
Springer Series in Advanced Manufacturing

Series Editor

Professor D.T. Pham
Manufacturing Engineering Centre
Cardiff University
Queen’s Building
Newport Road
Cardiff CF24 3AA
UK

Other titles in this series

Assembly Line Design
B. Rekiek and A. Delchambre

Advances in Design
H.A. ElMaraghy and W.H. ElMaraghy (Eds.)

Effective Resource Management in Manufacturing Systems:
Optimization Algorithms in Production Planning
M. Caramia and P. Dell’Olmo

Condition Monitoring and Control for Intelligent Manufacturing
L. Wang and R.X. Gao (Eds.)

Optimal Production Planning for PCB Assembly
W. Ho and P. Ji

Trends in Supply Chain Design and Management: Technologies and Methodologies
H. Jung, F.F. Chen and B. Jeong (Eds.)

Process Planning and Scheduling for Distributed Manufacturing
L. Wang and W. Shen (Eds.)

Collaborative Product Design and Manufacturing Methodologies and Applications
W.D. Li, S.K. Ong, A.Y.C. Nee and C. McMahon (Eds.)

Decision Making in the Manufacturing Environment
R. Venkata Rao

Frontiers in Computing Technologies for Manufacturing Applications
Y. Shimizu, Z. Zhang and R. Batres

Reverse Engineering: An Industrial Perspective
V. Raja and K.J. Fernandes (Eds.)

Automated Nanohandling by Microrobots
S. Fatikow

A Distributed Coordination Approach to Reconfigurable Process Control
N.N. Chokshi and D.C. McFarlane

Machining Dynamics
K. Cheng

Vicente Botti • Adriana Giret

ANEMONA

A Multi-agent Methodology
for Holonic Manufacturing Systems

123

Vicente Botti, PhD
Adriana Giret, PhD

Departamento de Sistemas Informáticos
 y Computación (DSIC)

Universidad Politécnica de Valencia
Camino de Vera s/n
46022 Valencia
Spain

ISBN 978-1-84800-309-5 e-ISBN 978-1-84800-310-1

DOI 10.1007/978-1-84800-310-1

Springer Series in Advanced Manufacturing ISSN 1860-5168

British Library Cataloguing in Publication Data
Botti, Vicente
 ANEMONA : a multi-agent methodology for holonic
 manufacturing systems. - (Springer series in advanced
 manufacturing)
 1. Computer integrated manufacturing systems - Design
 2. Expert systems (Computer science)
 I. Title II. Giret, Adriana
 670.2'85
ISBN-13: 9781848003095

Library of Congress Control Number: 2008926604

© 2008 Springer-Verlag London Limited

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case
of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing
Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for
general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.

Cover design: eStudio Calamar S.L., Girona, Spain

Printed on acid-free paper

9 8 7 6 5 4 3 2 1
springer.com

To Mariló and Vı́ctor

To Miguel and Marquitos

Preface

In the field of intelligent manufacturing, there is a definitive need for methodologies
for holonic systems (HMS), based on software engineering principles, which assist
the system designer in every development step and provide clear, unambiguous anal-
ysis and design guidelines. We believe that methodologies from multi-agent tech-
nology (MAS) are good candidates for modeling HMS. Some reasons for this are:
the similarities between the holonic and agent approaches, the wide use of agents as
the implementation tool for holonic systems, and the availability of complete multi-
agent system methodologies. Nevertheless, there are some extensions we have to
add to a MAS methodology to be able to model the HMS requirements in a proper
way: holon recursive structure, systems abstraction levels, HMS specific guidelines
and a mixed top-down and bottom-up approach for analysis and design steps.

In this book we propose an abstract agent notion as a modeling artifact for au-
tonomous entities with recursive structures. The abstract agent extends the tradi-
tional definition of an agent adding a structural perspective to the agent concept: ”...
an abstract agent can be an agent; or it can be a MAS made up of abstract agents
...”. The abstract agent is an attempt to unify the concepts of holons and agents and to
simplify and close the gap between holons and agents in analysis and design steps.
This will make it easer to translate modeling products, obtained from methodologies
for HMS, into coding elements for the implementation of the holonic system.

This book presents ANEMONA, a MAS methodology for HMS analysis and de-
sign based on the abstract agent notion and on the HMS requirements. ANEMONA
defines a mixed top-down and bottom-up development process, and provides spe-
cific HMS guidelines to assist the designer in identifying and implementing holons.
In our approach the HMS is specified dividing it into more specific aspects that form
different views of the system: agent model, organizational model, interaction model,
environment model and task/goal model. The way in which the views (models) are
defined is inspired by the INGENIAS methodology. The extensions we have made
to the INGENIAS metamodels deal with the addition of the abstract agent notion,
the redefinition of some relations to conform with the new modeling entities, the
dependencies between them and real-time modeling issues from the RT-Message
methodology.

vii

viii Preface

The development process of ANEMONA tries to provide the HMS designer with
clear, HMS-specific modeling guidelines, and complete development phases for the
HMS life cycle. The first stage, system requirements analysis and the second stage
holons identification and specification define the analysis phase of our approach.
The aim of the analysis phase is to provide high-level HMS specifications from the
problem requirements, which are specified by the client/user and that can be updated
at any development stage. The analysis adopts a top-down recursive approach. One
advantage of a recursive analysis is that its results, i.e., the analysis models, provide
a set of elementary elements and assembling rules. The next step in the develop-
ment process is the holon design stage, which is a bottom-up process to produce
the system architecture from the analysis models of the previous stage. The aim of
the holons implementation stage is to produce an executable code for the setup and
configuration stage. Finally, maintenances functions are executed at the operation
and maintenance stage.

Spain, Vicente Botti
February 2008 Adriana Giret

Acknowledgements

The authors would like to thank Anthony Doyle who initiated the contact with
Springer and invited them to write this book.

Furthermore, the authors would like to thank the “Ministerio de Ciencia y Tec-
nologı́a” (Spain) that partially supported this work by CONSOLIDER-INGENIO
2010 under grant CSD2007-00022.

The second author would especially like to express her gratitude to her husband
who supported her all the way, particularly when she was going through some diffi-
cult moments, and also her family; who were always there.

Finally, the authors would also like to express their thanks to the production team
at Springer for their work and the rapid publication of the book.

Spain, Vicente Botti
February 2008 Adriana Giret

ix

Contents

Acronyms . xv

1 Introduction . 1
1.1 Structure of the Book . 2

Part I Backgrounds

2 Holonic Manufacturing Systems . 7
2.1 Holon . 8
2.2 Holonic Manufacturing Systems – HMS . 9
2.3 HMS State-of-the-Art . 10

2.3.1 Holon Architecture . 10
2.3.2 Holons Interconnection . 15
2.3.3 Holons Operation . 17
2.3.4 Holonic Control . 19
2.3.5 Methods for HMS Development . 20

2.4 Conclusions . 20

3 Holons and Agents . 21
3.1 Agents . 21
3.2 Holons and Agents: Two Similar Modeling Notions 22

3.2.1 Autonomy . 23
3.2.2 Reactivity . 23
3.2.3 Proactivity . 24
3.2.4 Sociability . 25
3.2.5 Cooperation . 26
3.2.6 Openness . 26
3.2.7 Rationality . 27
3.2.8 Mental Attitudes . 28
3.2.9 Learning . 28
3.2.10 Benevolence . 29

xi

xii Contents

3.2.11 Mobility . 29
3.2.12 Recursiveness . 29
3.2.13 Physical and Information Processing Part 30

3.3 Recursiveness . 30
3.4 Abstract Agent . 32

3.4.1 Abstract-agent Structure . 34
3.5 Conclusion . 38

Part II Methodology for Holonic Manufacturing System

4 HMS Development . 41
4.1 Modeling Requirements . 41

4.1.1 Functional Requirements . 41
4.1.2 Software Engineering Requirements . 42

4.2 Holonic Manufacturing System Methodologies 44
4.3 Multi-agent System Methods . 45

4.3.1 General-purpose MAS Methods . 45
4.3.2 MAS Methods for Manufacturing Systems 52

4.4 Enterprise Modeling . 53
4.5 Comparative Overview . 54
4.6 Conclusions . 57

5 ANEMONA Notation . 59
5.1 ANEMONA Metamodel . 60
5.2 Basic Modeling Entities . 62
5.3 Agent Model . 66

5.3.1 Abstract Agent and Role . 67
5.3.2 Abstract Agent, Role and Goal . 67
5.3.3 Abstract Agent and Belief . 68
5.3.4 Abstract Agent, Role and Task . 68

5.4 Task/Goal Model . 70
5.4.1 Abstract Agent, Task and Goals . 70
5.4.2 Task, Goals and Beliefs . 72
5.4.3 Task Specification . 73
5.4.4 Goal Decomposition and Goal Dependencies 75

5.5 Interaction Model . 78
5.5.1 Interactions, Abstract Agents, Roles and Goals 79
5.5.2 Interactions, Interaction Units, Abstract Agents, Roles and

Tasks . 80
5.5.3 Interaction Specification . 82
5.5.4 Interactions and Organizations . 83

5.6 Environment Model . 83
5.7 Organization Model . 84

5.7.1 Organization Structure . 85
5.7.2 Social Relations mong Autonomous Entities 86A

Contents xiii

5.7.3 Organization unctional efinition . 88
5.8 Conclusions . 89

6 ANEMONA Development Process . 91
6.1 SPEM . 91
6.2 A Simplified Supply Chain Case Study . 92
6.3 The Method . 93

6.3.1 System Requirement . 94
6.3.2 Analysis . 97
6.3.3 Design . 117
6.3.4 Holon Implementation . 130
6.3.5 Setup and Configuration . 132
6.3.6 Operation and Maintenance . 132

6.4 Conclusions . 132

Part III Evaluation and Case Study

7 Evaluation of the ANEMONA Methodology . 137
7.1 ANEMONA Applicability to Intelligent Manufacturing Problems . . 138
7.2 ANEMONA vs. State-of-the-Art Methods . 141
7.3 Conclusions . 142

8 Case Study . 143
8.1 Requirements . 143

8.1.1 Organizational Chart/Departments . 144
8.1.2 Business Processes . 147
8.1.3 System Scope . 149
8.1.4 Processes to Control . 149
8.1.5 Operation Conditions . 154
8.1.6 Goals . 155

8.2 Analysis . 156
8.2.1 Iteration 1 . 156
8.2.2 Iteration 2 . 168
8.2.3 Iteration 3 . 179

8.3 Design . 185
8.3.1 Holons Specification . 185
8.3.2 System Architecture . 195

8.4 Conclusions . 200

9 Conclusions . 201
9.1 Review . 201
9.2 Future Work . 203

References . 205

Index . 213

F D

Acronyms

CIM Computer Integrated Manufacturing
DFD Data Flow Diagram
FMS Flexible Manufacturing System
FIPA Foundation for Intelligent Physical Agents
HMS Holonic Manufacturing System
IMS Intelligent Manufacturing System
JADE Java Agent Development Framework
MAS Multi-agent System
MOF Meta Object Facility
PROSA Product-Resource-Order-Staff Architecture
RUP Rational Unified Process
SPEM Software Process Engineering Metamodel
UML Unified Modeling Language

xv

Chapter 1
Introduction

The manufacturing sector is currently facing a fundamental change from a seller’s
market to a buyer’s market [1]. Competition on a national scale has intensified to a
global arena [2], product life cycles have shrunk, and yet there is an escalating re-
quirement to satisfy the specific and individual needs of customers. The success of a
manufacturer is no longer measured by their ability to produce a single product cost
effectively, but in terms of flexibility, agility and versatility. The changes in markets,
customer requirements and technology have become the competition criteria. These
rapid environmental changes have forced companies to improve their manufacturing
performance in conditions of increasing uncertainty. In order to survive, manufac-
turing systems need to adapt themselves at an ever-increasing pace to incorporate
new technology, new products, new organizational structures, etc.

The trends mentioned above have motivated researchers in academia and industry
to create and exploit new production paradigms on the basis of autonomy and co-
operation because both concepts are necessary to create flexible behavior and thus
to adapt to the changing production conditions. Such technologies provide a natural
way to overcome such problems, and to design and implement distributed intelligent
manufacturing environments [1]. Distributed intelligent manufacturing systems, and
holonic manufacturing systems are considered important approaches for developing
industrial distributed systems.

In this study we discuss the engineering of holonic manufacturing systems
(HMS). Manufacturing systems are very large and complex. Accordingly, the HMSs
that control or implement them are also large and complex. The development pro-
cess of these kind of systems has to be guided by software engineering methods
and principles in order to help the engineer in the development process of the HMS
itself. To date, almost all of the applications in the HMS field are built using no
design or development method. Moreover, there are probably no two applications
developed with the same method. Perhaps this situation has arisen because there has
been little work done on methods for HMS development.

There is a definite need for methodologies for HMS [3] that are based on soft-
ware engineering principles in order to assist the system designer at each stage of
development. This methodology should provide clear, unambiguous analysis and

1

2 1 Introduction

design guidelines. In order to fill this gap in this book we present ANEMONA, a
multi-agent method specifically conceived for HMS development, which attempts
to fulfill all of the HMS modeling requirements.

ANEMONA is a software engineering method that merges modeling concepts
from the development of distributed intelligent systems and the specific modeling
requirements of holonic manufacturing systems. ANEMONA guides the system en-
gineer in all of the development phases of the holonic system and provides HMS
specific and clear modeling guidelines.

The three fundamental software engineering principles are: decomposition, ab-
straction and organization. These principles guide the entire development process of
ANEMONA. “Divide and conquer” is a widely accepted problem-solving paradigm
of computer science. Here, a centralized problem-solving entity accepts a task and
separates it into subtasks, which it then distributes among decentralized problem
solvers. The problem solvers produce solutions for the subproblems and send these
solutions back to the centralized problem solver that integrates the solutions of the
subproblems into an overall solution for the original task. Decomposition and ab-
straction are achieved in ANEMONA by means of the abstract agent notion, and
different abstraction levels in the development phases. Abstraction is the process
of suppressing, or ignoring, inessential details while focusing on the important, or
essential, details. We often speak of “levels of abstraction”. As we move to “higher”
levels of abstraction, we shift our attention to the larger, “more important” aspects
of an item, e.g., “the very essence of the item”, or “the definitive characteristics of
the item”. As we move to “lower” levels of abstraction we begin to pay attention
to the smaller, “less important”, details, e.g., how the item is constructed. Finally,
the principle of organization is implemented in ANEMONA by means of different
analysis and design models, together with HMS-specific modeling guidelines.

1.1 Structure of the Book

The remainder of the book is structured as follows. Part I gives an overview of the
state-of-the-art in the field of HMS research (Chap. 2). It also summarizes the con-
ceptual relations among the holon and agent approaches, and presents the abstract
agent notion (Chap. 3). The abstract agent notion allows the use of recursive agents
in the analysis and design phases of HMS development. The abstract agent notion
helps in the definition of a HMS methodology with uniformity of concepts because
the same modeling notion can be used from the HMS analysis stage to its imple-
mentation.

Part II is the main contribution of this book. It focuses on engineering HMS. In
Chap. 4 the HMS modeling requirements are listed and the state-of-the-art methods
from the field of HMS research, multi-agent system methodologies and the enter-
prise modeling techniques are analyzed. Chapters 5 and 6 present the ANEMONA
notation and development process respectively. ANEMONA’s central modeling en-
tity is the abstract agent notion. On the other hand, ANEMONA’s development pro-

1.1 Structure of the Book 3

cess details how the different ANEMONA models are built, as well as the step-
by-step activities and tasks that need to be completed to develop the HMS. The
ANEMONA process detailed in Chap. 6 is illustrated with the development of a
simplified case study from a supply chain management problem.

Finally, Part III focuses on the ANEMONA evaluation (Chap. 7) and a complete
real case study from a ceramic tile factory is presented in Chap. 8.

Chapter 9 concludes the book and points towards future work.

Part I
Backgrounds

Chapter 2
Holonic Manufacturing Systems

It is well known that manufacturing systems are complex, large-scale systems for a
number of operational and structural reasons. This complexity makes such systems
difficult to control and predict. Moreover, in order to meet the challenges of “new
manufacturing” these systems will need to satisfy fundamental requirements such as
[1, 4]: enterprise integration, distributed organization, heterogeneous environments,
interoperability, open and dynamic structure, cooperation, integration of humans
with software and hardware, agility, scalability, and fault tolerance.

Many manufacturing paradigms promise to meet these challenges. Two of these
paradigms, namely, distributed intelligent manufacturing systems and holonic man-
ufacturing systems, have recently been receiving a lot of attention in academia and
industry.

Techniques from artificial intelligence have already been used in intelligent man-
ufacturing for more than twenty years [1]. However, recent developments in multi-
agent systems in the domain of distributed artificial intelligence have brought about
new and interesting possibilities. Distributed intelligent manufaturing systems, or
agent-based manufacturing systems, are based on multi-agent system (MAS) tech-
nology [5]. MAS studies the coordination of intelligent behavior among a group
of (possibly pre-existing) agents. An agent is an autonomous and flexible compu-
tational system, which is able to act in an environment [5]. Today, MAS is a very
active area of research and is beginning to see commercial and industrial applica-
tions.

Over the last twenty years, researchers have been applying agent technology to
areas such as manufacturing enterprise integration and supply chain management,
manufacturing planning, scheduling and execution control, materials handling and
inventory management, to name a few. For an extensive literature review of these
applications see [1]. The mainstream applications of agent-based technology for
manufacturing systems uses heterarchical architectures as the control paradigm. A
heterarchical control system is a flat structure composed of independent entities
(agents). These agents typically represent resources and/or tasks. Allocation of tasks
to resources is done using dynamic market mechanisms. This yields a simple and
fault-tolerant system, since none of the agents need a-priori information about the

7

8 2 Holonic Manufacturing Systems

other agents. As a consequence, several disturbances and changes can easily be
coped with. Nevertheless, the basic assumption of this architecture paradigm gives
rise to its principle drawbacks that impede the widespread use of these kinds of
control systems in industrial environments: the independence of agents prohibits
the use of global information. Therefore, global system performance is very sen-
sitive to the definition of the market rules; the control system can not guarantee a
minimum performance level in the case of unforseen circumstances; prediction of
the behavior of individual orders is impossible, etc. In order to tackle this problem
the Intelligent Manufacturing Systems (IMS) consortium1 initiated a few projects in
the early 1990s to define new paradigms for the factory of the “future”. The holonic
manufacturing system was one of these sets of projects.

In the following sections the holonic background is presented. The state-of-the-
art in the field of holonic manufacturing systems is also studied.

2.1 Holon

The holonic concept was developed by the philosopher Arthur Koestler [6] in order
to explain the evolution of biological and social systems. On the one hand, these
systems develop stable intermediate forms during evolution that are self-reliant. On
the other hand, in living and organizational systems it is difficult to distinguish be-
tween “wholes” and “parts”: almost everything is both a whole and a part, at the
same time. These observations led Koestler to propose the word “holon”, which
is a combination of the Greek word “holos”, meaning whole, and the Greek suf-
fix “on”, meaning particle or part, as in proton or neutron. Koestler observed that,
in living organisms and in social organizations, which are entirely self-supporting,
noninteracting entities did not exist. Every identifiable unit of organization, such as
a single cell in an animal or family unit in a society, comprises more basic units
(plasma and nucleus, parents and siblings), while at the same time forming a part
of a larger unit of organization (a muscle tissue or a community). The strength of
holonic organization, or holarchy, is that it enables the construction of very com-
plex systems that are nonetheless efficient in the use of resources, highly resilient
to disturbance (both internal and external), and adaptable to changes in the environ-
ment in which they exist. Within a holarchy, holons may dynamically create and
change hierarchies. Moreover, holons may participate in multiple hierarchies simul-
taneously. Holarchies are recursive in the sense that a holon may itself be an entire
holarchy that acts as an autonomous and cooperative unit in the first holarchy.

The stability of holons and holarchies stems from holons being self-reliant units,
which have a degree of independence and handle circumstances and problems on
their particular level of existence without asking higher-level holons for assistance.
Holons can also receive instructions from and, to a certain extent, be controlled by
higher-level holons. This self-reliant characteristic ensures that holons are stable

1 http://www.ims.org/

2.2 Holonic Manufacturing Systems – HMS 9

and able to survive disturbance. The subordination to higher-level holons ensures
the effective operation of the larger whole.

2.2 Holonic Manufacturing Systems – HMS

The application of holonic concepts to manufacturing was initially motivated by the
inability of existing manufacturing systems (i) to deal with the evolution of prod-
ucts within an existing production facility and (ii) to maintain satisfactory perfor-
mance levels outside normal operating conditions [4]. Suda introduced the concept
of holonic manufacturing in the early 1990s [7] to address the challenge for manu-
facturing in the 21st century.

Teams of industry experts, scientists, and engineers from the world’s leading in-
dustrial nations worked together from 1992 to 1994 to build and test a framework for
international collaboration in intelligent manufacturing systems (IMS). The experi-
ences of teams coming together from Australia, Canada, Europe, Japan and the USA
to work for one year on collaborative “test case” projects formed part of a two-year
feasibility study that began in February 1992. This feasibility study proved that this
kind of international collaboration could achieve significant results in a relatively
short time.

A holonic manufacturing system is based on the concept of “holonic systems”,
developed by Arthur Koestler [6]. Holons in a holonic manufacturing systems as-
sist the operator in controlling the system: holons autonomously select appropriate
parameter settings, find their own strategies and build their own structure.

Koestler also points out that holons are autonomous self-reliant units, which have
a degree of independence and handle contingencies without asking higher authori-
ties for instructions. Simultaneously, holons are subject to control from (multiple)
higher authorities. The first property ensures that holons are stable forms, which
survive disturbances. The latter property signifies that they are intermediate forms,
which provide the proper functionality for the greater whole. Finally, Koestler de-
fines a holarchy as a hierarchy of self-regulating holons that function (a) as au-
tonomous wholes in supraordination to their parts, (b) as dependent parts in subordi-
nation to controls on higher levels, (c) in coordination with their local environment.

Work in the HMS program has translated these concepts to the manufacturing
world, viewing the manufacturing system as one consisting of autonomous modules
(holons) with distributed control. The goal is to attain the benefits that holonic orga-
nization provides to living organisms and societies, in manufacturing, i.e., stability
in the face of disturbances, adaptability and flexibility in the face of change, and
efficient use of available resources. The HMS concept combines the best features of
hierarchical and heterarchical organization [8]. It preserves the stability of hierarchy
while providing the dynamic flexibility of heterarchy.

The HMS consortium developed the following list of definitions to help under-
stand and guide the translation of holonic concepts into a manufacturing setting [4]:

10 2 Holonic Manufacturing Systems

• Holon: An autonomous and cooperative building block of a manufacturing sys-
tem for transforming, transporting, storing and/or validating information and
physical objects. The holon consists of an information processing part and of-
ten a physical processing part. Figure 2.1 shows the holon general architecture
widely used in the field [9]. A holon can be part of another holon.

• Autonomy: The capability of an entity to create and control the execution of its
own plans and/or strategies.

• Cooperation: A process whereby a set of entities develops mutually acceptable
plans and executes those plans.

• Holarchy: A system of holons that can cooperate to achieve a goal or objective.
The holarchy defines the basic rules for the cooperation of the holons and thereby
limits their autonomy.

• Holonic manufacturing system: a holarchy that integrates the entire range of
manufacturing activities from order booking through design, production, and
marketing to realize the agile manufacturing enterprise.

2.3 HMS State-of-the-Art

In the last ten years, an increasing amount of research has been devoted to HMS over
a broad range of both theoretical issues and industrial applications. In this section we
summarize the main developments reported on specialist HMS literature covering:
holon architecture, holons interconnection, holons operation, algorithms for holonic
control and methodologies for HMS development.

2.3.1 Holon Architecture

A manufacturing control system for production processes is composed of software
modules as well as different physical elements of the manufacturing environment:
resources, products, client work orders, coordination operations, etc. The software
module and the physical entity, bonded by means of an appropriate communication
network, represent a holon in a manufacturing system. Every such holon will be
able to reason, make decisions, and communicate interactively with other holons.
The number and types of software modules, and the way this software part and
the physical entities are interconnected, define the different holon architectures ap-
proaches.

The first holon general architecture was proposed by Christensen in 1994 [10].
Figure 2.1 shows the two main components of this architecture: physical process-
ing part and information processing part. The physical processing part is optional.
Some examples of holons without a physical processing part are work-order holons,
planning holons, scheduler holons, etc. The physical processing part is divided into:
the physical processing itself, that is the hardware that executes the manufacturing

2.3 HMS State-of-the-Art 11

Physical Processing

Physical Control

Interholon
Interface Decision Making Human

Interfacce
Information
Processing

Physical
Processing

Fig. 2.1 Holon general architecture

operation; and the physical control, a controller (NC, CNC, DNC, PLC) that con-
trols the hardware operation. The information processing part is made up of three
modules: the holon’s kernel or decision making, which is in charge of the holon’s
reasoning capabilities and decision making; the interholon interface, for the com-
munication and interaction with other holons, and; the human interface, for input
(operation commands) and output (state monitoring) data for humans.

An agent-based architecture for the information processing part of Christensen
general architecture is proposed in [11]. This proposal is based on the holonic vision
of autonomous and cooperation entities. Three main aspects guide this approach.
Firstly, holons are entities with autonomous control over the machine behavior they
are associated with. Holons may create and execute their own plans and follow their
own strategies. This autonomous behavior implies some kind of decision-making
component that guides the holon physical control. Secondly, two or more holons are
able to cooperate when and wherever it is necessary. To do this, these holons are able
to figure out cooperation opportunities, make cooperation or negotiation commit-
ments, and finally to execute the cooperation committed to. Thirdly, holons are able
to act in multiple organizations called holarchies and these holarchies are created
and modified dynamically. Creating a holarchy means to aggregate the manufactur-
ing process or the controlling process in order to enhance productivity. This implies
work and responsibility distribution, and the definition of interaction patterns, which
means that holons are able to figure out opportunities for reorganization, negotiate
reorganization, and follow the interaction patterns.

The inclusion of these components into the general architecture of Christensen
led the authors to propose the agent-oriented architecture in Fig. 2.2. In order to
figure out physical behavior and taking into account the current situation, the holon
chooses the appropriate plans and strategies in order to reach its long-terms goals.
These plans and strategies are communicated from the decision-making module to
the behavior control in order to translate them into hardware operations. On the
other hand, the cooperation interactions are initiated by the decision-making mod-
ule and executed by the specific cooperation techniques using the communication
techniques (domain ontologies and languages). In order to reorganize the manufac-
turing controlling processes the holon needs techniques. These techniques are used
to monitor other component actions and to analyze the controlling process. In this
way, the holons can figure out opportunities for improvement and can start a negoti-

12 2 Holonic Manufacturing Systems

Decision Making

Social Individual

Cooperation Techniques

Communication Techniques

Organization Techniques

Behavior Control

Physical Communication Physical Control

Optional

Information Processing

Fig. 2.2 Holon agent-based architecture

ation process for reorganization (organization techniques) that is executed by means
of cooperation standards.

The Keele University HMS research group, proposes a holon architecture using
agents and function blocks [12, 13]. A manufacturing holon is usually composed
of knowledge and software modules, as well as an optional hardware component.
In terms of functionality, a holon may be considered a composition of an intelligent
controlling system (head) and a processing system (base), Fig. 2.3. The head of the
holon is based on an agent architecture made up of modules defined in [10]. The el-
ements of the intelligent controlling system are: the PMC (process/machine control)
executes controlling plans for the running processes; the PMI (process/machine in-
terface) provides the logic and physical interface for the processing system through
a communication net; the HI (human interface) provides the human-readable inter-
face; the IHI (interholon interface) is in charge of interholonic communication. The
processing system incorporates all the processing modules needed to carry out the
production activities. In this way, the ICS lets the holon supply the production fa-
cilities as autonomous subsystems in coordination with the environment and with
other holons. The processing system is responsible for the manufacturing functions
defined by the operation rules and strategies imposed by the ICS.

In the agent and function block (IEC 61499 [14, 15]) integrated architecture,
agents are used to manage high-level planning strategies (ICS-Head), while func-
tion blocks manage real-time process/machine low-level control (Base). There is
a holonic kernel running over the function blocks in order to provide the neces-
sary interface between the agents and the IEC 61499. The holarchies and holons’
interactions based on agents are organized by means of a structure called a coop-
eration domain, see Fig. 2.4. A cooperation domain (composed holon) is a logic
space through which: (i) holons communicate and cooperate, and; (ii) an environ-
ment in which holons can find, contact and interact with other holons is provided.

2.3 HMS State-of-the-Art 13

Fig. 2.3 Holon architecture
based on agents and function
blocks IHI

PMI

HI PMC
Head

Base

Neck

Agent

Function block

Kernel

A cooperation domain is not feasible on its own but there must at least be a member
holon. Cooperation domains are dynamically created by the execution of the holons’
functional components. A holonic system is composed of at least one cooperation
domain. A holon can simultaneously be a member of one or more cooperation do-
mains. Every domain is led by a coordinator that is the interface with the outside
(other domains). A holon can join a cooperation domain, query its attributes, in-
terchange information with other holons, and exit the domain whenever the holon
has finished its task. A cooperation protocol is executed in order to assign tasks to
holons in the cooperation domain.

Deen and Fletcher propose a computational model for tasks redistribution (ho-
larchy reorganization). The model is based on temperature equilibrium concepts
[16]. When a delayed task is processed, the holons may experience overloads and

CD2 CD1

CD21 CD11

CD27 CD23CD24
CD14 CD13

CD25 CD28 CD17 CD18

CD16 CD15

Cooperation Domain

Atomic Holon

Composed Holon

CH2 CH5

CH1
CH4

CH3

AH1 AH2

AH3 AH4

AH5

AH6

AH7 AH8

Control Flow

Information Flow

Fig. 2.4 A cooperation domain of the agent and function block integrated architecture

14 2 Holonic Manufacturing Systems

User defined
Function

User defined
Function

User defined
Function

User defined
Function

Planner Process
Model

Execution
control Diagnosis

DELIBERATIVE

DATA TABLE

Data Table Access
Common Interface
(DTACI)

FIPA, XML, etc.

Control Information and
Data Access Common
Interface (CIDACI)

CONTROL FUCNTIONS

PHYSICAL SIMULATION

HWHWHW HW HW HW HW HW

CIDACI

Fig. 2.5 The HCD architecture

this makes the holon “hot”. In this way, when a holon realizes that its temperature
is over a predefined threshold, it informs the other holons in the holarchy of the
situation. If there is a “cool” holon that can manage the task in-hand, it starts a
negotiation interaction with the hot holon in order to transfer the task. The auto–
organization of the entire system is achieved when the holarchies that make up the
system try to maintain a temperature equilibrium.

In [17], Brennan and Norrie propose a holonic agent architecture, using agents
for the deliberative layer and function blocks for the physical control layer. In [18]
a holonic architecture for device control (HDC) is illustrated. In Fig. 2.5 we can see
the architecture components. The deliberative layer has two purposes: application-
domain-specific functionalities, and generic functionalities. The generic function-
ality is defined by the planner, process model, execution control and diagnosis
modules. The deliberative layer communicates with the other layers by means of
the device data table through the DTACI (Data Table Access Common Interface).
The deliberative and control layers can read and write from and to the DTACI. The
control functions layer is the user-defined application that controls the hardware

2.3 HMS State-of-the-Art 15

Cooperation Planning Layer
(CPL)

Behavior-Based Layer
(BBL)

Actuator Communication Perception

world (WIF)

ENVIRONMENT

Cooperation Knowledge
(social context)

Joint Goals/Plans

Planning Knowledge
(mental context)

Local Goals/Plans
World Model

(situational context)
Behavior Patterns

Local Planning Layer
(LPL)

interface

Fig. 2.6 The INTERRAP architecture

and physical process behavior of the HDC. On this level function blocks are used.
The physical layer represents the hardware (sensors and actuators) controlled by the
HDC. The simulation layer is the simulation of the hardware.

The German Research Center for Artificial Intelligence (DFKI) has developed
an agent-based architecture to implement holonic system [19]. The architecture is
based on the three concurrent layer agent architecture INTERRAP of Müller [20].
Figure 2.6 shows the INTERRAP architecture, in which the composition and config-
uration of the holonic structures are implemented in the cooperative planning layer
(CPL). The CPL provides the communication, negotiation and administration func-
tionalities for the holonic structures. They have used this architecture in application
domains such as: supply webs, HMS, virtual enterprise logistics and agent-based
knowledge source.

In [9] Christensen overviews the holonic architecture approaches most used in
the HMS field and proposes as standard an integrated architecture of function blocks
and cooperation domains, very similar to the work of Fletcher et al. [12]. For low–
level control he proposes the IEC 61499 standard [14, 15], while for high-level
control, that is holons’ negotiation/coordination in holarchies, he proposes using
FIPA agents [21].

2.3.2 Holons Interconnection

The way in which the holons interconnect among themselves defines holon orga-
nization patterns that can be useful for modeling and implementing cooperation
holarchies using predefined structures.

The group of Mechanics and Manufacturing Engineering of Calgary University
has developed many projects related to models for manufacturing systems intelligent

16 2 Holonic Manufacturing Systems

control. Some of these projects are: MetaMorph I, ABCDE (agent based concurrent
design environment), DIDE (distributed design environment), FBIICDE (feature-
based integrated and intelligent concurrent design system) and MetaMorph II. These
projects are based on a factory intelligent control distributed architecture [17, 18].

The main feature of the systems based on MetaMorph [22] is their changing
structure. These systems adapt to emerging tasks and changing environments. The
MetaMorph architecture uses the domain cooperation concept developed by Deen
and Fletcher (see Sect. 2.3.1) but they call it a dynamic virtual cluster. In Meta-
Morph there are also types of holons or primary holons, as in PROSA (see Sect.
2.3.3). There are product holons, product model holons, and resource holons. A re-
source holon is dual, on the one hand it has a physical component, which is the prod-
uct itself from the beginning to the end; and on the other hand, it stores information
related to the process status and the product components during the manufacturing
process. A product model holon stores the product life-cycle information, configu-
ration data, design specification, process plan, materials list, quality data, etc. The
resource holons are used to model manufacturing devices and operations.

The coordination and auto-organization are implemented by means of the dy-
namic virtual clusters (Fig. 2.7). In a dynamic virtual cluster the holons may par-
ticipate dynamically in different clusters (holarchies) and may cooperate through
cooperation domains. The primary holons fulfill the same task as the coordinator
holons of Deen and Fletcher, and are cluster managers coordinating the holons’ in-
teractions. The cluster exists while the cooperation task is active, that is, when the
task is completed the cluster disappears. The process cycle for a virtual cluster can
be defined as: (1) The primary holon joins some or all the contracts (production
orders, cooperation orders, etc.) in a new task. After a replanning and analysis pro-
cesses, the primary holon lists the cooperation requirements as cooperation tasks. (2)
A mediation holon is created in order to find a list of potential cooperating holons.
(3) The potential cooperating holons are invited to enter the virtual cluster. These
holons decide whether or not to participate and send proposals for all the tasks they

H

H

HH

H
H

H
H H

H

H

H
H

H

H
H

H H

H

Holons society

Dynamic
Virtual Cluster

Dynamic
Virtual Cluster

Primary holon

Fig. 2.7 Holons society and holarchy

2.3 HMS State-of-the-Art 17

are interested in. (4) All the proposals are collected and evaluated by the primary
holon and the mediator holon. When the optimal tasks assignment is determined,
contacts are established directly between the primary holon and the subcontracted
holon. The virtual cluster is built among the primary holon and all the subcontracted
holons. (5) The associated cluster, the mediator and the cooperation links disappear
when the tasks are completed.

