logic which retains such a
temporal element and is thus closer to Rauszer’s tradition? The question does make
sense. Clearly, the justification conditions for assertions and conjectures concerning
the future and the past are different in several important ways: for instance, direct
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observations of some future events will be possible, but never of past events. Thus
it would be plausible to introduce tense-sensitive illocutionary operators, giving
assertive force to statements about the future ( ∧• λ) and about the past ( •∧ λ) and,
similarly, conjectural force to statements about the future (H•λ) and about the past
( •Hλ). Moreover, we would have strong negation about the future (◦• ) and about
the past ( •◦) and weak negation about the future (�•) and about the past (•�). More
generally, all pragmatic formulas would become tense-sensitive and could polarized
in four ways:

(A•) future − assertive, (•A) past − assertive,

(C•) future − hypothetical and (•C) past − hypothetical :
We define a language LPB

t according to the grammar in Table6.

This would lead to the development of a tense-sensitive polarized bi-intuitionistic
logic (PBLt). The “semantic reflection” of LPB

t is in temporal S4, where formulas
of L�,� are interpreted in bimodal frames F = (W , R, S) with R a preorder and
S = R−1.

The following fact is standard (see, e.g., Ryan and Shobbens [53]):

Proposition 5 Given a bimodal frame F , the following are equivalent:

1. S = R−1;
2. λ ≤ � ♦ λ and ♦ �λ ≤ λ are valid in every Kripke model over F;
3. the following rule is valid and semantically invertible in F

♦ λ ≤ β

λ ≤ �β

Therefore the following are equivalent:

1. the modal interpretation ( )M of the language LPB
t is in temporal S4;

2. for any formula σ• and •σ, the sequents σ• ∃◦• •◦ σ• and •��• •σ ∃ •σ are
valid axioms of PBLt.

We leave the task of finding a suitable formalization of PBLt as an open problem.

Appendix II. Example of Computation

In this section we consider an example of computation that is dual to a familiar
reduction sequence for Church’s numerals.

Table 6 Tense-sensitive polarized bi-intuitionistic language

A• := ∧• p | A• → B• | A• ∇ B• | ◦• X
C• := H•p | C•

� D• | C• � D• | �• X
• A := •∧p | • A → • B | • A ∇ • B | •◦ X
• C := •� p | • C �

• D | • C � • D | •� X
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Two Times Zero

We consider the dual of a computation of the term representing 2 × 0 :

(γm.γn.γf .m(nf ))(γg.γx.g(gx))(γh.γz.z) : (A → A) → (A → A)

We follow a call by value strategy:

γf .(γg.γx.g(gx))((γh.γz.z)f ) � γf .(γg.γx.g(gx))(γz.z) (i)
� γf .γx.(γz.z)((γz∀.z∀)x))) (ii)
� γf .γx.((γz.z)x)) (iii)
� γf .γx.x (iv)

Labelled Prawitz’ Trees

As trees in Prawitz styleNatural DeductionNJ→ can be decoratedwithγ terms, sowe
can assign terms of our dual calculus to Prawitz trees of subformulas for co − NJ�

derivations. For convenience, we still draw trees with the root at the bottom, keeping
in mind that here derivations are built from bottom up. We shall use Biasi’s notation

(t ≤ a) for mkc(t, a) and
e ∪≤	 �� t for postp(e ∪≤ 	, t).
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reduces to

and to
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Appendix III. Term Assignment to q-LJ��

Table 7 The sequent calculus q-LJ��
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Table 8 The sequent calculus t-LJ→∇
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Decomposition of Reduction

Ernst Zimmermann

Abstract The method of decomposition of reduction is presented for proofs of
confluence and termination in rewriting and natural deduction. It is shown that any
subclass of reductions, which is locally confluent and terminating and commutes
with the full reduction in a specific way, transfers confluence and termination to the
full reduction. The method is introduced on a pure rewriting level and subsequently
applied to natural deduction, i.e. its calculi for Intuitionistic Logic and Intuitionistic
Linear Logic, where respective subclasses of reductions are shown to exist. A key
observation is that local confluence holds for reductions in natural deduction.

1 Natural Deduction and Rewriting

From time to time it may be useful in science to keep different theories apart from
each other as far as possible, such that their genuine basic concepts can be settled
and their ownmerits shown. But in other times it may be of interest to relate different
theories because they can be shown to shed new light onto each other. This chapter
would like to give evidence that the two theories of Rewriting on the one side and
Natural Deduction on the other side, could benefit very much from each other if
applied to each other more intensively as previously done. Of course there are various
points of touch of Rewriting and Natural Deduction, especially if the formulas-
as-types interpretation of Natural Deduction is envisaged. Most proofs of strong
normalisation for Natural Deduction Intuitionistic Logic employe type theoretical
formalisms, which in turn use Rewriting for the description of reductions of terms;
see Prawitz, Gandy, Girard, Schwichtenberg, Joachimski and Matthes [3, 5–9]. And
concepts like confluence and termination being of special interest for reductions
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in calculi of Natural Deduction constitute the heart of Rewriting. Nevertheless, the
chapter would like to show that there is muchmore to be done. Rewriting for instance
does not know only one concept of confluence, besides full confluence there are the
concepts of local confluence and of semi confluence. Moreover, there is the theorem
of decidability of local confluence for term rewriting systems, due to Knuth and
Bendix. So, it may be regarded as a legitimate question to ask if these concepts give
some insight into reduction classes of Natural Deduction or not. And, indeed, it will
be shown in this chapter that reductions in Natural Deduction are locally confluent,
i.e. it is not only the case that local confluence of reductions in Natural Deduction
is decidable, but better, reductions in Natural Deduction are locally confluent. This
surprising fact can be considered as a result of more interest for Natural Deduction
than for example a theorem on confluence. First local confluence can be locally
checked in contrast to full confluence; and second full confluence is a consequence
of local confluence given termination, shown by Newman.

But even the other way round, the view on Rewriting from the point of Natural
Deduction shows remarkable things. It is explored in this chapter that reductions
of Natural Deduction allow something of a general interest to Rewriting. There are
indeed nice subclasses of reductions in Natural Deduction, with very nice properties.
To be more precise. The chapter details that reductions in Natural Deduction can
be decomposed into important subclasses. Such a subclass of reduction, called its
decomposition, is locally confluent and terminating; so, the decomposition is fully
confluent and terminating. Furthermore, since this subclass of reduction does interact
or commute in a specific way with the full reduction, the properties of confluence
and termination transfer to the full reduction class. It is this method, the decompo-
sition of reductions, which primarily constitute a new stock of results in Rewriting
and secondarily may be applied to various term rewriting systems, here to Natural
Deduction.

The chapter is organised as follows. In the first part a confluence and a termina-
tion theorem are proved for Abstract Rewriting Systems by use of decomposition
of reductions. In the second part two calculi of Natural Deduction are defined, Intu-
itionistic Logic and Intuitionistic Linear Logic and the lemma on local confluence of
reductions in Natural Deduction is proved. The final two parts consist of confluence
and termination theorems for each of the defined calculi by applying the method of
decomposition of reductions.

The investigations in the sequel do not contain quantifiers. But the author believes
that the universal quantifier and the existential quantifier can be added to the calculi
of Natural Deduction, Intuitionistic Logic and Intuitionistic Linear Logic, while
retaining the stated results on confluence and termination, let alone the respective
conversions and permutations are included. Of course, there is one thing which is
a true prerequisite: the sensitive treatment of variables, i.e. the separation of free
and bound variables, the separation of proper and non-proper variables. But this is
cumbersome and well-known stuff to the logician.
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2 Abstract Reduction Systems

The section establishes basic concepts of Abstract Reduction Systems, together with
diagram proofs for confluence and termination theorems. A new proof of confluence
and a new proof of termination of a rewriting relation ∧ constitute the heart of the
section resulting from decomposing ∧ in subrelations.

Definition 1 An Abstract Reduction System is a pair A = →A,∧⇒, where A ≤= ∨
and ∧≥ A × A a relation of reduction. Products of ∧:
β ∧0 α iff β = α;
β ∧1 α iff β ∧ α;
β ∧k+1 α iff ⊃ε s.t. β ∧k ε and ε ∧ α.
β 	 α iff β ∧ α or β = α.
∧∇= ⋃

k ∧k , the transitive, reflexive closure of ∧.
β ◦ α iff α ∧ β.
Similarly, other reduction relations ∧̇ ≥ A × A are defined.