2.3.3 Holons Operation

In a manufacturing system there are many types of operation or functionalities that
are crucial for the production process. The way in which these operations are iden-
tified and modeled is another research and development subject in the HMS field.

PROSA (Product-Resource-Order-Staff Architecture) [23], is the reference ho-
lonic architecture for HMS that has been widely adopted. Basically, PROSA is an
interholonic architecture, which identifies the types of holons necessary for any
manufacturing system, its responsibilities, and the interaction structure in which
they cooperate. The architecture is made up of three basic holons, Fig. 2.8: work-
order holon, product holon, and resource holon. These holons are specified using
object-oriented concepts such as aggregation and specialization. Each of the basic
holons is responsible for one of the following manufacturing controlling aspects:
internal logistic, manufacturing planning, and resource management. In order to as-
sist the basic holons, with expert knowledge, a “staff” holon can be added. The
structure of the entire manufacturing system is a dual holarchy divided into one
subholarchy of resources assignment (work-order holons, resource holons, and staff
holons) and one subholarchy of process control (product holon and the resource
holon controlling process parts). A resource holon has a physical part (that is, a pro-
duction resource of a manufacturing system) and an information processing part that

Work-order Holon

Resource Holon

Product Holon

Process
Execution
Knowledge

Manufacturing
Knowledge

Process
Knowledge

Holonic Manufacturing System

Fig. 2.8 PROSA: reference architecture

18 2 Holonic Manufacturing Systems

controls the resource. This holon offers production capacity and functionality to the
other holons. A product holon stores the process and product knowledge needed to
insure the correct manufacture of the product. It acts as an information server for the
other holons in the HMS. A work-order holon represents a task in a manufacturing
system. It is responsible for doing the work assigned on time and in the right way. It
manages the physical products that are being produced, the product status models,
and all the logistic processing information related to the task. A coordination and
controlling technique for a PROSA holarchy using swarm-inspired social behavior
is described in [24].

The ADACOR architecture (adaptive holonic control architecture) [25] proposes
a holonic approach for the dynamic adaptation and agility in the face of disturbances
in FMSs (flexible manufacturing systems). The architecture is based on a group of
autonomous, intelligent and cooperative entities (holons), in order to represent the
factory components. These distributed components can be either physical resources
(numerical controllers, robots, programmable controllers, etc.) or logical entities
(products, orders, etc.). ADACOR groups the holons of a manufacturing system
into product holons, task holons, operational holons, and supervisor holons [26].
Each product is represented by one product holon that has all of the product-related
knowledge and is responsible for the process planning. The product holon receives
the product manufacturing orders. To this end, it stores information about the prod-
uct structure and the process planning to produce it. Every manufacturing order is
represented by a task holon, which is responsible for controlling and supervising the
production plan execution. It includes the order decomposition, the resource assign-
ment plan and the execution of this plan. The operational holons represent the phys-
ical resources of the factory, such as human workers, robots and machines. They
manage the behavior of these resources based on their goals, constraints and capa-
bilities, and try to optimize their agenda. The product, task and operational holons
are very similar to the product, order and resource holons of PROSA [23]. The
ADACOR supervisor holon is the PROSA staff holon, and is in charge of coordina-
tion and global optimization tasks, coordinating various operational and supervisor
holons.

The HCBA (holonic-component-based-architecture) [27] is derived from CBD
(component-based development) and HMS. HCBA defines two major holons: prod-
uct and resource. The resource holon is an embedded system component that can
execute operations such as production, assembly, transportation, and checking. The
product holon may contain a physical part and a controlling part. The physical part
can be, for example raw materials, product parts and pallets. The controlling part
may represent the path controlling a production line, process control, decision mak-
ing and product information. The holonic system is built associating these two types
of holons, building nested structures of products and resources.

2.3 HMS State-of-the-Art 19

2.3.4 Holonic Control

In this section some works related to algorithm definition and implementation for
holonic control are presented. These works can be grouped into four categories of
controlling activities: work order programming, scheduling, work-order execution
and job-shop control, and device controlling.

• Work-order programming: The holonic programming of production operations
has been studied in [28, 29, 30, 31, 32, 33]. These approaches usually deal with
an interaction scenario in which the product holon is in charge of determining the
necessary parts or sub-assemblies and the manufacturing operations. The type of
resources associated with every operation and the sequence is determined by
means of a set of cooperation interactions with the resource holons.
The benefits of the holonic approach compared with traditional production pro-
gramming approaches are due to the distributed nature of the planning process,
the interactive cooperation interaction among the production components, and
the easy incorporation of new products or resources.

• Scheduling: A significant research effort has been devoted on holonic schedul-
ing algorithms. Much of these works focused on flexible manufacturing systems
[28, 34, 35], assembly lines [36], jop-shop [37], assembly and machining work-
cells [38, 39, 40], continuous process lines [41, 42] and factory maintenance
[43]. In [32, 44, 45] generic scheduling methods for holonic manufacturing were
proposed. The main reason for the large number of activities in this field is the
maturity level of the intelligent scheduling techniques [46, 47] and the algorithms
for factory distributed control [8, 48, 49], due to the fact that both of them are
similar to the holonic approach. They attempt to assign time and resources in a
more dynamic way than can be done with offline scheduling methods.
The major feature of a holonic scheduling approach is that every holon is a
problem-solver and a decision-making entity. They use cooperation strategies in
order to exchange information and mutually accepted solutions. There is a mech-
anism to assure that global system constraints are satisfied. And finally, there is
a central coordination mechanism.
The benefits of a holonic scheduling approach compared with traditional ap-
proaches are due to the computation and decision-making distribution, and the
interactive nature of holons.

• Work-order execution and job-shop control: This activity involves the initiation,
control, monitoring and termination of tasks and involves actual plans and ac-
tual production settings. Work-order execution was studied in [38, 39, 50, 51].
The new elements of the holonic approach in contrast to conventional execu-
tion controlling algorithms are [3]: the execution is implemented by means of
a negotiation interaction sequence; and the resources (machines) executing the
manufacturing operations are responsible for the decision-making regarding the
timing and the type of execution.

• Device controlling: The device control – which involves actuation, sensing and
feedback control of the physical operations that support a machine – has been

20 2 Holonic Manufacturing Systems

largely studied in the HMS field as a conventional control problem [52, 53, 54,
55, 56]. These studies focus on achieving an effective device interface.

2.3.5 Methods for HMS Development

Manufacturing systems are very large and complex. Accordingly, the holonic sys-
tems that control or implement them are also large and complex. The development
process of these kinds of systems has to be guided by software engineering meth-
ods and principles in order to help the engineer in the development process of the
HMS itself. To date, almost all of the applications in the HMS field have been built
using no design or development method. Moreover, there are probably no two ap-
plications developed with the same method. Perhaps this situation has come about
because there has been little work done on methods for HMS development.

In [57], a formal specification approach for HMS control is presented, but it
is still in a developmental stage. There are no defined development phases, and
no detailed descriptions to explain how to model issues such as cooperation in the
holarchy, holon autonomy and system flexibility. In [58], an agent organization is
proposed to model each holon/holarchy that is independent of any holon architec-
ture. However, it is focused only on the holarchy definition and does not define the
development phases. The development of HMS is studied in detail in Chap. 4.

There is a definite need to have methodologies for holonic systems [3], that are
based on software engineering principles in order to assist the system designer at
each stage of development. This methodology should provide clear, unambiguous
analysis and design guidelines. In order to fill this gap, we present in this book,
ANEMONA, a mutliagent method specifically conceived for HMS development,
which tries to fulfill all the HMS modeling requirements.

2.4 Conclusions

In this chapter we have discussed the background of HMS and analyzed the state-
of-the-art in HMS. We have attempted to present a global overview of the field,
covering the different studies worked on: architecture (Sect. 2.3.1), holons intercon-
nection (Sect. 2.3.2), holons operation (Sect. 2.3.3), holonic control (Sect. 2.3.4),
and methods for HMS development (Sect. 2.3.5).

The more active fields are those related to developing holonic control systems.
From these developments we can conclude that currently multi-agent system tech-
nology is the tool most utilized for developing HMS. Nevertheless, there is very little
work on methods for HMS development. The focus of this book is HMS develop-
ment. To this end, in Chap. 4 we study HMS development requirements indepth and
present ANEMONA, a HMS development methodology.

Chapter 3
Holons and Agents

In this chapter we study the conceptual similarities between holons and agents. De-
spite these two modeling approaches being very similar, there are some peculiari-
ties when analyzing their characteristics. In this chapter we review a study on every
characteristic of holons and agents. The complete analysis can be found in [59].

Before analyzing the characteristics of agents and holons, we introduce the con-
cepts of agent and multi-agent systems. Finally, we present the abstract agent notion
as a modeling artifact for autonomous entities with recursive structures [60]. The ab-
stract agent extends the traditional agent definition, adding a structural perspective
to the agent concept: “... an abstract agent can be an agent; or it can be a MAS made
up of abstract agents ...”.

3.1 Agents

An agent is an autonomous and flexible computational system that is able to act in
an environment [5]. Flexible means that the agent is:

• Reactive: it reacts to the environment it is in.
• Proactive: it is able to try to fulfill it’s own plan or goals.
• Social: it is able to communicate with other agents by means of a language.

Some properties that are usually attributed to agents to a greater or lesser degree,
for solving particular problems are [61, 62]:

• Autonomy: agents can operate without the direct intervention of humans or other
agents.

• Social ability: agents are able to interact with other agents (human or not) through
an agent communication language.

• Rationality: an agent can reason about perceived data in order to compute an
optimal solution.

• Reactivity: agents are able to perceive the environment’s stimulus and these stim-
uli guide the agents’ actions in their environment.

21

22 3 Holons and Agents

• Proactiveness: agents are not only stimulus-reacting entities, but also have an
enterprising character and can act guided by their own goals.

• Adaptability: related to the learning that an agent may do and its capabilities to
change its own behavior based on this learning.

• Mobility: the capability of an agent to move through a network.
• Veracity: an agent cannot deliberately provide false information.
• Benevolence: an agent is willing to help other agents as long as it is not contrary

to its own goals.

A multi-agent system (MAS) is a computational system where two or more
agents interact (cooperate or compete, or a combination of the two) to achieve some
individual or collective goals, and the achievement of theses goals is beyond the
individual capabilities and individual knowledge of each agent.

MAS studies the coordination of intelligent behavior among a group of (possibly
pre-existing) autonomous intelligent agents. It is focused on the individual behav-
ior from which the system behavior follows. Today, MAS is a very active area of
research and is beginning to see commercial and industrial applications. MAS is
centered on the social behavior of intelligent entities and focuses mainly on inves-
tigating behavior models, cooperation and coordination strategies, intelligent bro-
kerage, task-performance optimization, learning from own experiences, coalition
formation, etc.

In summary, MAS is a general software technology motivated by fundamental
research queries on subjects like autonomy, cooperation, group formation, etc. It
has focused on answering questions like “what can be done?” and “how can it be
done?”, and is applicable to a large range of domains: e-commerce, intelligent man-
ufacturing control, robotics, information recovery, etc.

3.2 Holons and Agents: Two Similar Modeling Notions

In this section, we review the characteristics of holons and agents and analyze the
similarities among them. In the first case, following the generalized trend in the field
of intelligent manufacturing systems, we indicate the motivation of both approaches;
then we identify those properties that define both approaches in order to make an
analysis of each one.

As we mentioned in the previous section, agents are: autonomous, social, re-
active, proactive, rational, mobile, able to learn, etc. [5]. Holons, as a paradigm,
have the following basic characteristics: autonomy, cooperation and reorganization
(openness). In addition to these characteristics, which could be called “behavioral
properties”, holons have “structural properties”. One of them is “recursiveness”,
which allows holons to be made internally of self-similar entities (holons), which
again can be made of holons, and so on (until we reach an atomic level in which
a new subdivision is impossible or useless for the domain application). Another
important structural property, as was defined by the HMS consortium [4], is that

3.2 Holons and Agents: Two Similar Modeling Notions 23

holons usually comprise an information processing part with an optional physical
processing part.

In the following subsections we analyze and compare each property separately.

3.2.1 Autonomy

The behavior of autonomous entities can be based on both their own experiences
and the built-in knowledge used in constructing the entities for the particular en-
vironment in which they operate. Agents have been successfully used in domains
where the degree of uncertainty and unpredictability requires processing units that
are capable of autonomous action, without the direct intervention of humans or oth-
ers.

Manufacturing control systems are large and complex systems, designed to carry
out a clearly defined task. However, in a manufacturing system, things rarely go as
expected. The system may be asked to do additional tasks that were not anticipated
and is sometimes allowed to omit certain tasks. The resources available to perform
tasks can become unavailable, and additional resources introduced. The start time
and processing time of a task are also subject to variation. A task can take more time
than anticipated or less time than anticipated, and tasks can arrive early or late. These
are some of the reasons why holons are, by definition, autonomous entities that
must be able to create, control and monitor the execution of their own plans and/or
strategies, and to take suitable corrective actions against their own malfunctions [4].
In this sense, it can be said that agents and holons share this property.

3.2.2 Reactivity

An agent is responsive to events that occur in its environment, where these events
affect either the agent’s goals or the assumptions that underpin the procedures that
the agent is executing in order to achieve its goals. So, the effects of environment
stimulus may be changes in the agent’s goals or assumptions, or the agent’s ac-
tions effecting changes in the environment. In the same way, holons need to react to
changes in their environment. Such changes may affect their initial goals or prevent
the execution of the current or future planned tasks.

Let’s suppose a simplified manufacturing system (see the gray area in the man-
ufacturing processing section in Fig. 3.1). There are three types of holons: (i) order
holons that represent tasks in the manufacturing system; (ii) resource holons, which
are production resources in the manufacturing system, and; (iii) product holons, the
products themselves. OH1 (order holon 1) processes a task to produce PH1 (product
holon 1). The production process is carried out in processing steps assigned to re-
source holons RH1, RH2 and RH3, such that RH1 is the first processing step, RH2
is the second and RH3 the third. For some reason, RH1 takes more time for process-

24 3 Holons and Agents

ing than the initial estimated time. RH2 and RH3 have to be aware of this situation,
which prevents the execution of their current plans. They must react in some way,
by searching for other order holons to take advantage of their production power, for
example, or stopping until RH1 finishes its processing (obviously, the second alter-
native is less productive for overall system performance, but it is a reactive action
too). Despite the fact that this example is a simplified and reduced one, it reflects
the reactive property of holons.

OH

Product: PH

RH1

R
H

RH3

PH
1 2

PH

Worker

OH

Product: PH
RH
1

RH

RH3

PH
1 2

PH

OHi

Product :
PHi

OHj

Product :
PHj

RH
i

RH
j

RH
x

RH
n

Resource Holons

OH1

Product
:PH1

RH1

RH2

RH3

PH1
1 2

PH1

WorkersManufacturing

System

Worker 1

Manufacturing

Processes

Work Order

Fig. 3.1 A simplified HMS

3.2.3 Proactivity

Agents do not simply act in response to their environment, they are able to exhibit
goal-directed behavior by taking the initiative [5]. It is not hard to build a system
that exhibits goal-directed behavior, as pointed out by Wooldridge and Jennings.

3.2 Holons and Agents: Two Similar Modeling Notions 25

When we write such a procedure, we describe it in terms of its precondition and
postcondition. The effects of the procedure are its goal. If the precondition holds
when the procedure is invoked, then we expect the procedure to execute correctly:
the goal will be achieved. But systems of this kind assume that the environment
does not change while the procedure is executing. Similarly, it is assumed that the
goal, that is, the reason for executing the procedure, remains valid at least until the
procedure terminates.

As we pointed out in previous sections, the domain application area of agents
and holons changes constantly, preventing them from blindly executing a procedure
without regards to whether the assumptions underpinning the procedure are valid.
This implies that agents and holons need a balance between goal-directed (proac-
tive) and reactive behavior. They will attempt to achieve their goal systematically,
but they will also be able to react to a new situation in time for the reaction to be
of some use. Let’s suppose that in the previous example, RH1, RH2 and RH3 have
as a goal: “to maximize their utilization”. Before RH1 begins to slow down its pro-
cessing, RH2 and RH3 have a certain slot time assigned to PH1, so they look for
other products to get a greater utilization of their time and processing power, i.e. to
achieve their goal. When RH2 and RH3 realize that RH1 is taking more time than
was expected, RH2 and RH3 must reschedule the slot time assigned to PH1 as well
as the slots time and the processing power for the new products found in their at-
tempt to achieve their goal. This simple example reflects the proactive property of
holons.

3.2.4 Sociability

As agents do not usually act in isolation but in the presence of other agents or hu-
mans, they need sociability and interactive behavior to communicate, cooperate,
coordinate and negotiate with them. One question immediately arises: How are they
enabled to interact and especially communicate with other agents? The answer is:
By agent communication languages (ACL). But what is an ACL? An ACL, as pro-
posed by Austin [63], “...is the medium through which the attitudes regarding the
content of the exchange between agents are communicated; it suggests whether the
content of a communication is an assertion, a request, a query, etc.”. Common stan-
dards for ACL include the Knowledge Query and Manipulation Language (KQML)
[64] and a proposal by the Foundation for Intelligent Physical Agents (FIPA), based
on the language Arcol – ARtimis COmmunication Language, [65]. These develop-
ments are, in part, rivalled by increasingly sophisticated Internet markup languages
like XML [66], which can also be used by agents. In addition, interacting agents
need to have the same understanding of a particular vocabulary. This problem is
solved by ontologies that cover every domain where agents operate. An ontology is
a computerized representation or model of a specific part of the world.

A holon’s social ability is included in its capacity for cooperation (see the next
subsection), since holons need a means of communication with other holons to be

26 3 Holons and Agents

able to cooperate. In the example above, the three types of holons need social abil-
ities to exchange information about the manufacturing process, thus enabling the
execution of tasks. For example, OH1 needs resources to produce PH1, so OH1
interacts with resource holons RH1, RH2 and RH3 to obtain processing functionali-
ties and properties specific to the operation, such as high quality or high throughput.
On the other hand, RH1, RH2 and RH3 try to maximize their utilization, and PH1
focuses on the following operations in order to get processed by RH1, RH2 and
RH3. As can be deduced from this simple example, holons need to interact with
each other. Therefore, as agents, they need social abilities with all their associated
problems.

In manufacturing systems, people and computers need to be integrated, with ac-
cess to required knowledge and information, in order to work collectively at various
stages of product development [4]. This requirement led Christensen to propose an
integrated human-interface block (see Figure 2.1) on his holon general architecture
[10]. Each holon must always be able to cooperate with humans, whereas in MAS,
the human interface is implemented by one or several specialized agents who pro-
vide communication services as a whole. Nevertheless, nothing in the definition of
agents, prevents them having an integrated human-interface block.

3.2.5 Cooperation

Cooperation is a means of social ability. Manufacturing enterprises have to fully
cooperate with their suppliers and customers for the supply of materials, parts fabri-
cation, final product commercialization, and so on. Such cooperation should be ef-
ficient and with a quick response. Cooperation is an imperative requirement for any
complete functional model for advanced manufacturing systems [4]. Moreover, all
manufacturing units cooperate in order to achieve the overall manufacturing goals.
With respect to these goals, a holon never deliberately rejects cooperation with an-
other holon. Only when the requested actions are impossible or strongly disadvan-
tageous to the manufacturing process, does it refuse their execution [11]. Coordina-
tion, negotiation, bargaining, and other cooperation techniques allow holons to flex-
ibly interact with other holons in an abstract way. Regarding cooperation, a great
number of specific approaches exist in MAS: see [67] and [68] for an overview. A
sample cooperation scenario was presented in the social ability subsection.

3.2.6 Openness

Koestler [6], defines a holarchy as a hierarchy of holons that function (a) as au-
tonomous wholes in supraordination to their parts, (b) as dependent parts in subordi-
nation to controls on higher levels, (c) in coordination with their local environment.
This definition leads to a heterarchy of holons that is a mixture of hierarchy and hor-

3.2 Holons and Agents: Two Similar Modeling Notions 27

izontal organization. HMS widely explores holarchy principles to create integrated
collections of several lower-levels holons. As indicated by Brennan and Norrie [69],
the holarchy notion can be implemented using several MAS architecture approaches
for federations such as facilitators, brokers, or mediators.

Holons are able to act within multiple organizations (holarchies), which are cre-
ated and changed dynamically. Real-world manufacturing environments are highly
dynamic because of diverse, frequently changing situations: bank rates change
overnight, materials do not arrive on time, power supplies break down, produc-
tion facilities fail, workers are absent, new orders arrive and existing orders are
changed or canceled, etc. [4]. Such changes lead to deviations from existing plans
and schedules. It is necessary, therefore, for the working system to adapt to such a
changing environment. That is why holarchies must be open organizations, which
must be able to accommodate the incorporation of new holons, the removal of exist-
ing holons, the reorganization of the work load, etc. Apart from cooperation, holons
require techniques to reorganize the control of the manufacturing processes. These
techniques monitor other component actions, that is, physical and communication
actions, and analyze the control process. In this way, they may identify the possi-
bilities for improvement and start a negotiation process for the organization using
standard cooperation techniques. The implications of the agreed reorganization are
distributed to the other holons’ components. In MAS, while there are many studies
regarding cooperation, there is little work on reorganization [11].

3.2.7 Rationality

A rational agent is one that does the right thing, i.e., an action that causes the agent
to be the most successful [70]. The actions an agent performs can be understood as
goals. Galliers proposes, in [71], a definition of rationality: “...(crudely) the assump-
tion that an agent will act in order to achieve its goals and will not act in such a
way as to prevent its goals being achieved – at least insofar as its beliefs permit”. A
rational agent acts according to: the percept sequence, what the agent knows about
its environment, and the actions that the agent can perform. These three things will
determine the success of the agent.

Although this property does not explicitly appear in the holon definition, it can
be derived from a stronger definition of autonomy: “a system is autonomous to the
extent that its behavior is determined by its own experiences” [70]. And the gen-
eral assumption is that a holon always attempts to obtain the best overall system
performance.

28 3 Holons and Agents

3.2.8 Mental Attitudes

In recent years, a number of approaches have been proposed to specify rational
agents in terms of mental attitudes such as knowledge, beliefs, wants, goals, com-
mitment, and intention. However, there is no clear consensus in the agent commu-
nity about precisely which combination of mental attitudes is best suited to charac-
terizing agents. However, there seems to be an agreement that beliefs (or knowledge)
should be taken as one of the basic notions of agent theory [5].

As was pointed out in previews sections, although manufacturing processes ex-
perience several changes and disturbances, the degree of uncertainty and unpre-
dictability is not comparable to that of other domain applications of agents. As a
consequence, manufacturing applications require less mental and social delibera-
tion than typical applications of multi-agent systems [11]. Manufacturing control
units (holons) must reason about the behavior of the manufacturing system, but not
about their own mental attitudes or that of other control units (holons).

3.2.9 Learning

When designing multi-agent systems, it is often unfeasible to foresee all of the po-
tential situations an agent may encounter, and optimally specify an agent’s behavior
in advance. In order to overcome these design problems, agents have to learn from
and adapt to their environment. Sen and Weiss pointed out, in [72], some ML (ma-
chine learning) standard classifications for the different forms of learning. One of
them is as follows:

• According to the method or strategy of learning there are: rote learning, learn-
ing from instruction and advice taking, learning from example and by practice,
learning by analogy, and learning by discovery.

• According to the learning feedback that is available to a learning entity and that
indicates the performance level achieved so far: supervised learning, reinforced
learning, and unsupervised learning.

Manufacturing control units (holons) must be able to adapt to changing environ-
ments and handle emergent contexts. As we pointed out in the openness subsection,
holarchies may be reorganized to cope with unforeseen situations. This capability
can be improved with learning. For example, as pointed out by [73], some learning
targets are: combinations of manufacturing resources for specific tasks, manufac-
turing system behavior, support in favor of or against a decision, preconditions and
postconditions for actions and tasks, types of conflicts, heuristics to solve conflicts
and to negotiate, etc.

3.2 Holons and Agents: Two Similar Modeling Notions 29

3.2.10 Benevolence

The property of benevolence is one by which agents cooperate with other agents
whenever and wherever possible. Blind benevolence has no place in modeling au-
tonomous agents for whom cooperation will occur only when it is considered ad-
vantageous in terms of motivation to do so. The agent cannot spend all its time in
new cooperations with other agents, without taking into account its current com-
mitments and motivations. We can say that holons are benevolent entities, because
when they discover a possible cooperation scenario they will cooperate.

3.2.11 Mobility

Mobile agents extend the capabilities of distributed systems by code mobility. Mo-
bile agents are programs that can wander through a computer network and contact
other agents and agent places to perform their task. The mobile agent paradigm of-
fers a number of advantages: mobility and autonomy make permanent connections
unnecessary. The use of agents is also appropriate in scenarios where large vol-
umes of data have to be shipped over the network while the processing code itself
is rather small. In such a case, it is worthwhile considering moving the code to the
data. Some network management tasks fall into this category. For more information
about mobile agents see [74].

Manufacturing control units are dedicated to the continuous control of physical
manufacturing components. The relationship <controller, controlled unit> is as-
signed beforehand and fixed throughout the manufacturing process. Moreover, all of
the necessary control information is in the controlled unit. Therefore, holons rarely
need mobility for the execution of their tasks [11].

3.2.12 Recursiveness

The holonic systems’ basic condition is that a holon is simultaneously a whole and a
part of some whole/part [4]. This means that holons can contain other inferior levels
of holons, that can also be contained in another superior level of holons, being in a
recursive architecture.

In multi-agent specialized literature, we have found few little references to recur-
sive agent architectures. Nevertheless, in the definition of agents there is nothing to
prevent having agents whose internal structure is composed of self-similar entities.
This property is analyzed indepth in Sect. 3.3.

30 3 Holons and Agents

3.2.13 Physical and Information Processing Part

In 1994 Christensen proposed a general holon architecture [10] (Fig. 2.1). Almost
everyone in HMS adopts this general architecture. An explicit separation between
information processing and physical processing can be seen in this general archi-
tecture. In the MAS field, there is no such explicit separation, since an agent in
its internal structure has software components that can do any kind of processing.
Bussmann [11] proposes the use of multi-agent systems as the allowing technology
for information processing in HMS. Starting with the holonic vision, multi-agent
systems can provide the necessary reasoning techniques to develop the informa-
tion processing architecture of a holon and the necessary cooperation techniques so
that holons can interact with other holons forming holarchies. For the physical pro-
cessing part, Fletcher and Deen [75] propose functional blocks to manage real-time
control for low-level process/machine interaction.

3.3 Recursiveness

One of the most difficult challenges for automated systems is scalability and adap-
tation. In life systems there are many useful concepts, including examples on how
to scale up, evolve, adapt, interoperate, organize, and so on. Complex and adap-
tive life systems are large, intricate and require active autonomous entities. Koestler
called these entities holons. The strength of holonic organization, or holarchy, is
that it enables the construction of very complex systems from simpler self-similar
entities. Within a holarchy, holons may dynamically create and change hierarchies.
Moreover, holons may participate in multiple hierarchies at the same time.

As pointed out by Gasser [76], almost all of the proposals for agent architectures
have failed to address the general problem of how to treat collections of “agents” as
higher-order entities – e.g., how to treat organizations as agents. In this section, we
present an agent definition that deals with organizations of agents. Several difficult
challenges for automated systems may be tackled by giving full meaning to the
agent concept: adopting a recursive definition of agents and allowing the dynamic
creation of agents (organization of agents) by agents themselves.

The need for some kind of hierarchical aggregation in real-world systems has
been recognized in the intelligent manufacturing field. These systems have to re-
main readable while they are expanded on a wide range of temporal and spatial
scales. For example, a modern automobile factory incorporates hundreds of thou-
sands of individual mechanisms (each of which can be an agent) in hundreds of
machines that are grouped into dozens or more production lines. Engineers can de-
sign, build, and operate such complex systems by shifting from the mechanism to
the machine or to the production line (depending on the problem at hand) and by
recognizing the agents of higher levels as aggregations of lower-level agents. Also,
in e-commerce applications, an enterprise is a legal entity that is independent of the
individual people who are its employees and directors.

3.3 Recursiveness 31

The question arises as to whether an agent can be a collection of several interact-
ing agents, a hierarchy, or some other type of organization. In [76], Gasser pointed
out that almost all of the proposals for agent architectures have not addressed the
general problem of how to treat collections of agents as higher-order entities – e.g.,
how to treat organizations as agents.

In the agent-specialized literature, we have found very little work about agent
architectures and methodologies that allow us to carry out a recursive and dynamic
analysis, design, and implementation of MAS. Most of the current approaches start
from an atomic agent definition such as an indivisible entity and build MASs as
compositions of interacting agents. Most of the approaches do not deal with sys-
tems in which their components may be MASs themselves. The only work we have
found about recursive agent model is by Occello. In [77], he proposes a recursive
approach to build a hybrid MAS. From a given set of elementary agents, Occello
proposes a recursive agent structure definition and two recursive functions, to build
a higher-level agent. His work is based on a rigorous analysis of recursive proper-
ties in MAS structures, such as agent and environment, and two functions defined in
them, interaction and organization. A recursive agent is a MAS, that is, a set of (re-
cursive) agents and (recursive) environment objects. The interaction function allows
us to model all of the communication acts that can occur either with other agents
or with the environment (perception, action and cognitive interaction). The orga-
nization function is modeled as a set of relations between agents. These relations
can be of three types: acquaintance, communication and subordination. However,
in Occello’s work, there is no formal definition of the recurrence property to define
the behavior of one level of recursion with regard to another. In our work [60], as
in Occello’s work, a MAS can be viewed as a set of agents at a given level and as
a whole agent at an upper level. We call it an abstract recursive agent. It is abstract
because it only exists at the analysis and design phases and is not a real executing
agent (at the coding stage it is replaced by its constituent elementary agents). Un-
like Occello, we will not build an engine to manage the interaction for a MAS at
run time, because this interaction is already managed by its constituent agents. To
define the behavior of the abstract recursive agent, instead of using an interaction
function (as in Occello’s work), we do it with the reactive and intentional behav-
ior of its constituent agents. We believe that these definitions will make the formal
definitions of the recurrence property straightforward.

It is important to point out that recursive modeling in the context of our work is
different from the work done by Gmytrasiewics and Durfee [78] and by Tambe [79].
Gmytrasiewics and Durfee proposed a recursive modeling method as a theoretical
framework for representing and using the knowledge that an agent has about its
expected payoffs and those of other agents. That is, a representation of the benefits
an agent expects to get given the combination of actions chosen by all the agents. On
the other hand, Tambe proposed a different approach for an agent’s models of other
agents’ behaviors. He proposed the combination of architectural features that enable
an agent to generate flexible and reactive behaviors of other agents. Note that in both
of these studies, the recursive model is not a modeling artifact for representing MAS.

32 3 Holons and Agents

3.4 Abstract Agent

The abstract agent is an attempt to unify the concepts of holons and agents and to
simplify and close the gap between holons and agents in the analysis and design
steps. This makes it easer to translate the modeling products that are obtained from
methodologies for HMS into coding elements for the implementation of the holonic
system. Thanks to the integration of the holon recursive property into an abstract
agent, the abstract agent is useful not only for HMS but for the modeling of com-
plex systems as well. An abstract agent that acts in organizational structures encap-
sulates the complexity of subsystems (simplifying representation and design) and
modularizes its functionality (providing the basis for the integration of pre-existing
multi-agent systems and incremental development). The abstract agent facilitates
the modeling of organization of organizations as well as, multi-agent systems of
multi-agent systems.

Definition 3.1. An abstract agent [60] is a software system with a unique entity,
which is located in an environment, which as a whole, perceives its environment
(environment sensitive inputs). From these perceptions, it determines and executes
actions in an autonomous and flexible way – reactive and proactive. These actions
allow the abstract agent to reach its goals and change its environment. From a struc-
tural point of view, an abstract agent can be an agent (atomic entity); or it can be
a multi-agent system (with a unique entity) made up of abstract agents that are not
necessarily homogeneous.

An abstract agent is on a higher conceptual abstraction level than an agent. An
abstract agent can be seen as a MAS, an organization, a federation or an institution
with the added value that it can also be a composition of all of these abstraction
models. Furthermore, when we define two interacting abstract agents, we could also
be modeling two interacting organizations, federations, MASs or institutions. An
abstract agent will exist only at modeling stages. In the end (at coding stages) it
may be replaced by a group of agents or also by a single agent.

Definition 3.1 provides a functional and structural abstract agent perspective.
The functional perspective is based on the widely known agent definition of [5], in
which an agent is an autonomous, reactive and proactive entity. On the other hand,
the structural perspective introduces an indirect recursion when indicating that an
abstract agent may be a MAS, which in turn is made up of Abstract Agents, each
one of which may be a MAS or an agent.

Definition 3.2. A multi-agent system is made up of two or more abstract agents that
interact to solve problems that are beyond the individual capabilities and individual
knowledge of each abstract agent.

Definition 3.2 extends the traditional notion of multi-agent systems when indicating
that a MAS is made up of abstract agents. This could be a very useful property
because with this we could have a MAS made up of interacting MASs.

Figure 3.2 illustrates the essential abstract agent structure.

3.4 Abstract Agent 33

Fig. 3.2 Abstract agent Abstract Agent

Agent Multi-agent System

Organization

Role

1..* 1..*

-MAS

1..*

-member

2..*

Rules/Norms

1..* 1..*

plays

has

-role1..*

-group

1..*

There are two levels in an abstract agent. The abstraction level and the recursion
level. The abstraction level is used in the analysis and design phases. When we
begin to analyze a MAS A we identify the group of agents {a1,a2, ...,an′}. Agents
{a1,a2, ...,an′} are said to be on a lower abstraction level than A. Let m be the
abstraction level of A, then {a1,a2, ...,an′ } are in m−1 abstraction level. Subsequent
analysis will ”open” these agents, for example when analyzing a1, we could have
that a1 = {a11,a12,a13}. Then the abstraction level of each agent in {a11,a12,a13}
will be m−1, and so on. The recursion level is defined as follows:

Definition 3.3. Let a be an agent and A and Ai be abstract agents. The recursion
level of an abstract agent is:

LevelR(A) =
{

0 A = a,
max{LevelR(Ai)}+ 1 A = {A1,A2, ...,Ak}, 1 ≤ i ≤ k.

From definition 3.3 we have:

• Abstract agent of recursion level 0 is an agent.
• Abstract agent of recursion level 1 is a MAS made up of interacting agents.
• Abstract agent of recursion level n > 1 is a MAS made up of interacting abstract

agent of recursion level < n.

The designer’s point of view will determine the nature of what is being observed
at each moment. From the outside, a system can be considered as an abstract agent
since it has agenthood characteristics. On the other hand, from the inside, that is,
from the internal structure, the abstract agent can be considered as being composed
of a group of interrelated abstract agents (MAS). When there are no more subdi-
visions, the abstract agent can be considered as being a simple agent. The end of
the recursion is defined by the designer since the subdivision exists whenever it is
useful for the definition of the problem being modeled. In the end, at the lowest
abstraction level, only the agents that make up the global MAS will be apparent, but

34 3 Holons and Agents

as the abstraction levels go up, there will be some agents and some abstract agents
that are refined as MASs.

An extremely useful feature in terms of the reduction of complexity for the de-
signer of a MAS is that an overall task can be broken down into a variety of specific
subtasks, each of which can be solved by a specific agentified problem solver. Divide
and conquer is a widely accepted problem solving paradigm in computer science. In
this study we attempt to define a modeling structure to apply the divide and conquer
paradigm to the analysis of Multi-agent Systems.

3.4.1 Abstract-agent Structure

In [60] we proposed an abstract agent as a modeling artifact for the analysis of
large-scale multi-agent systems. With this approach, to develop multi-agent systems
as systems in which their components may be MASs themselves, the idea is as
follows [80]. When we begin to analyze a group of agents (MAS) A, we identify the
agents {a1,a2, ...,an} that execute certain functions. These agents may encapsulate
individual persons, physical, or software entities (agents). They may also be other
groups of MAS, say B, so we can have ai = Bi, which we treat as black boxes. We
can take this perspective as long as our analysis can ignore the internal structure
of the member groups (MAS). However, subsequent analysis generally needs to
“open” these black boxes and look inside them to see the agent components and
their corresponding functions; for example, when analyzing B we have that B =
{b1,b2, ...,bm}.

The following example illustrates how the abstract-agent structure is used for
multi-agent system modeling.

Let us suppose a multinational company, called AG, which has different na-
tional companies distributed among different countries. The objective is to model
the multinational as a MAS.

Each national company can be an abstract agent since it has agenthood character-
istics. The national company is autonomous in its national environment; it acts in the
national market with its own market and production rules. At the same time, it must
be able to interact with other national companies to exchange materials, personnel,
knowledge, etc. The national company, is also governed by the rules and norms of
the multinational for its international relations (other national companies).

The international companies’ relationships define the rules, norms and policies
of the multinational. In Fig. 3.3, geographical areas can be observed in which the
relationships among the national companies are narrower. In addition, the commer-
cial agreements among the different countries define new interrelation rules among
the national companies of these zones. For example, in Europe, the European Union
countries are governed by certain standards and norms of the community; and in
South America they are governed by the Southern Cone Common Market – MER-
COSUR (Paraguay, Argentina, Chile, Brazil, Uruguay and Bolivia) and by the An-
dean Community (Bolivia, Colombia, Ecuador, Peru and Venezuela). The relation-

3.4 Abstract Agent 35

Canada

USA

Peru

Mexico

Bolivia

Brazil

Paraguay

Argentina

England

Spain

Portugal

Italy

France

South Africa
Australia

Russia

China

Japan

Fig. 3.3 National companies of the multinational AG

ships of the countries of these markets with other countries or regional markets are
managed by their local market rules. Each market can be modeled as an abstract
agent. This generalization is shown in Fig. 3.4. It is important to note that Bolivia,
as a National Company, belongs to two regional companies (MERCOSUR and the
Andean Community).

Up to this point, we have identified 4 levels of abstraction (Fig. 3.5): the multina-
tional company, the regional companies, and the national companies. We have been
able to model the multinational as a MAS, which is composed of abstract agents that

Canada

USA

Mexico

European
Community

South Africa
Australia

Russia

China

Japan

Andean
Community

MERCOSUR

Fig. 3.4 National and regional companies of the multinational AG

36 3 Holons and Agents

Fig. 3.5 Three recursion
levels of the AG example Multinational

Regional National

11

1

AAgent (Level 1)

AAgent (Level 3)

AAgent (Level 2)

are related to each other with certain behavior patterns that define the multinational
company. If the national companies are made up of agents (abstract agent of recur-
sion level 0), we can think of a national company as a traditional MAS (abstract
agent of recursion level 1), the regional companies as abstract agents of recursion
level 2 and the multinational as an abstract agent of recursion level 3.

Apart from modeling the outside relationships, if the designer’s interest is also to
model the internal structure of each national company, the national company should
be observed from the inside. Inside each national company there would be new
companies located in different cities or with autonomy for certain activities. In turn,
each local company is subordinated to the national company and each national one
to the multinational. Thus, we have a new level of abstraction, the local company as
an abstract agent of recursion level 1, the national company as an abstract agent of
recursion level 2, the regional company as an abstract agent of recursion level 3 and
the multinational as an abstract agent of recursion level 4 Fig. 3.6.

Multinational

Regional National

11

1

Local

1

0..*

AAgent (Level 2)

AAgent (Level 1)

AAgent (Level 4)

AAgent (Level 3)

Fig. 3.6 Four recursion levels of the AG example

If the national company is not subdivided into city companies or autonomous
companies, then the national company is a traditional MAS composed of national
domain-specific agents (abstract agents of recursion level 0), which are interrelated
agents and carry out specific functions. These national domain-specific agents define
the services provided by the national company inside the country and outside the
country. This very same analysis should be made for each Local company until we
reach the agents, which define and implement the activities of the company as a

3.4 Abstract Agent 37

whole. In summary, the final result of the analysis should be similar to Fig. 3.7. In
Fig. 3.7, it can be observed that the national company is composed of zero or more
local companies, and each local company, in turn, is an abstract agent of recursion
level 1.

Multinational

Regional National

11

1

Local

1
0..*

Agent

Agent

1*

1

*

AAgent (Level 2)

AAgent (Level 1)

AAgent (Level 4)

AAgent (Level 3)

AAgent (Level 0)

AAgent (Level 0)

Fig. 3.7 Five recursion levels of the AG example

Again, the multinational can be considered from the outside as an abstract agent,
since it is located in an environment – the world market; it is autonomous; it has its
own economic and market policies; it is social, i.e., it interacts with other entities
for purchasing, selling, recruiting, leasing, etc.; it is proactive, since, for example,
according to world market trends it is able to modify its current market policies, etc.

An abstract agent is specially tailored for: specification of interaction between
groups of agents, integration of pre-existing multi-agent systems and modeling of
holonic manufacturing systems [4], among others.

An abstract agent is a kind of virtual entity because it is not executable (it will
not exist at the coding stage, it will possibly be replaced by a group of agents or
also by a single agent). On the other hand, an abstract agent has agency properties,
it is autonomous, reactive and proactive [5]. An abstract agent may play roles (see
Fig. 3.2). A role is a description of an agent’s abstract behavior. A role describes
the constraints (obligations, requirements, skills) that an agent will have to satisfy
to obtain a role, the benefits that an agent will receive in playing that role, and the
responsibilities associated to that role.

An agent is a special case of an abstract agent (it is executable). A multi-agent
system is also an abstract agent, but it is a composite entity. A multi-agent system
is made up of two or more abstract agents that interact to solve problems that are
beyond the individual capabilities and individual knowledge of each abstract agent.

A multi-agent system is a group of agents that are related via interaction patterns.
Groups of agents may be explicitly specified by the system designer or they may be
emergent. When a group of agents has norms and rules that govern the interaction
among its members we call it an organization (see Fig. 3.2). An organization is a
special case of a multi-agent system in which there is a set of norms and rules that
regulate the interaction among the roles (played by agents) of the organization. The

38 3 Holons and Agents

structural aspect of an organization is made up of two parts: a group of abstract
agents that make up the organization, and a set of roles assigned to the organization
and their relationships. The rules and norms of the organization are defined by a
set of institutionalized patterns of interactions that are defined between the roles
assigned to the organization.

An abstract agent acting in organizational structures can encapsulate the com-
plexity of subsystems (simplifying representation and design) and modularize its
functionality (providing the basis for integration of pre-existing multi-agent systems
and incremental development). The abstract agent structure facilitates the modeling
of organization of organizations (as well as, multi-agent systems of multi-agent sys-
tems). This is so because an organization is an abstract agent and therefore may play
roles in a wider organization, interact with other abstract agents (be it an agent or an
organization as well), pursue some goal, etc.

In [60], we proposed a formalization of MAS behaviors in terms of their con-
stituent agent behavior. In summary, the reactive behavior of a MAS is determined
by its perception that is defined as the union of the set of perceptions of its agents.
It is also defined by its actions, which in turn are defined as the union of the group
actions executed by its member agents and the union set of the primitive actions
carried out by each of its constituent agents. The intentional behavior of a MAS,
considering a BDI agent architecture, is determined by its goals, desires and inten-
tions. The goals of a MAS can be defined using two different approaches, depending
on the problem at hand. The top-down approach is defined for situations where the
set of goals of the MAS is given and the objective is to determine which group of
agents could reach it. On the other hand, the bottom-up approach is defined for sit-
uations where there is a group of interacting agents and the objective is to find out
what the goals of the emergent MAS are.

3.5 Conclusion

In this chapter, we have analyzed the characteristics of holons and agents. We have
also presented an abstract recursive agent definition (abstract agent). This defini-
tion provides a functional and structural abstract agent perspective. The functional
perspective is the well-known agent definition of [5], in which an agent is an au-
tonomous, reactive and proactive entity. On the other hand, the structural perspec-
tive introduces an indirect recursion when indicating that an abstract agent may be
a MAS, which is at the same time made up of social abstract agents, each one of
which in turn may be a MAS or an agent. This definition allows us to carry out a
dynamic and recursive analysis and design of a multi-agent system. In Part II the
abstract agent notion is used to define the ANEMONA methodology and in Part III
its practical usage is explained.

Part II
Methodology for Holonic Manufacturing

System

Chapter 4
HMS Development

In this chapter we will discuss state-of-the-art techniques and methods for model-
ing manufacturing systems. Firstly, we will summarize the modeling requirements
of the new generation of manufacturing systems. Then we will discuss the studies
carried out in the areas of HMS, MAS and enterprise modeling, and conclude with
a comparative overview of the different approaches.

4.1 Modeling Requirements

A manufacturing system is a complex, global system that encompasses the entire
set of activities in a manufacturing company. The manufacturing system has a set of
characteristics imposed on it by the “new manufacturing” approach (Chap. 2). From
these characteristics a series of requirements arise, which we can cluster into two
large groups: functional requirements and software engineering requirements.

4.1.1 Functional Requirements

Manufacturing control systems are large-scale complex systems designed to carry
out a clearly defined task in a standardized and well-structured environment. Al-
though manufacturing processes undergo several changes and disturbances, the lev-
els of uncertainty and unpredictability are not comparable to spatial, traffic, or ser-
vice application systems.

The modules, or entities (holons), which implement the control of these systems
should cooperate in order to achieve the global manufacturing objectives. With re-
gard to these objectives, a holon never rejects the cooperation of another holon de-
liberately. It only rejects their execution, when the actions requested are impossible
or strongly unfavorable for the manufacturing process. In this sense, manufacturing
holons are semi-autonomous. This characteristic is defined implicitly in the way that

41

42 4 HMS Development

holons are organized to cooperate. A holarchy is a “loosely coupled” and temporal
hierarchical structure in which there is a certain level of subordination to the holon
that manages it (for example, the staff holon of the PROSA architecture, or the co-
ordinator holon of the cooperation domains, see Sect. 2.3.3). At the same time each
holon is an autonomous entity that acts in cooperation interactions. These issues
impose the following functional requirement.

Requirement 1: Manufacturing control systems require autonomous entities to be
organized in hierarchical and heterarchical structures.

The second requirement is related to the kind of behavior that the control unit
at the factory level should exhibit. Manufacturing control units are continually han-
dling a high number of repeated events that are known, but unpredictable. This flow
of events should be handled in an effective way and with temporal constraints. The
handling of the events can consequently be fixed a priori by routines, while the be-
ginning and execution of these routines should be performed in real time. The set of
events and their occurrence patterns change over time.

Requirement 2: Manufacturing control units require routine-based behavior that
is both effective and timely [81].

4.1.2 Software Engineering Requirements

Besides functional requirements, any control system (which is used in a manufactur-
ing environment) should satisfy general industrial standards. These standards spec-
ify, among other things, requirements for reliability, fault tolerance, diagnosis, and
maintenance. The control systems should achieve certain reliability levels that guar-
antee a continuous operation. This is also true for the control software. However,
product dependability is only achieved if the software development process is car-
ried out following an engineering methodology, instead of developing it in an ad-hoc
way with no engineering methods or techniques.

From fundamental software engineering principles the following requirements
are derived:

Requirement 3: Programming methods should provide data and process encap-
sulation.

Requirement 4: Control programs should have clear semantics.

Specialized literature in the field of intelligent manufacturing basically takes two
approaches to problem decomposition. (i) Physical decomposition (the most obvi-
ous): agents are used to represent the entities of the physical world, such as work-
ers, machines, tools, schedules, products, orders, attributes and operations. This ap-
proach defines different sets of state variables that should be handled by the agents
in an efficient way and with a limited number of interactions. However, with this
approach a great number of agents per resource are required. A common example

4.1 Modeling Requirements 43

of this approach is the use of order agents and machine agents for the planning
and scheduling of manufacturing [48, 82, 83]. (ii) In the functional decomposition
approach the agents are used for encapsulating functionalities such as work order
acquisition, planning, scheduling, material handling, logistics, etc. In this approach
the agents do not have an explicit relationship with the physical entities. Examples
of this approach include the use of agents for encapsulating special functionalities
(e.g., facilitator agents [84], broker agents [85], mediator agents [86]) and the use
of agents for integrating pre-existent systems (e.g., ARCHON [87], EXPORT [88]
and CIIMPLEX [85]). From these approaches the following requirement is derived.

Requirement 5: A methodology for HMS should lead to straightforward transla-
tion from the control task on a factory resource or factory function to autonomous
entities [4].

In the field of intelligent manufacturing a kind of “loosely” hierarchical aggre-
gation for real-world systems has been recognized. These systems have to remain
readable while they are expanded into a wide range of temporal and spatial scales.
For example, a modern automobile factory, incorporates hundreds of thousands of
individual mechanisms (each of which can be an agent) into hundreds of machines
that are grouped into dozens or more production lines. Engineers can design, build,
and operate such complex systems by shifting from the mechanism, to the machine
or to the production line (depending on the problem at hand) and by recognizing the
higher-level agents as aggregations of lower-level agents. This implies the following
requirement:

Requirement 6: A methodology for HMS should define a development process
that is guided by abstraction levels, and should also provide modeling artifacts, tools
and guidelines to manage this process

The traditional methods and techniques for manufacturing system modeling,
such as CIM, are mainly based on a top-down approach. The user’s requirements
and the global conceptual design constitute the whole set of modeling constraints.
With these approaches very rigid hierarchical architectures are built [4]. On the other
hand, HMS modeling requires a mixed development process, bottom-up and top-
down depending on the level being modeled. It is not necessary to define the whole
set of constraints at the beginning. A mixed development process allows the gen-
eration of reconfigurable and scalable architectures. This characteristic implies the
following requirement.

Requirement 7: A methodology for HMS should define a mixed top-down and
bottom-up development process.

Finally, the following requirement is inferred from the characteristics of “new
manufacturing” defined by the HMS consortium.

Requirement 8: A methodology for HMS should integrate the entire range of
manufacturing activities (from order booking through design, production, and mar-
keting) to model the agile manufacturing enterprise [4].

Taking these requirements into account we will now analyze the different method-
ologies reported in: (i) the HMS field; (ii) the MAS field (due to the widespread

44 4 HMS Development

tendency to use MAS technology as the implementation tool for HMS, see Chap.
2), and finally; (iii) the enterprise modeling field, because a manufacturing system
is embedded in a manufacturing company. The goal of this study is to determine
if these methodologies are suitable for modeling HMS. Firstly, we present a brief
summary of the different methodologies (more details can be found in specialized
literature). Finally, we will make a comparative summary based on the requirements
we have cited in this section.

4.2 Holonic Manufacturing System Methodologies

In HMS-specialized literature there are few studies on HMS development methods.
The reason may be that research efforts have been centered around the development
of holonic control systems and in the definition of architectures (Chap. 2). There is
a recognized need, however, for design methodologies that provide clear, specific
and unambiguous development processes and guidelines [3].

Leitão and Restivo in [57], propose a formal approach for holonic control system
specification. This proposal attempts to formalize the structure and behavior of a
HMS. It combines UML notation to specify the structure and static aspects of the
system, and Petri nets to model behavioral aspects. The methodology is based on
the ADACOR architecture [25].

The static structure of the system is defined by the specification of the system
object classes, attributes, methods and relations set. This structure is similar to con-
ceptual models (diagram of classes) in object-oriented methodologies.

The modeling of the system is based on the development of a behavioral model
for each of the holon classes.

• Each product is represented by a product holon that is responsible for process
planning and contains all the knowledge related to the product. The behavior is
modeled by means of a product holon model. This model consists of a Petri net
that specifies the different states of the product holon and the preconditions and
postconditions of each status. It is also used for synchronizing different holons
with each other.

• Each production order is represented by a task holon, which is responsible for
the control and supervision of production order execution and contains the dy-
namic information. The behavior of a task holon is modeled by means of a task
holon model. The Petri net specifies those functions for order decomposition, the
planning of resource assignment and the execution of these plans.

• The operational holons represent the manufacturing physical resources, such as
workers, robots and machinery. The behavior is modeled with the operational
holon model. This holon acts as a reactive server that waits for new operations
(proposed by the supervisor holon or by the task holons).

• The supervisor holon model specifies the behavior of the supervisor holon in
charge of coordinating the activity of the holons under its control. It provides

4.3 Multi-agent System Methods 45

coordination and global optimization and it can coordinate several operational
and supervisors holons.

Leitão and Restivo’s proposal is very preliminary and is lacking in several ways.
For example, it does not describe how to specify the relationships among the system
holons, nor what the relationship is among the static structure of the system and
the different holon behavior models. The development steps are not defined. It does
not specify how each holon model is translated into an entity of an implementation
platform. Finally, the most critical aspect is that using this approach, neither holon
cooperation, autonomy nor flexibility are modeled, these being the basic holon char-
acteristics as defined by the HMS consortium.

Another proposal is given in [58]. Here, an agent organization is proposed for
modeling each holon/holarchy. The holon characteristics are specified as agent or-
ganization characteristics that model them. No holon architecture is used. It pro-
poses different types of organization that can be used to model autonomous and
self-interested entities (heterarchy systems), and centralized hierarchical control
systems, and the holarchy structures where the semi-autonomous entities are man-
aged by a “head” of the organization. The approach of Fisher et al. also lacks dif-
ferent development steps, and is only focused on the definition of the holarchies
(organizations) and their different configurations. In a previous study [89], a de-
sign based on the architecture INTERRAP (Chap. 2) is proposed. In this study an
FMS is modeled using layers. Five layers are identified: manufacturing control and
planning, shop-floor control, cell control, autonomous system control, and machine
control. A hierarchical structure between layers and a horizontal cooperative struc-
ture among the components of the same layer are defined. There is no development
process defined and there is no modeling notation. Nevertheless, it is the only study
that considers the global manufacturing system integrated in the company.

4.3 Multi-agent System Methods

In this section we present a summary of the better-known MAS methodologies in the
agent field. We classify them into two big clusters: general-purpose MAS methods1

and MAS methods for manufacturing systems.

4.3.1 General-purpose MAS Methods

In this section we summarize some of the better-known MAS methodologies.

1 In this cluster of general-purpose methodologies we can find different clusters, for example,
role-based methods, agent-based methods, organization-based methods, system-based methods,
interaction-based methods, behavior-based methods, extensions of knowledge-based methodolo-
gies, etc. This study is beyond the scope of this book.

46 4 HMS Development

Modeling and design of BDI multi-agent systems. This method [90] extends the
OO modeling techniques to agent systems based on BDI architecture [91]. It pro-
poses two levels of abstraction: external and internal. In the external view, the sys-
tem is modeled as a hierarchy of agent classes (agent model). The classes of agents
are characterized by their purpose, their responsibilities, the services that they of-
fer, the information about the world that they require and store, and their external
interactions (interaction model). From the internal point of view a set of models is
used (belief model, goal model and plan model) that allow the specification of the
motivation and information state of the agents, as well as the control structures that
determine their behaviors. It is based on the identification of the key role in the ap-
plication and their interrelations, which serve as guidelines for the definition of the
agent class hierarchy. The analysis of the responsibilities of each role, represented
by an agent class, results in the identification of the services that each agent provides
and uses, external interactions and objectives and events that it should respond to.

In [92], Burmeister presents a method for MAS development in which three mod-
els are specified for the agent-based analysis and some construction guidelines are
defined. The method is based on OO techniques. It divides the analysis into three
sub-models: (i) Agent model, which contains the agents and their internal structure
(mental states). (ii) Organization model, which specifies relationships, mainly the
hierarchical ones, among the agents and the agent types. (iii) Cooperation model,
which describes the cooperation among agents. The conjunction of these three mod-
els completely defines the system to be developed. The design phase consists of the
refinement of these models for the subsequent implementation of the system by
means of a specific tool.

The MAS-CommonKADS methodology [93] is based on CommonKADS [94],
and provides a set of models for developing the MAS analysis and design phases.
Its main characteristic is the incorporation of object-oriented techniques to Com-
monKADS. In MAS-CommonKADS different views of the system are proposed
and these views are translated into different phases. In the conceptualization phase
a user-centered analysis is proposed for the requirement elicitation (use cases are
used). The organization model analyzes the company (organization) in which the
system will be implemented, and is useful for describing the relationships among
the agents in the MAS and the relationships of the agents with their environment.
The agent model describes the properties and characteristics of each agent. It is
one of the most important phases, consisting of an agent identification sub-phase
(with different options) and a detailed description sub-phase of each agent. The task
model describes the functions or tasks (cognitive, man–machine communication,
agent communication) that the system provides. In the experience model the way in
which the cogitative tasks are carried out is described. The communication model is
focused on describing how the man–machine interaction tasks are carried out. The
coordination model develops and describes the interactions among agents in the
multi-agent system. In the design model a design of the network, the agents (agent’s
architecture) and the platform (operating system and hardware) is developed.

GAIA [95] is focused on the idea that the construction of agent-based systems
is a process of organizational design. An organization in GAIA is a collection of

4.3 Multi-agent System Methods 47

roles, which maintain certain relationships with other roles and participate in insti-
tutionalized patterns of interaction with other roles. The roles contain four aspects:
responsibilities of the agent, the resources that it is allowed to use, the associated
tasks, and the interactions. GAIA intends to work initially with a high-level analysis.
In this analysis two models are used: the role model for identifying the key roles in
the system together with their properties, and the interaction model that defines the
interactions by means of a reference to a model of message exchange. The follow-
ing step is the high-level design, whose objective is to generate three models: the
agent model, which defines the existing agent types, how many instances of each
agent type exist and what roles each agent plays; the service model, which identi-
fies the services (agent functions) associated to each role; the acquaintance model,
which defines the communication links that exist among the agents. In the following
steps, classic OO design techniques would be applied. However, this is outside of
the scope of GAIA.

GAIA v.2 [96] extends GAIA, taking into account the fact that an organization
is more than a single collection of roles, which is how it was considered in the
first version of GAIA, and therefore it introduces new organizational abstractions.
Besides the role and protocols, the environment in which the MAS is immersed
constitutes the main analysis and design abstraction. This new version incorporates
rules and organizational structures as necessary elements for the definition of the
organization. This extensions attempt to adapt the original version of GAIA for the
design and construction of open systems.

ROADMAP [97] began as an attempt to extend the original version of GAIA
with: a dynamic hierarchy of roles (one way to handle open systems), additional
models for explicitly describing the agent environment (just as GAIA v.2 does).
Besides the basic models, ROADMAP inherits from GAIA the organizational view
of the MAS, and the basic definitions of roles, protocols, agents and services. In
ROADMAP, a system is seen as an agent organization, and it consists of a hierarchy
of roles and a hierarchy of agents. The hierarchy of roles is the specification of the
system, and it represents the correct behavior of agents. The hierarchy of agents is
the implementation of the system, and it provides their current functionality. The
environment model and the knowledge model contain reusable domain informa-
tion. The use case model, the interaction model, the role model, the agent model
and the acquaintance model are specific to the application. The protocol model and
the service model describe the low-level software components that are potentially
reusable.

The multi-agent system development method, MASSIVE (multi-agent systems
iterative view engineering), developed in the DFKI [98] is made up of a set of dif-
ferent views of the system, where an iterative development process is followed. In
this method a re-engineering process together with an improved cascade method,
which allows refinements to be carried out, are combined. The different views are:
tasks, environment, roles, interactions, society, architecture and system. In the task
view the functional aspects of the system are analyzed. A task hierarchy is gener-
ated, and this hierarchy is used to determine the basic problem-solving capabilities
of the final system entities. The environment view basically consists of carrying out

48 4 HMS Development

an analysis of the system from two points of view: from the developer’s point of
view and from the system’s point of view. The role view begins applying the multi-
agent paradigm as a problem solution. This view consists of determining those role
abstractions necessary for covering with the functionality and physical restrictions
of problem specification. The question of how to assign roles to agents is also con-
sidered. In the interactions view the system interactions are modeled. In MASSIVE
the system interactions are considered a form of general conflict resolution and they
are not limited to a particular form, as can be the case with the communication. In
the society view the goal is to classify the society (set of agents), which is desirable
from the point of view of the developer. In the architecture view the specification
of the rest of the views is transformed into one system architecture where the struc-
tural attributes of the system are defined. The system view copes with those system
aspects that affect the rest of views or the whole system. Examples of the aspects
handled in this view are the design of user interfaces, the strategy of error handling
or the actual system setup.

In Tropos [99] an agent-based software development methodology is presented.
This methodology uses extensions of UML and a modeling environment called i∗
[100]. The first step of the methodology is to elicit the requirements by means of
the modeling of objectives, tasks, resources and system actors, as well as the de-
pendencies among the actors. During the design stage, the requirement model is
elaborated by means of (i) the system actors refinement, (ii) the identification of the
necessary capabilities for satisfying the system objectives, and (iii) the assignment
of these capabilities to agents. In the first design step, the actor diagram of the sys-
tem can be enlarged with the help of design patterns, although the way in which the
appropriate patterns are identified are not identified. For the other design steps, the
methodology does not include guidelines for translating the elements identified in
the previous models into entities that can be implemented in an agent platform.

MaSE (multi-agent system engineering) is a methodology developed at the Ohio
Air Force Institute of Technology by Wood and DeLoach [101]. MaSE uses a spec-
ification language that is based on UML+OCL [102] and a development tool called
AgentTool. The systems designed with this methodology should be closed sys-
tems. MaSE only permits the building of systems with a maximum of ten agent
classes. The methodology does not support mobility characteristics. Dynamic sys-
tems, where the agents can be created and destroyed, are not allowed. The conver-
sations among agents are “one to one” and multicast is not allowed. From a general
point of view MaSE is divided into two big steps: analysis and design. The analysis
is divided into three phases: objective capture, role transformation and use-case ap-
plication. The design is divided into four phases: agent-class creation, conversation
construction, agent-class assembling and system design. The first MaSE step is to
identify the objectives and use cases. Later, the objectives form the roles that incor-
porate the tasks for obtaining the system goals. The use cases become sequence dia-
grams in order to take into account the sequences of events to be designed. Next, the
roles are integrated into agent classes connected by means of conversations, which
are specified using specific diagrams. Finally, an agent diagram is obtained from the
agent classes and from this diagram the system can be generated automatically.

4.3 Multi-agent System Methods 49

MESSAGE [103, 104] (methodology for engineering systems of software agents)
is an agent-based methodology that incorporates software engineering techniques
that cover the analysis and design phases of multi-agent systems. The methodology
provides a language, a method and some guidelines for applying the methodology,
and is focused on the analysis and design phases, plus it outlines some ideas about
the rest of the steps such as implementation, tests and installation. The notation used
is UML and the modeling process is RUP (rational unified process) [105]. Its de-
velopment process consists of 4 phases: beginning, elaboration, construction and
transition. For developing a MAS, MESSAGE offers some guidelines to determine
if it is appropriate to describe the entities (or at least some of them) of the proposed
system as agents [106]. Requirement step: according to MESSAGE, the character-
istics of the initial requirements for MAS are no different from other systems. In
the analysis step: an agent-analysis model is provided, which introduces agent ab-
straction as the one of the fundamental construction blocks. Other elements of the
analysis are: tasks, objectives, roles and interactions. In this step, models are built
of: organization, goals and tasks, agent, interaction and domain model [107]. In the
design step, the design model provides constructors for describing the communica-
tion among agents and between an agent and their environment. It also allows the
definition of the internal agent structure. For the implementation step, guidelines
for the selection of agent platforms that support the developed system, have been
provided.

RT-MESSAGE [108] proposes an extension of MESSAGE for the modeling of
real-time MAS. It is based on the real-time MAS platform SIMBA [109]. The
main component of SIMBA is the real-time agent architecture ARTIS [110]. RT-
MESSAGE defines the analysis, design and implementation steps. In the analysis
step the MESSAGE models are used, but these models are extended to be able to
model real-time system characteristics. In the design step all of the artifacts gen-
erated in the analysis are the inputs, and this step is focused on transforming the
entities specified in these artifacts to computational entities. To do this, SIMBA ar-
chitecture is used. SIMBA allows the design of the interactions, organizations and
internal structures of the system’s real-time agents.

INGENIAS [111] is presented as an evolution of MESSAGE. INGENIAS goes
deeper into the elements of MESSAGE for the specification and development pro-
cess, and it incorporates new support tools and examples of developments. INGE-
NIAS, as MESSAGE, defines a set of metamodels (high-level description of the
elements in a model) for describing the system. The metamodels allow the descrip-
tion of: isolated agents, agent organizations, the environment, interactions among
agents or roles, tasks and objectives. The process of metamodel instantiation (cre-
ation of models) is not trivial. There are many entities and relationships to identify,
besides dependencies among different models. To this end, INGENIAS defines a
set of activities whose completion results in a set of models. These activities, in
turn, are organized following a software engineering paradigm, RUP (rational uni-
fied process) [105]. The execution of the activities for building models is based on
the INGENIAS IDE tool, a tool for visual modeling. This tool stores the specifica-

50 4 HMS Development

tion of the system using XML. From this specification the IDE tool generates code
and documentation.

MASB is a methodology proposed in [112]. It identifies agent (human or arti-
ficial) roles in an application by means of the analysis of scenarios in which the
agents interact with a potential user. In the analysis step, the user describes (in text)
a typical scenario emphasizing the roles carried out for human and artificial agents,
the typical exchanges of messages, the events that happen during the execution of
the scenario and the actions carried out by the agents. A role is characterized by
means of a behavior diagram specifying the activities, knowledge and interactions
in which the role participates. The analysis step concludes with the modeling of the
local data, the static and dynamic description of the world, and interactions between
the system and the users. In the design step, the agents are identified and the roles are
assigned to these agents. Once the agents have been identified, the designer speci-
fies the knowledge structures that characterize each agent (beliefs, decisions, actions
and reasoning) for carrying out a role. Finally, the conversations among agents are
specified taking into account the plans that an agent is able to execute.

The Prometheus method [113] begins with the analysis step in which the goals
and basic functionalities of the system to be developed are identified. To identify
goals, functionalities, as well as the interactions among those functionalities, the
methodology proposes the analysis of typical use cases. Once the functionalities
have been identified, they are grouped and assigned to agents according to coher-
ence and coupling approaches of traditional software engineering. In particular, it
provides the following strategies for grouping functionalities: (i) to group, if the
functionalities use the same data or require the same information; (ii) to group,
if this implies fewer interaction links among the agents; (iii) not to group, if the
functionalities are not related or if they should reside in different hardware plat-
forms; (iv) not to group, if the data of a functionality should not be available for
another functionality due to security or privacy reasons; and (v) not to group, if the
functionalities will change, or they will be modified by different people. To apply
these strategies, Prometheus provides a coupling diagram of data and a diagram of
“acquaintance”. The clustering process is based only on the coupling of data and
interaction.

Elammari and Lalonde proposed a method that goes from specifications of high
level to implementable model through discovery and definition phases [114]. It gen-
erates five models: (i) the high-level model identifies agents and their high-level be-
haviors; (ii) the internal agent model describes the internal structure and the agents’
behavior; (iii) the model of relationships captures the dependencies and the jurisdic-
tional relationships; (iv) the conversational model describes the coordination among
agents; and finally (v) the contract model defines a structure of agreements among
the agents. The discovery phase develops the high-level model with the help of maps
from use cases [115]. Using these use-case maps, the agents are identified taking
into account the actors that play active roles in the application. It also identifies the
roles and responsibilities. The definition phase produces the four remaining models.

Miles et al. proposed a design method, called “analysis of interaction among
agents” [116]. This method derives the required interactions from an analysis of

4.3 Multi-agent System Methods 51

goals and preferences of the system requirements. The methodology begins with
the identification of the system goals and it converts these goals into a hierarchy of
goals. It is assumed that each goal is solved by means of the interaction of some
agents. In a second step, the designer chooses a mechanism of interaction for each
independent goal of the hierarchy of goals using roles to refer to the agents that are
able to participate in the interaction. During the execution of the system the goal
is taken on by a “real” agent, which takes charge of looking for other agents that
play the other roles in the interactions. Should the agent fail in the search, it can
use the hierarchy of goals to decompose the goal into sub-goals and then propose
the initiation of the interactions associated to them. The agents that are needed in
execution time are derived from the roles required in the interactions. These roles
are grouped taking into account the preferences identified in the definition of the
problem, as well as general considerations, such as complexity or the agents’ limited
functionality, or optimization of the computational load of an individual agent.

Collinot et al. proposed Cassiopeia [117] as a design method to derive the in-
dividual behavior of agents from the global specification of a collective task. Cas-
siopeia focuses on the organization of the MAS for connecting individual behav-
ior to group behavior. It distinguishes three behavior levels: (i) elementary, (ii) re-
lational, and (iii) organizational. Cassiopeia begins with the elementary behaviors
and builds the system defining more complex behaviors. Each level is designed in
a different step: a) Identification of the elementary behaviors. The elementary be-
haviors are those behaviors that are required to be able to execute a collective task.
b) Specification of the relationships among behaviors. Analyzing the organizational
structure with regards to the dependencies among the elementary behaviors. c) Spec-
ification of the organizational behavior. The organizational behaviors are those that
allow the agents to handle the formation, duration or breakup of the groups.

The environment agent societies [118] proposes an organization-based method
for developing MAS. It describes: (i) the structure and the global characteristics of
a domain from an organizational perspective (organization model); (ii) it defines
the population of agents by means of social contracts that regulate the execution of
roles by individual agents (social model); and (iii) the agent interactions by means
of interaction contracts (interaction model).

The civil agent societies method [119] is based on human civil societies, in which
the social institutions settle and impose the laws, and monitor the fulfillment of these
laws in order to respond to possible emergencies. It is based on: (i) socialization ser-
vices, in which social contracts between agents and society are settled, indicating
that the agents belongs to the society; (ii) a notary’s office service, that verifies that
the interactions among agents are legal and to generate an appropriate private con-
tract; and (iii) the exception handling service which initializes sentry agents when
new contracts are generated. These sentry agents try to avoid exceptions and detect
their symptoms.

52 4 HMS Development

4.3.2 MAS Methods for Manufacturing Systems

In this section we summarize some studies about MAS methods for manufacturing
systems that have been reported on in specialized literature.