∧ is confluent iff ⊥β, α, ε (β ∧∇ α ∀ β ∧∇ ε ∃ ⊃λ(α ∧∇ λ ∀ ε ∧∇ λ)).

∧ is locally confluent iff ⊥β, α, ε (β ∧ α ∀ β ∧ ε ∃ ⊃λ(α ∧∇ λ ∀ ε ∧∇ λ)).

∧ is strictly locally confluent iff
⊥β, α, ε (β ∧ α ∀ β ∧ ε ∃ ⊃λ(α ∧ λ ∀ ε ∧∇ λ ∨ α ∧∇ λ ∀ ε ∧ λ)).

∧ is normal iff ⊥β⊃α, k⊥ε (β ∧k α ∀ ¬α ∧ ε ).

∧ is terminating iff ¬⊃β0, β1, β2, . . . (β0 ∧ β1 ∀ β1 ∧ β2 ∀ . . . )

∧∇ induces well-founded iff ⊥β(⊥α(β ∧∇ α ∃ P(α)) ∃ P(β)) ∃ ⊥ε P(ε ).

∧̇ commutes with ∧ iff ⊥β, α(β ∧ α ∃ ⊃ε, λ, m, n(β∧̇mε ∀ ε ∧̇λ ∀ α∧̇nλ)).

The here defined concept of commutation is not equivalent to other concepts
of commutation in rewriting. Except strict local confluence the other concepts are
well-known.

The listed properties of reduction have a well-known graphical content shown
below. The graphs follow the usual convention that unbroken lines indicate universal
quantifiers and broken lines existential ones.

• �� • = β ∧ α • �������� • = ⊃k : β ∧k α

• ��������

��
��
��
��

•
��

��
��

• �� ���� • Confluence
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• ��

��

•
��

��
��

• �� ���� • Local Confluence

• ��

��

•

��• �� ���� • Strict Local Confluence

Theorem 2 Well-founded induction holds on ∧∇ iff ∧ is terminating.

Proof well-known, see for example Baader and Nipkow [1]. The only-if-direction.
If well-founded induction of ∧∇ does not hold, there is by first-order reasoning an
infinite descending chain, i.e. ∧ does not terminate. The if-direction. Define P(β)

to be the statement that termination holds for β. Now, assume that for every point α
s.t. β ∧∇ α, P(α); then P(β); so, by well-founded induction P(β) for all β.

Theorem 3 ∧ is confluent if locally confluent and terminating.

This is Newman’s Lemma and its proof by well-founded induction from Huet.
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Lemma 4 If ∧̇ is confluent and commutes with ∧ it holds:
⊥βαk(β ∧k α ∃ ⊃ε mn(β∧̇mε ∀ α∧̇nε ).

Proof by induction on k, with induction step below.

• �� • = β ∧ α • ���������� • = ⊃k : β ∧k α

• �� • = ⊃α, k : β∧̇kα
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Theorem 5 Rewriting Confluence by Decomposition
∧ is confluent if ∧̇ exists: ∧̇ ≥∧, confluent and commuting with ∧.

Proof by the lemma above. This proof of confluence of ∧ is key to this chapter.
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Theorem 6 Rewriting Termination by Decomposition
∧ terminates if ∧̇ exists: confluent, terminating and commuting with ∧.

Proof by contrary. This proof of termination is key to this chapter.
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3 Basics of Natural Deduction

This section contains the definition of two calculi of Natural Deduction, which are
in the focus of this chapter: intuitionistic logic and intuitionistic linear logic, see
[4, 10]. And it contains the lemma on strict local confluence.

Definition 7 Intuitionistic Logic IL. Binary connectives ∃,∀,∨ for intuitionistic
implication, conjunction, and disjunction are used. [A] are discharged assumption
sets.

A B R

[A]v
...

...
...

B A ∃ B A
A ∃ B

∃ Iv
B

∃ E

...
...

...
...

A B A ∀ B A ∀ B
A ∀ B

∀I
A

∀El
B

∀Er

[A]v [B]w
...

...
...

...
...

A B C A ∨ B C
A ∨ B

∨I l
A ∨ B

∨I r
C

∨Evw

Definition 8 Intuitionistic Linear Logic ILL. Binary connectives ∃, •,⊕,⊗ for
intuitionistic linear multiplicative implication and conjunction and intuitionistic lin-
ear additive conjunction and disjunction are used. [A] are discharged assumption
singletons, � are multisets

A B R

[A]v
...

...
...

B A A ∃ B
A ∃ B

∃ Iv
B

∃ E

[A]v[B]w
...

...
...

...

A B A • B C
A • B

•I
C

•Evw
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� [�]v [�]v �

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

A B A B A ⊕ B A ⊕ B
A ⊕ B

⊕Iv
A ⊕ B

⊕Iv
A

⊕El
B

⊕Er

[Aκ]v [B]wκ [A]vκ [Bκ]w
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

A B C A ⊗ B C C A ⊗ B C
A ⊗ B

⊗I l
A ⊗ B

⊗I r
C

⊗Evw
C

⊗Evw

In the sequel the variable labels of rules in deductions are treated more or less
relaxed, so often variables in one and the same rule clash to one variable.

The degree of a formula is a natural number, defined inductively: the degree of
formula AbC with binary connective b is larger than the degrees of formulas A and
C. A premise of a rule is a formula immediately above a line of a rule, a conclusion
is a formula immediately below a line of a rule. A major premise is a premise of an
introduction rule or that premise of an elimination rule which contains the logical
connective of the rule. A minor premise is a premise being not major. A cut segment
is a sequence of occurrences C1, . . . , Ck of one and the some formula C , where Ci+1
is a conclusion with Ci as premise, C1 is a conclusion of an introduction rule and
Ck is the major premise of an elimination rule; the length of a cut segment is the
number of occurrences in the sequence; the degree of a cut segment is the degree of
the formula of the sequence. A cut is a cut segment of length 1. The context of a rule
is the class of assumptions of premises occurring pairwise in rules ⊕I and the class
of assumptions of minor premises occurring pairwise in ⊗E .

Lemma 9 Strict Local Confluence in ND
∧ is strictly locally confluent in IL and ILL:
⊥β, α, ε (β ∧ α ∀ β ∧ ε ∃ ⊃λ, m(α ∧ λ ∀ ε ∧m λ ∨ α ∧m λ ∀ ε ∧ λ)).

Proof By investigating all possible pairs of reductions, conversions and permuta-
tions, operators of constructive propositional natural deduction can be shown to be
strictly locally confluent: from intuitionistic ∃,∀,∨ to linear ∃, •,⊕,⊗.
Before starting the proof by cases of all possible pairs of reductions in a certain logic
let us observe the following general facts about conversions and permutations, which
are defined in the sequel:
# Conversions and permutations are uniquely defined, i.e. given cut segment A in a
deduction, there is exactly one conversion or permutation to be applied on A.
# Conversions and permutations sometimes remove ormultiplywhole subdeductions
and other cut segments therein.
# Permutations may lengthen cut segments B while applied on cut segment A for
shortening.

Now a proof of the lemma for intuitionistic logic ∃,∀,∨ is given, which pro-
ceeds by investigating all possible pairs of reductions.
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Assume D with two cut segments A ∃ B and E and D ∧ D∈ as below and
D ∧ D∈∈ for the reduction of E and k = |[A]|. There are 3 cases.
E is in D1: then ⊃D∈∈∈ s.t. D∈∈ ∧ D∈∈∈ and D∈ ∧ D∈∈∈.
E is in D2: then ⊃D∈∈∈, k s.t. D∈∈ ∧ D∈∈∈ and D∈ ∧k D∈∈∈.
E is in D3: these subcases are covered by the other subcases.
So, in all cases strict local confluence holds.