Kendall et al. [120] proposed a methodology for the development of an agent-
based system that is built on the base of object-oriented methodologies, just like
OMT and OOSE [121], and the IDEF method [122] for modeling manufacturing
systems (see Sect. 4.4). The method begins by creating an OO model and an IDEF
model (IDEF0) of the system that is being modeled, and then identifies the agents
and the interactions among these two models. The agents are seen as the autonomous
decision makers and they are identified in the OO model when an actor appears, and
in the IDEF model when a function creates control information as output. The agents
identified are modeled as BDI agents, in particular as procedural reasoning systems
[123]. The interactions are identified when two or more resources of IDEF appear in
an information exchange. The interaction patterns are defined from the correspond-
ing use cases [121]. The definition of the agents and the interactions are completed
with the help of OO design techniques. In spite of being defined as a method for the
development of agent-based systems, this proposal is limited by its own base (OO
methods and IDF0 method) since it bases the whole identification process and defi-
nition of agents on techniques that do not explicitly model the autonomous behavior,
nor decision making. Also, the object-oriented concepts present several limitations
when agents are identified and defined [124].

Ritter et al. [125] proposed a method for the identification of agents in a man-
ufacturing system. The process is based on the physical aggregation or logical de-
pendence of manufacturing objects (obtained from an inventory list). However, the
method does not provide precise criteria on how to define those physical and logi-
cal dependencies (it only presents an example). Also, the method does not include
any guidelines for specifying which manufacturing objects/enties to apply the ag-
gregation process. The agent-identification process therefore is quite subjective and
intuitive.

Colombo et al. [126] have extended the approach of Petri-net-based modeling
[127] for the modeling of agent-based manufacturing systems. In their methodology,
the agents are identified on the base of a Petri-net model of the production processes
and the relevant control decisions. Although this method offers a more rigorous
model for the agent-identification stage than the previous method, it does not present
any defined approach for the identification of the agents in the Petri-net model (the
only guide is the following one, “the agents are decision motors and therefore they
are responsible for the decision control”).

Bussmann et al. [81] proposed the methodology DACS (methodology for the de-
sign of agent-based manufacturing control systems). The methodology starts with
the specification of the manufacturing control problem, which, among other things,
includes a specification of the manufacturing components to be controlled and their
physical behavior. The first phase, decision-making analysis, analyzes those deci-
sions necessary to the operation of the manufacturing system, observing the local
decision tasks that appear in each manufacturing component and identifying any

4.4 Enterprise Modeling 53

dependence of decisions that could exist among this tasks. The second phase of the
methodology is agent identification, which has been developed based on the deci-
sion model derived in the first phase and produces clusters of decision tasks with
the goal of assigning each cluster to an agent. For the cluster process, the method
provides some rules that guide the process. This phase offers a set of operations that
modify the network of decisions, either separating the decision tasks or introducing
new tasks. These operations allow the designer to reorganize the decision model and
improve the cluster process. Finally, the third phase of the methodology selection of
interaction protocols, provides a mechanism for reusing existing interaction proto-
cols with the goal of solving any dependence of decisions among different agents.
Once the dependencies have been classified the interaction protocols (which will
be used by the agents) are decided. In summary, the successive application of the
three phases results in an agents-based design for solving a manufacturing control
problem. The resulting design consists of a list of agents with their decision respon-
sibilities (in terms of a set of decision tasks), and a set of interaction protocols for
each dependence among different agents. The method proposes, as an implementa-
tion step, the independent development of each agent. However, it does not specify
how this step is carried out, nor which agent architecture or agent platform can be
used. The method is only centered around the control of manufacturing processes
without considering the other components of a manufacturing system.

4.4 Enterprise Modeling

In this section we present several studies related to notations and methods for en-
terprise modeling. A manufacturing system belongs to a manufacturing company,
therefore, the system modeling must integrate the enterprise modeling.

In the enterprise modeling two levels are identified [128]: (i) business level,
which consists of partially ordered sequences of company activities, activated by
the occurrence of events that produce identifiable final results; (ii) company activity
level, which represents the set of partially ordered sequences of basic operations
executed by active resources of the company. There are several studies in the spe-
cialized literature that describe these levels.

CIMOSA [129] is the result of the AMICE project, one of the biggest projects in
the European Community in the domain of computer-integrated manufacturing and
engineering (CIME). Some of their results have been used as standards for the enter-
prise modeling domain. CIMOSA allows the definition of the business processes in
the life cycle of the system (company engineering environment) and in the life cycle
of the product (product engineering environment). It classifies the models and mod-
eling elements into three categories: (i) generic blocks of construction, which are
the basic elements of modeling for any manufacturing system; (ii) partial models,
which represent instances of generic blocks or aggregates of instances of generic
blocks; and (iii) particular models, which are instanced constructions that represent
a particular manufacturing system or a particular company. CIMOSA defines four

54 4 HMS Development

modeling views: (i) functional view: describes the functionalities and tasks of the
company; (ii) information view: models the information used in the company pro-
cesses; (iii) resource view: specifies the capacities and resources required for execut-
ing the processes of the company; (iv) organization view: defines the authority and
responsibilities of the entities in the organization. The disadvantage of CIMOSA for
the modeling of new-generation manufacturing systems resides, logically, in their
CIM orientation. However, it is a good reference for the modeling of enterprises
due to the conceptual elements that it defines. In fact, the majority of notations are
based, or include, concepts defined in CIMOSA.

UEML (Unified Enterprise Modeling Language) [130] arose from a project fi-
nanced by the European Community for the unification of the different notations
of enterprise modeling. This notation integrates, among other things, the follow-
ing well-known notations: IDEF0, IDEF1x and IDEF3 [122], GRAI net [131],
CIMOSA [129], IEM [132], ARIS method [133], etc. UEML 1.0 defines the basic
set of concepts and modeling elements. It is based on the identification of common
and non-common concepts in the different notations of Enterprise Modeling. It in-
cludes the following elements: activity, which is a company behavior that produces
outputs from inputs; flow, which represents the flow of an object from an origin
toward a destination; anchor, which is the origin or destination of a flow; material
resource or human resource, which is a special type of object needed for the ex-
ecution of an activity; information object, which is an object that can be annexed
to a flow. CIM also defines the attributes, associations and restrictions of each one
of these elements. UEML is used in the specification of the business level without
taking into account the internal specification of the activities of the company.

4.5 Comparative Overview

From the previous sections it can be observed that in the field of MAS a great deal
of effort has gone into researching the development of multi-agent methodologies.
The large number of studies to be found in the specialized literature is proof of
this fact. Most of the MAS approaches are general-purpose approaches, while only
a reduced number of MAS methods are defined as specific for the manufacturing
system domain. MAS technology has been defined as a promising approach for
“new manufacturing” due to its characteristics: distribution, autonomous behavior,
cooperation capacity, to name a few [81]. In fact, the majority of the developments
in the HMS field use MAS technology to implement their systems (Chap. 2).

The specific MAS approaches for manufacturing systems have some limitations.
The proposal of [120] does not use notation, nor the appropriate technology for the
modeling of agents. It is based exclusively on OO concepts and on the IDEF model,
due to the fact that it loses expressiveness and rigor when modeling agents. Also,
IDEF0 is insufficient for modeling all of the aspects of a manufacturing system
[81]. On the other hand, the proposals of [125] and of [126] only take into account
a small phase of the development process of manufacturing systems. They are fo-

4.5 Comparative Overview 55

cused on the control of production processes and the identification of agents that will
control the process. Neither proposal is sound nor complete, since they are limited
to present examples without providing a general definition applicable to a specific
manufacturing control problem. DACS [81] is a method specifically for the design
of agent-based systems for manufacturing system control. Therefore, it is focused
only on the controlling elements of the manufacturing system. The output of this
method is an agent-based design, but it does not offer development guidelines or a
tool for the implementation of the agent-based system that it designs. However, it is
a rigorous method and is easy to use for designers without previous knowledge of
agent technology.

In the HMS field there is a recognized need for specific, sound and complete
methodologies with uniformity of notation and concepts, for guiding the develop-
ment of these systems [4]. Two studies that attempt to fulfill these objectives have
been reported, but both are very preliminary and therefore lack some key elements
for software engineering methods: definition of the development process, notation
and tools.

Finally, methods in the area of enterprise modeling are mainly centered on the
definition of the business processes without taking into account the modeling of the
internal activities of the company. These methods do not have tools for handling the
requirements of the “new manufacturing”. Nevertheless, it is very important to have
standardized notations, such as the UEML [130].

Finally, we present in Table 4.1 a summary of the comparative study. In this table
we include all the methodologies presented in the previous sections, indicating, for
each methodology, how it copes the different HMS modeling requirements.

In the following paragraphs we present a discussion on the results of Table 4.1.

• It is evident that requirement 1 is satisfied by all MAS-based methodology. On
the other hand, it is logical that the approaches from the enterprise modeling field
do not cope with it due to their motivation.

• Requirement 2 refers to real-time characteristics for the modeling of control sys-
tems in factories. RT-MESSAGE is the only MAS method to consider it. On the
other hand, it is surprising that neither the methods of Kendall, Ritter, Colombo
nor the DACS method consider this requirement.

• Requirement 3 is a fundamental requirement of any software engineering method,
therefore all of the methods that recognize the implementation stage support it.
CIMOSA and UEML only include the modeling of the business processes of the
company without going down to the level of modeling and implementation of the
tasks inside the company, which is why they do not support this requirement.

• Requirement 4 is similar to requirement 3.
• Requirement 5 refers to the mechanisms or procedures defined by a methodology

to translate the entities of the manufacturing domain to entities with autonomous
behavior. The methods from the HMS field correctly support this requirement,
since they are based on holonic architectures that have a direct correspondence
with entities from the manufacturing system domain. The methods MESSAGE,
RT-MESSAGE and INGENIAS define some guidelines to help the designer in

56 4 HMS Development

Table 4.1 Development methods and modeling requirements for HMS

Requirements

Method 1 2 3 4 5 6 7 8

Leitão and Restivo method
√ √ √ √

Fischer et al. method
√ √ √ √ √

Kinny and Georgeff method
√ √ √

Burmeister method
√ √ √

MAS-CommonKADS
√ √ √

GAIA
√ √ √

GAIA v.2
√ √ √

ROADMAP
√ √ √

MASSIVE
√ √ √

Tropos
√ √ √

MaSE
√ √ √

MESSAGE
√ √ √ ∼

RT-MESSAGE
√ √ √ √ ∼

INGENIAS
√ √ √ ∼

MASB
√ √ √

Prometheus
√ √ √

Elammari and Lalonde method
√ √ √

Miles method
√ √ √

Cassiopeia
√ √ √

Agent societies
√ √ √

Civil agent societies
√ √ √

Kendall et al. method
√ √ √ ∼

Ritter et al. method
√ √ √ ∼

Colombo et al. method
√ √ √ ∼

DACS
√ √ √ ∼

CIMOSA
√

UEML
√

the agent-identification process. These methodologies do not completely ful-
fill this requirement since they propose general guidelines (due to their general
orientation) and consequently they do not approach, in a specific way, the spe-
cific characteristics of the manufacturing problems and functionalities. The MAS
methods for manufacturing systems take into account the specific characteristics
of the entities of the manufacturing control systems domain. However, they do
not take into account the other components of the manufacturing system.

• Only the approaches of enterprise modeling consider requirement 6. The methods
from the HMS field do not take this requirement into account.

• Requirement 7 refers to mixed development methods (bottom-up and top-down).
All of the methods analyzed follow one approach or another without combining
them.

• Finally, requirement 8 is only considered in an explicit and specific manner in the
method of Fischer. It is true, on the other hand, that with some MAS methodolo-
gies large-scale systems (which represent a whole manufacturing system) can be

4.6 Conclusions 57

modeled, but the guidelines defined in them are not specific and therefore in the
analysis and design phases the effort and the designer’s attention may be focused
on less important elements for these domains [81].

4.6 Conclusions

The modeling of holonic manufacturing systems constitutes the fundamental inter-
est of this book. There are few studies in the HMS field related to modeling methods
and techniques. The preliminary state of the studies regarding HMS methodologies
[19, 58, 57], is evidence of the immaturity of this area. These facts motivated us to
study development methods from HMS, MAS and enterprise modeling, and to com-
pare them in order to obtain a qualitative measure of the completion of each one for
HMS development. To carry out this comparison we have defined eight HMS mod-
eling requirements. These requirements have been divided into two groups: func-
tional requirements and software engineering requirements. The first ones refer to
the type of programs that should be developed when applying a methodology, while
the second refers to the properties of the software engineering method. All of these
requirements are specific for HMS. The MAS methods may seem suitable for de-
veloping HMS because there are several methods, many of which are general pur-
pose and a reduced group of them is specific for the manufacturing domain. And
more importantly, the agent technology is the implementation tool used the most
in the HMS field. Finally, the field of enterprise modeling offers interesting studies
and proposals for the standardization of notation for modeling company business
processes. These studies can be applied (and, in fact, have been applied) as model-
ing notation for manufacturing companies. With these three groups: HMS methods,
MAS methods and enterprise modeling, we have carried out the comparison based
on the eight HMS modeling requirements. The result is Table 4.1. From this study it
is evident that there is a need to develop a methodology for HMS. This is the main
contribution of this book, and we present the results in Chaps. 5 and 6.

Chapter 5
ANEMONA Notation

In this chapter we present the ANEMONA notation. The ANEMONA development
process is presented in Chap. 6. ANEMONA is a MAS methodology for HMS anal-
ysis and design based on the abstract agent notion and HMS modeling requirements
(Chap. 4). ANEMONA integrates features from HMS, MAS and enterprise model-
ing techniques [129, 130] (Chap. 4).

In ANEMONA the HMS is specified by dividing it into more specific charac-
teristics that form different views of the system. These views are defined in terms
of MAS technology; therefore, we talk about agents, roles, goals, beliefs, organiza-
tions, etc. We use abstract agent and holon as similar notions [59] (Chap. 4).

In ANEMONA there are five views or models. The agent model (Sect. 5.3) is
concerned with the functionality of each abstract agent: responsibilities and ca-
pabilities. The organization model (Sect. 5.7) describes how system components
(abstract agents, roles, resources, and applications) are grouped together. The inter-
action model (Sect. 5.5) addresses the exchange of information or requests between
abstract agents. The environment model (Sect. 5.6) defines the non-autonomous en-
tities with which the abstract agents interact. The task/goal model (Sect. 5.4) de-
scribes relationships among goals and tasks, goal structures, and task structures.

In order to introduce the ANEMONA process we present here a short overview of
it. The complete process is explained in detail in Chap. 6. In Fig. 5.1 we can see the
development stages of ANEMONA1. The first stage, system requirement analysis
and the second stage holon identification and specification define the analysis phase
(Sect. 6.3.2). The aim of the analysis phase is to provide high-level HMS specifi-
cations from the problem requirements (Sect. 6.3.1). The analysis of ANEMONA
is a top-down recursive approach. The next stage in the development process is the
holon design stage (Sect. 6.3.3) which is a bottom-up process to produce the system
architecture from the analysis models of the previous stage. The aim of the holon
implementation stage (Sect. 6.3.4) is to produce an executable code for the setup
and configuration stage (Sect. 6.3.5). Finally, maintenance functions are executed

1 The specification of the development process of ANEMONA is presented using SPEM diagrams
[134].

59

60 5 ANEMONA Notation

System Requirement
Analysis

Client/User

Use Case
Diagram

Analysis
Models

System
Architecture

Executable
Code

Requirements

Operation and
Maintenance

SetUp and
Configuration

Holon
Implementation

Holon
Design

Holon Identification and
Specification

ANEMONA Development
Process

Fig. 5.1 The ANEMONA development process

in the operation and maintenance stage (Sect. 6.3.6). The ANEMONA notation de-
fines the models that the software engineer has to build in the different development
phases.

The ANEMONA notation is based on two complete MAS methodologies for
general-purpose domains. These are INGENIAS [135] and RT-MESSAGE [136].
An analysis on the HMS adequation of these two methods can be found in Chap.
4. Both methods are extensions of the MESSAGE methodology [103, 104] so they
share their basis and MAS conceptual models.

The ANEMONA notation is inspired on INGENIAS models and metamodels and
the real-time specification elements of RT-MESSAGE. The abstract agent notion
described in Chap. 3 is the ANEMONA central modeling entity.

5.1 ANEMONA Metamodel

The notation of ANEMONA is specified using metamodels. Metamodeling is a
mechanism to formally define modeling language. A language metamodel is a pre-
cise definition of its elements using concepts and rules from a metalanguage. These
concepts and rules are necessary for building models in such a language. A meta-
model defines the primitives and the syntactic and semantic properties of a model.
In other words, a model is described using models.

5.1 ANEMONA Metamodel 61

The ANEMONA metamodel is defined using the UML [137] language with the
constraints defined in [138]. In this way the metamodel definition uses UML entities
such as: objects, relationships, roles, and properties. All these entities are graphi-
cally represented as boxes (Fig. 5.2a), which contain the entity stereotype within �
�, and the ANEMONA modeling entity name. In addition to these entities, in the
ANEMONA metamodel definition we use the following UML relations.

• The inheritance relation, Fig. 5.2b, denotes that the entity in the arrow ending is
the generalization of the entity in the other ending. That is, for example in Fig.
5.2b, object “A” generalizes object “B”, or at the same time object “B” inherits
the definition of object “A”, or object “B” is an object “A”. For instance, let’s sup-
pose we have two entities, “Person” and “Worker”, an inheritance relation from
“Worker” to “Person” denotes that “Person” is a generalization of ”Worker”, a
“Worker” is a “Person”, etc.

• The association relation, Fig. 5.2c, denotes that there is a conceptual dependency
among the entities linked by the association line. For example, let’s assume two
entities “Factory Cell” and “Machine”. An association relation linking these two
entities may represent a conceptual dependency: a “Machine” is in a “Factory
Cell”. The cardinality attributes of the association relation may describe relations
with one-to-one, one-to-many and many-to-many cardinality.

• The aggregation relation, Fig. 5.2d, denotes that one entity is part of another
entity. For example in Fig. 5.2d, object “B” is part of object “A”, in this case
object “A” is the whole and object “B” is the part. The cardinality attributes of
the aggregation relation may describe relations with one-to-one, one-to-many
and many-to-many cardinality.

<<Stereotype>>
Entity Name Entity Inheritance

Relation

Aggregation
Relation

<<Object>>
A

<<Object>>
B

<<Object>>
A

<<Object>>
B Association

Relation

<<Object>>
A

<<Object>>
B

a) b)

c) d)

cardinalitycardinality cardinalitycardinality

Fig. 5.2 UML entities

In order to facilitate the reading of the metamodel diagrams presented in this
chapter we use the mnemonic rules of Fig. 5.3. In addition, for every association
relation between a relationship entity and an object entity there is an instance of the
UML role primitive. This instance is named with the same name of the relationship
entity but with the prefix R and ending with the letter D or O, in order to indicate
the destination of the relationship (O for origin, D for destination).

62 5 ANEMONA Notation

RelationIdentifier ::= WorkFlowRelation | AgentRelation | InteractionRelation |
InteractionUnitRelation | MetaTaskRelation | SocialRelation |
OrganizationRelation | EnvironmentRelation

WorkFlowRelation ::= WFIdentifier
AgentRelation ::= AIdentifier
InteractionRelation ::= IIdentifier
InteractionUnitRelation ::= UIIdentifier
MetaTaskRelation ::= GTRelation
SocialRelation ::= AGORelation
OrganizationRelation ::= ORelation
EnvironmentRelation::= ERelation

BinaryAssociationRolIdentifier ::= RRelationName(O|D)
NaryAssociationRolIdentifier ::= RRelationNameIdentifier(O|D)

Fig. 5.3 Mnemonic rules for roles and relations

The following sections describe the ANEMONA notation. These sections are
sketched, presenting first the metamodel defining the model, and secondly the de-
scription of how to build the model.

5.2 Basic Modeling Entities

The basic modeling entities of ANEMONA are presented in Fig. 5.4. These entities
are used to build the different ANEMONA analysis and design models. The way
in which these entities can be related to each other and the meaning of the allowed
model structures of ANEMONA are detailed in Sections 5.3 to 5.7.

C

Group
Goal

A

Abstract
Goal

Agent

Role

Task

C

Group Belief

A

Abstract BeliefBelief

EventResource
Interaction

WorkFlow

A
Abstract

Task

Name

Method 1,
Method 2,..

Application

Interaction
Unit

A

Abstract
Agent

Organization
Goal

Fig. 5.4 The ANEMONA graphical notation

5.2 Basic Modeling Entities 63

<<Object>>
MAS Entity

<<Object>>
A-Task

<<Object>>
A-Agent

<<Object>>
Autonomous Entity

Query

<<Object>>
Mental State Entity

Query

<<Object>>
Interaction

<<Object>>
Agent

<<Object>>
Organization

<<Object>>
Task

<<Object>>
WorkFlow

<<Object>>
Mental Entity

<<Object>>
Mental State

Fig. 5.5 The metamodel specification of the basic entities of ANEMONA

The metamodel of Fig. 5.5 defines the hierarchical relationship among the basic
modeling entities of ANEMONA.

Role: a role is an encapsulation of certain attributes and behaviors of the abstract
agent it is bound to. In a company, for example, there are different roles such as,
the company president, the company supervisor, the company worker, etc. In the
ANEMONA graphical notation the role is depicted as in Fig. 5.4 labeled with the
role name.

An abstract agent can have more than one role at a time, and can also dynamically
change its roles. A role does not take action, however, an abstract agent does. Roles
are not isolated: there must be other roles related to them. A role acts as a “window”
of an abstract agent, through which other abstract agents know the way to interact
with the abstract agent. Roles provide a facility for efficient reuse. In other words,
a role groups a set of functions, responsibilities, interactions, and represents a given
position in an organization structure.

Abstract agent: an abstract agent (A-Agent for short in the metamodel diagrams)
is an autonomous entity that is abstract and complex. An abstract agent represents
non-atomic holons that are in turn composed of holons. The designer’s point of
view will determine the nature of what is being observed at each moment. From the
outside, a system can be considered an abstract agent since it has agenthood charac-
teristics. On the other hand, from the inside, that is, from the internal structure, the
abstract agent can be considered as being composed of a group of interrelated ab-
stract agents (holons). When there are no more subdivisions, the abstract agents can
be considered as being a simple agent (atomic holons). The end of the subdivision
is defined by the designer since the subdivision exists whenever it is useful for the
definition of the problem being modeled. In the end, at the lowest abstraction level,
only the agents that make up the global MAS will be apparent, but as the abstraction
levels go up, there will be some agents and some abstract agents that are refined as
MASs.

For example, in a manufacturing company, let’s imagine a manufacturing com-
pany’s production department that interacts with a sales department. In order to
focus only on specifying the interaction cooperation among the departments, with-
out worrying about their internal structures both departments may be modeled as

64 5 ANEMONA Notation

interacting abstract agents. On the other hand, when analyzing, for example, the
production department abstract agent is apparent that it is a holarchy composed of
other holons, such as, machines, products, production planning, raw materials, parts,
etc. In the ANEMONA graphical notation the abstract agent is depicted as in Fig.
5.4 labeled with its name.

Agent: an agent is an autonomous, reactive, proactive and social computational
entity, which is able to act in an environment. In a HMS an agent may represent
atomic holons, for example a press machine and the controlling system associated
with it, a worker, an assembling part with its assembling rules and its quality speci-
fication, etc. In ANEMONA it is graphically represented as in Fig. 5.4 labeled with
its name. An agent is a specialization of an abstract agent (Fig. 5.5).

Organization: an organization models a group of abstract agents which cooperate
to achieve common goals. An organization consist of a group of roles, a communi-
cation structure among these roles, and a social structure defined by the cooperating
roles. In a HMS an organization is used to represent the internal structure of hol-
archies. For example, let’s imagine a factory production line with machines, work-
ers, products, parts, supervisors, work orders, etc. These holons cooperate to fulfill
the production line goal. They are related by means of social relations, client-server
relations, etc. The production line with all of its members and their relations is mod-
eled as an organization. In ANEMONA an organization is graphically represented
as in Fig. 5.4 labeled with its name. An organization is a specialization of an abstract
agent (Fig. 5.5).

MAS technology uses the notion of mental state (Fig. 5.5, and Sect. 5.3), in order to
be able to define the autonomous behavior of autonomous entities. That is, what an
autonomous entity is doing at a given time, what it is looking for, and what idea it
has about its environment. In ANEMONA the mental state of an autonomous entity
is defined using the concepts of goals and beliefs.

Goal: a goal describes what an agent (atomic holon) is trying to fulfill, what it
is looking for, the reason for its execution, etc. It is graphically depicted as can be
seen in Fig. 5.4.

Abstract goal: an abstract goal is used to represent the goal of an abstract agent
(non-atomic holon). An abstract goal bounded to an abstract agent may be decom-
posed into goals of agents (members of the abstract agent) and/or into group goals
of a group of agents. Examples of goals for a factory cell could be to maximize
production performance, minimize waiting time and raw materials, etc.

Group goal: a group goal is used to represent a goal that emerges from a group
of agents in an abstract agent and so can not be assigned directly to any of those
agents. For example, let’s consider a machine holon with the goal o1 = to produce a
new product A every 3 minutes, and a seller holon with the goal o2 = to sell a product
A 2 minutes after it was produced. And let’s suppose the two holons are in a group
with the group goal ogroup= to lead the market sell of product A. This group goal is
achieved by goals o1 and o2 but cannot be associated to either of the two holons.

Belief : a belief is the mental entity that models the idea that an agent has about
its surroundings. Examples of beliefs in a machine holon are: the next product in

5.2 Basic Modeling Entities 65

the waiting queue, the time elapsed from the last product change, the amount of
materials left, etc. A belief is graphically depicted by a cloud in Fig. 5.4.

Abstract Belief : an abstract belief is used to model the belief of an abstract agent.
It may be decomposed into agents beliefs or group beliefs.

Group Belief : a group belief is used to model the belief of an abstract agent when
it is an organization (a holarchy).

Task: a task is used to model the capabilities of an agent. A task represents a
functionality of the agent. An agent can modify its environment by means of tasks.
Example of tasks associated with a work-order holon could be to get production re-
sources, to control work orders, to resume a production plan, to execute a production
order, etc. A task is graphically represented as depicted in Fig. 5.4.

Work Flow: a work flow is a set of tasks that are executed in a given order by
many agents. A work flow is defined within an organization. It is used to model
the way in which the organization or its member agents implement the functionality
they have. It can also model a plan to fulfill some goal. Example of work flows
associated with a warehouse organization are, to track raw materials, to control raw
material order, etc.

Abstract Task: an abstract task is used to represent an abstract agent capability. It
can be a task (when the abstract agent is a single agent) or a work flow (when the
abstract agent is a group of agents). An abstract task is graphically represented as
depicted in Fig. 5.4.

Interaction: an interaction is used to specify dependencies among abstract agents
and to define their behavior. An interaction shows what the reaction of an abstract
agent is to a given event, message, environment status, etc. It also shows how an
abstract agent’s behavior is related to its goals and tasks. An interaction is specified
using the following elements:

• The participating actors, that is the different abstract agents involved in the in-
teraction. In any given interaction there is an initiator actor and one or more
collaborator actors.

• The definition of the interaction units. An interaction unit can be a message or an
event. An interaction unit details who executes it (the abstract agent that initiates
it), who collaborate with it (the abstract agent to which the interaction unit is
sent), and what tasks are executed in the interaction unit.

• An ordering definition on the interaction units that may up the interaction.
• The actions (tasks) that are executed in the interaction. This involves the spec-

ification of when a task has to be executed, and the consequences of executing
it.

• The interaction context, that is the specification of what happens in the system
when the interaction starts, while it is executing, and when it has finished.

The complete specification of an interaction is detailed in Sect. 5.5.

Application: an application is used to model all those services that are outside
of the HMS, and are not implemented by any autonomous entity. An application is

66 5 ANEMONA Notation

used to interact with software systems that are already implemented or are outside
of the HMS being modeled. Examples of applications are, a database system that
manages the bank accounts of the company, a communication system that is used
for intercompany information exchange, the Internet, etc.

Resource: a resource is a software/hardware element that is necessary for HMS
execution. Resources can be: a data file, an execution thread, memory, input devices,
output devices, information storage units, sockets, bandwidth, etc.

Event: an event models changes in the environment that were perceived by an
abstract agent. An event is graphically represented as in Fig. 5.4. Examples of events
associated with a conveyor belt are: the product x is entering the belt, the product x
is just in front of machine z, the product x is exiting the belt, etc.

5.3 Agent Model

The agent model specifies all the details of the abstract agents that make up the
HMS. It is used to model the abstract agents’ autonomy, intelligence and conceptu-
alization. The agent model of a given HMS is a set of agent diagrams. Every abstract
agent is specified by means of an agent diagram. The allowed entities in an agent
diagram are: abstract agent, agent, role, abstract goal, goal, abstract belief, belief,
abstract task, and task. Also, the relationships among these entities are specified.

<<Object>>
A-Agent

<<Object>>
Agent

<<Relationship>>
GTPursue

<<Object>>
A-Goal

<<Relationship>>
GTPursue

<<Object>>
Goal

<<Object>>
Group Goal

1..*

1..*

<<Relationship>>
WFPursue

<<Role>>
RWFPursuesO

1..*

<<Relationship>>
WFPursue

<<Role>>
RWFPursueO

1..*

<<Object>>
Role

<<Relationship>>
Play

1..*

<<Property>>
Identity

1

Fig. 5.6 Agent metamodel: role, abstract agent and goals

5.3 Agent Model 67

5.3.1 Abstract Agent and Role

A role is used to group a set of autonomous entity functionalities or responsibilities.
A role has a name and a set of goals and tasks associated with it (Sect. 5.7). The
play relation is used to bind a role to an abstract agent or to an agent (Fig. 5.7).
This relationship means that the abstract agent is responsible to fulfill the goals,
to execute the tasks, and has the mental state associated to the given role. Also
to these entities inherited from the role it plays, the abstract agent may have its
own goals, tasks, and mental state (in the following sub-sections these relationships
are explained). Figure 5.6 shows the metamodel specification of the play relation
between an abstract agent and a role. An abstract agent can play one or more roles
when participating in organizations.

A

Abstract
Agent Role RoleAgent

Play Play

Fig. 5.7 Play relation

Figure 5.12 shows the play relation between a factory holon and a production
manager role.

5.3.2 Abstract Agent, Role and Goal

The abstract agent autonomy is specified by means of abstract goals. An abstract
agent acts in order to fulfill its goals. Figure 5.6 shows the metamodel specification
of the relationship GTPursues among goals and agents (Fig. 5.8). Figure 5.6 also
states that to be autonomous an abstract agent must at least have an abstract goal
associated with it.

A

Abstract
Agent

Agent

GTPursue

GTPursue

Role

A

Abstract
Goal

Goal

A

Abstract
Goal

Role Goal

WFPursue

WFPursue

Fig. 5.8 GTPursue and WFPursue relations

68 5 ANEMONA Notation

5.3.3 Abstract Agent and Belief

The abstract agent information structure is built specifying the beliefs it has. In order
to do this, the abstract agent is related to belief entities by means of the AContainE
relation (Fig. 5.9). Figure 5.10 details the metamodel specification of the relation
AContainE among a mental state entity and abstract agents.

A

Abstract
Agent

Agent

AContainE AContainE

BeliefAbstract
Belief

A

Fig. 5.9 AContainE relation

5.3.4 Abstract Agent, Role and Task

The abstract agent’s capabilities are specified with a set of tasks that it is able to
execute. The abstract agent and the tasks bound to it are modeled by means of the
AResponsible relation (Fig. 5.11). Figure 5.10 details the metamodel specification
of the AResponsible relation among an abstract task or task entity and an abstract
agent or agent. In order to be an autonomous entity it has to be related to at least one
task or abstract task. The task entity is explained in detail in Sect. 5.4.

<<Object>>
A-Agent

<<Object>>
Agent

<<Object>>
Role

<<Relationship>>
Play

1..*

<<Property>>
Identity

1

<<Relationship>>
AHaveManagerEM

<<Object>>
Mental State Manager

<<Property>>
GRASIA Description

<<Object>>
A-Mental State

<<Relationship>>
AHaveEM

1

<<Relationship>>
AHaveProcessorEM

<<Object>>
Mental State Processor

1

<<Relationship>>
AResponsible

<<Role>>
RWFResponsibleO

1

<<Relationship>>
WFResponsible

1

<<Object>>
A-Task

1..* 1..*

<<Relationship>>
GTAffect

<<Object>>
Mental Entity

1..*

1..*

<<Object>>
Task

<<Object>>
WorkFlow

<<Relationship>>
WFResponsible

<<Relationship>>
WFResponsible

<<Role>>
RWFResponsibleO

1

1

1..*

1..*

Fig. 5.10 Agent meta-model: roles, abstract agents, beliefs, and tasks

5.3 Agent Model 69

A

Abstract
Agent

Agent

AResponsible

AResponsible

Role

Role

WFResponsible
A

Abstract
Task

Task

WFResponsible

A

Abstract
Task

Task

Fig. 5.11 AResponsible and WFResponsible relations

A role entity may have responsibilities as well, which are specified using the
WFResponsible (Fig. 5.11). This relation models the functions of the role into the
organization it is involved in.

Figure 5.12 shows a sample agent diagram for a general and simplified factory
holon. The factory holon is modeled as an abstract agent because it is complex. It
models the whole factory that is composed of a set of lower-level agents (the details
of the factory holon is discussed in Chap. 8). The factory holon Plays the production
manager role and pursues a set of abstract goals by means of the GTPursue relation.
These abstract goals will be decomposed or refined in more specific goals, when the
internal structure of the factory holon is described. The factory holon groups its
beliefs into the information structure mental state entity by means of the AContainE

A

Factory
Holon

A

Execute Schedule

A

Get resource status

A
Control Manufacturing

Process

A

To control factory

A

Get Raw Material

A

Send Finished Product to
warehouse

A
Accept Production

Order

A
Abort Manufacturing

Process

A
Resume Manufacturing

Process
A

Pause Manufacturing
Process

AResponsible AResponsible

AResponsible

AResponsible

AResponsible

AResponsible

AResponsible

AResponsible
AResponsible

GTPursue

A

To optimize
production

GTPursueA

To cooperate with
Planning Holon

GTPursue

A

Products Catalog

A

Current Work Order

A

Available Factory
Resources

A

Work order and finished
lots registry

Information
Structure

A

AHaveEM

AContainE

AContainE

AContainE

AContainE

Production Manager

Play

Fig. 5.12 A sample agent diagram

70 5 ANEMONA Notation

relation. A mental state entity is used to group the beliefs of an autonomous entity.
A sample list of abstract tasks related to the factory holon can also be seen in this
figure. Chapter 8 presents more sample agent diagrams.

5.4 Task/Goal Model

The task/goal model is used to specify the motivation of the HMS. It defines the
actions identified in the organization model (Sect. 5.7), the interaction model (Sect.
5.5) and the agent model (Sect. 5.3). The task/goal model tries to specify the con-
sequences of executing these tasks and why they have to be executed. The actions
executed by an autonomous entity are motivated by the goals it pursues. This model
is intended to specify the relations among the goals of an autonomous entity and the
tasks this autonomous entity can perform.

A task can be seen as a transformation in the global system state, an event re-
sponse, a process, a physical action or a command. A goal is used in ANEMONA to
specify reasoning processes for decision making on different alternatives for agent
actions in a given situation.

The task/goal model of a given HMS is a set of task/goal diagrams. In the
task/goal model all of the HMS identified tasks have to be specified, stating the goal
or goals that motivate the task, the effects of executing the task, the decomposition or
not of the task, the goal composition or decomposition and the dependencies among
the goals. The entities allowed in a task/goal diagram are: abstract task, task, work
flow, abstract goal, goal, group goal, agent, abstract agent and role. The following
relations can also be used.

5.4.1 Abstract Agent, Task and Goals

Figure 5.13 presents the relations allowed among abstract agents, roles, abstract
tasks, tasks, abstract goals, goals, and group goals. These relations have already
been described in the agent model and are used in the same way. The real-time
characteristics of the functioning of a HMS are specified by means of real-time task
and goals.

A real-time task [136], Fig. 5.13, is usually associated to the factory floor ma-
chine resources, and its controlling operation. A real-time task is one in which its
successful execution is not only determined by its correct results but also by the time
in which those results are obtained. In order to model a real-time task in a task/goal
diagram the following properties must be specified: the task type, its Max dead-
line, and if it is periodic. These properties are optional and are used only when the
task has real-time features. For a nonreal-time task these properties are left blank.
The Task type defines if the task has hard real-time characteristics or (soft) real-time
characteristics and, if it is periodic or aperiodic. A hard real-time value of this prop-

5.4 Task/Goal Model 71

erty means that if the time constraints are not adhered to the results of the task are
not useful so far. In this case the system may collapse. A soft real-time value means
that it is desirable to adhere to the time constraint but if it cannot it only means that
the result will be poorer than the first case. The Max deadline defines the max time
allowed to get a result from the task. The Period property defines the time interval
in which the task is executed when it is a periodic task.

A real-time goal [136], Fig. 5.13, is used to specify goals associated to holons that
control machine resources or communication interactions with time constraints. In
order to model a real-time goal the following properties are defined: max deadline
and goal type. The max deadline property is used only when the goal has real-
time constraints, otherwise it is left blank. It is used to specify the maximum time
available in order to fulfill the goal. The goal type property may have the values:
hard, soft or normal. Its default value is normal and is not depicted graphically. It is
used when there is no time constraint associated with the goal. The hard value means
that it is a goal with hard real-time characteristics, and the soft value means that the
time constraint is only desirable but not crucial. When working with real-time goals
and real-time tasks, the max deadline of a real-time goal constrains the max deadline
of the task that satisfies that goal. In other words, the task max deadline has to be
lower than or equal to the goal max deadline.

Let’s take, for example, a controlling part for the heating functionality of a ce-
ramic tile oven holon. The following hard-time constraint is associated to the heating
control function: “The product’s cooking temperature of 100 degrees Celsius cannot

<<Object>>
Mental Entity

<<Object>>
Control Mental Entity

<<Relationship>>
GTAffect

<<Object>>
A-Task

<<Object>>
A-Goal

<<Relationship>>
GTPursue

<<Object>>
A-Agent

<<Object>>
Agent

<<Object>>
Organization

<<Relationship>>
WFPursue

<<Role>>
RWFPursueO

<<Object>>
Role

0..*

1

1..*

1..*

1

1
<<Object>>

Goal

<<Object>>
Group Goal

<<Relationship>>
GTPursue

1..*

1

<<Relationship>>
WFPursue

<<Role>>
RWFPursueO

1

1..*

<<Object>>
Task

<<Object>>
WorkFlow

<<Relationship>>
GTAffect

1

0..*

<<Property>>
Max Deadline

<<Property>>
Goal Type

<<Property>>
Task Type

<<Property>>
Max Deadline

<<Property>>
Period

Fig. 5.13 Task/Goal metamodel: abstract agent, task and goal

72 5 ANEMONA Notation

Oven Holon

Cooling

Hard, wcet = 5 min
Hard, Periodic,
Period = 1 min,
wcet = 5 min

Do not maintain a critical hot condition
above the threshold

GTPursue
WFResponsible

GTSatisfy

Fig. 5.14 A sample task/goal diagram with one real-time task and one real-time goal associated to
an oven holon

be exceeded for more than 5 minutes in the cooking process”. In order to model it, a
cooling task is defined as hard and periodic, with the max deadline (wcet) of 5 min,
and a period of 1 min. The real-time goal associated to this task is “do not maintain
a critical hot condition above the threshold”. This goal is defined as hard, and with
the max deadline (wcet) of 5 min. The specification of this example is illustrated in
Fig. 5.14.

5.4.2 Task, Goals and Beliefs

Figure 5.13 defines the relation GTAffect among abstract tasks and abstract goals.
GTAffect is used in order to model the autonomous behavior of an autonomous en-
tity. In other words, the tasks are executed in order to “affect” the mental entities

<<Relationship>>
GTAffect

<<Relationship>>
GTModify

<<Relationship>>
GTDestroy

<<Relationship>>
GTCreate

<<Relationship>>
GTAffectGoal

<<Relationship>>
GTSatisfy

<<Relationship>>
GTFail

<<Role>>
RGTAffectGoalD

<<Object>>
A-Goal

Fig. 5.15 Task/goal metamodel: task, goal, and belief relations

5.4 Task/Goal Model 73

GTSatisfy

GTSatisfy

A

Abstract
Goal

Goal

A

Abstract
Goal

Goal

GTFail

GTFail

A
Abstract

Task

Task

A
Abstract

Task

Task

GTDestroy

GTDestroy

GTCreate

GTCreate

A
Abstract

Task

Task

A
Abstract

Task

Task

A

A

Abstract
Belief

Abstract
Belief

Belief

Belief

GTModify

A
Abstract

Task

Task

A

Abstract
Belief

Belief

GTModify

Fig. 5.16 GTSatisfy, GTFail, GTModify, GTCreate and GTDestroy relations

of the abstract agent that executes them. The mental entities modification of other
abstract agents is modeled by means of interaction diagrams (Sect. 5.5).

The GTAffect relation is specialized in the relations presented in Fig. 5.15.
These relations are graphically represented as in Fig. 5.16. GTSatisfy is used to
specify that a task/abstract task satisfies a given goal/abstract goal. GTFail is
used to model the situation when the execution of a task/abstract task causes the
goal/abstract goal to fail. On the other hand, the relations GTModify, GTCreate and
GTDestroy are used among tasks and beliefs. GTModify specifies that a task/abstract
task modifies the value of a given belief/abstract belief. GTCreate means that the ex-
ecution of a task/abstract task creates a given belief/abstract beliefs, and GTDestroy
represents the destruction of the given belief/abstract belief by the task/abstract task.
Figure 5.23 illustrates these relations in a sample task/goal diagram.

5.4.3 Task Specification

In order to specify a task or an abstract task the software engineer may use the
previously defined relation GTAffect and the relations WFConsume, WFUse and
WFProduce (Fig. 5.17). These relations are used as shown in Fig. 5.18.

WFConsume is used to model preconditions. Its semantic is that in order to exe-
cute a given task, abstract task or work flow, it needs a given belief, abstract belief
and/or resource as a precondition. The relation WFUse is also used to specify task
preconditions. In this case it models the fact that there is a need for an application
in the task, abstract task or work-flow execution. On the other hand, the WFProduce
relation is used to specify the effects of a task. These effects could be a resource
availability, or an interaction execution. The GTAffect relation can also be used to
specify postconditions. Its semantic is defined in the sub-section above.

74 5 ANEMONA Notation

<<Object>>
A-Task

<<Relationship>>
WFConsume

<<Role>>
RWFConsumeD

<<Object>>
Resource

<<Object>>
Mental Entity

<<Relationship>>
WFUse

<<Relationship>>
WFProduce

<<Object>>
Application

<<Role>>
RWFProduceD

<<Object>>
Mental Entity

<<Object>>
Resource

<<Object>>
Interaction

<<Object>>
Task

<<Object>>
WorkFlow

<<Relationship>>
WFDecompose

<<Role>>
WFDecomposeO

2..*

<<Relationship>>
WFDecompose

<<Role>>
WFDecomposeO

2..*

Fig. 5.17 Task/goal metamodel: task specification

A complex task or an abstract task can be decomposed into simpler sub-tasks in
order to make the process of implementing it easer. A complex task can be useful

WFUse

WFUse

WFUse

A
Abstract

Task

Task

WFConsume
A

Abstract
Belief

WFConsume

A
Abstract

Task

Task

A

Abstract
Belief

Belief

WFConsume

Name

Application

Name

Application

Name

ApplicationWorkFlow

WorkFlow

WFConsume

WFConsume

WFConsume

WorkFlow

Resource

Resource

Resource

Task

A
Abstract

Task

WFProduce

WFProduce

WFProduce

WorkFlow

Task

A
Abstract

Task Resource

Resource

Resource

WFProduce

WFProduce

WFProduce

WorkFlow

Task

A
Abstract

Task Interaction

Interaction

Interaction

Fig. 5.18 WFConsume, WFUse, and WFProduce relations

5.4 Task/Goal Model 75

Abstract
Task

A

WFDecompose

A
Abstract

Task
TaskWorkFlow

WFDecompose

A
Abstract

Task
TaskWorkFlow

WorkFlow

WFDecompose

Task

Task

Task

Fig. 5.19 WFDecompose relation

at a given abstraction level in which the focus is not task specification but task
interaction with other modeling elements such as goals, agents, interaction scenarios
etc. Nevertheless, when the modeling focus is task specification, the complex task
has to be decomposed in order to define its insights. This is done using the relation
WFDecompose. Figure 5.17 shows that this relation is allowed between abstract
tasks. That is, an abstract task can be decomposed into abstract tasks, tasks or work
flows. A work flow can also be decomposed into abstract tasks, tasks, and work
flows, while a task can only be decomposed into other tasks. Figure 5.19 shows the
graphical representations of all these cases.

5.4.4 Goal Decomposition and Goal Dependencies

Goal specification plays a very important role in the modeling of autonomous en-
tities. In order to specify goals the system engineer needs a mechanism to build

<<Relationship>>
GTDepend

<<Relationship>>
GTDependAnd

<<Relationship>>
GTDependOr

<<Object>>
A-Goal

<<Object>>
Goal

<<Object>>
Group Goal

<<Relationship>>
GTDecompose

<<Role>>
RGTDecomposeO

<<Role>>
RGTDecomposeD

<<Relationship>>
GTDepend

<<Role>>
RGTDependO

<<Role>>
RGTDependD

<<Relationship>>
GTDecompose

<<Role>>
RGTDecomposeO

<<Role>>
RGTDecomposeD

<<Relationship>>
GTDepend

<<Role>>
RGTDependO

<<Role>>
RGTDependD

1

2..*

1

2..*
1

1..*

1

1..*

<<Relationship>>
GTDecompose

<<Relationship>>
GTDecomposeAnd

<<Relationship>>
GTDecomposeOr

Fig. 5.20 Task/goal metamodel: goal specification

76 5 ANEMONA Notation

GTDecomposeAnd

A

Abstract
Goal

A

Abstract
Goal Goal

C

Group
Goal

GTDecomposeOr

A

Abstract
Goal

A

Abstract
Goal Goal

C

Group
Goal

GTDecomposeAnd

Goal

Goal Goal

GTDecomposeOr

Goal

Goal Goal

GTDecomposeAnd

C

Group
Goal

A

Abstract
Goal Goal

C

Group
Goal

GTDecomposeOr

C

Group
Goal

A

Abstract
Goal Goal

C

Group
Goal

Fig. 5.21 GTDecomposeAnd and GTDecomposeOr relations

the structural aspects of the goals and the dependencies among them. In addition
to the relations already described, there are goal-associated relations that can be
used to specify the goal structure that makes up the motivational mental state of an
autonomous entity. These relations are described in Fig. 5.20. There are basically
two relations: GTDepend and GTDecompose. They are used among abstract goals,
group goals, and goals.

GTDecompose is used to decompose complex goals into simpler sub-goals. This
relation is a little different from the WFDecompose relation for complex tasks. GT-
Decompose is refined into GTDecomposeAnd and GTDecomposeOr (Fig. 5.21).
These relations are used to specify that a complex goal can be implemented by
different sub-goals. GTDecomposeAnd is used to specify that the fulfillment of the
complex goal imposes the fulfillment of all the sub-goals into which it is decom-
posed. While GTDecomposeOr is used when, in order to fulfill the complex goal,
only the fulfillment of a set of sub-goals is required, not all of them. The sub-goals
that configure this set are specified using the GTDepend relation.

The relation GTDepend is used to specify that the fulfillment/failure of one goal
affects the fulfillment/failure of another goal. In other words, when a goal oa is ful-
filled/failed, the goal ob associated with it by means of GTDepend is fulfilled/failed
automatically. GTDepend is refined in GTDependAnd and GTDependOr (Fig. 5.22).
GTDependAnd is used to specify that when all the goals {o1,o2, ...,oi} associated
with a given goal ox are fulfilled then the goal ox is also fulfilled. GTDependOr
is used to specify that in order to fulfill ox the fulfillment of only one goal of
{o1,o2, ...,oi} is needed. These relations are also used to specify failures in the goal
ox. When the relation used is GTDependAnd, the semantic is as follows: if any goal
of {o1,o2, ...,oi} fails this causes ox to fail. On the other hand, the relation GTDe-
pendOr implies that for ox to fail, it is necessary for all of the {o1,o2, ...,oi} goals
to fail.

5.4 Task/Goal Model 77

A

Abstract
Goal

A

Abstract
Goal

Goal

C

Group
Goal

A

Abstract
Goal

A

Abstract
Goal

GTDepend

GTDepend

GTDepend

Goal Goal

GTDepend

C

Group
Goal

A

Abstract
Goal

Goal

C

Group
Goal

C

Group
Goal

C

Group
Goal

GTDepend

GTDepend

GTDepend

GTDependAnd

A

Abstract
Goal

A

Abstract
Goal Goal

C

Group
Goal

GTDependAnd

Goal

Goal Goal

GTDependAnd

C

Group
Goal

A

Abstract
Goal Goal

C

Group
Goal

GTDependOr

A

Abstract
Goal

A

Abstract
Goal Goal

C

Group
Goal

GTDependOr

Goal

Goal Goal

GTDependOr

C

Group
Goal

A

Abstract
Goal Goal

C

Group
Goal

Fig. 5.22 GTDepend, GTDependAnd and GTDependOr relations

Figure 5.23 shows a sample task/goal diagram of a general factory holon. In this
figure we can see some sample instances of the relations described above for tasks
and goals.

Get resource
state

A
Control

Manufacturing

A

To Control
Factory

Get raw material

Accept Work
Order

A

Abort Manufacturing

A

Resume Manufacturing

A

Pause Manufacturing

A

Production
Optimization

A

To Cooperate with
Planning Holon

To maximize
resource utilization

To minimize lot
changing time To minimize raw

material loss

To Minimize finished
product exit time from
factory to warehouse

GTDecomposeAnd

GTSatisfy
GTSatisfy

GTSatisfy

GTSatisfy

GTSatisfy

GTSatisfy

GTSatisfy

A
Control Drying

Process
A

Control Glazing
Line

A

Control Ovens

A
Control Classifying

Process

A
Control

Maintenance

WFDecompose
Start Schedule

Start Manufacturing
Order

Get
Resource

Process
Work Order

WFDecompose

GTSatisfy

GTSatisfy
GTSatisfy

A

Send finished
product to warehouse

Fig. 5.23 A sample task/goal diagram of a general factory holon

78 5 ANEMONA Notation

5.5 Interaction Model

The interaction model is used to specify the dynamic behavior of the HMS. This
behavior is social, autonomous, reactive and proactive. In order to model this kind
of HMS behavior an interaction model is composed of abstract agents, roles, goals,
tasks, interactions and interaction units. The abstract agents and the roles are the
interactions actors. In an interaction, interaction units, in which an initiator (sender)
cooperates with a set of collaborators (receivers), are executed. Moreover, the ac-
tors participate in interactions in order to fulfill their goals. The interactions specify
behavior of the abstract agents. This behavior may be: an abstract agent’s response
to a given action on itself (reactive behavior), or; a function on the abstract agent’s
goals and tasks (proactive behavior).

The interaction model is very important and useful in ANEMONA. Firstly, it
is a tool by which the system engineer may express: the dynamics of the modeled
system, the communication among the different system entities, the coordination
and behavior of these entities. Secondly, the system engineer can define interaction
scenarios in which the participating entities (abstract agents) may have different
complexity levels (agent, agent group, organization, multi-agent system). Thirdly,
the interaction scenarios can be used as integration patterns of HMSs encapsulated
into abstract agents. Fourthly, the abstract agent encapsulation allows us to abstract
away from complex details in order to facilitate and focus attention on the inter-
action’s context, nature and execution depending on the problem at hand. Fifthly,
the interaction scenarios associated to an organization, constitute the abstract agent
behavior specification that, in a higher abstraction level, represent that organization.

<<Object>>
Interaction

<<Property>>
Nature

<<Graph>>
Specification

<<Relationship>>
IPursue

<<Object>>
A-Goal

<<Relationship>>
ICooperate

<<Relationship>>
IStart

<<Role>>
RICooperateD

<<Role>>
RIStartD

<<Object>>
A-Agent

<<Object>>
Role

<<Relationship>>
WFPursue

<<Relationship>>
GTPursue

1..*

Fig. 5.24 Interaction metamodel: interactions, abstract agents, roles and goals

5.5 Interaction Model 79

5.5.1 Interactions, Abstract Agents, Roles and Goals

The metamodel of Fig. 5.24 defines some of the entities, and relationships among
them, allowed in an Interaction diagram. In this figure we can see that in order to
specify an interaction the system engineer has to model the goals/abstract goals that
the interaction pursues (IPursue), the participating entities (roles or abstract agents)
by means of the IStart and ICooperate relations, and, at the same time, the goals
that make these autonomous entities participate in the interaction (WFPursue and
GTPursue. These relations are described in Sections 5.3 and 5.4).

The relation IStart states which role/abstract agent initiates the interaction. The
motivation of this autonomous entity to do this is modeled by the relations WFPur-
sue and GTPursue. The relation ICooperate specifies which roles/abstract agents
cooperate in the interaction. These autonomous entities may also fulfill their goals
participating in the interaction. This fact is modeled by the relations WFPursue and
GTPursue. These relations are graphically represented, as depicted in Fig. 5.25.

A

Abstract
Agent

Role

Agent

Interaction

Interaction

Interaction

IStart

IStart

IStart

A

Abstract
Agent

Role

Agent

Interaction

Interaction

Interaction

ICooperate

ICooperate

ICooperate

A
Interaction

Interaction

C
Interaction

IPursue

IPursue

IPursue

Abstract
Goal

Goal

Group
Goal

Fig. 5.25 IStart, ICooperate, and IPursue relations

Let’s imagine a simplified interaction on a factory floor for a work-order schedul-
ing (Fig. 5.26). This interaction is initiated by a work-order holon (relation IStart)
that is in charge of the execution of the work order, and has the goal “to mini-
mize the work order starting time” and the goal “to get the work order produced on
time”. These goals motivate the work-order holon to start the interaction (relation
GTPursue). At the same time the interaction pursues the goal “to get the work order
produced on-time” (relation IPursue). In order to fulfill the goals in this interac-
tion the cooperation of the machine controller role, the product manager role and
the raw material role (relation ICooperate) is needed. At the same time, these roles
have their own goals that motivate them to cooperate in the interaction.

80 5 ANEMONA Notation

Work
Order

Work-order
Scheduling

IStart

Machine
Controller

Product
Manager

Raw Material
Manager

To get the work order
produced on time

GTPursue
IPursue

To minimize the work
order time to get

initiated
GTPursue ICooperate

ICooperate

ICooperate

A

To minimize the
machine idle time

WFPursue

To get produced

WFPursue

To get raw material
consumed

WFPursue

Fig. 5.26 A sample interaction for a simplified work-order scheduling scenario

5.5.2 Interactions, Interaction Units, Abstract Agents, Roles and
Tasks

In order to communicate with each other, the participating entities of an interaction
exchange interaction units. Figure 5.27 summarizes the constraints and relations
used to model an interaction unit.

<<Object>>
Interaction

<<Graph>>
ANEMONA

Specification

<<Object>>
Mental State

Pattern

<<Property>>
Mental State

Execution

<<Relationship>>
UICooperate

<<Relationship>>
UIStart

<<Role>>
RUICooperateD

<<Role>>
RUICooperateO

<<Role>>
RUICooperateExecutionD

<<Role>>
RUIStartD

<<Role>>
RUIStartO

<<Role>>
RUIStartExecutionD

<<Object>>
A-Agent

<<Object>>
Role

<<Object>>
A-Task

<<Object>>
Interaction

<<Object>>
Interaction Unit

<<Object>>
A-Agent

<<Object>>
Role

<<Object>>
A-Task

<<Object>>
Interaction

<<Object>>
Interaction Unit

1..* 1 0..*

1

1

0..*

0..*

0..*
1..*

<<Graph>>
Specification

<<Property>>
Time Stamp /

Condition

Fig. 5.27 Interaction metamodel: interactions, interaction units, abstract agents, roles and tasks

5.5 Interaction Model 81

A

Abstract
Agent

UIStart

Interaction
Unit

Agent

UIStart

Interaction
Unit

Role

UIStart

Interaction
Unit

A

Abstract
Agent

UICooperate

Interaction
Unit

Agent

UICooperate

Interaction
Unit

Role

UICooperate

Interaction
Unit

Fig. 5.28 UIStart and UICooperate relations

An interaction unit can be a message-passing, or remote procedure call. Interac-
tion units and tasks/abstract tasks are used to specify the execution of the interaction.
An interaction is executed when the participating entities communicate with each
other by means of interaction units and when the participating entities execute their
related task/abstract tasks. Figure 5.28 illustrates the graphical representation of the
relations UIStart and UICooperate. These relations are used to identify the interac-
tion unit sender and receiver entities. A sample interaction diagram is presented in
Fig. 5.30.

<<Graph>>
Specification

<<Object>>
UIConcurrent

<<Object>>
Interaction Unit

<<Object>>
UIIteration

<<Relationship>>
Precede

<<Relationship>>
Bifurcate

<<Property>>
UIs

<<Object>>
Interaction Unit

<<Property>>
IterationCondition

<<Property>>
UIs

<<Role>>
RPrecedeO

<<Role>>
RPrecedeD

<<Role>>
RBifurcateO

<<Role>>
RBifurcateD

<<Object>>
Interaction Unit

<<Object>>
Interaction Unit

<<Object>>
Interaction Unit

<<Object>>
Interaction

<<Object>>
Interaction

1..*

units

iterateWhile

1..*

1

1..*

2..n

1

units

Fig. 5.29 Interaction metamodel: interaction specification

82 5 ANEMONA Notation

5.5.3 Interaction Specification

In order to complete the specification of an interaction, an order of execution of the
set of interaction units that made up the interaction has to be defined. This is done
as detailed in the metamodel definition of Fig. 5.29.

There are basically four types of relations for defining the interaction units’ ex-
ecution order. The relation precede defines interaction units’ sequences. Let A and
B1, ...,Bn be interaction units. A Precede relation among A and (B1, ...,Bn) implies
that the interaction unit A is always executed before any Bi. The relation bifurcate
is used to model precedence conditions among a group of interaction units. That
is, a Bifurcate relation among A and (B1, ...,Bn) implies that only one Bi will be
executed after A. Which Bi will be executed depends on the mental state of the in-
teracting autonomous entities. The UIIteration defines the iterative execution of a
set of interaction units. When the concurrent non-deterministic execution of a set
of interaction units is needed, concurrent is used. A sample interaction diagram is
presented in Fig. 5.30.

A
To get Raw

Material

WFPursue

Raw Material WareHouse
Manager

Production
Manager

A

To Cooperate with
Production Manager

WFPursue

Request type and quantity
of raw material

Request Accepted

Request Rejected

Request Processed

New Request

UIStart

UIStart

UIStart

UIStart

UIStart
UICooperate

UICooperate

Request type and quantity
of raw material

Request Accepted Request Processed

Request Rejected New Request

UIPrecede

UIPrecede UIPrecede

UIPrecede
UIPrecede

UICooperate

UICooperate

UICooperate

Fig. 5.30 A sample specification of the simplified interaction raw material request

5.6 Environment Model 83

<<Object>>
A-Agent

<<Object>>
Organization

<<Relationship>>
OContain

<<Object>>
WorkFlow

<<Relationship>>
WFContain

<<Object>>
Task

<<Relationship>>
GTAffect

<<Object>>
A-Goal

<<Relationship>>
IPursue

<<Object>>
Interaction

<<Object>>
Goal

<<Object>>
Group Goal

<<Relationship>>
GTDecompose

<<Role>>
GTDecomposeD

<<Role>>
GTDecomposeO

1..*

0..*

<<Relationship>>
GTPursue

<<Relationship>>
GTAffect

Fig. 5.31 Interaction metamodel: interactions and organizations

These relations are also used to concatenate interactions that have to be executed
in a given order. Building complex interaction scenarios by composing simpler pre-
defined interactions can be useful.

5.5.4 Interactions and Organizations

Interactions are executed within the context of organizations structures. In other
words, autonomous entities populate organizations and participate in interactions in
order to fulfill their own goals, as well as the organization’s goals. Figure 5.31 shows
the metamodel specification of the relations in an organization and the interactions
that are associated to its autonomous entities. Here we can see that the nexus is
defined by the goals that are bound to the organizations and to the interactions.

5.6 Environment Model

The environment model is used to specify the environment entities with which the
HMS autonomous entities may cooperate. It also specifies the constraints associated
to these interactions. The environment model is defined by resources, applications
and abstract agents, and focuses on the abstract agent’s perceptions and actions in
its environment.

An environment resource is defined by the metamodel diagram of Fig. 5.32. A
resource can be consumable or not consumable. A resource may belong to an ab-
stract agent (relation EResourceBelongsTo). An abstract agent may use applications

84 5 ANEMONA Notation

<<Object>>
Application

<<Property>>
Method

<<Object>>
MethodSignature

<<Property>>
Parameter

<<Property>>
Output

<<Property>>
MethodName

<<Property>>
Precondition

<<Property>>
Postcondition

1..*

<<Object>>
A-Agent

<<Relationship>>
EPerceive

<<Property>>
Method

<<Role>>
REResourceBelongsToD

<<Relationship>>
EResourceBelongsTo

<<Object>>
Resource

<<Property>>
State

<<Property>>
Lower

Threshold

<<Property>>
Upper

Threshold

<<Object>>
Consumable

Resource

<<Object>>
Not

Consumable
Resource

Fig. 5.32 Environment metamodel: resource

in order to fulfill its goals (relation EPerceive). In order to specify how an abstract
agent uses an application the system engineer has to state the application methods
used, including the method name, parameters, output, and pre- and postconditions.
Figure 5.33 shows the graphical representation of these relations.

A

Abstract
Agent

EPerceive

Application

Agent

EPerceive

Application

A

Abstract
Agent

EResourceBelogsTo

Resource

Agent Resource

EResourceBelogsTo

Fig. 5.33 EPerceive and EResourceBelongsTo relations

5.7 Organization Model

The organization model is used to specify the architecture of the HMS. It is com-
posed of a set of organization diagrams in which the organizational structures of
the HMS are described. In an organization diagram the main elements are the work

5.7 Organization Model 85

<<Object>>
A-Agent

<<Relationship>>
GTPursue

<<Property>>
Identity

<<Object>>
A-Goal

1..*

<<Object>>
Organization

<<Relationship>>
OContainA-Agent

<<Role>>
ROContainA-AgentO

0..*

2..*

<<Role>>
ROContainA-AgentD

<<Object>>
Application

<<Object>>
Resource

<<Object>>
Role

<<Relationship>>
AResponsible

1

<<Object>>
A-Task

<<Object>>
Task

<<Object>>
Work Flow

<<Relationship>>
WFDecompose

<<Role>>
WFDecomposeO

2..*

<<Relationship>>
WFDecompose

<<Role>>
WFDecomposeO

2..*

Fig. 5.34 Organization metamodel: organization structure

flows that detail how the organization’s members coordinate their actions in order
to fulfill the system goals. The organization model also defines the constraints in the
holons behavior by means of subordinate relationships.

The HMS structure is modeled specifying the following three complementary
views. The organization structure defines the main elements that make up the orga-
nization and how it is built from them. High-level social relationships constrain its
member’s behavior. The functional definition states what the organization offers to
its users and how it is executed.

5.7.1 Organization Structure

Figure 5.34 shows the main entities and relationships with each other used to spec-
ify the structure of an organization. The fundamental relations are OContainA-Agent
and AResponsible. The OContainA-Agent relation is used to specify the entities that
make up the organization. An organization structure is made up of abstract agents,
roles, resources and applications. These entities populate an organization in order to
execute the work flows that fulfill the organization (system) goals, relation GTPur-
sue (Sect. 5.4). These relations are graphically represented as depicted in Fig. 5.35.
The relation WFDecompose is used to sate what tasks/abstract tasks or in turn work
flows define a given work flow.

86 5 ANEMONA Notation

A

Abstract
Agent

Agent

Resource

Application

Organization

Organization

Organization Organization

Organization

Organization

Organization

Role

OContainA-Agent

OContainA-Agent

OContainA-Agent

OContainA-Agent

OContainA-Agent

OContainA-Agent

Organization WorkFlow WorkFlow

AResponsible A
Abstract

Task

WFDecompose

WorkFlow Task

WFDecompose

WorkFlow

WFDecompose

WorkFlow

Fig. 5.35 OContainA-Agent, AResponsible and WFDecompose relations

5.7.2 Social Relations mong Autonomous Entities

The relations AGOSubordination and AGOClientServer (Fig. 5.36) are used to con-
figure social constraints that limit the interactions among the autonomous entities of
an organization. The entities that can be related to these social relations are organi-
zations, roles, abstract agents and agents.

Relation AGOSubordination forces the subordinate to always obey its major en-
tity (Fig. 5.37). At the same time the major entity can give any order to its subor-
dinate. This relation can be conditional AGOConditionalSubordination or uncondi-
tional AGONotConditionalSubordination. The first one is used in order to specify
relations in which the subordinate is always forced to, regardless of its actual goals.
While the unconditional relation is used in cases in which there is a contract (condi-

<<Relationship>>
AGORelation

<<Relationship>>
AGOSubordination

<<Relationship>>
AGOClientServer

<<Relationship>>
AGONotConditional

Subordination

<<Relationship>>
AGOConditionalS

ubordination

<<Property>>
Subordination

Condition

<<Object>>
Mental State

Pattern

<<Object>>
A-Agent

<<Object>>
Role

<<Role>>
AGORelationD

<<Role>>
AGORelationO

Fig. 5.36 Organization metamodel: social relations among autonomous entities

A

5.7 Organization Model 87

A

Abstract
Agent

AGOSubordination

Agent

A

Abstract
Agent

A

Abstract
Agent

AGOSubordination

Agent

A

Abstract
Agent

AGOSubordination

AgentAgent

AGOSubordination

Role
Agent

AGOSubordination

Role

AGOSubordination

Role

A

Abstract
Agent

AGOClientServer

Agent

A

Abstract
Agent

A

Abstract
Agent

AGOClientServer

Agent

A

Abstract
Agent

AGOClientServer

AgentAgent

AGOClientServer

Role
Agent

AGOClientServer

Role

AGOClientServer

Role

Fig. 5.37 AGOSubordination and AGOClientServer relations

tions). When the contract conditions are not valid then the subordinate is not forced
to obey. The AGOClientServer relation (Fig. 5.37) is used to model relations in
which there is a service provider (server) and a service requester (client).

Factory
Manager Holon A

Pressing and
Glazing
Holon

A

Kiln Holon

A

Classification
Holon

Work Order
Holon

A

Kiln Warehouse
Holon

A

Classification
Warehouse

Holon

A

Maintenance
Holon

A

Supplying Holon

Product Holon

AGOSubordination

AGOSubordination

AGOSubordination

AGOSubordination

AGOSubordination

AGOSubordination

AGOSubordination

AGOSubordination

AGOClientServer

AGOClientServer

AGOClientServer

AGOCliente
Servidor

Fig. 5.38 A sample organization diagram of a factory holarchy

88 5 ANEMONA Notation

Figure 5.38 shows a sample organization diagram in which a factory holarchy is
specified. In this holarchy there are different holons that offer services (client/server
relations) and maintain subordination relations.

5.7.3 Organization unctional efinition

The organization functional definition is specified using work flows. A work flow
specifies how resources are assigned, which steps (tasks/abstract tasks) are neces-
sary to achieve a given goal (GTPursue), and which autonomous entities are respon-
sible for executing them (AResponsible or WFResponsible). Figure 5.39 summarizes
the metamodel specification of these relations.

<<Relationship>>
WFConnect

<<Object>>
A-Task

2..* 1

<<Relationship>>
WFConsume

<<Role>>
RWFConsumeD

<<Object>>
Resource

<<Object>>
Mental Entity

<<Relationship>>
WFUse

<<Relationship>>
WFProduce

<<Object>>
Application <<Role>>

RWFProduceD

<<Object>>
Mental Entity

<<Object>>
Resource

<<Object>>
Interaction

<<Relationship>>
WFSpecifyExecution

<<Relationship>>
WFDecompose

2..*
1

Fig. 5.39 Organization metamodel: work-flow specification

In order to concatenate tasks/abstract tasks and work flows the relation WFCon-
nect can be used. The relations WFConsume, WFUse and WFProduce (Sect. 5.4)
are used to interconnect the inputs and outputs of the work-flow tasks and the exe-
cuting autonomous entities. The WFConnect relation is graphically represented as
is shown in Fig. 5.40.

Figure 5.41 shows a sample organization diagram in which the work flow hol-
archy formation of a pressing and glazing organization is specified. In this figure we
can see the different holons that participate in the work flow and the tasks they are
responsible for. We can also see the task sequence that defines the work flow and
the activation of interactions as a consequence of the execution of certain tasks.

F D

5.8 Conclusions 89

WFConnect
A A

A

A

WFConnect
A

WFConnect

WFConnect

WFConnect

WFConnect

Abstract Task

Abstract Task

Abstract Task

Abstract Task Abstract Task

Task

Task

Task

Task

Task

WorkFlow WorkFlow

WorkFlow WorkFlow

WFConnect

Fig. 5.40 WFConnect relation

WFConnect

Start group formation

Manufacturing
Order Holon

WFResponsible Report resource needed

IStart

ICooperate

A

Report group need to
Resource

WFProduce
WFResponsible

WFConnect
Report new work

Order Holon
WFConnect

IStart

A

Press i Holon

Glaze i Holon

A

Dryer i Holon

A

Conveyor Belt i
Holon

A

ICooperate

ICooperate

ICooperate

Get type of needed
resource

WFConnect

Send resource call A

Evaluate Proposal

A

Accept call

Select ResourceReport Selection

WFResponsible

WFConnect

WFConnect

WFConnectWFConnect

WFResponsible

WFResponsible

WFResponsible

Get Resources
WFProduce

A

Pressing and Glazing
Holon

Fig. 5.41 A sample organization diagram for the work flow holarchy formation of a pressing and
glazing organization

5.8 Conclusions

In this chapter we have presented the ANEMONA notation. Its central modeling
entity is the abstract agent notion presented in Chap. 3. In ANEMONA the HMS
is divided into different views of the system. These views make up the complete
HMS analysis and design specification. These views are: The agent model which is
concerned with the functionality of each abstract agent, responsibilities and capa-
bilities; the organization model, which describes how system components (abstract

90 5 ANEMONA Notation

agents, roles, resources, and applications) are grouped together; the interaction
model, which addresses the exchange of information or requests between abstract
agents; the environment model that defines the non-autonomous entities with which
the abstract agents interacts; and the task/goal model, which describes the relation-
ships among goals and tasks, goal structures, and task structures.

In Chap. 6 the ANEMONA development process is explained. The development
process details how the different ANEMONA models are built and the step-by-step
activities and tasks to develop the HMS.