[A]u D2

D1 [A]
B D2 D1

D = A ∃ B A
∃ I u ∧ B = D∈

B
∃ E D3

D3

AssumeDwith two cut segments A∀ B and E andD ∧ D∈ as below andD ∧ D∈∈
for the reduction of E . There are 3 cases.
E is in D1: then ⊃D∈∈∈ s.t. D∈∈ ∧ D∈∈∈ and D∈ = D∈∈∈.
E is in D2: then ⊃D∈∈∈ s.t. D∈∈ ∧ D∈∈∈ and D∈ ∧ D∈∈∈.
E is in D3: these subcases are covered by the other subcases.
So, in all cases strict local confluence holds.

D1 D2

A B D2

D = A ∀ B
∀I ∧ B = D∈

B
∀E D3

D3

Assume D with two cut segments A ∨ B and E and D ∧ D∈ as below by permu-
tation and D ∧ D∈∈ for the reduction of E and k = |[A]|. There are 4 cases.
E is in D1: then ⊃D∈∈∈ s.t. D∈∈ ∧ D∈∈∈ and D∈ ∧ D∈∈∈.
E is in D2: then ⊃D∈∈∈ s.t. D∈∈ ∧ D∈∈∈ and D∈ = D∈∈∈.
E is in D3: then ⊃D∈∈∈, k s.t. D∈∈ ∧ D∈∈∈ and D∈ ∧k D∈∈∈.
E is in D4: these subcases are covered by the other subcases.
So, in all cases strict local confluence holds.

[A]u D3 [B]u D3

D1 A D2 [A]
D = C A ∨ B C

∨I D1 = D∈
C

∨Eu ∧ C
D4 D4

AssumeD with two cut segments C and E andD ∧ D∈ as below by permutation
and D ∧ D∈∈ for the reduction of E . There are 6 cases.
E is in D1,D2,D3: then ⊃D∈∈∈ s.t. D∈∈ ∧ D∈∈∈ and D∈ ∧ D∈∈∈.
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E is in D4,D5: then ⊃D∈∈∈ s.t. D∈∈ ∧ D∈∈∈ and D∈ ∧2 D∈∈∈.
E is in D6: these subcases are covered by the other subcases.
So, in all cases strict local confluence holds.

D1 D2 D3

D4 C A ∨ B C D5

F C F
∨E ∧

F
·E

D6

D4 D1 D5 D4 D3 D5

F C F D2 F C F
F A ∨ B F

·E , ·E
F

∨E

D6

Assume D with two cut segments C ∨ D and E ∨ F and D ∧ D∈ and D ∧ D∈∈
as below by permutations. There holds further by permutation:
D∈ ∧ D∈∈∈∈ and D∈∈ ∧ D∈∈∈. Finally two permutations give: D∈∈∈∈ ∧2 D∈∈∈.
So, at a glance: D ∧ D∈ and D ∧ D∈∈ and D∈ ∧3 D∈∈∈ and D∈∈ ∧ D∈∈∈.

C ∨ D A ∨ B C ∨ D
E ∨ F C ∨ D E ∨ F

G ∨ H E ∨ F G ∨ H = D
G ∨ H

2 1 2
3 2 3

4 3 4 = D
4

3 2 3 3 2 3
3 1 3

4 3 4 = D∈
4

4 3 4 2 1 2 4 3 4
4 2 4 = D∈∈

4

4 3 4 4 3 4 4 3 4 4 3 4
4 2 4 4 2 4

4 1 4 = D∈∈∈
4

3 2 3 3 2 3
4 3 4 4 3 4

4 1 4 = D∈∈∈∈
4
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The argument is similar but simpler if E ∨ F is a conjunction, say E ∀ F , on
which a∀E is applied with conclusion F , or if E ∨ F is an implication, say E ∃ F ,
on which a ∃ E is applied with conclusion F .

The last case of two cut segments touching each other concluded the proof of
strict local confluence for intuitionistic logic.

Let us now contemplate on strict local confluence for Intuitionistic Linear Logic
in the language ∃, •,⊕,⊗, i.e. multiplicative implication, multiplicative conjunc-
tion and additive conjunction and disjunction. Again, it may be surprising, this set of
operators does not add new complications, but the sad story is, that the complexity of
the cases does not decrease either. Multiplicative implications are treated completely
similar to intuitionistic implication: now duplications of subdeduction do not occur
due to arbitrary large sets of assumptions but due to repeated pairs of context formu-
las. Additive conjunction is treated completely similar to intuitionistic conjunction.
And, finally, multiplicative conjunction and additive disjunction are treated similar to
intuitionistic disjunction. Here permutations are to be taken into account and, again,
duplication of subdeduction may occur due to repeated pairs of context formulas,
not due to arbitrary large sets of assumptions.

4 Intuitionistic Logic in Natural Deduction

Definition 10 For the natural numbers with their natural order →ω,>⇒, i.e. ω =
{0, 1, . . . } and >≥ ω × ω, a nested multiset M is a element of ω or a multiset with
elements from ω or a multiset with elements from ω and elements of multisets of ω

and so on. A nested multiset order � on nested multisets M, M ∈ of natural numbers
is defined recursively: M � M ∈ iff
M, M ∈ ≡ ω and M > M ∈; or
M ∈ ≡ ω and M ≤≡ ω; or
⊃X ≥ M and X ≤= ∨ s.t. M ∈ = M \ X ⊗ Y and ⊥y ≡ Y⊃x ≡ X x � y.
d(M) is the depth of a nested multiset M : d(M) = 0 if M ≡ ω; d(M) = k + 1
if m ≡ M and d(m) = k and k is the largest depth of elements of M . In fact,
in the sequel nested multisets of depth 2 are regarded only. So, multisets of pairs
{{a}, b} are regarded, for a, b ≡ ω, which designates a cut segment with degree a
and length b. S(D) designates the nested multiset of cut segments of deduction D;
an example being S(D) = {{{7}, 2}, {{4}, 3}, {{4}, 2}, {{4}, 2}}, so deduction D has
a cut segment of degree 7 and length 2, an other of degree 4 and length 3 and so on.
Nested Multisets of pairs {{a}, b} are measures for deductions and pairs {{a}, b} are
measures for cut segments. Since pairs {{a}, b} are themselves nested multisets � is
an order even on pairs {{a}, b}.
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Theorem 11 Well-Foundedness of �
< is well-founded iff � is well-founded.

Proof by Dershowitz and Manna [2].

Definition 12 Reduction ∧ in IL and its decomposition ∧̇.

∃-conversions and their decomposition:

[A]u
...

... [A]
B

...
...

A ∃ B A
∃ I u ∧ B

B
∃ E ...

...

∧̇: |[A]| ∗ 1 or in
...

A
are only cuts of smaller measure than A ∃ B.

∀-conversions and their decomposition: ∧̇ =∧:

...
...

A1 A2
...

A1 ∀ A2
∀I ∧ Ai

Ai
∀E ...

...

∨-conversions and their decomposition:

[A1]u
... [A2]u

...
... Ai

... [Ai ]
C A1 ∨ A2 C

∨I ...

C
∨Eu ∧ C

...
...

∧̇: |[Ai ]| ∗ 1 or in
...

Ai

are only cut segments of smaller measure than A1 ∨ A2.
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(∨E,∨E) permutations and their decomposition:

[A]u [B]u

[C]v ...
...

... [D]v
... C ∨ D A ∨ B C ∨ D

...

F C ∨ D F
∨Eu ∧

F
∨Ev

...

[C]x [A]v [D]x [C]y [B]v [D]y

...
...

...
...

...
...

F C ∨ D F
... F C ∨ D F

∧ F A ∨ B F
∨Ex , ∨Ey

F
∨Ev

...

∧̇: cut segments in
...

F
, F are of smaller measure than C ∨ D.

(∨E,∃ E) permutations and their decomposition:

[A]u [B]u [A]u [B]u

...
...

...
...

...
...

...

C ∃ D A ∨ B C ∃ D
... C ∃ D C

... C ∃ D C
C ∃ D C

∨Eu ∧ D A ∨ B D
∃ E,∃ E

D
∃ E

D
∨Eu

...
...

∧̇: cut segments in
...

C
are of smaller measure than C ∃ D.

(∨E,∀E) permutations and their decomposition: ∧̇ =∧:
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[A]u [B]u

[A]u [B]u
...