Chapter 6
ANEMONA Development Process

The development process of a methodology includes a description of the subsequent
development steps, the different activities the engineer has to do, the guidelines that
guide the engineer in the process, and the products that have to be obtained from
the process. In this chapter we describe ANEMONA in terms of these elements. In
order to do so in a standardized fashion we will use the SPEM notation [134] for the
ANEMONA development process and its components. A short overview of SPEM
is presented in Sect. 6.1.

In the following sections we will use a simplified real-life case study from a
supply chain scenario in order to illustrate the development process. This scenario
is from an automotive, transport and service company that provides equipment parts
to its dealers through a network of distribution centers. Section 6.2 presents the
requirement specification of this case study.

The ANEMONA development process deals with the HMS modeling require-
ments by means of the abstract agent notion of Chap. 3, the notation presented in
Chap. 5, and the development guidelines presented in this chapter.

6.1 SPEM

SPEM (software process engineering metamodel) is a notation used to define pro-
cesses and their components [134]. This notation is based on an object-oriented
approach to model a family of related software processes. SPEM provides a min-
imum set of process modeling elements in order to describe any type of software
development process. The process elements of SPEM are described in terms of
UML concepts [137]. A sub-set of UML is used to define SPEM. This sub-set is
the metaobject facility (MOF) [139] that is the kernel of the definition.

SPEM defines a software development process as a collaborative process among
active abstract entities called process roles. A process role executes activities on
concrete and tangible entities called work products. Multiple process roles interact
or cooperate interchanging work products and activating the execution of activities.

91

92 6 ANEMONA Development Process

In other words, the process roles are the system engineer members of the develop-
ment team. The activities are the development steps of the development process.
And the work products are the different models that define the system architecture
of the developed system.

Table 6.1 summarizes the main SPEM notation elements that are used in the
following sections.

Table 6.1 SPEM notation elements

Element Notation Description

Process
Represents a complete process. A set of process descrip-
tions that can be used to define other processes.

Phase
Represents a software development process phase. A spe-
cialization of work definition.

Work definition
Represents a set of tasks. A kind of operation (or complex
task) that describes the work developed in a process.

Work product
Any produced, consumed or modified element of a pro-
cess. It can be an information fragment, a document, a
model, programming code, etc.

Process role
Defines the responsibilities in a given work product and
the roles that execute and help in some activities.

Activity
The major sub-class of work definition. Describes the set
of tasks, operations and actions that are executed by a pro-
cess role.

Document Represents a process-generated document.

Guidance

The guiding elements can be associated to any SPEM
element. They are used to provide more detailed infor-
mation on the associated element. Examples: guidelines,
techniques, metrics, examples, patterns, etc.

Model

Represents the models used in the software development
process. Examples: class model, agent model, conceptual
model, dynamic model, organization model, interaction
model, etc.

Process package
A container that contains and is used to import the process
describing elements.

6.2 A Simplified Supply Chain Case Study

In this section we describe a simplified supply chain case study that is used to illus-
trate the ANEMONA development process. Modeling diagrams from this example

6.3 The Method 93

are included in the different development stages of the following sections. A com-
plete case study is presented in Chap. 8.

An automotive parts supplier provides equipment parts to its dealers in Europe
through a network of distribution centers. This company requires the automation of
its supply chain process. A parts distribution system (PARDI) that will be operated
by its delivery division is required. When a particular part is needed for service,
the dealership will order it through PARDI and the part will be packed and shipped
from a distribution center. Whenever possible, the shipment will be carried out by
the company’s dedicated delivery service. Otherwise, a third-part delivery service
will be used. Requested parts not in stock at the closest distribution center are de-
fined as referral parts. To better meet the specialized requirements of referral parts,
PARDI has to search for ways to drive greater efficiencies and improve the delivery
service of these part to its dealerships. PARDI will also automate the referral parts
distribution process.

When a distribution center receives an order, it will send the referral part to an
order-consolidation center. PARDI will sort the arriving parts by dealership. Multi-
ple parts ordered throughout the day by a single dealership will be consolidated into
one package. PARDI will process the continuous flow of orders, expand the daily
window for ordering capability, and identify the most cost-effective method for de-
livery. Each order’s tracking number will be scanned at key stages of the supply
chain, and the data will be uploaded into the system’s main database. Dealerships
will log onto PARDI and have access to the status of their orders. The tracking data
will also validate key performance metrics for the company, such as consolidation
rates, order cycle times, and costs.

6.3 The Method

The ANEMONA development process is a mixed top-down and bottom-up process.
It is an abstract-agent-oriented method for identifying and specifying holons from a
manufacturing system specification. It offers clear and HMS-specific development
guidelines and deals with the whole HMS life cycle.

Figure 6.1 illustrates the development phases of ANEMONA. The first phase
system requirement analysis and the second phase holon identification and spec-
ification define the analysis stage of ANEMONA (Sect. 6.3.2). The goal of the
analysis stage is to provide a HMS high-level specification from the manufacturing
system requirements (Sect. 6.3.1). The analysis stage follows a top-down recursive
approach. One advantage of such an analysis is that its work products, the analy-
sis models, provide a set of elementary components and a set of composition rules
from which a bottom-up system design can easily be defined (Sect. 6.3.3). The third
phase, holon design, is a bottom-up process in order to produce the system archi-
tecture. The goal of the holon implementation phase (Sect. 6.3.4) is to produce the
system executable code. This code is used in the setup and configuration phase

94 6 ANEMONA Development Process

System Requirement
Analysis

Client/User

Use Case
Diagram

Analysis
Models

System
Architecture

Executable
Code

Requirements

Operation and
Maintenance

SetUp and
Configuration

Holon
Implementation

Holon
Design

Holon Identification and
Specification

ANEMONA Development
Process

Fig. 6.1 The ANEMONA development process

(Sect. 6.3.5) to deploy the HMS. Finally, maintenance functions are carried out in
the operation and maintenance phase (Sect. 6.3.6).

In the following sections we describe the definition of the ANEMONA develop-
ment phases and illustrate their application via the simplified case study of Sect. 6.2.
Chapter 8 shows the detailed development of a complete case study from a ceramic
tile factory.

6.3.1 System Requirement

The requirements specification document describes the manufacturing system’s re-
quirements and its associated control problems. This document is composed of the
following parts (Fig. 6.2):

• Organizational chart. A description of the organizational chart of the company
into which the system will be integrated. This description includes a functional
description of every department in the organization, and the relations and inter-
actions among them.

• Business processes. A description of the manufacturing company’s business pro-
cesses [130].

• System scope. A description of the intended scope of the system in the company.
This description includes the current processes which will be replaced, the new

6.3 The Method 95

Fig. 6.2 The requirement
specification document

Requirement

Organizational
Chart/

Departments

Business
Processes

System
Scope

Processes
to control

Operation
Conditions

Goals

processes that will be added, and how these new processes should interact with
the other manufacturing system components.

• Processes to control. A detailed description of the business processes that will be
controlled by the system, including the available control interfaces [140, 141].

• Operations conditions. A specification of the operation conditions [140, 141].
• Goals. A specification of the system goals and the production requirements [140,

141].

These document parts could have any structure, but in order to get an organized
requirement document we suggest using some semi-formal notations. The organi-
zational chart and the business processes parts can be described using diagrams
from IDEF0 [122], DFD [142] or UML Activity Diagrams [105]. The system scope
requirement document is used to delimit the HMS in the manufacturing company
under study. It is also used to specify the interactions among the new system and the
other predefined components of the manufacturing company. These requirements
may be specified using the diagrams of parts 1 and 2 (organizational chart and busi-
ness processes parts) highlighting the processes that will be replaced and/or the new
processes needed. The processes to control requirement document can be specified
using natural language. When the controlling process is the production process, the
description must include: the (physical) components of the production system and
its placement on the factory floor [143]. Moreover, for every component its physi-
cal behavior and its controlling interface must be described. The physical behavior
may be described using IDEF0 or Petri nets [144]. The controlling interface speci-
fies what kind of information will be available and what kind of (physical) actions
can be activated in the component. The operations conditions requirements describe
the required inputs and outputs of the controlling processes, and the set of possible
changes and failures that could happen during the HMS operation. The processes in-
puts are specified in terms of work orders or services that can be requested from the
processes, and the required raw material to execute them. The output is specified
by means of a list of the expected products/results. Finally, in the goals require-
ment specification, the system-performance requirements are described. Some sam-
ple production goals could be: high throughput, minimum waiting time, maximum
capacity utilization, flexibility in the face of resources and work-order changes, re-

96 6 ANEMONA Development Process

sponse capability in front of mechanical or controlling failures, scalability, quality
assurance, maintainability, etc.

6.3.1.1 Example

Figure 6.3 shows a sample business processes diagram of the supply chain case
study (the notation used is DFD). In this figure we can see the different processes
executed by the company departments. Processes 4 and 5 are highlighted to indicate
that they will be replaced by PARDI. Also apparent are the interactions that have to
be maintained with the current company processes.

1
Parts

Engineering

3
Parts

Manufacturing

5
Parts

Distribution

4
Parts Order

Request

6
Selling

2
Raw Materials

Purchase

Parts Catalog

Raw Materials
Warehouse

Parts
Warehouse

Distribution
Center

Warehouse

Parts OrdersEngineers Factory
Workers

Providers

Distribution
Manager

Dealers

Purchase
Request

Part
Specification

Part
Model

Part
Model

Raw
Material

Raw
Material

Interface
Operation

Finished
Part

Part

Part
Order

Part

Part
Order

Distribution
Order

Part
Request

Fig. 6.3 A sample business processes diagram of the supply chain case study

From the case study description of Sect. 6.2 we can extract the system goals of
Table 6.2 that configure a part of the operations conditions requirement document.

Table 6.2 PARDI goals

Goal

Manage the supply-chain process for distributing parts to dealers.
Integrate and automate the business processes 4 and 5 of Fig. 6.3.
Process the continuous flow of part orders.
Expand the daily window for ordering capability.
Identify the most cost-effective method for delivery.
Improve the delivery service of parts to the company dealerships.
Maximize delivery division efficiency.

6.3 The Method 97

6.3.2 Analysis

In the analysis stage the system engineer has to specify the HMS in terms of the
ANEMONA models presented in Chap. 5 and use case diagrams from UML [115].
The analysis stage is a bottom-up, incremental and recursive process. The main goal
of this stage is to identify the system component holons and to provide an initial
specification of them. The system engineer has to produce the analysis models of
the HMS from the system requirement document (Sect. 6.3.1).

Every iteration of the Analysis stage identifies and specifies holarchies of differ-
ent abstraction levels (Chap. 3). This idea is illustrated in Fig. 6.4. At the highest
level (level m) we can model the whole system as a single holon (A-Agentk) that
tries to achieve the system goals specified in the requirements document. In the first
analysis iteration, the system engineer identifies a holarchy (level m-1) composed
of a set of holons that implement the A-Agentk. In this way, every holon in this ho-
larchy represents an autonomous entity that is simpler than A-Agentk, but one that,
in cooperation with the other holarchy members, implements the functionality and
behavior of the A-Agentk. The analysis models of the first Analysis iteration spec-
ify the holarchy of level m–1. At the end of the first iteration, the system engineer
must analyze each holon of level m–1 in order to figure out the advantages of de-
composing it into a new holarchy at a lower abstraction level. For every holon that
is decomposed an analysis process is started, in the next analysis iteration. In this
process the specification of the holon produced in the previous iteration is taken as
the sub-system requirements. In this way, each new iteration will have as many con-
current and collaborative processes as constituent holons of the previous iteration,
which it was decided would be decomposed. In every iteration the analysis models

A
A

AA

A

A

A-Agentk (Level m)

A-Agent1 (Level m-x) A-Agent2 (Level m-x)

agent1

agent2

agent3
agent5

agent6
agent4 agent7

agent8
agent10

agent9

agent11

agent7agent1

H
ig

he
r A

bs
tra

ct
io

n
Le

ve
ls

Fig. 6.4 Abstraction levels in the analysis stage

98 6 ANEMONA Development Process

are completed in an incremental fashion. This process is repeated until every holon
is completely defined and there is no need for further decompositions.

The analysis process guided by abstraction levels is based on the software en-
gineering principles of abstraction and decomposition, and on the HMS recursive
feature [4]. In this way, in every abstraction level the system engineer focuses only
on the specification of the interactions and the relationships among the holons of the
level without worrying about how these holons will be internally defined. The inter-
nal specification of these holons will be modeled in subsequent analysis iterations.

Requirements

HMS-UC
Guidelines

Specify Use Case
Realization

Identify
Holons

PROSA
Guidelines

Specify Environment
Relations

Analysis
Models

Analysis

:Software Engineer

(1)

(2)

(3)

(4)

(5)

Determine Use
Cases

Fig. 6.5 The ANEMONA analysis stage.

6.3 The Method 99

In order to gain a better understanding of the analysis stage we describe a single
analysis iteration. The activity diagram of Fig. 6.5 illustrates the set of complex tasks
that are executed in one analysis iteration. It also shows the execution sequence and
products of every complex task. The role that is responsible for the analysis stage
is the software engineer. The goal of every iteration is to develop a set of models
in which the holons that make up a given holarchy are identified and specified. This
holarchy represents, in the first analysis iteration (ni = 1), the whole system, and in
the subsequent iterations (ni > 1) the sub-systems that make up the whole system.
The analysis models of the previous iteration are enhanced and refined in every new
iteration. A single iteration definition is as follows.

1. Determine use cases. The goal of this complex task is to identify the system goals
and the necessary cooperation domains [12] that satisfy these goals. In this step,
the software engineer has to use the HMS-UC guidelines that will help them to
identify the system use cases from the HMS requirements document. The product
of this task is a use cases model.

2. Specify use cases realization. The goal of this complex task is to specify the
interactions among the use cases and to define an initial set of abstract tasks
(Sect. 5.4) that will implement them. In this step the software engineer makes
use of roles to specify the autonomous entity that is in charge of the use case
implementation. The products of this task are organization model, interaction
model and tasks and goals model.

3. Identify holons. The goal of this complex task is to identify and specify the holons
that make up the holarchy that is being analyzed in the current iteration. In this
step the software engineer uses the PROSA guidelines that help to identify the
system abstract agents and to assign the roles, of step 2, to these abstract agents.
To this end, the organization model, interaction model and the tasks and goals
model from step 2 are refined. Also, an agent model is generated for the identified
holons.

4. Specify environment relations. The goal of this complex task is to identify and
specify the non-autonomous environment entities that the holons have to work
with. The product of this task is the environment model.

5. Finally, for every holon identified in the iteration, the software engineer has to
analyze the advantages of decomposing it into a new holarchy. This decision is
made based on the requirements document. If the decision is to decompose a new
analysis process for every holon that will be decomposed is started in the next
iteration. In the other case, the analysis stage is finished.

Figure 6.6 shows the different models that configure the product of the analysis
stage. The specification details of these models are defined in Chap. 5.

In the following sections every complex task of the analysis stage is defined in
terms of activities, execution sequences, and documents and models that are pro-
duced or modified by every task in the ANEMONA analysis process.

100 6 ANEMONA Development Process

Analysis
Models

Environment
Model

Use Case
Model

Organization
Model

Interaction
Model

Agent
Model

Task and Goal
Model

Fig. 6.6 The analysis models

6.3.2.1 Determine Use Cases

The first step in the analysis stage (see Fig. 6.5) is to determine use cases by building
a use case model from the system requirements. This complex task is defined as a

Fig. 6.7 Determine use cases
task definition

Domain
Analysis

Business
Processes

Locate the
Problem

System Scope

Processes to
control

Identify System
Goals

System goals

Goals

Identify Use Cases

Use Cases
Model

HMS-UC
Guidelines

Determine
Use Cases

Organizational
Chart/

Departments

6.3 The Method 101

sequence of four activities. This sequence is outlined in Fig. 6.7. The activities are
defined as follows.

• Activity A1: Domain analysis. In this activity the software engineer has to com-
prehend the general features of the company in which the HMS will be deployed.
To do this the engineer has to study the organizational chart and the business
processes parts of the requirement document. This activity is executed in the first
iteration, and has to be applied in subsequent iterations (ni > 1) only in the cases
in which there are changes in the requirements (changes in the company, new
business processes, etc.).

• Activity A2: Locate the problem. In this activity the software engineer has to
place the HMS into the company. In other words, the engineer has to study the
interfaces of the HMS under development with all the business processes of the
company that are left outside the system. This is done by analyzing the system
scope specification and the processes to control part of the requirement docu-
ment. In a ni > 1 iteration the software engineer has to focus the analysis on the
functionalities/business processes that are implemented by the abstract agent that
is being analyzed in the iteration.

• Activity A3: Identify system goals. In this activity the software engineer has to
identify the goals that have to be fulfilled by the HMS. In order to do this, the
engineer has to study the goals specification, the system scope part and the pro-
cesses to control of the requirement document. In this activity the software engi-
neer makes use of the HMS-UC guidelines in order to identify the HMS goals.
The engineer has to answer questions 1 to 6 of the HMS-UC guidelines (Table
6.3). In a ni > 1 iteration, the focus is on the models produced in the previous
iteration for the abstract agent that is being decomposed.
A list of the goals identified for the PARDI case study is presented in the next
section.

• Activity A4: Identify use cases. In this activity the software engineer has to iden-
tify the Use Cases (cooperation domains) that will fulfill the goals identified
in the Activity A3. The engineer has to follow the guidelines 7 to 13 of the
ANEMONA HMS-UC guidelines (Table 6.3) and has to build a use case model
[121]. In a ni > 1 iteration, the use cases, which were assigned in the previous
iteration to the abstract agent that is being decomposed, have to be analyzed us-
ing the HMS-UC guidelines in order to decompose them into simpler use cases,
if necessary.
A sample use case model of the PARDI case study is presented in the next sec-
tion. A complete example of the products obtained from this activity in various
iterations can be found in Chap. 8.

102 6 ANEMONA Development Process

Table 6.3 ANEMONA HMS-UC guidelines

HMS-UC guidelines

ID Guideline Comment

1 Is the system going to produce something? If yes,
one goal of the system will be to produce it.

When the process is the production
process, this guideline refers to the
factory products. When the process is
of another type, the product refers to
those that have to be generated as a re-
sult of the process execution.

2 Is there a process to control? If so, a system goal
will be to control it.

3 Is there an external resource to work with? If so,
a system goal will be to work with it.

4 Can the system receive a work order? If so, a sys-
tem goal will be to process the work order and to
control its execution process.

A work order refers to a production re-
quest or an execution request of any
HMS business process.

5 Do the system goals need to be controlled or
managed? If so, a system goal will be to manage
them.

This goal is related to the global vision
or the staff holon management of the
PROSA architecture.

6 Is it necessary to communicate the system prod-
ucts to an external business process? If so, a sys-
tem goal will be to communicate the products and
to manage the communication.

7 Define a use case for every goal derived from
question 1.

8 Define a use case for each goal related to the ex-
ecution control of a machine.

This use case will probably be trans-
lated into a controlling process of a
holon over a machine. In the first it-
erations these types of use cases may
not be identified.

9 Define a use case for every goal related to the
control of a process.

10 For each communication goal with external re-
sources define a use case to manage the commu-
nication.

11 For each goal related to a work order define a use
case to implement the domain cooperation to pro-
cess it.

12 Define a use case for every goal derived from
question 6.

13 Define a use case to manage every communica-
tion process with external business processes.

6.3 The Method 103

6.3.2.2 Example

In this section we present the products of activities A1 to A4 in the analysis of the
PARDI case study (Sect. 6.2). Recall the requirement fragments of Sect. 6.3.1.1.
From questions 1 to 6 of the HMS-UC guidelines (Table 6.3) we have derived the
system goals of Table 6.4.

Table 6.4 PARDI system goals

ID Goal

1 Manage the supply-chain process for distributing parts to dealers.
2 Manage the flow of orders.
3 Automate the distribution process.
4 Manage referral parts.
5 Automate and manage the package tracking.
6 Contract third-party delivery services that better meet the specialized requirements of referral

parts and greater improve the delivery service.

Figure 6.8 shows the use cases produced from activity A4. These use cases have
been derived by applying the guidelines 7 to 13 of Table 6.3 and taking into account
the goals defined in Table 6.4. The use case manage referral parts distribution is
defined in order to satisfy goals 1 and 4. Goals 1, 2 and 3 are considered in the use
case manage orders. Deliver packages is defined in order to fulfill goal 3. Goal 6 is
used in the use case contract third-party delivery service. Finally the track packages
use case deals with goal 5.

Manage Referral
Parts Distibution

Contract Third-Party
Delivery Service

Manage Orders Track packages

Deliver Packages

Fig. 6.8 Use cases diagram of PARDI case study

6.3.2.3 Specify Use Case Realization

The second step in the analysis stage (see Fig. 6.5) is the complex task specify use
case realization. This task is decomposed into the four activities in Fig. 6.9. These
activities are defined as follows.

• Activity A5: Assign a manager to every use case. In this activity the software
engineer has to identify a provider/responsible role for every use case. An au-

104 6 ANEMONA Development Process

Assign a Manager to
every Use Case

Analyze the relationships and
interactions among the Use Cases

Identify the Tasks that
implement the Use Cases

Relate Tasks and Goals

Specify Use Cases
Realization

Use Cases
Model

Organization
Model

Interaction
Model

Tasks and Goals
Model

Requirements

System goals
[from Determine Use Cases]

Fig. 6.9 Specify use case realization task definition

tonomous entity will be in charge of providing the service that the use case sup-
plies to the system users. The autonomous entity is modeled using roles. In this
way, at this abstraction level, it is not necessary to specify if the use case will be
implemented by a set of autonomous entities or a single one, or the way in which
the service will be implemented. These modeling decisions are postponed to fu-
ture steps of the analysis stage when the internal system structures are clearer.
With the identified use case providers an initial organization model is built. This
model includes a set of roles that implement the use cases of the current iteration.
This model will be extended in subsequent activities and analysis iterations.
A sample organization diagram derived from this activity is presented in the next
section.

• Activity A6: Analyze the relationships and interactions among the use cases. In
this activity the software engineer has to specify the relationships and interac-

6.3 The Method 105

tions among the use cases. The interactions and relations among the use cases
are very important because if the use cases are analyzed in an isolated way many
important characteristics for controlling the global system are left out [81]. The
services, and their associated actions, are not executed in isolation, but in a sys-
tem in which their effects may affect other services in the system. In order to
identify these type of dependencies, it is important to analyze and to model the
interactions and relationships that may appear among them. They are identified
by means of communications needs among the roles that are in charge of the use
cases. These interactions could be a coordination need, a planning dependency, a
negotiation or a cooperation. These requirements are specified in the interaction
model. Also, the social relations (Chap. 5) among the roles have to be identified,
such as client/server and subordination. These relations are modeled refining the
organization model of activity A5.

• Activity A7: Identify the tasks that implement the use cases. In this activity the
software engineer has to identify abstract tasks (Chap. 5). These abstract tasks
will be executed by the role in order to implement the services of the use case the
role is in charge of. In subsequent iterations these abstract tasks will be decom-
posed in order to transform them into tasks (atomic) or work flows. The abstract
tasks are identified and associated to the roles. These relations are modeled in
the organization model. The tasks are specified in the tasks and goals model. In
a ni > 1 iteration, the abstract tasks, which are identified in this activity, repre-
sent the tasks decomposition of the abstract agent that is being analyzed in the
iteration.

• Activity A8: Relate tasks and goals. In this activity the software engineer has to
associate the abstract tasks with the goals that are affected by them. An initial list
of goals is derived from activity A3. The engineer has to work with this list and
the previously identified abstract tasks in order to complete the tasks and goals
model with the relations identified among the tasks and goals. These relations
may be GTAffect, GTSatisfy, GTDestroy, GTCreate and GTFail (Chap. 5). In this
activity the software engineer can identify new goals related to the interaction
among the roles. Answering the following questions new goals can be identified:
Is there any reason for initiating the interactions among the roles? Is there any
condition in the interaction execution? Does the interaction need some manage-
ment? These goals are specified in the tasks and goals model and are associated
to the roles that have to fulfill them.

6.3.2.4 Example

Figure 6.10 shows an organization diagram for the PARDI case study. In this dia-
gram the roles in charge of every use case are depicted. Also, the social relations
among these roles are modeled. On the other hand, Fig. 6.11 shows the interactions
among these roles. These diagrams are the results of activities A5 and A6.

106 6 ANEMONA Development Process

Manage Referral
Parts Distibution

Contract Third Party
Delivery Service

Manage Orders

Track packages

Deliver Packages

Referral Parts
Manager

Distribution
Manager

Package
Controller

Orders Manager

External
Delivery Service

Manager

InChargeOf

InChargeOf

InChargeOfInChargeOf

InChargeOf

AGOSubordination

AGOClientServer

AGOClientServer

AGOClientServer

AGOClientServer

Fig. 6.10 An organization diagram of the PARDI case study

Manage Referral
Parts Distibution

Contract Third-Party
Delivery Service

Manage Orders

Track packages

Deliver Packages

Referral Parts
Manager

Distribution
Manager

Package
Controller

Orders Manager

External
Delivery Service

Manager

InChargeOf

InChargeOf

InChargeOfInChargeOf

InChargeOf

AGOSubordination

AGOClientServer

AGOClientServer

AGOClientServer

AGOClientServer

Fig. 6.11 An interaction diagram of the PARDI case study

Figure 6.12 shows some abstract tasks that implement some use cases of PARDI.
These tasks where identified applying Activity A7. Analyzing these tasks and re-
lating them to the system goals of Table 6.4 we have derived from Activity A8 the
relations depicted in Fig. 6.12.

A

Create Order

A

Delete Order

A

Update Order

A
Query Order

Status

Orders Manager

WFResponsible

WFResponsible

A

Send Package

A

Query Delivery Status

Distribution
Manager

WFResponsible

A

Manage the flow
of orders

GTAffect

GTAffect

GTAffect A

Manage the supply-chain process for
distributing parts to dealers

A

Automate the
distribution process

GTAffect

GTAffect

GTAffect

A

Cooperate with the
Orders Manager

GTPursues

Fig. 6.12 A tasks and goals diagram of the PARDI case study

6.3 The Method 107

6.3.2.5 Identify Holons

The complex task identify holons is the task in which the software engineer has
to spend more time in each iteration. For this task there are two approaches that
can be used for identifying holons. The physical decomposition (the more obvi-
ous approach) and functional decomposition. In the first approach agents are used
to represent the physical entities of the problem. These entities may be workers,
machines, tools, products, parts, operations, etc. The physical approach defines dif-
ferent sets of state variables that can be managed in an efficient way by individual
agents with a limited number of interactions. Nevertheless, this approach involves a
large number of agents related to resources. A common example of this approach is
the use of part agents and machine agents for manufacturing planning and schedul-
ing [48, 82, 83]. In the functional decomposition approach, the agents are used to
encapsulate functions such as work-order reception, planning, scheduling, mate-
rial handling, transport management, product distribution, etc. In this approach the
agents are not explicitly related to the physical entities. Examples of this approach
are: the use of agents to encapsulate special functions (for example, facilitator agents
[84], broker agents [85], and mediator agents [86]) and the use of agents to integrate
pre-existing systems (for example, ARCHON [87], EXPORT [88] and CIIMPLEX
[85]).

ANEMONA defines a set of guidelines in order to help the software engineer in
the holon identification and specification process. These guidelines are the PROSA
guidelines defined in Tables 6.5, 6.6 and 6.7 and are based on the PROSA type of
holons [23]. PROSA architecture integrates the physical and functional decompo-
sition approaches presented in the previous paragraph. PROSA architecture spec-
ifies that there are four types of holons in any manufacturing system: work-order
holon, product holon, resource holon and staff holon. Based on these types of holons
ANEMONA proposes 28 guidelines.

The activities and the flow that define the complex task identify holons are pre-
sented in Fig. 6.13. These activities are defined as follows.

• Activity A9: Find out the types of holons. In this activity the software engineer
has to identify the abstract agents, that is, the roles identified in prior activities are
assigned to holons. To do this the engineer has to analyze the requirements doc-
ument and the analysis models of the previous steps, with the help of the PROSA
guidelines (Tables 6.5, 6.6 and 6.7). The engineer has to refine the organization
model assigning Roles to the abstract agents that are identified. In this activity
the software engineer has to use the PROSA guidelines 1 to 13 and 22 to 25 in
order to identify abstract agents.

• Activity A10: Specify holons. In this activity the software engineer has to build an
agent diagram for every holon identified in the activity A9. The engineer has to
complete the abstract agent definition from the goals and tasks of the role or roles
associated with. New tasks or task decompositions may be identified. Moreover,
intelligent and autonomous features that can help the abstract agent to fulfill its
goals can be specified. In order to complete the identification of the abstract tasks

108 6 ANEMONA Development Process

Find out the type of
Holons

Organization
Model

Interaction
Model

Tasks and Goals
Model

Analysis Models
 [from Specify Use Cases

Realization]

Specify
Holons

Refine
Interactions

Identify New
Interactions

Refine Tasks
and Goals

Model

Agent Model

Identify Holons

Requirements

PROSA
Guidelines

Fig. 6.13 Identify holons task definition

that the abstract agent is responsible for, the software engineer has to use PROSA
guidelines 14 to 17 and 25. On the other hand, PROSA guidelines 18 to 21 and
25 have to be used in order to identify the information mental entities (Chap. 5).
These guidelines define the set of basic and required abstract agent information
data, functions and services. The software engineer has to add to this set the in-
formation entities and tasks that model the particular features of the system that
is being modeled. Also, real-time constraints associated to mental entities and
tasks may be analyzed and identified (if required). When the holon represents
a physical entity (machine, tool machine, etc.), the engineer may specify (if re-
quired) the temporal or real-time constraints associated with the time in which a
modification on the mental entity occurs (perceptions or events that modify the
information state of the agent, properties event type and period of the event en-
tity, for more details see Chap. 5) and the time in which the actions associated
must be executed (properties task type, max deadline and period of the A-Task
entity, for more details see Chap. 5).

6.3 The Method 109

• Activity A11: Refine interactions. In this activity the software engineer has to
complete the definition of the interaction model of the holarchy that is being an-
alyzed. That is, interaction types have to be stated, interaction goals have to be
identified, interchanged messages have to be specified, as well as the sender and
receivers of every message, and the temporal constraints (based on the require-
ments document) associated with the interactions.

• Activity A12: Identify new interactions. In this activity the software engineer has
to identify the interactions (not identified yet) related to the particular charac-
teristics of the PROSA architecture. To this end the engineer has to use PROSA
guidelines 26 to 28. Also, interactions related to the guideline 25 have to be mod-
eled, and the definition of these new interactions has to be completed. That is, the
goals of the interactions, the interchanged messages, the senders and receivers,
and, if required, the temporal constraints associated with them.

• Activity A13: Refine tasks and goals models. In this activity the software engi-
neer has to refine the tasks and goals model from the previous step. To do this
the engineer has to use PROSA guidelines 14 to 17 and 25. The tasks have to be
associated to goals. The dependencies among the goals have to be stated. The
tasks and goals may be decomposed. The tasks have to be associated with the
interactions in which they are involved. The mental entities of the abstract agents
have to be associated with the tasks that consume them. Time constraints associ-
ated with the task execution may be identified. Moreover, in every iteration, all
of the abstract tasks and the abstract goals associated with an abstract agent of
the higher level have to be assigned to at least one holon of the holarchy that is
being modeled.

110 6 ANEMONA Development Process

Table 6.5 ANEMONA PROSA guidelines - Part 1

PROSA guidelines

ID Guideline

1 There are four types of abstract agents in a holarchy: resource, product, work order and staff.
The following guidelines define their characteristics and how to identify them.

2 The product abstract agent represents “things” that can be produced by the holarchy. If the
holarchy represents to the whole factory, the product abstract agents refer to the items of the
company’s product catalog.

3 The work-order abstract agent represents the holarchy’s requested tasks. This abstract agent
is in charge of activating the resource abstract agents in order to start production. If the
holarchy represents to the whole factory, the work-order abstract agent models the items
included in the factory order book.

4 The resource abstract agent represents a system element with processing capacity. If the ho-
larchy represents the whole factory, the resource abstract agents represent the departments,
shops, machines, employees, etc.

5 The staff abstract agent represents the entity in charge of managing the interactions among
the different abstract agents.

6 Each production facility (factory, department, shop, machine, conveyor, pipeline, compo-
nent, tool, tool holder, personnel, etc.) and the information processing that controls it, is
modeled as an abstract agent. For every production facility of the holarchy that is being an-
alyzed, there has to be an abstract agent that models it. The roles (that were identified in the
previous step) for controlling and managing the production facility have to be assigned to
this abstract agent. This abstract agent is a resource holon.

7 A resource abstract agent offers production capacity and services to the abstract agents with
which it cooperates. It stores the methods with which to assign production resources, knowl-
edge and the processes with which to organize them, plus it uses and controls the production
resource. Every role in charge of these activities has to be assigned to a resource abstract
agent.

8 Each product definition or recipe is modeled as an abstract agent. Every role in charge of
managing updated information about a product, its user requirements, design, process plans,
the material list to produce the product and its quality assurance procedures, has to be as-
signed to a product abstract agent. A product abstract agent stores the “product model” of
one type of product, not the “production status” of a particular instance of the product.

9 A product abstract agent stores the knowledge and production process for the correct man-
ufacturing of the product, with the required quality defined by the requirement document. It
acts as an information server for the work-order abstract agents of the holoarchy. The prod-
uct abstract agent models the functionalities related to the product design, process planning,
and quality assurance.

6.3 The Method 111

Table 6.6 ANEMONA PROSA guidelines - Part 2

PROSA guidelines

ID Guideline

10 Every task in a manufacturing system (a client work order, a business process execution
work order, a warehouse work order, a maintenance and resource repairing work order, etc.)
is modeled as an abstract agent. Every role in charge of managing a production process or
business process; managing the production status of a product requested in a work order; and
storing all the logistics information related to the task, has to be assigned to a work-order
abstract agent.

11 A work-order abstract agent may be considered a controlling piece, which is in charge of
managing the work order in the manufacturing system. In other words, the work-order ab-
stract agent negotiates with other entities and resources in order to be produced.

12 The goals and/or the roles identified in activity A8 related to the management of interactions
among the roles of the holarchy, have to be assigned to a staff abstract agent.

13 A staff abstract agent is in charge of assisting, with expert knowledge, the other types of
agents, and of implementing, if required, a centralized control in the holarchy.

14 A resource abstract agent is able to initiate processing tasks over the products. That is, it
is authorized to accept or reject, depending on its goals and those of the holarchy, a task
assigned to it.

15 A resource abstract agent controls and monitors the execution of its processes (suspend,
resume, abort), manages its sub-resources and plans its tasks.

16 A product abstract agent implements the design tasks of the product, process planning, and
product quality verification.

17 A work-order abstract agent implements the scheduling, deadlock management, and order
process monitoring, and triggers activation, pausing, resuming, aborting, and stopping pro-
cess events into a resource.

18 A resource abstract agent stores beliefs about its abilities (the product list that it can manu-
facture), its execution tasks, its sub-resources, and a registry of its activities.

19 A product abstract agent stores information data about the process plan, product description
and product quality requirements.

20 A work-order abstract agent stores information data about the work-order product status,
and the task progress.

21 A staff abstract agent maintains information data on the interactions it is controlling. It could
also store some kind of expert knowledge (plans, heuristics, etc.) in order to assist other
abstract agents. A staff abstract agent can be used to encapsulate systems such as CAD,
MRP, etc.

112 6 ANEMONA Development Process

Table 6.7 ANEMONA PROSA guidelines - Part 3

PROSA guidelines

ID Guideline

22 The following are types of work-order abstract agents: stock maintenance order; rapid or-
ders, with due date shorter than normal; first-off order (this type of order requires more
operation time, to possibly repeat failed processes, human supervision and intervention);
client orders; maintenance orders.

23 Types of product abstract agents: variations on a product, a new version of one product,
spare parts, mass production, high-quality product, etc.

24 Types of resource abstract agents. This group includes the different information resources,
machines, tools, etc., that can be found in a manufacturing system. The personnel and the
workers can also be modeled as resource abstract agents.

25 When a holarchy is being analyzed in a n + 1 iteration, the interface of the abstract agent
that models it in the n level (previous level) can be implemented in two ways. (i) Assigning
the management of this interface to a staff abstract agent. That is, every communication
to/from outside the holarchy has to go through the staff agent. (ii) Distributing the interaction
management to all the abstract agents in the holarchy. The last option could be very complex
to implement and more difficult to maintain, nevertheless, it is more flexible than the first
option.

26 In order to trigger a new work order in a holarchy the following steps are required: (i) the
staff abstract agent, or the agent in charge of the management of the holarchy, determines
if the holarchy is capable of processing the order; if so (ii) the staff abstract agent activates
a work-order abstract agent responsible for processing it, and acknowledge it to the client;
finally (iii) when the work order is completed, the staff abstract agent informs the client.

27 In order to execute the requested tasks of a work order the following steps are required: (i)
the work-order abstract agent requests a process plan from the product abstract agents; (ii)
the work-order abstract agent starts a negotiation process with the resource abstract agents in
order to assign tasks (of the process plan) to resources; finally (iii) the abstract agent initiates
the task execution asking the resource abstract agents to start the process.

28 When a new resource abstract agent is added to a holarchy, its presence is communicated
to the other abstract agents of the holarchy. As a response to this event, the product abstract
agents have to verify the utility of the new resource to their process plans.

6.3 The Method 113

6.3.2.6 Example

Applying the complex task identify holons to the PARDI case study we have iden-
tified the system holons of Fig. 6.14. This figure shows an organization diagram
extended with the abstract agents identified in activity A9 using the PROSA guide-
lines. The PARDI organization is made up of 8 abstract agents (in the first analysis
iteration). These abstract agents will be decomposed if required in subsequent iter-
ations.

Referral Parts
Manager

Distribution
Manager

Package
Controller

Orders Manager

External
Delivery Service

Manager

PARDI

A

Referral Part
Order

A

Package
Order

A

Part Order

A

Distribution
Division

A

Packaging
Manager

A

Distribution
Planning

A

Outsourcing
Dvision

A

Order
Manager

OContainA-Agent

OContainA-Agent

OContainA-Agent OContainA-Agent

OContain
A-Agent

OContain
A-Agent

Play

Play

Play Play

Play

Fig. 6.14 An organization diagram of the PARDI case study

In order to specify an initial agent model of the system we have applied activ-
ity A10 in order to assign the tasks and goals to the abstract agents. Figure 6.15
shows the agent diagram of the order manager abstract agent. To specify the ab-

Fig. 6.15 An agent diagram
of the order manager abstract
agent

A

Create Order

A

Delete Order

A

Update Order

A
Query Order

Status

A

Manage the flow
of orders

A

Order
Manager

A

Create Referral Part

A

Delete Referral Part

A
Query Referral

Part Status

A

Manage Referral
Parts

GTPursue

AResponsible

AResponsible

AResponsible

AResponsible

Information
Structure

A

Parts Catalog

A

List of Orders

AContainE

AHaveEM

114 6 ANEMONA Development Process

stract agent’s responsibilities we have applied PROSA guidelines 14 to 17 and 25,
while for specifying its mental entities we have used the PROSA guidelines 18 to 21
and 25.

Figure 6.16 is a sample interaction diagram refined in activity A11. In this figure
the interaction units interchanged among the order manager abstract agent and the
distribution division abstract agent are depicted. The goals that motivate the execu-
tion of this interaction are also specified.

A

Distribution
Division

A

Order
Manager

A

Manage the flow
of orders

A

Manage the
supply- chain process
for distributing parts to

dealers

A

Cooperate with the
Orders Manager

Request Order
Delivery

Accept Request

Request Order
Data

Report Order
Data

Report Order
Delivered

GTPursue GTPursue

GTPursue

UIStart

UIStart

UIStart

UIStart

UIStart

UICooperate

UICooperate

UICooperate

UICooperate

UICooperate

Fig. 6.16 An Interaction Diagram of the Request Delivery Interaction scenario

A complete example in which all of the products of the identify holons complex
task are analyzed can be found in Chap. 8.

6.3.2.7 Specify Environment Relations

In the specify environment relation complex task the software engineer has to model
the relations among the holons and their environment. These relations are derived
from the requirements document and the study of the analysis models defined in the
previous analysis activities. This complex task is made up of the 3 activities depicted
in Fig. 6.17. These activities are defined as follows.

• Activity A14: Identify external events. In this activity the software engineer has
to find out the list of external events that may in some way affect each holon.
Also, the temporal constraints on the execution of these events have to be identi-
fied. In this activity the engineer has to build the environment model with events
and their temporal features (if required) such as: occurrence pattern (periodic or
aperiodic) and the minimum time in which there will be no event occurrence. In
a ni > 1 iteration, the events list, associated with the abstract agent that is being
decomposed, has to be distributed into events that affect its component holons.
For every event identified, the holon’s reaction has to be specified. In order to do
this, the engineer has to complete the agent model with the effect of the event

6.3 The Method 115

Fig. 6.17 Specify environ-
ment relations task definition

Environment
Model

Analysis Models

Specify Environment
Relations

Requirements

Identify
Applications

Identify and Assign
Resources

Identify External
Events

Interaction
Model Agent Model

on the tasks and/or on the mental state of the abstract agent. Also, the interac-
tion model has to be completed with the possible activation of an interaction in
response to an event.

• Activity A15: Identify applications. In this activity the software engineer has
to identify the list of non-autonomous applications with which the holons may
work. A non-autonomous application is every type of software or hardware with
which the system has to interact and cannot be modeled as a holon (the appli-
cation does not fulfill the autonomous and cooperation features [4]). The appli-
cations are identified from the requirements document and the analysis models
of the previous iterations. In this activity, the engineer has to complete the envi-
ronment model with the identified applications. In a ni > 1, the applications list
associated with the abstract agent that is being decomposed, has to be distributed
into applications with which its component holons work. Every identified appli-
cation has to be associated with the abstract agent that works with it by means of
the EPerceive relation (Chap. 5).

• Activity A16: Identify and assign resources. In this activity the software engineer
has to identify the list of resources with which the holons may work. A resource,
in the environment model, is every resource of the manufacturing system that
does not have an information processing part [4]. Resources are identified from
the requirements document and the analysis models of the previous iterations. In
this activity the engineer has to complete the environment model with the iden-

116 6 ANEMONA Development Process

tified resources. In an ni > 1 iteration, the resources list, associated with the ab-
stract agent that is being decomposed, has to be distributed into resources with
which its component holons work. Every identified resource has to be associated
with the abstract agent that makes use of it by means of the EResourcePertain
relation (Chap. 5).

6.3.2.8 Example

Figure 6.18 shows an environment diagram of the orders manager abstract agent.
This diagram was produced from activities A14 to A16. In this we can see a dealers
DB application with which the orders manager works. It is a database application
already, in use in the company, which will be reused by the PARDI system. The new
part request from client is the event that perceives the orders manager and initiates
the flow of a new order in the system.

Fig. 6.18 An environment
diagram of the orders manager
abstract agent

A

Order
Manager

Dealers DB

New Part Request from Client

Order

Part, Quantity, Date,
Client, Dealer

EPerceive

EPerceive

When the five models are specified following the analysis steps described above,
the software engineer has to decide if it is necessary to apply a new analysis itera-
tion. To this end, the engineer has to analyze every abstract agent of the iteration in
order to figure out whether it is convenient to decompose some of them. For every
abstract agent that should be decomposed, a concurrent analysis process has to be
applied in the next iteration. Each of these processes may be conducted in a collab-
orative fashion by different engineering teams.1 The requirement specification for
every concurrent process is defined by the different analysis models of the previ-
ous iteration that specify the given abstract agent. In this way, the integration rules
are defined by the incremental analysis steps and models developed by every engi-
neering team responsible for the different analysis processes. When there is no need
for further decompositions the engineers can proceed to the following stage in the
development process (holon design).

1 One team may be decomposed into new teams in order to develop the collaborative analysis
processes of the next iteration. The way in which a team is decomposed in sub-teams may be
done following abstract agent complexity features, engineers’ experience in related manufacturing
processes, etc.

6.3 The Method 117

6.3.3 Design

In the design stage, the software engineer has to build the system architecture taking
into account the details of the target implementation platform. The design stage
basically involves the translation of the analysis models into a set of design models
which define the system implementation details or requirements. The ANEMONA
design stage is divided into two steps that are depicted in Fig. 6.19 and defined as
follows.

Fig. 6.19 The ANEMONA
design stage

Design

Refine the Holons
Specification

Build the System
Architecture

Design
Models

Requirements

JADE
Guidelines

Function Blocks
Guidelines

System
Architecture

Function Block Interface
Specification

JADE Agent
Templates

: Software Engineer

Analysis Models
[from Analysis

stage]

(1)

(2)

Deployment
Model

1. Refine the holon specification. The goal of this complex task is to complete the
analysis models to guarantee that every system requirement is modeled. This
phase is a bottom-up and platform-independent process. In this phase the soft-
ware engineer focuses on every atomic holon in order to complete its definition.
The product of this task is the design model presented in Fig. 6.20.

118 6 ANEMONA Development Process

Fig. 6.20 Design models

Design
Models

Environment
Model

Organization
Model

Interaction
Model

Agent
Model

Tasks and Goals
Model

2. Build the system architecture. The goal of this complex task is to build the sys-
tem architecture. Our approach is based on the proposal of Christensen [9] for
HMS implementation. For the high-level control (intraholon information pro-
cessing and interholon cooperation) we use JADE (a FIPA-compliant agent plat-
form) [145], while for resource holon low-level control (physical operations) we
use functional blocks (IEC 61499 standard [14, 15]). The agent part (high-level
control) negotiates and coordinates its tasks participating in interactions (cooper-
ation domains). The physical part (optional) implements the physical processing
by means of IEC 61499 applications. In this way, the software engineer can use
the JADE guidelines (Tables 6.9 and 6.10) and the functional blocks guidelines
(Table 6.11) in order to derive the JADE agent templates (Fig. 6.26) and the func-
tional block interface specification (Fig. 6.27).

In this phase the software engineer has to associate the ANEMONA modeling
entities with the implementation entities of the target implementation platform in
order to define the system architecture. In the HMS field there are two types of
processing: physical and informational [9]. There can also be temporal features,
which may be soft or hard constraints. In a manufacturing system the real-time
features and constraints are usually related to the resource physical functioning [9].
The IEC 61499 standard defines a platform for the real-time control of devices and
real-time communication among the controllers [14, 15]. Taking these facts into
account, the design of real-time requirements in ANEMONA is as follows. When
the manufacturing system requirements impose hard real-time constraints they will
be delegated to the functional blocks. On the other hand, when there are soft real-
time constraints they can be implemented in the behavioral part of JADE agents.

In the following sections the complex tasks that make up the design stage are
defined. These tasks are defined in terms of the activities, execution sequences, and
the documents and models that are produced and/or modified in them.

6.3.3.1 Refine the Holon Specification

This complex task is a bottom-up iterative process that is based on the analysis
models of the analysis stage. The key elements in this process are the holons, their
recursion level (Chap. 3) and their composition rules. Figure 6.21 shows the concept.
The first process iteration consists of designing the set of atomic agents (holons of

6.3 The Method 119

the recursion level n = 0) identified in the analysis stage. The software engineer
has to specify the design details of these agents, building the corresponding design
models. In the second iteration the engineer has to focus on designing the abstract
agents of recursion level n = 1. To do this the engineer has to refine the organization
model and the interaction model to design the organizational structure of the abstract
agent and the interactions among its members (holons of the recursion level n = 0).
This bottom-up process is repeated until there is no higher level in the (global)
holarchy defined by the analysis models.

H
ig

he
r R

ec
ur

si
on

 L
ev

el
s

Level 0

Level 1

Level n - 1

Level n

Fig. 6.21 Recursion levels in the design stage

A single iteration of this complex task is made up of 5 activities (Fig. 6.22) that
are defined as follows.

• Activity D1: Complete agent model. In the first iteration, this activity requires
the software engineer to focus on every atomic holon (identified in the analy-
sis stage) in order to complete its definition based on the Requirements docu-
ment and the analysis models. That is, the intermediate states that the agents go
through have to be specified (mental states, Chap. 5); how an agent goes from
one state to another should also be specified; the mental states have to be associ-
ated to the task executions. In the subsequent iterations, this activity requires the
software engineer to verify that the responsibilities and capabilities associated
to the holarchy abstract agents are included in the corresponding responsibili-
ties and capabilities of the abstract agent that is being designed in the current
iteration. That is, the composition of the abstract tasks (of the abstract agent)
is based on the abstract tasks of its member autonomous entities (WFDecom-
pose relation, Chap. 5); the composition of the goals is in terms of the goals of its
member holons (GTDecompose relation, Chap. 5); the mental structure is defined

120 6 ANEMONA Development Process

from the mental structure of its member holons (AContainC relation, Chap. 5).
In other words, the software engineer has to complete the design of the abstract
agent interface in terms of its constituent holons.

• Activity D2: Complete tasks and goals model. In this activity the software engi-
neer has to ensure that every goal of an abstract agent has a corresponding task
that satisfies it (GTSatisfy relation, Chap. 5) and also has to specify the dependen-
cies among the goals (GTDepend relation). For all of the modeled tasks, pre- and
postconditions have to be identified, as well as temporal constraints (if required).
The tasks have to be associated with the interactions they initiate (WFProduce re-
lation), with the mental entities they affect (GTModify, GTDestroy and GTCreate
relations), and with the application operations (WFUse relation).

• Activity D3: Complete environment model. In the first iteration this activity re-
quires the software engineer to focus on designing the environment relations of
the atomic holons. To this end, the EPerceive relation (Chap. 5) has to be refined
into EPerceiveNotification and EPerceiveSample relations in order to specify the

Environment
Model

Tasks and Goals
Model

Agent Model

Refine the Holons
Specification

Complete Agent Model Complete Tasks and
Goals Model

Complete Environment
Model

Complete Interaction
Model

Complete Organization
Model

Interaction
Model Organization

Model

Is there a Higher Level in
the HMS hierarchy?

[No]

[Yes]

RequirementsAnalysis Models
[from Analysis stage]

Fig. 6.22 Refine the holon specification task definition

6.3 The Method 121

type of perception. The environment resource attributes have to be specified as
well. The resources, applications and tasks have to be related. The events def-
inition has to be completed, paying special attention to refining the temporal
features: pattern of event arrival and minimum time between arrivals. In the sub-
sequent iterations the software engineer has to ensure that the abstract agent per-
ception is specified in terms of its holon perceptions. That is, there is no resource,
event or application of a given recursion level without a corresponding perception
in the nearest lower level.

• Activity D4: Complete interaction model. In the first iteration this activity is not
applied. In the subsequent iterations the goal of this activity is to design the set of
interactions that are executed by the member holons of the abstract agent. These
interactions are motivated by the goals of the abstract agent that models the hol-
archy in which they are executed. To this end, the software engineer has to focus
on the abstract agent constituent holons and their interactions, in order to: spec-
ify the messages in terms of interaction units; specify an execution order among
these interaction units; specify mental state conditions for the interaction unit’s
executions, and; specify the temporal constraints (if required) on the interaction
unit’s executions.

• Activity D5: Complete organization model. In the first iteration this activity is not
applied. In subsequent iterations the goal of this activity is to design the social
dependencies among the members of the abstract agent that is being designed.
To this end, the software engineer has to refine the dependencies among the con-
stituent members by mean of subordination and client–server relations.

Once every holon of a given recursion level is completely specified, the software
engineer must move up to the nearest recursion level in the holarchy structure, i.e.,
to the cooperation domain in which the given holon interacts. The bottom-up process
described above must be repeated until there is no higher cooperation domain in the
analysis models.

6.3.3.2 Example

In this section let’s work with the track packages use case (Fig. 6.10) and its cor-
responding holarchy. This holarchy has to package parts and track packages. Let’s
assume that the constituent holons of this holarchy are the ones listed in Table 6.8.

Figure 6.23 shows the agent diagram of the package order holon obtained from
activity D1. In this diagram we can see the different mental states of the package
order holon at different execution times. The entity autonomous entity query (Chap.
5) is used to represent an execution instance of the holon. The mental states in this
diagram represent the information data and goals that motivate the package order
holon to execute tasks.

122 6 ANEMONA Development Process

Table 6.8 Holons of the PARDI track packages holarchy

Holon Description

Packaging manager Is the staff holon in charge of managing the track packages co-
operation domain.

Package order Is a work-order holon. It models a particular package order.

Package Is a product holon that stores the knowledge about a particular
type of package that can be packaged.

Tracking sensor Is a resource holon. It models the different tracking sensor ma-
chines used in the tracking system.

WareHouse Is a resource holon, representing the packaging division ware-
house.

Packager robot Is a resource holon. It models a packaging machine.

Package transporter Is a resource holon. It models an AGV for transporting packages
from one point of the shop floor to another.

Conveyor belt Is a resource holon. It models the conveyor belt of the shop floor.

Figure 6.24 shows the interaction diagram for processing a package order in the
track packages holarchy. This diagram is obtained from activity D4. A complete
case study and all its associated design models are presented in Chap. 8.

Package
Order

Process Order Initiate Group Formation

Order Status:
Not Initiated

Package, quantity,
quality: Schedule

Group Formation
Initiation

GTPursue WFResponsible

AHaveEM
AContainE

Package
Order

Process OrderStart Packaging

Packaging
Initiation

Available Resources:
Located

Order Status:
Not Initiated

Package, quantity,
quality: Schedule

AContainE
AHaveEM

WFResponsible GTPursue

Package
Order

Packaging
Execution

Control Order
Packaging

Find out
Package status

WFResponsible
GTPursue

Package, quantity,
quality: Schedule

Order Status:
Initiated

Used Resources

AHaveEM

AContainE

Fig. 6.23 Agent diagram of the package order holon

6.3 The Method 123

Request New
Package Order

Accept
Package Order

Reject
Package Order Report New

Package Order

Request Order
Processing

Request Order
Activation

Query Package
Features

Report
Package
Features

Request Packaging

Report New Package
Holon

Request Order
Processing

Request Order
Scheduling

Query Shop Floor Status

Query Package Features

Report Packages
Features

Report Order
Completed

UIPrecede

UIPrecede
UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

Fig. 6.24 Interaction diagram for processing a package order

6.3.3.3 Build the System Architecture

The last design step is build system architecture. The goal of this complex task is to
complete the system architecture. In this phase the software engineer has to specify
the target implementation platform details. ANEMONA provides two templates for
specifying the platform design features. These templates are: JADE agent template
and function block interface specification. In this phase the software engineer has
to focus only on the atomic holons of the design models of the previous phase. This
is so because the abstract agents are modeling notions (they are not implemented,
see Chap. 3) and their “functionalities” are implemented by means of the agents of
recursion level n = 0.

This task is made up of the four activities depicted in Fig. 6.25. These activities
are defined as follows.

• Activity D6: Find out distribution. In this activity the software engineer has to
find out the number of agent platforms required in order to distribute the system.
Depending on the characteristics of the HMS, the engineer has to find out if the
system will be deployed into a single-agent platform, or a set of them. In order
to find out this number the engineer has to use JADE guidelines 1 to 4 (see Table
6.9). The product of this activity is the list of identified platforms, in which a
name, number and the agent list that will be implemented, are specified.

124 6 ANEMONA Development Process

Build the System
Architecture

Find out Distribution
Requirements

Specify JADE Agent
Template

Specify Function Block
Interface

Build Deployment Model

Design Models
[from Refine the Holons

Specification]

Deployment
Model

JADE
Guidelines

JADE Agent
Templates

Function Block
Interface

Specification

Function
Blocks

Guidelines

Identified Platforms

Fig. 6.25 Build the system architecture task definition

• Activity D7: Specify JADE agent template. In this activity the software engineer
has to complete a JADE agent template (Fig. 6.26) for each agent in the design
models. The JADE agent template includes specific characteristics of the JADE
agent platform [145, 146] such as: agent identifier, behavior, service, communi-
cation, ontology, etc. In order to fill in this template the software engineer has to
use the JADE guidelines 5 to 12 (Tables 6.9 and 6.10).

6.3 The Method 125

Table 6.9 ANEMONA JADE guidelines - Part 1

JADE guidelines

ID Guideline

1 If the HMS represents a manufacturing system in which there is some kind of distribution
(that is, departments, factory floors geographically distributed, or different branches), the
control of each of these holons may be managed by a different agent platform. The in-
teractions among the agents that populate these platforms will be managed by means of
interplatform communication.

2 If the HMS represents a manufacturing system in which there is no physical distribution, the
software engineer has to analyze the abstract agents of the design model. If it is a system in
which there are highly related cooperation domains, the abstract agents participate in several
cooperation domains, and; the number of agents is not too high, then the software engineer
can consider implementing the whole HMS into a single-agent platform.

3 If the HMS has no physical distribution, the software engineer has to analyze the abstract
agents identified in the design models. If there is a large number of agents, the engineer
can consider the possibility of distributing the HMS in different agent platforms. In order
to figure out the number of these platforms, they have to analyze the relationships and de-
pendencies among the cooperation domains, security and data-encapsulation requirements,
functionality, internal interactions, etc. The engineer has to group the cooperation domains
by means of these criteria. The number of resulting groups has to be used as an indication to
the number of agent platforms that will be identified.

4 In guidelines 1, 2 and 3 the software engineer also has to take into account the software
engineering principle of low coupling and high cohesion, and apply it to the study of the
identified platforms.

5 For the information processing part of every agent the JADE agent template of Fig. 6.26 has
to be completed following guidelines 6 to 12.

6 Item 1 of the JADE agent template has to be filled in with a reference to the agent name in
the design models.

7 Item 2 of the JADE agent template has to be filled in with the platform name to which the
agent pertains.

8 In order to complete item 3 of the JADE agent template (Fig. 6.26) the agent model, the
tasks and goals model and the interaction model have to be used. Items 3.1 and 3.2 must
be completed with all the tasks a given agent offers as services. Item 3.2 must indicate
whether the service is offered for internal agents only, or it is also available for agents of
other platforms. To do this the engineer has to analyze the interaction model, particularly
those interactions in which the agent participates.

126 6 ANEMONA Development Process

Table 6.10 ANEMONA JADE guidelines - Part 2

JADE guidelines

ID Guideline

9 In item 4 of the JADE agent template (Fig. 6.26), the software engineer has to identify the
behaviors that will implement the services of item 3, and the internal tasks of the agent
(those tasks that are not services). To do this, the engineer has to revise the agent model
and the tasks and goals model. In those cases in which the identified behavior implements a
service, item 4.3 must be filled in with the service name. For every behavior, item 4.2 must
be filled with the service type (simple, cyclic, one-shot, complex, sequential, parallel, fsm).

10 In item 5 of the JADE agent template (Fig. 6.26), the software engineer has to specify the el-
ements that the agent can use in the message content (ontology). To do this, the engineer has
to analyze the agent model and the interaction model in order to register the informational
mental entities and the content of the messages in the interactions. Item 5.1 must be filled in
with the concept name, 5.2 with the name (or names) of one (or more) base ontology, and
item 5.3 with the schema that defines the concept structure.

11 In item 6 of the JADE agent template (Fig. 6.26), the software engineer has to specify the
set of messages that the agent can interchange. To do this the engineer has to analyze the
interaction model, mainly the interaction units that the agent may interchange. Item 6.1 must
be filled in with the message name, 6.2 with the interaction unit, 6.3 with a reference to the
interaction name, and 6.4 with the participation type (initiator, collaborator).

12 In item 7 of the JADE agent template (Fig. 6.26), the software engineer has to specify if the
agent has a physical processing part (that is, if it is a resource holon that controls a machine).
If this is the case this item must be filled in with a reference to the functional block interface
specification templates in which the physical processing tasks are specified.

6.3 The Method 127

JADE Agent
Template

1. Agent
ID

3. Services

3.1. Name 3.2 Type

4. Behaviors

4.1. Name 4.2. Type 4.3. Implemented Service

5. Ontology

5.1. Name 5.2. Base Ontology

6. Communication

6.1. Message 6.2. Type 6.3. Interaction 6.4. Participation Type

2. Platform

5.3. Schema

7. Does it have a physical processing
part?

Fig. 6.26 JADE agent template

• Activity D8: Specify function block interface. In this activity the software engi-
neer has to complete, for every agent with a physical processing part, the function
block interface specification of the resource-controlling agent tasks. In this way,
every “physical” task associated to an agent will be implemented as an IEC 61499
application (function blocks network). The function block interface specification
template includes a table in which the software engineer has to specify the nor-
mal operation sequence, the abnormal sequences that may occur, the resource
behavior in response to actuator commands perceived by sensors. Also, the engi-
neer can include a state-transition diagram in order to represent the behavior of
the device. These characteristics are derived from the requirements document, the
device manufacturer specification and the characteristics identified in the models

128 6 ANEMONA Development Process

generated in the previous phases. In order to fill this template in, the software
engineer has to use the function block guidelines 3 to 8 in Table 6.11.

Table 6.11 ANEMONA function block guidelines

Function block guidelines

ID Guideline

1 A function block can be seen as a processing unit. They are used as building blocks to define
a device controlling or monitoring application. Some function blocks provide controlling
behaviors and others provide input and output behaviors.

2 Some devices include preinstalled function blocks that can not be deleted and sometimes
new function blocks cannot be added to these devices. On the other hand, there are some de-
vices to which new function blocks can be added or deleted as required. It is very important
to study the device specification to figure out the interface definition that will be controlled.

3 A function block interface specification template (Fig. 6.27) has to be completed for every
task (physical processing part) of every resource agent in the design models. Function block
guidelines 4 to 7 must be used.

4 Item 1 of the function block interface specification template (Fig. 6.27) has to be filled in
with the agent name. Item 2 must be filled in with the platform name and item 4 with the
name of the physical processing task that is being designed.

5 Item 3 has to be filled in with a unique function block template identifier.

6 The software engineer has to study the manufacturer device specification, the agent model
and the tasks and goals model to find out the operation sequences to control. Items 5 and 6
have to be filled in with this information.

7 The software engineer has to study the manufacturer device specification and the require-
ments document to find out the device behavior and its operation conditions respectively.
Item 7 of the function block interface specification template has to be filled in with a record
for every combination of: input command, actuator address to which the command is sent,
address of the sensor that gets the reply, desired replay, time to get a reply.

8 Item 8 can be filled in with a state-transition diagram that models the device behavior.

6.3 The Method 129

Fig. 6.27 Function block in-
terface specification template Function Block

Interface Specification

1. Agent
ID

5. Normal operation sequence

2. Platform

7. Resource Behavior
Command

3. Template Code

6. Abnormal operation sequence

Actuator Sensor Reply time

8. State-Transition Diagram

4. Agent task

• Activity D9: Build deployment model. In this activity the software engineer has
to build a UML deployment model [137] to depict the physical location of the
network nodes (any execution resource such as computer, device or memory)
that make up the system and the platform and container distribution of these
nodes. To do this the engineer has to analyze the requirements document, the
design models and the identified platforms document.

6.3.3.4 Example

Figure 6.28 shows a function block interface specification obtained from activity
D10. The interface specification models the divert package to belt physical task of
the conveyor belt resource holon of the tracking package holarchy.

A complete system architecture example can be found in Chap. 8.

130 6 ANEMONA Development Process

Function Block Interface
Specification

Agent ID

Normal Operation Sequence

Agent Platform

Resource Behavior
Command

2ns

FB template code

Abnormal Operation Sequence

Actuator Sensor Output Time

3ns
1ns
1ns

Agent Task

Conveyor Belt
Holon Factory KT, WD, MT

Divert Tile to BeltHC2

Incoming Tile detected
Target Belt detected
Connect Belts
Tile in target Belt

INIT

E_SEN_IN SEN_INSTOPPER_OUT E_SET_STOPPER
E_SEND_STR A_ID

SEN_OUT_STRAIGHTE_SEND_STR
E_RECV_ID NEW_ID

Can’t connect belts
Stop source belt
Connect Belts
Tile in target Belt

Incoming Tile detected
Target Belt detected

Function Block Diagram

INIT
E_SEN_IN
E_SEN_OUT_STRAIGHT
E_SENOUT_SIDE
E_RECV_ID
E_SET_LUT

INITO
E_SET_STOPPER

E_SET_DIVERTER
E_SEND_STR

E_SEND_SIDE

SEN_IN
SEN_OUT_STRAIGHT
SEN_OUT_SIDE
NEW_ID
LUT_ENTRY
LUT_NEW_VAL

STOPPER_IN
STOPPER_OUT

DIVERTER
A_ID

DIVERTER_CONTROLLER

EVENT
EVENT
EVENT
EVENT

EVENT
EVENT
EVENT
EVENT

EVENT

EVENT
EVENT
EVENT
EVENT
EVENT
EVENT

EVENT
EVENT
EVENT
EVENT
EVENT
EVENT

Fig. 6.28 Function block interface specification of the divert package to belt task

6.3.4 Holon Implementation

In the holon implementation stage (Fig. 6.29) the programmer has to implement the
HMS using the system architecture defined in the prior development phases. To this
end the programmer has to execute the following activities.

• Activity I1: Implement the platform. In this activity the programmer has to define
and implement the different agent platforms identified in the system architecture.
To do this the programmer has to follow the JADE programmers guide [146].

• Activity I2: Implement the agents. In this activity the programmer has to imple-
ment the different agents identified in the system architecture. To do this the pro-
grammer may use the JADE programmer and administrator guides [146]. Also,
the agents platform-integration tests have to be executed.

• Activity I3: Implement the function blocks. In this activity the programmer has to
implement new function blocks and/or re-use pre-defined function blocks. The

6.3 The Method 131

Holon
Implementation

: Programmer

Implement the Platform

Implement the Agents

System
Architecture

Requirements

Implement the Function Blocks

Integrate Sub-systems

Executable
code

Fig. 6.29 Holon implementation task definition

IEC 61131-3 Structure Text [14] language specification has to be used. Also, the
function block integration tests have to be executed on the devices, machines and
tools. The programmer can follow the programming guidelines defined in the
IEC 61499 standard [14, 15].

• Activity I4: Integrate sub-system. In this activity the programmer has to inte-
grate, for every holon, the information processing part (the JADE agent part)
with the physical processing part (the function blocks part). In this integration
process two approaches can be used: a blackboard system for communicating
the function blocks with the JADE agent [147], or; the implementation of a spe-
cial function block to manage the interface service [13]. Also, local integration
tests (intraholon) and global integration tests (interholon) have to be executed. In
these activities the software engineering techniques for integration testing can be
used.

132 6 ANEMONA Development Process

6.3.5 Setup and Configuration

In the setup and configuration stage the software engineer has to control the HMS
deployment process in the target execution environment (factory floor, machine,
shop floor, work cell, etc.). In this stage the system configuration operations have
to be made in order to fulfill the performance goals specified in the requirements
document. In this activity conventional software engineering techniques for setup
and configuration can be used, as well as the guidelines defined in the IEC 61499
[14, 15].

6.3.6 Operation and Maintenance

In this stage traditional software engineering techniques for maintenance can be
used. Any maintenance activity that involves new functionalities, adaptation to en-
vironment changes and the fixing of design or implementation errors implies a new
development process to adapt the analysis, design and implementation documents
to the new requirements.

6.4 Conclusions

In this chapter, we have presented the development process of ANEMONA. This
process is a mixed top-down and bottom-up approach. The aim of the analysis phase
is to provide high-level HMS specifications from the problem requirements, which
are specified by the client/user and that can be updated at any development stage.
The analysis adopts a top-down recursive approach. One advantage of a recursive
analysis is that its results, i.e., the analysis models, provide a set of elementary
elements and assembling rules. The next step in the development process is the
holon design stage that is a bottom-up process to produce the system architecture
from the analysis models of the previous stage. The aim of the holon implementation
stage is to produce an executable code for the setup and configuration stage. Finally,
maintenance functions are executed in the operation and maintenance stage. Our
approach provides HMS-specific guidelines to help the designer in every step of
development.

A software engineer who follows the ANEMONA method is able to develop a
holonic manufacturing system using multi-agent system technology from the begin-
ning. This is so thanks to the abstract agent notion (Chap. 3). Moreover, the guide-
lines provided by ANEMONA help the software engineer to identify and specify all
the possible flexible cooperation scenarios and agent features in order to fulfill the
manufacturing system requirements. The ANEMONA methodology is appropriate
for the domain of intelligent manufacturing systems and sufficiently prescriptive for
a software engineer with minimal training in multi-agent technology.

6.4 Conclusions 133

In the next part of the book an evaluation discussion is presented in Chap. 7 and
a complete case study is shown in Chap. 8.

Part III
Evaluation and Case Study

Chapter 7
Evaluation of the ANEMONA Methodology

The notation and the development process of the ANEMONA methodology for
holonic manufacturing systems using multi-agent system technology were presented
in Chapters 5 and 6. The ANEMONA methodology, is appropriate for the domain of
intelligent manufacturing systems and is sufficiently prescriptive for a software en-
gineer with minimal training in multi-agent technology. To substantiate this claim, it
would be necessary to perform a large series of industrial case studies with a signif-
icant number of software engineers. However, this is beyond the scope of this book
because of the quantity of documentation generated, the amount of human resources
needed, the investment in time and the very high cost of a complete life cycle of a
real industrial case study.

In order to lend support for this claim, we present in this chapter the results
of two case studies (of differing complexity) that have been conducted using the
ANEMONA methodology. With these case studies we demonstrate the applicabil-
ity of the development method for holonic manufacturing problems by presenting
two industrial case studies. These case studies were reviewed by: (i) software en-
gineers from a manufacturing research and development institute with no prior ex-
perience in agent development; (ii) students with minimal agent-technology back-
ground, and; (iii) manufacturing engineers with minimal training in multi-agent
technology. Moreover, we argue that ANEMONA is more appropriate for intelli-
gent manufacturing problems than other existing (enterprise-based, agent-oriented,
and holonic-based) methods by highlighting in what respect the methodology over-
comes the limitations of the methodologies discussed in Chap. 4.

The chapter is organized as follows: Sect. 7.1 analyzes the applicability of the
ANEMONA methodology and summarizes third-party reviews in order to evaluate
the suitability of the methodology. Section 7.2 compares ANEMONA with the stat-
of-the-art methods presented in Chap. 4.

137

138 7 Evaluation of the ANEMONA Methodology

7.1 ANEMONA Applicability to Intelligent Manufacturing
Problems

A software engineer who follows the ANEMONA method is able to develop a
holonic manufacturing system using multi-agent system technology from the be-
ginning. That is, ANEMONA is a method with a “uniformity of concepts” and there
is no need to change modeling notions and implementation units in any development
step. This is so thanks to the abstract agent notion (Chap. 3). Moreover, the guide-
lines provided by ANEMONA (6) help the software engineer to identify and specify
all of the possible flexible cooperation scenarios and agent features in order to fulfill
the manufacturing system requirements. To demonstrate these, we have designed
two real-world manufacturing systems according to the rules of the methodology.
These case studies are briefly discussed below.