...
...

...
... C ∀ D

... C ∀ D
C ∀ D A ∨ B C ∀ D C A ∨ B C

∀E,∀E

C ∀ D
∨Eu ∧ C

∨Eu

C
∀E ...

...

Lemma 13 Termination of ∧̇ in IL
If D∧̇D∈, then S(D) � S(D∈).
∧̇ terminates in IL.

Proof For the first statement assume a cut segment of degree a with length 1, i.e.
a cut in D and S(D) = � ⊗ {{{a}, 1}}. A conversion of this cut s.t. D∧̇D∈ has the
effect that in D∈ this cut is removed, but there might exist r additional cut segments
of degree a − kr and length nr , so S(D∈) = � ⊗ {{{a − k1}, n1}, . . . , {{a − kr }, nr }}.
Of course S(D) � S(D∈) in the nested multiset order. Assume further r cut segments
of degree a and length nr ending in one and the same elimination rule and S(D) =
� ⊗ {{{a}, n1}, . . . , {{a}, nr }}. A permutation of this elimination rule s.t. D∧̇D∈
has the effect that in D∈ these cut segments are shorted to nr − 1; but there might
exist s additional cut segments of degree bs and length qs , s.t. either bs < a or
bs = a and ⊃r s.t. qs < nr ; so S(D∈) = � ⊗ {{{a}, n1 − 1}, .., {{a}, nr − 1}} ⊗
{{{b1}, q1}, .., {{bs}, qs}}. Of course S(D) � S(D∈) in the nested multiset order.

For the proof of the second statement assume an infinite descending sequence
D1∧̇D2∧̇D3∧̇ . . . ; with the first statement this would amount to a further infinite
descending sequence S(D1) � S(D2) � S(D3) � . . . , a contradiction, since � is
terminating. So ∧̇ terminates for IL.

Lemma 14 Confluence of ∧̇ in IL
∧̇ is locally confluent in IL: ⊥β, α, ε : (β∧̇α ∀ β∧̇ε ∃ ⊃λ, m, n(α∧̇mλ ∀
ε ∧̇nλ)).
∧̇ is confluent in IL.

Proof The second statement, confluence of ∧̇ in IL, is an immediate consequence
of the first statement, locally confluence and termination of ∧̇, known as Newman’s
Lemma and quoted as pure rewriting result in the first section of this chapter. So the
proof of local confluence of ∧̇ rests to be shown. This proof is according the same
lines as the proof of strict local confluence of ∧ lemma 9, as a proof by cases. But
of course, strict local confluence is lost for ∧̇ due to interference of reductions, i.e.
due to interference of discharged assumptions, which are going to be composed by
reduction. This can be shown best by example. In many cases termination of ∧̇ is
used. So lets assume a deductionD with two cuts A ∃ B and C ∃ D as below and
decomposed reductions of these cuts giving D∧̇D1 and D∧̇D2.
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[A] [C] [C] ...

...
... [A] ... [A]

[C] D
... D

...

... C ∃ D C C ∃ D C
D D D

D1 = ... ◦̇ D = ... ∧̇ D2 = ...

B
... B

... B

A ∃ B A A ∃ B A
...

B B
...

...

GivenD∧̇D1 andD∧̇D2 it has to be shown that there areD∇, m, n s.t.D1∧̇mD∇
andD2∧̇nD∇. If full reduction ∧ were available cuts A ∃ B would be converted in
D1 and C ∃ D in D2 to yield a converging deduction. But, since decomposition ∧̇
obeys some restrictions on ∧, these conversions often can be done only after some

preparatory ∧̇ steps. In order to apply ∧̇
...

A
inD1 is normalised to

...
...

A
s.t.D1∧̇∇D1a .

This is copied for D2 s.t. D2∧̇∇D2a . Further

...
...

[A]
...

C

in D2a is normalised to

...
...

[A]
...
...

C

s.t.

D2a∧̇∇D2b.

[A] [C] [C] ...
...

...
... [A] ... [A]

[C] D
... D

...
...

... C ∃ D C C ∃ D C
D D D

D1a = ... ◦̇∇ D = ... ∧̇∇ D2b = ...

B
...
... B

... B

A ∃ B A A ∃ B A
...

B B
...

...
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Now conversions of cuts A ∃ B, C ∃ D can be carried out and give D1a∧̇D1b

and D2b∧̇D2c. Finally normalised

...
...

[A]
...
...

C

of D2c is copied for D1b s.t. D1b∧̇∇D1c,

as below. Finally D1b = D2c is the desired deduction, s.t. D∧̇D1 and D∧̇D2 and
D1∧̇∇D1b and D2∧̇∇D2c.

...
...

...
...

[A] [C] [A]
...
...

... [A] ...
...

[C] D
... C

... C ∃ D C
...

D D D

D1c = ... ◦̇∇ D = ... ∧̇∇ D2c = ...

B B
... B

... A ∃ B A
...

B
...

Lemma 15 Commutation of ∧ with ∧̇ in IL
⊥β, α(β ∧ α ∃ ⊃λ, m, n(β∧̇mλ ∀ α∧̇nλ)).

Proof The proof proceeds by investigating all reduction cases of β ∧ α.

For commutation property assume D ∧ D∈ to be a ∃ conversion.

[A]u
...

... [A]
B

...
...

D = A ∃ B A
∃ I u ∧ B = D∈

B
∃ E ...

...
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D∧̇mD∈∈ indicates that
...

A
is normalised to

m
...

A

.

[A]u [A]u
...

... m

B
... B

...

D = A ∃ B A
∃ I u ∧̇m A ∃ B A

∃ I u = D∈∈
B

∃ E
B

∃ E

...
...

Now there are D∈∈∈ and n s.t. D∈∧̇nD∈∈∈ and D∈∈∧̇D∈∈∈.

For commutation property assume D ∧ D∈ to be a ∨ conversion.

[A1]u
... [A2]u

...
... Ai

... [Ai ]
D = C A1 ∨ A2 C

∨I ... = D∈
C

∨Eu ∧ C
...

...

D∧̇mD∈∈ indicates that
...

A
is normalised to

m
...

A

.

m

[A1]u
... [A2]u [A1]u

... [A2]u

... Ai
...

... Ai
...

D = C A1 ∨ A2 C
∨I

C A1 ∨ A2 C
∨I = D∈∈

C
∨Eu ∧̇m C

∨Eu

...
...

Now there are D∈∈∈, n s.t. D∈∧̇nD∈∈∈ and D∈∈∧̇D∈∈∈.

For commutation property assumeD ∧ D∈ to be a (∨E,∨E) permutation and F not
to be a cut formula.
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[A]u [B]u

[C]v ...
...

... [D]v
... C ∨ D A ∨ B C ∨ D

...

D = F C ∨ D F
∨Eu

F
∨Ev

...

[C]x [A]v [D]x [C]y [B]v [D]y

...
...

...
...

...
...

F C ∨ D F
... F C ∨ D F

D∈ = F A ∨ B F
∨Ex , ∨Ey

F
∨Ev

...

D ∧̇m+n D∈∈ indicates
[C]v

...

F

and

[D]v
...

F

normalising to

m
[C]v

...

F

resp.

n
[D]v

...

F

.

m [A]u [B]u n

[C]v ...
...

... [D]v
... C ∨ D A ∨ B C ∨ D

...

D∈∈ = F C ∨ D F
∨Eu

F
∨Ev

...

Now there are D∈∈∈, k s.t. D∈∧̇kD∈∈∈ and D∈∈∧̇D∈∈∈.

For commutation property assume D ∧ D∈ to be a (∨E,∨E) permutation on a
cut segment Ck ∨ Dk with k − 1 further cut segments Ck−1 ∨ Dk−1 below and F
not to be a cut formula. All rules displayed in the deductions below are ∨E , and for
simplification discharged assumptions are left out.



260 E. Zimmermann

.

.

.

.

.

.

.

.

.

.

.

. Ck ∨ Dk A ∨ B Ck ∨ Dk

.

.

.

D = Ck−1 ∨ Dk−1 Ck ∨ Dk Ck−1 ∨ Dk−1
Ck−1 ∨ Dk−1

.

.

.

.

.

.

.

.

.

.

.

. C1 ∨ D1 C2 ∨ D2 C1 ∨ D1

.

.

.

F C1 ∨ D1 F
F
.
.
.

Deduction D is abbreviated by the convention that disjunctions C j ∨ D j are
designated simply by j .

...
...

...
... k A ∨ B k

...

D = k − 1 k k − 1
k − 1

...
...

...
... 1 2 1

...

F 1 F
F
...

...
...

...
...

...
...

k − 1 k k − 1
... k − 1 k k − 1

D∈ = k − 1 A ∨ B k − 1
k − 1

...
...

...
... 1 2 1

...

F 1 F
F
...

Now there are D∈∈,D∈∈∈, k as below s.t. D∧̇kD∈∈ and D∈∈∧̇D∈∈∈. D∈∈ is approached
by permutation from below, as indicated by Da .
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In the sequel

n
...

F

indicates that the subdeduction with conclusion F is normal.

n n n n
...

...
...

...
...

...
...

...
...

F k − 1 F k A ∨ B k F k − 1 F
D∈∈ = F k F

F

...
...

...
... k A ∨ B k

...

Da = n n k − 1 k k − 1 n n
...

...
... k − 1

...
...

...

F 1 F
... F 1 F

F 2 F
F
...

D∈∈∈ =
n n n n n n n n
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

F k − 1 F
.
.
. F k − 1 F F k − 1 F

.

.

. F k − 1 F

F k F
.
.
. F k F

F A ∨ B F
F
.
.
.

But it holds even thatD∈∧̇mD∈∈∈ for some m, and this starts withD∈∧̇Db and goes
on to Db∧̇nDc for some n and Dc∧̇oD∈∈∈ for some o.
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Db =
...

...
...

...
...

...

k − 1 k k − 1
... k − 1 k k − 1

n n k − 1 A ∨ B k − 1 n n
...

...
... k − 1

...
...

...

F 1 F
... F 1 F

F 2 F
F
...

Dc =
n n

...
...

...
...

...
... n n

...
...

... k − 1 k k − 1
... k − 1 k k − 1

...
...

...

F k − 2 F k − 1 A ∨ B k − 1 F k − 2 F
F k − 1 F

F
...

Theorem 16 Confluence and Termination of ∧ for IL
∧ is confluent and terminating in IL.

Proof Due to the rewriting confluence theorem and the rewriting termination theorem
it is sufficient for confluence and termination of ∧ to show that its decomposition ∧̇
has the following properties: ∧̇ ≥∧, ∧̇ is locally confluent, ∧̇ commutes with ∧ and
∧̇ terminates. Exactly this was shown in the last lemmata 13, 14, 15.

5 Intuitionistic Linear Logic in Natural Deduction

Definition 17 Reduction ∧ in ILL and its decomposition ∧̇.

∃-conversions and their decomposition:
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[A]v ...
... A

... B
...

A A ∃ B
∃ I ∧ B

B
∃ Ev ...

...

∧̇: cut segments in
...

A
are of lower measure than A ∃ B or [A]v is no context.

•-conversions and their decomposition:

...
... [AB]v ...

...

A B
... A B

A • B C
•I ...

C
•Ev ∧ C

...
...

∧̇: cut segments in
...

A
and in

...

B
are of lower measure than A • B or [A]v and [B]v

are no context.

⊗-conversions and their decomposition:

[A1κ]v ... [A2]vκ
...

... A j
... A j κ

C A1 ⊗ A2 C
⊗I ...

C
⊗Ev ∧ C

...
...

∧̇: cut segments in
...

A j

are of lower measure than A ⊗ B or [A j ]v is no context.

⊕-conversions and their decomposition: ∧̇ =∧:
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[�]v � � [�]v
...

...
...

... �

A1 A2 A1 A2
...

A1 ⊕ A2
⊕Iv

and A1 ⊕ A2
⊕Iv ∧ A j

A j
⊕E

A j
⊕E ...

...
...

(⊗E,⊗E)-permutations and their decomposition:

[Aκ]u [B]uκ

[C	]v ...
...

... [D]v	
... C ⊗ D A ⊗ B C ⊗ D

...

F C ⊗ D F
⊗Eu ∧

F
⊗Ev

...

[C	]x [Aκ]v [D]x [	]v [C	]y [B]vκ [D]y	
...

...
...

...
...

...

F C ⊗ D F
... F C ⊗ D F

F A ⊗ B F
⊗Ex , ⊗Ey

F
⊗Ev

...

∧̇: cut segments in
...

F
, F are of smaller measure than C ⊗ D.

(⊗E, •E)-permutations and their decomposition:

[Aκ]u [B]uκ
...

...
... [C D]v	

C • D A ⊗ B C • D
...

C • D F
⊗Eu ∧

F
•Ev

...
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[Aκ]v [C D]x [	]v [B]vκ [C D]y	
...

...
...

...

C • D F
... C • D F

F A ⊗ B F
•Ex , •Ey

F
⊗Ev

...

∧̇: cut segments in
...

F
, F are of smaller measure than C • D.

(⊗E,∃ E)-permutations and their decomposition:

[Aκ]u [B]uκ [Aκ]u [B]uκ

...
...

...
...

...
...

...

... C ∃ D A ⊗ B C ∃ D C C ∃ D
... C C ∃ D

C C ∃ D
⊗Eu ∧ D A ⊗ B D

∃ E, ∃ E

D
∃ E

D
⊗Eu

...
...

∧̇: cut segments in
...

C
are of smaller measure than C ∃ D.

(⊗E,⊕E)-permutations and their decomposition: ∧= ∧̇:

[Aκ]u [B]uκ

[Aκ]u [B]uκ
...

...
...

...
... C ⊕ D

... C ⊕ D
C ⊕ D A ⊗ B C ⊕ D C A ⊗ B C

⊕E,⊕E

C ⊕ D
⊗Eu ∧ C

⊗Eu

C
⊕E ...

...

Permutations for •E , i.e. (•E,∃ E)-, (•E, •E)-, (•E,⊗E)- and (•E,⊕E)-
permutations are defined similar to the permutations for ⊗E .

Lemma 18 Termination of ∧̇ in ILL
If D∧̇D∈, then S(D) � S(D∈).
∧̇ terminates in IL.
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Proof The first statement is proved for ILL similar to IL with one difference. In IL
multiplication of subdeductions by conversions do occur due to discharged assump-
tion classes with cardinality larger 1. In ILL such assumption classes do not occur,
but in ILL assumption singletons may occur as context formulas and it is the contexts
which may cause multiplication of subdeductions. Nevertheless, conversions are de-
fined such that multiplication of subdeductions of multiple occurring contexts and
cut segments therein due to do not increase �. Permutations have the same effects
in ILL and IL. So S(D) � S(D∈) in the nested multiset order whenever D∧̇D∈. As a
consequence ∧̇ terminates for IL.

Lemma 19 Confluence of ∧̇ in ILL
∧̇ is locally confluent in ILL: ⊥β, α, ε : (β∧̇α ∀β∧̇ε ∃ ⊃λ, m, n(α∧̇mλ∀ε ∧̇nλ)).
∧̇ is confluent in ILL.

Proof The first statement is proved by going through all cases of combinations of
reductions, as done in the proof of strict local confluence of ∧ in ILL, lemma 9.
However, strict local confluence for ∧̇ is lost, since ∧̇ conversions may generate new
cut segments violating the restrictions imposed on ∧̇. But normalising respective
subdeductions, which is always possible due to termination of ∧̇, gives deductions
on which ∧̇ can be applied, finally. The second statement is a consequence of the
first and termination - Newman’s Lemma.

Lemma 20 Commutation of ∧ with ∧̇ in ILL
⊥β, α(β ∧ α ∃ ⊃λ, m, n(β∧̇mλ ∀ α∧̇nλ)).

Proof Given the definition of ∧̇ in ILL the proof of this lemma for ILL is similar to
the proof in IL.

Theorem 21 Confluence and Termination of ∧ for ILL
∧ is confluent and terminating in ILL.

ProofAgain, due to the rewriting confluence and termination theorems it is sufficient
for confluence and termination of ∧ in ILL to show that its decomposition ∧̇ has
the following properties: ∧̇ ≥∧, ∧̇ is locally confluent, ∧̇ commutes with ∧ and ∧̇
terminates; what was done in the lemmata 18, 19, 20 above.
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An Approach to General Proof Theory
and a Conjecture of a Kind of Completeness
of Intuitionistic Logic Revisited

Dag Prawitz

Abstract Thirty years ago I formulated a conjecture about a kind of completeness
of intuitionistic logic. The framework in which the conjecture was formulated had
the form of a semantic approach to a general proof theory (presented at the 4thWorld
Congress of Logic, Methodology and Philosophy of Science at Bucharest 1971 [6]).
In the present chapter, I shall reconsider this 30-year old conjecture, which still
remains unsettled, but which I continue to think of as a plausible and important
supposition. Reconsidering the conjecture, I shall also reconsider and revise the
semantic approach in which the conjecture was formulated.

1 Main Ideas Behind the Conjecture

The question that the conjecture was intended to answer is roughly whether the
elimination rules of Gentzen’s system of natural deduction for intuitionistic logic
are the strongest possible ones. This question already arises against the background
of Gentzen’s own understanding of his intuitionistic system of natural deduction, in
particular the significance of his classification of the inference rules into introduction
and elimination rules. Gentzen’s idea was that the introduction rule for a logical
constant gives the meaning of the constant while the corresponding elimination rule
becomes justified by this very meaning. The rules for conjunction constitute a simple
illustration of this idea:

A B

A&B
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A
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A&B

B
&E
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Understanding the introduction rule for conjunction (&I ) as giving the meaning
of conjunction by telling how a conjunction is proved, we see that the elimination rule
(&E) in its two forms becomes justified: according to the meaning of conjunction,
a proof of the premiss of an application of the rule &E already contains a proof of
the conclusion.

It seems obvious that there can be no stronger elimination rule for conjunction
that can be justified in this way in terms of the introduction rule. A similar remark can
be made concerning all the other logical constants of predicate logic. To illustrate
the idea with a slightly more complicated example, consider the introduction and
elimination rules for disjunction:

A

A ∧ B
∧ I

B

A ∧ B
∧ I

[A] [B]
...

...

A ∧ B C C

C
∧ E

The elimination rule for disjunction (∧E) is justified by the meaning given to
disjunction by the introduction rule (∧I ) in view of the following consideration.
According to the meaning of disjunction, a proof of the major premiss A ∧ B of an
application of ∧E must contain either a proof of A or of B. In the first case we may
substitute this proof of A for the hypothesis A in the proof of the first occurrence of
the minor premiss C , and in the second case we may instead substitute the proof of
B for the hypothesis B in the proof of the second occurrence of the minor premiss
C . The result is in either case a proof of C that does not depend on the hypotheses
discharged by the application of ∧E , without making use of this instance of ∧E . In
other words, the proofs of the premisses of an inference by ∧E are seen to contain
already elements that combined appropriately yield a proof of the conclusion of the
inference.

Can we imagine a stronger elimination rule for disjunction that is possible to
justify in terms of the introduction rule in this way? Martin-Löf’s type theory for
intuitionistic logic does contain such a stronger rule, but its formulation requires the
richer language of type theory. The question should therefore be put a little more
carefully: Is there an elimination rule for disjunction that can be formulated in the
language of predicate logic and is stronger than ∧E but can nevertheless be justified
in terms of ∧I? My conjecture is that the answer is no and that the corresponding
thing holds for all the other logical constants in the language of predicate logic.

It seems obvious that the elimination rules of Gentzen’s system are the elimination
rules that correspond to his introduction rules. Or, again to put it more carefully:
although there are of course weaker elimination rules and even elimination rules that
are deductively equivalent with the ones formulated byGentzen, there are no stronger
rules that can be formulated in the language of predicate logic and are justifiable in
terms of the introduction rules. The problem is to formulate this obvious idea more
precisely in the form of a conjecture and then to prove it.



An Approach to General Proof Theory 271

2 The Notion of Validity

The ideas sketched above that are in need of a more precise formulation are in
particular the two ideas that an introduction rule gives the meaning of the logical
constant in question and that this meaning justifies the corresponding elimination
rule. As for the second idea concerning the justification of elimination rules, anyone
familiar with the reduction steps in the normalization of natural deductions sees
immediately that they are themain elements in these justifications.When I introduced
the normalization procedure for natural deductions, I saw it as something that brought
out Gentzen’s idea concerning how introduction and elimination rules are related to
each other.1 But, admittedly, it does not bring out his idea that the introduction
rules are meaning constitutive and that the meanings that they assign to the logical
constants justify the elimination rules. To bring out these ideas explicitly requires
a semantics in which one can speak about the validity of inferences. Analogously
to how meaning is explained in classical semantics by reference to truth conditions,
we should now explain the meaning of a sentence by telling what is required of a
valid proof of the sentence. The notion of convertibility introduced by [11] for terms
and adapted to natural deductions under the name of computability by [3] seemed to
me to offer a suitable means for such a semantics. Modifying Martin-Löf’s notion,
I used it to prove strong normalization for various systems of natural deductions.
Furthermore, I argued in an appendix to the chapter “Ideas and results in proof
theory” [6] that when slightly modified in another direction, the notion could be used
to give a semantic explication of the justification of inference rules. Because of this
use, I called it validity.

I shall now give a condensed account of that notion. To do so it is convenient to
introduce a few other notions. I shall say that an inference such as→-introduction or
∧-elimination, by which occurrences of a hypothesis become discharged, binds the
occurrences in question and that an inference such as⇒-introduction or ≤-elimination,
which puts restriction on a variable (so-called ‘Eigenvariabel’) and which would
lose its correctness if the variable were replaced by a constant, binds the variable
in question. An occurrence of a hypothesis in a deduction D or of a variable in a
formula in D is said to be free in D if it is not bound, and a deduction that contains
free hypotheses or free variables is said to be open. A deduction that is not open is
closed. A deduction D is said to reduce to the deduction D∨, when D∨ is obtained
from D by successively replacing subdeductions by their reductions (as defined in
the context of normalizations).

A triple consisting of set T of closed individual terms, a set R of relational
symbols, and a set P of profs of atomic sentences built up from R and T (thus not
containing any proof of the constant for falsehood,≥) will be called a base. We shall
be concerned with formulas in a first-order language determined by such a base; the
set T is supposed to fix the range of the individual variables (and hence the domain of
the quantifiers), and the set P the meanings of the atomic sentences. A deduction D

1 Prawitz [4]. The elimination rules are there said to be the inverse of the corresponding introduction
rules.
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of a sentence A is said to be in canonical form relative to such a baseB = (T ,R,P),
if D is closed and either A is an atomic sentence and D is in P or A is compound
and the last inference of D is an introduction.

Wecannow formulate twoprinciples of validity (relative to a baseB = (T ,R,P))
for closed and open deductions respectively:

(I) A closed deduction D of a sentence A is valid (relative to a base B) if and only
if either (a) D is in canonical form (relative to B) and, in case A is compound,
the immediate subdeductions of D are valid (relative to B), or (b) D is not in
canonical form but reduces to a deduction that is valid according to clause (a).

(II) An open deduction D is valid (relative to a base B) if and only if each closed
instance D⊃ of D is valid (relative toB) when D⊃ is obtained by first replacing all
free individual variables in D by individual terms (in T ) and then replacing all
free occurrences of each hypothesis in D by a valid closed deduction (relative
to B) of that hypothesis.

Principle (I) can be seen as a condensed semantic expression of Gentzen’s two
basic ideas concerning introduction and elimination rules. His first idea, that an
introduction rule for a logical constant gives the meaning of the constant, is here
understood as implying that the rule is self-justifying in the sense that inferences
conforming to the rule are valid simply in virtue of what the constant in question
means. This is expressed in (Ia) by saying that applications of introduction rules
preserve the validity of a deduction. However, this states only a sufficient condition
for validity, half of the meaning of the logical constant so to say: a deduction is
valid, if its ends with an introduction and its immediate subdeductions are valid. To
take this to be also a necessary condition would result in an obviously too restrictive
notion of validity. But we could demand that a deduction is valid only if it can be
reduced to a deduction that ends with an introduction. This requirement is stated in
(Ib), which also expresses Gentzen’s second idea about justifications of elimination
inferences: inferring a conclusion A by such an inference yields a valid deduction if
and only if it reduces to a deduction of A that does not use the inference in question.

Principle (II) in turn is an expression of the simple idea that an open deduction
is to be seen as a schema in which free individual variables are blanks for (closed)
individual terms and free hypotheses A are blanks for closed proofs of A. It is hence
valid if and only if all results of appropriately filling in the blanks are valid.

Because of the fact that the premisses of an introduction and the hypotheses that
it binds are of lower complexity than that of the conclusion, principles (I) and (II)
can be seen as a recursive definition (over the complexity of the end formulas) of the
notion of validity of natural deductions.

An inference rule R can now be defined as valid when it preserves validity relative
to an arbitrary base B, that is, when a deduction that ends with an application of R is
always valid relative to B given that its immediate subdeductions are valid relative
to B. To prove the validity of the inference rules of Gentzen’s system of natural
deduction for intuitionistic logic is now an easy exercise.
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3 Generalizing the Notion of Validity

A limitation of the notion of validity as described above is that it is defined only for
deductions in a given formal system. In contrast, a notion like truth is defined for
sentences in general but singles out a subset of them. Similarly, onewould like to have
a notion of validity defined for a broader range of reasoning, singling out a subdomain
of correct reasoning that could properly be called proofs. Such a generalization is
especially important in the context of the conjecture discussed here, since in that
context we want to consider not only inference rules in a given system but other
possible elimination rules that no one has proposed so far.

The goal of the chapter in which the conjecture was formulated was precisely to
extend the notion of validity to a broader class of reasoning, what I called arguments.
The simple idea is to consider not only deductions that proceed by applications of a
given set of rules of inferences but trees of formulas built up of arbitrary inferences.
As in a natural deduction, the top-formulas of such a tree are to represent axioms
or hypotheses, and the inferences are allowed to bind hypotheses and variables. It
is supposed to be determined for each inference which occurrences of hypotheses
and variables become bound by the inference. Such an arbitrary tree of formulas (in
the language of first-order logic) with indications of how variables and hypotheses
are bound was called an argument skeleton. The notion of being an open or closed
deduction can thus be carried over to argument skeletons.

Of course, most argument skeletons do not represent valid forms of reasoning.
But some of them do and can be justified by procedures similar to the ones used when
justifying the elimination rules in Gentzen’s system. To generalize the idea of such
justifying procedures, I define a justification of an inference rule R different from
the introduction rules to be an operation that is defined on some argument skeletons
whose last inference is an application of R and that yields as value, when applied to an
argument skeleton S, another argument skeleton with the same end formula and with
no more free hypotheses or variables than S. I consider sets J of such justifications
of inference rules. They are assumed to be consistent in the sense that they are not to
contain two operations j and j ⊃ defined on the same skeleton and yielding different
values. An argument skeleton S is said to reduce to another argument skeleton S∨
relative to such a set J of justifications, if there is a sequence S1, S2, . . . , Sn (n > 0)
where S1 = S, Sn = S∨, and, for each i (i = 1, 2, . . . , n − 1), there is a j in J such
that Si+1 is obtained form Si by replacing some subskeleton S⊃ of Si by j (S⊃).

An argument skeleton together with a set of justifications is called an argument.
It is still the case that most arguments do not represent valid forms of reasoning.
What is called justifications above are in fact only alleged justifications. It is the
notion of validity generalized to arguments that is now to lay down the conditions
that the alleged justifications have to satisfy in order to be real justifications. This
generalization of validity is easily obtained by simply carrying over the two principles
of validity from deductions to arguments. The notion of a base B = (T ,R,P) and
the notion of a canonical form is to be kept as before. Principle (I) now becomes
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(I’) A closed argument (S, J ) for a sentence A is valid relative to a base B if and
only if either (a) S is in canonical form relative toB and, in case A is compound,
for each immediate subskeleton S⊃ of S it holds that (S⊃, J ) is valid relative to
B, or (b) S reduces relative to J to a skeleton S∨ in canonical form such that
(S∨, J ) is valid relative to B according to clause (a).

To generalize principle (II) we need to speak about consistent extensions of a set
of justifications, where again we require that there is no conflicting overlap between
the different justifying operations. Principle (II) now becomes

(II’) An open argument (S, J ) is valid relative to a base B = (T ,R,P) if and only
if for each consistent extension J ⊃ of J and for each instance S∨ of S it holds
that (S∨, J ⊃) is valid relative toB, when S∨ is obtained from S by first replacing
all free occurrences of individual variables by terms in T and then replacing
all free occurrences of each hypothesis A in S by closed skeletons S⊃ ending
with A such that (S⊃, J ⊃) is valid relative to B.

An argument that is valid in the sense defined may proceed by quite different
inferences than those obtained by applying the inference rules of Gentzen’s system,
but itmay claim to represent a proofwith the same right as the deductions inGentzen’s
system.

That an inference rule is valid is to mean as before that it preserves validity, now
validity of an argument, relative to an arbitrary base. In case R is an inference rule
different from the introduction rules, this is to mean that there is a justification j
of R such that for all bases B and for all consistent extension J of { j}, if S is an
argument skeleton whose last inference is an application of R and is such that for
each immediate subskeleton S⊃ of S, (S⊃, J ) is valid relative toB, then (S, J ) is valid,
too, relative to B.

Having arrived at this notion of valid inference rule, the conjecture that there
are no stronger justifiable elimination rules within first-order logic than the ones
formulated by Gentzen can now naturally be formulated as follows:

Every valid inference rule that can be formulated within first-order languages
holds as a derivable inference rule within the system of natural deduction for intu-
itionistic logic.

Is this notion of validity rightly explicating a constructive reading of the logical
constants? Besides my own discussions of this question in several papers dealing
with constructive approaches to the notion of logical consequence (for a relatively
recent paper, see [8]), there is a particularly comprehensive presentation and discus-
sion of essentially my notion of validity in Michael Dummett’s book The Logical
Basis of Metaphysics [1] (for a comparison of my and Dummett’s notions of validity,
see [9]). (Added in proof: After this paper was composed, Peter Schroeder-Heister
has presented in [10] a very detailed and thoughtful study of the notion of validity,
proposing among other things some changes in my notions of justification and valid-
ity. If I had written my paper today, I would have adopted some of them, and would
have written a different paper also in many other respects.) In the rest of this paper,
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I shall take up some doubts that one may have about the notion of validity presented
here, and shall consider a quite radical revision of the notion.

4 A Modified Approach

A shortcoming of the notion of argument as described above is that the justifications
are operations defined on argument skeletons rather than on arguments, i.e. skeletons
togetherwith justifications, and furthermore that the value of the justifying operations
consist of just argument skeletons instead of skeletons with justifications. It is the
skeletons with justifications that represent arguments, valid or invalid ones, andwhen
an argument step is to be justified it is conceivable that one wants the justification
to depend on the entire arguments for the premisses and not only on their skeletons.
As for the value of a justifying operation, it is a shortcoming that it consists of just
a skeleton if one wants it to contain new inferences that were not present in the
skeleton to which the operation is applied.2 This last limitation may be taken care
of without changing the framework very much. However, in order to achieve that
the justifications operate not just on argument skeletons, but, as it were, on skeletons
with justifications, we must make a more radical change in the approach. We need
then to conceive of the valid arguments, i.e. proofs, as built up of operations defined
on proofs and yielding proofs as values.

To outline an approach of that kind, let us as before start with a base B, now
determined by a set T of closed individual terms, a setR of relational symbols, and
a set C of constants standing for proofs of atomic formulas with relational symbols
inR and terms in T . Each constant in C is to be typed by the atomic formula A that
it is a proof of; we may write such a constant cA. The base determines as before a
first-order languageLB, whose formulas are built up as usual with the symbols given
byR and T , individual variables, and the logical constants ≥, &, ∧, →, ⇒, and ≤.

For each formula A in the languageLB , we introduce (proof) variables of type A,
written αA. The variables of type A are thought of as ranging over proofs of A. From
the constants in C and the proof variables, we build up what I shall call proof terms,
using operators that are to be thought of as standing for operations on proofs that
yield proofs as vales. The proof terms are to be typed by the formulas of LB; a proof
form of type A is to be thought of as standing for a proof of A. Constants cA in C and
variables αA are thus proof terms of type A. For all the logical constants except ≥,
we introduce primitive operators, which we may call &I ,∧I1,∧I2,→ I , ⇒I , and ≤I
(for disjunction there are thus two operators ∧I1 and ∧I2), naming them in the same
way as the introduction rules. Some of the operators are variable binding, and the
variables that they bind are as usual listed after an occurrence of the operator. The
rules for forming proof terms with the help of the primitive operators are as follows:

2 One may argue that to allow the value to contain new inferences is too liberal, since the justifying
operation then produces an argument that goes beyond what was present in the arguments for the
premisses. However, this is an angle that is not taken up here.
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(1) &I (P1, P2; A1, A2/A1&A2) is a proof term of type A1&A2, if Pi is a proof
form of type Ai (i = 1, 2)—the formulas written after the semi-colon and before
the slash indicate the types of the terms on which the operator is applied, and
the one written after the slash indicates the type of the resulting term,

(2) ∧Ii (P; Ai/A1 ∧ A2) is a proof term of type A1 ∧ A2, if P is a proof term of
type Ai (i = 1, 2),

(3) →IαA(P; B/A → B) is a proof term of type A → B and binds free occur-
rences of αA in P , if P is a proof term of type B,

(4) ⇒I x(P; A(x)/⇒x A(x)) is a proof term of type ⇒x A(x), if P is a proof term
of type A(x)—it binds free occurrences of the variable x that occur (in type
indices) in P , and there is the restriction that x is not to occur free in the indices
of free variables αA in P ,

(5) ≤I (P, t; A(t)/≤x A(x)) is a proof term of type ≤x A(x), if P is a proof term of
type A(t) (obtained from A(x) in ≤x A(x) by replacing free occurrences of x by
the individual term t).

In addition to these primitive operators, we introduce operational parameters for
all possible elimination rules. For instance, corresponding to a rule of the form

A1 A2 . . . An

B
C, x

that binds occurrences of the hypothesisC and the individual variable x , we introduce
a parameter β with the formation rule:

βαC x(P1, P2, . . . , Pn; A1, A2, . . . , An/B) is a proof term of type B, if Pi is a proof term of
type Ai (i = 1, 2, . . . , n)—it binds free occurrences of αC and of x in Pi with the restriction
that x is not to occur free in type indices of free variables αC ⊃

in Pi except when C ⊃ is C .

Particular such operation parameters are those that correspond to the usual elimi-
nation rules, which we may write &E1, &E2, ∧E , → E , ⇒E , and ≤E . For instance,

(1) &Ei (P; A1 & A2/Ai ) is a proof term of type Ai , if P is a proof term of type
A1&A2(i = 1, 2);

(2) ∧EαAβB(P, Q, R; A ∧ B, C, C/C) is a proof term of type C , if P , Q, and R
are proof terms of type A ∧ B, C , and C , respectively—it binds free occurrences
of the variables αA and βB in Q and R; and

(3) ≤EαA(x)x(P, Q; ≤x A(x), B/B) is a proof term of type B, if P is a proof term
of type ≤x A(x) and Q is a proof term of type B—it binds free occurrences of
the variables αA(x) and x in Q with the usual variable restrictions.

To the operation parameters we assign definitions that tell how the parameters
are to be interpreted as standing for operations on proofs that yield proofs as values.
Examples of such definitions are:
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&E2(&I (p1, p2; A1, A2/A1&A2); A1&A2/A2) = p2

∧EαAβB(∧I1(P; A/A ∧ B), Q(αA), R(βB); A ∧ B, C, C/C) = Q(P)

→E(→IαA(P(αA); B/A → B), Q; A → B, A/B) = P(Q)

≤EαA(x)x(≤I (P, t; A(t)/≤x A(x)), Q(αA(x), x); ≤x A(x), B/B) = Q(P, t)

A proof term P (of type A) together with a set α of definitions of this kind, I
shall call an interpreted proof term (of type A). A proof term P is said to reduce to
another proof term P∨ relative to a set of definitions α, if P∨ is obtained from P by
successively replacing subterms of P that appear as definienda of definitions in α

by their definientia.
We may now define a notion of validity for interpreted proof terms in essentially

the same way as for arguments. We have thus the two principles:

(I”) A closed interpreted proof term (P,α) of type A is valid relative to a base
B = (T ,R, C) if and only if either (a) A is atomic and P is a constant cA in C ,
or A is compound with χ as its principal constant and P is a proof term with
the primitive operation χ I as its outer operator such that for each immediate
subterm Q of P it holds that (Q,α) is valid, or (b) P reduces to a proof term
P∨ relative to α such that (P∨,α) is valid according to (a).

(II”) An open proof term (P,α) is valid relative to a baseB = (T ,R,P) if and only
if each (P∨,α∨) is valid relative to B when α∨ is an extension of α and P∨ is
obtained from P by first replacing all occurrences of free individual variables
by terms in T and then in the result got after this substitution replacing all free
occurrences of each variable αA by closed proof terms Q of type A such that
(Q,α∨) is valid relative to B.

Valid closed interpreted proof terms accord well with proofs as usually described
in intuitionism. If (P,α) is such an interpreted proof term, then either P has intro-
ductory form, i.e. its outer operation is one of the five primitive operators, or is
definitionally equal to such a proof term, i.e. reduces effectively to such a term by
replacing a definienda in a definition in α by its definientia. For instance, if P is of
type A → B, then P has the form →IαA(P(αA); B/A → B) or reduces relative
to α to such a form. Furthermore, the validity of (→IαA(P(αA); B/A → B),α)

implies that (P(αA),α) is valid,which according to principle (II”)means that for any
closed proof term Q of type A such that (Q,α⊃) is valid, it holds that (P(Q),α∪α⊃)
is valid. Valid closed interpreted proof terms may thus be thought of as representing
intuitionistic proofs.

Comparing an interpreted proof term (P,α)with arguments as defined earlier, we
find that one obtains what was called an argument skeleton when one attends to just
the types in the subterms P and that the operators occurring in P when interpreted by
the definitions inα can be seen as names of operations that appear as justifications of
the inference steps in the argument skeleton. The difference between arguments and
interpreted proof terms is the one discussed at the beginning of this section, namely
that the justifying operations in an argument are applied to argument skeletons while
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the operations in an interpreted proof term are defined for objects built up from this
very kind of operations.

The system of interpreted proof terms may be seen as an extension of a typed
lambda calculus or a fragment of Martin-Löf’s intuitionistic type theory. Of course,
→ I corresponds toλ-abstraction, and→E , when defined as above, to application of
a lambda term, while the definition of →E corresponds to the rule of β-conversion.
Also, ⇒I is a kind of λ-abstraction, while &I corresponds to pairing. To this kind
of well-known operations, ∧I and ∧E add other specific operations. Haskell Curry
seems to have been the first to note the relevance of lambda calculus to the semantic
interpretation of a fragment of intuitionistic sentential logic. Extensions of Curry’s
observation to deal with full intuitionistic predicate logic occur in [2] (and [5] - what
is there called construction term corresponds to what is now called proof term).

In the approach outlined above, we may now define the validity of an inference
rule in essentially the same way as before. For instance, if R is an inference rule

A1 A2

B
C, x

that binds a hypothesis C and an individual variable x , we say that R is valid if there
is a definition d of the operational parameter βαC x(π1,π2; A1, A2/B) such that for
any base B, if (P,α) and (Q,α) are two interpreted proof terms valid relative to B
where P and Q are of type A1 and A2 respectively, then applying β to P and Q we
get a proof term βαC x(P, Q; A1, A2/B) such that (βαC x(P, Q; A1, A2/B),α)

is valid relative to B.
All the elimination rules ofGentzen’s systemof natural deduction for intuitionistic

logic are easily seen to be valid in the sense now defined. The conjecture is that
conversely all inference rules that are valid in this sense hold as derived rules in
Gentzen’s system of natural deduction for intuitionistic logic.
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