The first case study has already been presented in Chap. 6. The parts distribution
system (PARDI) is a sub-system of a supply chain management system. An auto-
motive parts supplier company provides equipment parts to its dealers in Europe
through a network of distribution centers. This company requires the automation of
its supply-chain process. When a particular part is needed for service, the dealer-
ship orders it through PARDI and the part is automatically packed and shipped from
a distribution center. PARDI also automates the referral parts distribution process.
The PARDI system was first developed by a team of manufacturing engineers from a
manufacturing institute without the help of ANEMONA. The ANEMONA method-
ology was therefore applied to the PARDI problem later in order to verify whether
ANEMONA is able to support the development process fulfilling the original sys-
tem requirements. Some ANEMONA development models from this case study can
be analyzed in Chap. 6. The process itself and the development results were docu-
mented and then evaluated by a team of manufacturing students and engineers. The
evaluation can be summarized as follows:

• The ANEMONA holon identification method created a group of agents with the
same overall functionalities as the modules of the original system, each agent
responsible for its (manufacturing) component.

• The ANEMONA guidelines proposed a set of cooperation scenarios that deal
with all of the communication needs of the original system. Moreover the coop-
eration scenarios were evaluated in order to measure the message passing load
and the results outperformed the original development.

• The methodology, in particular the models and the guidelines for identifying and
specifying holons, was regarded as intuitively appropriate for designing intelli-
gent manufacturing systems, and it was felt that the methodology would have
facilitated the original development process if it had been available at the time.

ANEMONA was thus able to model and implement the PARDI system require-
ments and the original designers regarded the methodology as appropriate.

The second case study is about a ceramic tile factory. This case study is presented
in detail in Chap. 8. In the ceramic tile factory under study, different products with

7.1 ANEMONA Applicability to Intelligent Manufacturing Problems 139

diverse sizes, designs and compositions are produced. Moreover, the factory has
to deal with two kinds of clients: building firms and wholesalers. Several business
processes can be distinguished in a ceramic tile factory. Firstly, a design department
defines which ceramic products will be produced in the current season. Then, a sales
and orders forecast is made by the commercial department, based on historical sales
data, orders, etc. Later, medium-term production orders are defined, sequencing the
different product lots to be produced. This sequence configures a tentative master
plan, which is normally used as the major input data to generate the production
programming, which includes activities such as determining start time and resource
allocation for a specific lot production. The production department uses the master
plan, information about raw-material availability, plant status, etc., to generate the
production programming schedule. Finally, all tasks related to the production and
final storage of the different product lots are carried out. Usually, the ceramic tile
production process is represented as a three-stage hybrid flow shop with sequence
dependency in which three stages can be identified: press and glass lines (first stage),
kiln (second stage), and classification and packed lines (third stage). Each stage
is a productive phase with different times, resources and objectives. Finally, the
commercial department sells factory products and manages orders from clients. The
HMS for the tile factory must: (i) integrate the different departments of the company,
(ii) arrange factory resources for both on-demand and stock production orders, and
(iii) automate resources and processes controls at different levels in the company.

This case study was completely modeled following the analysis and design
phases of ANEMONA. The implementation, maintenance and configuration phases
were applied to a sub-part of the whole system. This sub-system is the tasks schedul-
ing cooperation scenario on the factory floor. The system architecture developed us-
ing ANEMONA was documented and then evaluated by a team of manufacturing
students and engineers. The evaluation can be summarized as follows:

This case study showed that the methodology was able to support the analysis,
design and implementation tasks successfully. In particular, the following observa-
tions can be made:

• The method for analyzing decision making captures the relevant aspects of the
manufacturing system, that is, resource allocation, timing decisions and manage-
ment decisions.

• The ANEMONA guidelines for identifying and specifying the holons produce a
set of agents that reflects the manufacturing components, and the different control
and management tasks are distributed among the different cooperation scenarios
and holarchies.

• The work flows, interaction protocols, and cooperation domains are suitable. All
of the possible cooperation opportunities and situations for implementing the
system requirements were identified in a satisfactory and intuitive way.

In order to evaluate the implementation of the experimental prototype, different
simulation tests have been executed in which the operating conditions have been
analyzed. These tests give a measure of the system reliability, robustness, flexibil-
ity and efficiency, not only under normal conditions, but also under nonstandard

140 7 Evaluation of the ANEMONA Methodology

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

1 2 3 4 5 6 7 8 9 10

Tests

T
im

e
(s

)

PW detects

SEM evaluates

Manager launches
reprogramming

Fig. 7.1 Time needed for error recovery when error does not affect the calculated schedule

operating circumstances. More specifically, tests on functionality and efficiency of
the system; concurrent programming capacity; system reaction to unexpected events
such as machine failures; and also agent failures are carried out. A complete analysis
of these tests can be studied in [148].

In Figures 7.1 and 7.2, there are some significant results pertaining to the evalu-
ation experiments for the tasks scheduling cooperation scenario in the factory floor.
These graphs represent the time elapsed from the moment when an error happens
until the moment when the plant wrapper agent detects it (“PW detects”); then un-
til the scheduling execution monitor agent checks whether the confirmed schedule
must be re-programmed (“SEM evaluates”); and finally until the moment when the

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

1 2 3 4 5 6 7 8 9 10

Tests

T
im

e
(s

)

PW detects

SEM evaluates

Fig. 7.2 Time needed for error recovery when error affects the calculated schedule

7.2 ANEMONA vs. State-of-the-Art Methods 141

manager agent receives the notification and launches the reprogramming process
(“Manager launches reprogramming”). When the error does not affect the confirmed
schedule (Fig. 7.1), the process usually takes around 0.02 s from the failure event
until the scheduling execution monitor decides that the error does not affect it. But,
as shown in Fig. 7.1, when the plant wrapper or the scheduling execution monitor
agents are busy, the time needed increases to up to 0.25 s. On the other hand, when
the error affects the confirmed schedule (Fig. 7.2), the process usually takes around
0.32 s, from the failure event until the manager launches the reprogramming.

7.2 ANEMONA vs. State-of-the-Art Methods

In this section we compare ANEMONA to the state-of-the-art methodology pre-
sented in Chap. 4. The goal of this section is to demonstrate that ANEMONA is
more suitable for the design of intelligent manufacturing systems than the other
existing methodologies.

The state-of-the-art review in Chap. 4 has shown that existing methodologies are
either not appropriate or not sufficiently prescriptive for developing holonic man-
ufacturing systems. In particular, the review has identified eight HMS modeling
requirements summarized in Sect. 4.1. Neither of the state-of-the-art methods from
the HMS field, multi-agent system technology and enterprise modeling cope with
all the HMS modeling requirements. A summary review can be analyzed in Table
4.1.

ANEMONA expands the state-of-the-art in that it provides a set of appropriate
and sufficiently prescriptive methods, models, techniques and guidelines for each
of the eight HMS modeling requirements. Thus, it improves methodological sup-
port for developing holonic manufacturing systems. The complete details of these
methods, models, guidelines, etc. and their usage can be studied in Chaps. 5, 6 and
8.

ANEMONA is a Multi-agent System methodology for HMS analysis and de-
sign based on the abstract agent notion (Chap. 3) and on HMS requirements. The
development process of ANEMONA aims to provide HMS designers with clear,
HMS-specific modeling guidelines, and complete development phases for the HMS
life cycle.

HMS modeling requirements 1, 2, 3 and 4 are supported by the Abstract Agent
notion (Chap. 3), the development models (Chap. 5), and the ANEMONA develop-
ment guidelines (Chap. 6).

The ANEMONA holon identification and specification guidelines deal with
HMS modeling requirement 5. Requirement 6 is supported by the ANEMONA
top-down recursive analysis phase (Chap. 6) and the abstract agent notion, while
the ANEMONA mixed top-down and bottom-up development process supports the
HMS modeling requirement 7. Requirement 8 is dealt with by the specific HMS
guidelines to help the designer in identifying and implementing holons.

142 7 Evaluation of the ANEMONA Methodology

In summary, the methodology provides a greater degree of methodological sup-
port for designing holonic manufacturing systems than existing approaches because
the models employed are more appropriate for capturing the HMS requirements,
controlling and management decisions. The ANEMONA method and its guidelines
are more prescriptive in that they provide more criteria for performing holon speci-
fication and design.

7.3 Conclusions

In this chapter we have presented an evaluation discussion on the applicability
of ANEMONA to intelligent manufacturing problems. Also, we have argued that
ANEMONA is sufficiently prescriptive for a software engineer with minimal train-
ing in multi-agent technology. These claims are supported by two real case studies
evaluated by third parties. The case studies were reviewed by: (i) software engineers
from a manufacturing research and development institute with no prior experiment
in agent development; (ii) students with minimal agent-technology background,
and; (iii) manufacturing engineers with minimal training in multi-agent technol-
ogy. Moreover, we have argued that ANEMONA is more appropriate for intelligent
manufacturing problems than other existing (enterprise-based, agent-oriented, and
holonic-based) methods by highlighting in what respect the methodology overcomes
the limitations of the methodologies discussed in Chap. 4.

In the next chapter a complete case study from a ceramic tile factory is presented.

Chapter 8
Case Study

In this chapter we present and develop a case study of a ceramic tile factory. The
chapter is organized following the different phases of ANEMONA. Firstly, we
present the requirements document of the case study (Sect. 8.1). In Sect. 8.2 the
different products of the analysis stage are presented. The system architecture is
designed in Sect. 8.3.

8.1 Requirements

KCG is a company that designs, manufactures and sells ceramic tiles. Its products
are sold in more than 150 countries. The KCG holding is composed of:

• KT: design, manufacturing and marketing of ceramic products.
• MT: design, manufacturing and marketing of ceramic products.
• WD: design and manufacturing of ceramic glazes.
• KR stores: marketing of ceramic products, bathroom fittings, taps, and hydro-

massage columns, bath and cabins.
• Branches: in different countries.

The ceramic products of KCG include: traditional, white and red body wall and
floor tiles, sophisticated polishing and rectifying coverings, glazed and technical
porcelains with high technical qualities. KCG’s clients are: building companies,
wholesalers and retailers. Sales to building companies are on demand. On the other
hand, sales to wholesalers and retailers are based on warehouse stock. KCG has
three types of suppliers, based on the material they supply: (i) clay supplier; (ii)
ceramic frits and glaze supplier, 1 and; (iii) gas supplier.

In the following subsections the ceramic tile requirements document is detailed.

1 Ceramic frits are vitreous compounds, non-soluble in water, obtained by melting and then rapidly
cooling, carefully controlled blends of raw materials.

143

144 8 Case Study

8.1.1 Organizational Chart/Departments

Figure 8.1 depicts the KCG organizational chart. In order to simplify the diagram
it only depicts the department managers without detailing the personnel assigned to
every department. The company structure is defined as follows.

• KCG President: is the head of KCG. The president is in charge of global manage-
ment and maintains a hierarchical relation with: the Branch Manager, the Design
Manager, the Marketing Manager, the Store Manager, the Ceramic Tile Factory
Manager and the Transportation Manager.

• Branch Manager: is the interface of branches in the KCG holding. The Branch
Manager is in charge of the different KCG branches in different countries and
has a hierarchical relationship with the managers of the different branches. The
Branch Manager also has cooperation relationships with: the Design Manager,
the Marketing Manager, the Store Manager, the Transportation Manager and the
Ceramic Tile Factory Manager.

• Design Manager: is in charge of the management and definition of KCG product
design. The Design Manager cooperates with the Ceramic Tile Factory Manager
in order to communicate the product designs and approve the designs defined by
KT, WD and MT. The Design Manager gets historic sales data on a given product
from the Marketing Manager, the Store Manager and the Branch Manager.

• Marketing Manager: is in charge of global sales management and KCG’s adver-
tising campaigns. The Marketing Manager has a hierarchical relationship with
the Sales Manager and the Advertising Manager, and cooperates with the Branch
Manager, Design Manager, Store Manager, Transportation Manager and Ceramic
Tile Factory Manager.

• Store Manager: is in charge of the global management of the KCG stores. The
Store Manager has a hierarchical relationship with the KR Store Managers. Also,
the Store Manager cooperates with the Branch Manager, Design Manager, Mar-
keting Manager, Transportation Manager and Ceramic Tile Factory Manager, in
order to communicate manufacturing work orders, information data on the most-
sold product design, transportation work orders, etc.

• Ceramic Tile Factory Manager: is in charge of managing the cooperation among
the different ceramic companies of the KCG holding. The Ceramic Tile Factory
Manager has a hierarchical relationship with the KT Manager, the WD Manager
and the MT Manager. Also, the Ceramic Tile Factory Manager cooperates with
the Branch Manager, Design Manager, Store Manager, Transportation Manager
and Marketing Manager, in order to communicate warehouse sales data, product
design information, incoming product transportation orders and manufacturing
work orders.

• Transportation Manager: is in charge of product transportation management from
one ceramic factory to another, from a ceramic factory to a store, from one store
to another, etc. The Transportation Manager cooperates with the Store Manager
and the Ceramic Tile Factory Manager.

8.1 Requirements 145

• The i Branch Manager: is in charge of KCG branch management in a given coun-
try. i Branch Manager is subordinated to the Branch Manager on the KCG com-
pany policies.

• Sales Manager: is in charge of managing KCG’s global sales. The Sales Manager
is subordinated to the Marketing Manager in order to register the store sales, the
warehouse sales from KT, WD and MT, and the different branch sales.

• Advertising Manager: is in charge of defining and managing KCG’s advertising
policies.

• The i KR Store: manages a KR store and communicates purchase orders and/or
manufacturing orders to the Stores Manager, receives the product samples and
catalogs.

• KT Manager: manages the KT ceramic factory based on KCG’s policies. The KT
Manager controls the different KT departments: KT Purchasing, KT Design, KT
Manufacturing, KT Human Resources, KT Warehouse, KT Sales.

• KT Sales Manager: manages the KT raw material and supervises the KT factory
Raw Materials Warehouse Managers.

• KT Design Manager: defines and maintains KT manufacturing product designs.
Some of these designs may be defined by the KCG Design department.

• KT Manufacturing Manager: manages and controls the planning, scheduling, and
production control processes of KT. The KT Manufacturing Manager coordinates
the activities of the Planning Manager and the KT Factory Manager.

• KT Human Resources Manager: manages KT employees.
• KT Warehouse Manager: manages the KT finished products warehouse.
• KT Sales Manager: manages the KT finished products warehouse sales.
• KT Planning Manager: is in charge of defining the manufacturing plan and

scheduling of KT.
• KT Factory Manager: controls and coordinates the Managers of KT Factory 1

and KT Factory 2.
• KT Factory i Manager: manages the production processes of the factory i of KT.
• KT Factory i Press and Glazing Manager: manages the different press and glazing

lines of the factory i of KT.
• KT Factory i Kiln Manager: manages the different kilns of the factory i of KT.
• KT Factory i Classification Manager: manages the different classification lines

of the factory i of KT.

The WD and MT department definitions are similar to the KT departments.

146 8 Case Study

K
C

G
 P

re
si

de
nt

M
ar

ke
tin

g
M

an
ag

er
D

es
ig

n
M

an
ag

er

Sa
le

s
M

an
ag

er

St
or

e
M

an
ag

er

W
D

M

an
ag

er

M
T

M
an

ag
er

KT

M
an

ag
er

B
ra

nc
h

M
an

ag
er

Ad
ve

rti
si

ng

M
an

ag
er

K
R

 S
to

re

1
M

an
ag

er

K
R

 S
to

re

n

M
an

ag
er

C
er

am
ic

 T
ile

Fa

ct
or

y
M

an
ag

er

B
ra

nc
h

1
M

an
ag

er
B

ra
nc

h
m

M

an
ag

er

K
T

D
es

ig
n

M
an

ag
er

K
T

Sa
le

s
M

an
ge

r

KT

W
ar

eh
ou

se

M
an

ag
er

KT

M
an

uf
ac

tu
rin

g
M

an
ag

er

KT

P
ur

ch
as

e
M

an
ag

er

KT
 P

la
nn

in
g

M
an

ag
er

KT
 F

ac
to

ry

M
an

ag
er

KT
 F

ac
to

ry
 1

M

an
ag

er
KT

 F
ac

to
ry

 2

M
an

ag
er

K
T

Fa
ct

or
y

1
Pr

es
s

an
d

G
la

zi
ng

M

an
ag

er

KT
 F

ac
to

ry
 1

K

iln
 M

an
ag

er

KT
 F

ac
to

ry
 1

C

la
ss

ifi
ca

tio
n

M
an

ag
er

KT
 F

ac
to

ry
 2

Pr

es
s

an
d

G
la

zi
ng

M

an
ag

er

KT
 F

ac
to

ry
 2

K

iln
 M

an
ag

er

KT
 F

ac
to

ry
 2

C

la
ss

ifi
ca

tio
n

M
an

ag
er

W
D

D

es
ig

n
M

an
ag

er

W
D

S

al
es

M

an
ge

r

W
D

W

ar
eh

ou
se

M

an
ag

er

W
D

M

an
uf

ac
tu

rin
g

M
an

ag
er

W
D

Pu

rc
ha

se

M
an

ag
er

W
D

 P
la

nn
in

g
M

an
ag

er
W

D
 F

ac
to

ry

M
an

ag
er

W
D

 H
um

an

R
es

ou
rc

es

M
an

ag
er

K
T

H
um

an

R
es

ou
rc

es

M
an

ag
er

M
T

H
um

an

R
es

ou
rc

es

M
an

ag
er

M
T

W
ar

e-
ho

us
e

M
an

ag
er

M
T

D
es

ig
n

M
an

ag
er

M
T

Sa
le

s
M

an
ag

er

M
T

P
ur

ch
as

e
M

an
ag

er

M
T

M
an

uf
ac

tu
rin

g
M

an
ag

er

W
D

 R
aw

M

at
er

ia
l

W
ar

eh
ou

se

M
an

ag
er

KT
 F

ac
to

ry
 1

R

aw

M
at

er
ia

l
W

ar
eh

ou
se

M

an
ag

er

KT
 F

ac
to

ry

2
R

aw

M
at

er
ia

l
W

ar
eh

ou
se

M

an
ag

er

M
T

R
aw

M

at
er

ia
l

W
ar

eh
ou

se

M
an

ag
er

M
T

P
la

nn
in

g
M

an
ag

er
M

T
Fa

ct
or

y
M

an
ag

er

M
T

Fa
ct

or
y

Pr
es

s
an

d
G

la
zi

ng

M
an

ag
er

M
T

Fa
ct

or
y

Ki

ln
 M

an
ag

er

M
T

Fa
ct

or
y

C
la

ss
ifi

ca
tio

n
M

an
ag

er

Tr
an

sp
or

ta
tio

n
M

an
ag

er

F
ig

.8
.1

K
C

G
or

ga
ni

za
ti

on
al

ch
ar

t

8.1 Requirements 147

8.1.2 Business Processes

The business processes are depicted in Fig. 8.2 (the notation used is DFD). In this
figure we can see a product definition process (process 1); a set of ceramic product
manufacturing processes (processes 2 to 6); a process for building firm orders, or a
process for maintaining finished product warehouse stock for retailers; a purchase
process (process 8) for purchasing raw materials from suppliers, and finally, a sale
process (process 7) that receives finished products and deals with company clients.

The DFD in Fig. 8.2 shows process 1 – ceramic product definition – which is
activated by own product samples (defined by the KCG Design Department) and by
product samples from frit and glaze providers. The result of process 1 is a list of the
type of products (product catalog) that will be produced in a period of time. This list
includes the specification of every type of product. A product specification includes
the material to be used, the product design, the type of press pattern to be used, the
glaze machine configurations, the kiln configuration to fire the ceramic product and
the product demand forecast.

The global manufacturing process is the sequence of processes 2, 3, 4, 5 and 6.
Process 2 – demand forecast analysis – uses as input data the product types and the
sale history. Using these data the process calculates the demand forecast for a time
period. The demand forecast is used in order to maintain a certain stock level in the
finished product warehouse. This process is currently managed by the Manufactur-
ing Manager using a software application to define an initial demand forecast for the
Marketing Department that validates and tunes it if required. This is a very important
process for the definition of the master plan. The demand forecast is based on the
building companies’ and retailers sale history. The Manufacturing Manager defines
the master plan in process 3 – master plan definition (for a time period of three or
four months). In this process the supplier purchase orders are defined (if required).
The purchase orders are defined from the manufacturing orders, demand forecast,
raw material availability, and the finished product stock. The master plan includes
the manufacturing orders. In the manufacturing orders the models, manufacturing
lots and manufacturing priorities are defined.

The Manufacturing Manager interacts with the different manufacturing section
managers (glazing, pressing, kiln and classification) in order to define the list of
the manufacturing orders that will be executed in the following five or six days.
The list definition takes the different section manager’s incident reports into ac-
count (process 4). In process 4 – schedule definition and monitoring – the loading,
scheduling and timing tasks are executed. This is the most important process with
regards to company manufacturing performance. The process works with master
plan, the different section managers’ reports, the raw material availability and the
finished product stock. The schedules, which have already been defined, are revised
and new manufacturing orders are included if required. The goals of this process
are: to fulfill the priorities defined in process 3, to maximize resource utilization and
to minimize the stock levels (maintaining a safe level of stock). These data are used
to define a manufacturing schedule that is used in process 5 – manufacturing. Fi-

148 8 Case Study

nally the Finished Products are stored in the finished product warehouse in process
6 – warehousing.

1
Ceramic Product

Definition

3
Master Plan

Definition

2
Demand Forecast

Analysis

Product Types

Demand
Forecast

Manufacturing
Orders

4
Schedule Definition

and Monitoring

Raw Material
WarehouseAvailable Raw

Material

Classification
Manager

Kiln Manager

Press and Glazing
Manager

Manufacturing
Manager

Frit and Glaze
Suppliers

Product
Samples

Design Department Own Product
Samples

Master Plan

Press Template by
Product

Kiln Configuration
by Product

Configuration
Setup Delay

Glazing Machine
Configuration by Product

Glazing Machines and
Press Templates changing

delays

Manufacturing
Priorities

Initial Plans and
Schedules

5
Manufacturing

Schedules

6
Warehousing

Finished
Products

7
Sale

Finished Product
Warehouse

Finished
Products

Finished
Products

Clients

Orders

Product Catalog

Product
Types

Schedules

Manufacturing
Plans and
Schedules

Demand Forecast

Demand
Forecast

Sale Story

Marketing
Department

Finished Product
Warehouse

Finished Product Stock

Product Catalog

Raw Material
Warehouse

Raw Material

Required Raw
Material

Provision Registry

8
Raw Material

Purchase
Required Raw

Material

Providers

Provision
Request

Product Orders

Product Quality
Tuning Delay

Master Plans

Master Plan

Product Orders

Manufacturing
Orders

Fished Product
Stock

Manufacturing
Orders

Available Raw
Material

Manufacturing
Manager

Demand
Analysis

Demand Analysis
Modifications

Demand Analysis
Tuned

Plan
Tuned

Sale Story

Fig. 8.2 KCG business processes

8.1 Requirements 149

The business processes in Fig. 8.2 are neither integrated, automated, nor flexi-
ble. This means that an error in one of them is transferred to the other process and
so can not be detected on time. Changes in client requirements are hard to adapt
to the business processes. Company productivity is too dependent on the demand
forecasts. The reply to a client order is too dependent on finished product stocks.
Coordination among the different ceramic factories is inefficient.

8.1.3 System Scope

The holonic manufacturing system must:

• Automate the management of the raw material warehouse, and supply a man-
agement system for the purchase department. These functionalities imply the
modification of process 8 in Fig. 8.2.

• Provide a master plan definition module (process 3 in Fig. 8.2).
• Automate the schedule definition and monitoring process (process 4 in Fig. 8.2).
• Automate the controlling of the manufacturing process (process 5 in Fig. 8.2).
• Integrate processes 4 and 5 in Fig. 8.2.
• Minimize manufacturing based on demand forecasts.
• Automate the finished product warehouse management process (process 6 in Fig.

8.2).
• Provide a system for store sales and warehouse management (process 7 in Fig.

8.2), coordinating processes 4 and 5 in Fig. 8.2.
• Provide a system for the coordination of the different ceramic factories.

8.1.4 Processes to Control

In this section the processes to control are defined.
The process raw material management – (P1) is in charge of managing a registry

of available raw materials and their localization in the warehouses, a date forecast
for material out of stock, arrival date of raw material, and date, quantity and desti-
nation of the raw material that left the warehouse. The purchase management aid
sub-system – (P2) must interact with the raw material management process and the
production sub-system (processes 4 and 5 of Fig. 8.2) in order to find out and rec-
ommend the following to the Purchase Department: raw material purchase orders,
estimated raw materials out of stock dates, supplier delivery times, and transporta-
tion costs.

The process finished products warehouse management – (P3) registers the fin-
ished product’s warehouse entry and exit, the localization of products in different
warehouses, the product stock and the available warehouse free spaces. This pro-
cess has to interact with the production sub-system in order to input finished prod-
ucts from the factory, and to share warehouse free-space availability. Moreover, it

150 8 Case Study

has to interact with the purchase management aid sub-system in order to supply
information on product availability and accept product requests.

The purchase management aid sub-system – (P4) manages store sales and the
direct sales from the finished products warehouse. This sub-system interacts with
the finished products warehouse management process in order to find out a given
product’s stock level. In cases where there is no stock in the warehouse, the sub-
system initiates a negotiation interaction with the production sub-system. The goal
of this interaction is to estimate the production cost and finished production date
of the client order. In this way the shop assistant can inform the client of the client
order availability in a short time (this should not be longer than 10 minutes).

The master plan definition aid sub-system – (P5) identifies and recommends the
foreseen manufacturing plans to the Manufacturing Manager. These plans include
product configurations’ quantity to produce (manufacturing lots) and planned manu-
facturing dates. In order to fulfill its goals, the master plan definition aid sub-system
bases its processes on the demand forecasts (defined by the marketing department),
the manufacturing orders (managed by the sales department), information from the
finished product warehouse management and the raw material warehouse manage-
ment processes, and the interaction with the production sub-system (processes 4 and
5 of Fig. 8.2).

The production sub-system – (P6) integrates processes 4 and 5 in Fig. 8.2. This
sub-system defines and controls manufacturing schedules and controls the manu-
facturing process. In the schedule definition (P6.1) the client orders get the highest
priority, and the production sub-system uses the master plan defined by the master
plan definition aid sub-system, only in cases where there is time available.

The manufacturing process – (P6.2) (process 5 in Fig. 8.2), is a sub-process of
the production sub-system. It is the most complex process to control. There are two
types of processes in the ceramic tile manufacturing: the twice-fired and the once-
fired process. In each type of production process there are different tile formats
(size). At the same time, every format has a different pressing mold. The number of
tile formats changes dynamically, and usually increases year by year.

The ceramic tile (Fig. 8.3) is made from clays that are passed through a humid
grinding process and then a spray dryer. The dried clay is pressed, making pieces
that, in the twice-fired process, are fired before glazing (biscuit), them are glazed
and fired for a second time. In the once-fired process the pieces go straight to the
glazing. Finally, the glazed product goes to the kiln. Between the glazing lines and
the kilns there are intermediate warehouses in order to collect the products from
the glazed lines. When the products are fired they are transported to a warehouse
waiting to be classified into different product qualities. At the same time a worker
analyzes possible surface defects. The products are packaged into cardboard boxes
and several AGVs2 transport them to the finished product warehouse. The product
is ready to be delivered.

2 Automated guided vehicles

8.1 Requirements 151

Clay Warehouse

mixed
clay

mixed
clay

milled
clay

5.2
Pressing

Mill Mixed Clay Silo

pr
es

s1

pr
es

s2

pr
es

sN

Spray Dryer

Dryer

Engobe

Glaze1

GlazeN

5.3
Drying

5.1
Clay

Transporta
tion

5.4
Glazing

Kiln
Warehouse

Kiln1

Classification
Warehouse

Classificator1ClassificatorN

5.5
Firing

5.6
Classifying

Kiln
Warehouse

Classification
Warehouse

AGV

AGV

AGV

AGVAGV

Dryer

Engobe

Glaze1

GlazeN

Dryer

Engobe

Glaze1

GlazeN

AGV

Raw Material
Warehouse

clay

clay

biscuit

almost
dried

biscuit

glazed
product

glazed
product

finished
product

5.7
Packaging

finished
product

Packager

finished
product

KilnN

Factory ConfigurationProcesses Diagram

5.8
Glaze

Preparation

Glaze

glaze

glaze

Silk-screen
printing

Silk-screen
printing

Silk-screen
printing

Dried Clay Silo

dryed clay

Change press

Change line and
drying parameters

Change line, glazing
machines, machine

configuration, machine
distribution

Change kiln configuration
and line configuration

Change line configuration

Change configuration

Stop the conveyor belt of the line

Lot Changing
Activities

Maintenance Team

Fig. 8.3 KCG factory process

152 8 Case Study

The clay transportation – process 5.1 in Fig. 8.3 – represents the sequence: mixed
clay silo, mill, spray dryer and dried clay silo, the transportation among them and
finally the transportation from the dried clay silo and the pressing lines. The dried
clay mixture feeds the presses where the tiles are formatted (process 5.2). The next
step is the drying process (process 5.3 in Fig. 8.3). This process makes the biscuit
more adhesive for the glaze application. The biscuits are transported on conveyor
belts to the driers. During transportation the biscuits are polished in order to remove
the dust adhered to the pieces after the pressing process. The pieces remain in the
dryers for a period and the temperature used in the drying process depends on the
thickness of the tile. Temperature and humidity levels are checked periodically. The
pieces leave the dryer at the optimal temperature for the glazing process (process
5.4 in Fig. 8.3). In the first part of the line every piece receives two glazing appli-
cations of engobe and base, respectively. The base application is done just as the
engobe starts to dry (this is achieved by regulating the line speed). These layers are
applied in order to remove the red color of the paste, as well as to remove or correct
possible surface defects and improve the adherence of the paste. Following the two
applications there is a long line for decorating the pieces by means of different glaze
applications. The glazing lines can be configured by changing the glazing machine
sequence based on the tile design. The glazed product goes through the kilns where
the glazed biscuit is fired (process 5.5) in order to get the finished product. When
the biscuit is in the kiln it goes through different sections called prekiln, preheating,
firing, natural cooling and forced cooling. The kiln temperature is regulated by a mi-
croprocessor. The product leaves the kiln at a high temperature, but with the required
resistance and rigidity. The fired products are carried to the warehouses waiting to
be classified (process 5.6). In the classification process the tiles are tested in order to
classify them by quality and calibre. There are three qualities of ceramic tiles (first,
second and third). The tiles with serious defects are thrown away in order to mill
them later and to carry them back to the clay warehouse. When the finished prod-
ucts are classified they are packaged into cardboard boxes with a given tile number
depending on the tile format. The glazing preparation process (process 5.8) is done
before the tile production is started. The glazes are manufactured from frits, colors,
additives and water. These products are put into special mills and milled until the
required granularity and the viscosity are achieved. The glazed tiles are stored into
dipping tanks.

The process diagram in Fig. 8.3 represents the manufacture of a given product lot.
Due to the great competitiveness in the ceramics field, companies have to deal with
a wide range of customized product orders. Because of this the catalogs are very
large, which makes manufacturing planning for the production of several different
models difficult for ceramic tile companies. Manufacturing lines must be shared
among different product designs, with the associated problems related to changing-
lot activities. The changing-lot activities (as shown in Fig. 8.3) imply a series of line
configuration activities in order to produce a given product. Apart from the time
that it can take to configure the line, there is another delay that is associated with
the tuning of the machines to achieve the quality required for a given product.

8.1 Requirements 153

When a new order is initiated some tuning activities are required to calibrate the
machines in order to manufacture the desired product. In addition to this tuning time,
more time is required to change the machines and their localization in the line. This
time is called preparation time. The tuning time plus the preparation time define the
changing lot time, which can be very long.3

Nowadays, the controlling processes and machine configuration of KCG’s man-
ufacturing line are done by workers. As a consequence, personnel costs are high due
to the fact that a full-time work team is required for this activity. Line productivity
depends on the maintenance workers’ ability and expertise. Several configuration
activities are mechanical and not automated. The propagation through the tuning
activities of the line are not very efficient as machines are configured manually.
Schedule definition and monitoring process feedback is not done in real time and it
is inefficient due to the managers’ communication policy.

In order to make the company agile and flexible, the automation of several pro-
cesses is required. KCG wants to change the controlling and configuration system:
lines, glazing, engobe and printing machines, kiln control, dryer, classification and
packaging machines. The manual process for the changing and configuration of the
presses will be maintained due to the physical characteristics of the presses. Also,
the expert classification by workers will be maintained. Moreover, tuning operations
carried out by workers on the line should be permitted.

Among the physical components to control there are: conveyor belts, glazing and
engobe machines, drying machines, AGVs, kilns, classification machines, etc. Due
to space limitations in this chapter we will only discuss the kiln specification. The
kiln is made up of a set of rollers for transporting the tile inside the kiln and the
kiln itself. The kiln is divided into three zones: preheating, firing and cooling. The
kiln is designed so that the air heated in the cooling zone is reused at the firing
zone. Also, the combustion air from the firing zone is piped to the preheating zone.
The temperature is regulated independently in each of the three zones. The inner
kiln temperature reaches 1500 degrees Celsius. The total length of the kiln is 80
meters and the means of combustion is natural gas. Every zone has a thermostat
for measuring the temperature, a security thermostat and several burners. It also has
chimneys and extractors for the expulsion of the combustion fumes. The kiln roller
system is mechanical. By regulating the roller speed it is possible to tune the length
of time the product remains in the kiln. The kiln control process takes into account
the different operation states that the kiln may have: entering products to the kiln, the
kiln is full of products, drawing of kiln, changing zone temperature by product type,
a kiln component error, roller speed, load and unload sub-systems synchronization.

3 In a conventional ceramic tile factory the time required to change the press and configure the
glazing line can be considerable – around 7 hours. Changing the configuration and classification
of the kiln can take 1 hour or more.

154 8 Case Study

8.1.5 Operation Conditions

In this section we describe the required inputs and outputs, and the possible runtime
operation changes and failures. of every process that needs to be controlled. This
information is presented in Tables 8.1 and 8.2.

Table 8.1 Operation conditions

Process Input Output Change/Failure

P1 Raw material input data (type,
amount, date, supplier). Raw
material output data (type,
amount, date, destination).
Request on raw-material
availability data (type, amount,
date).

Raw-material
availability data.

Warehouse delay on
input/output of raw
material. New type of
raw material, with new
preservation
requirements.

P2 Warehouse capacity.
Raw-material availability (type,
date, out of stock forecasted
date). Raw-material output flow
(type, amount, time period).

Purchasing
recommendation (type,
amount, date, provider)

New supplier and/or
raw material.

P3 Finished product entry data
(type, amount, date, factory
floor from which it comes).
Finished product output data
(type, quantity, date,
destination). Information
request on finished product
availability (type, quantity,
date). Information request on
warehouse free-space
availability (date, product type).

Information on
finished product
availability.
Information on
warehouse free-space
availability.

Warehouse delay on
input/output finished
products. New type of
finished product, with
new preservation
requirements and
formats.

P4 Client order (product type,
quantity, date).

Order availability
(date, cost).

P5 Forecasted demand
information, manufacturing
orders, raw material
availability, finished product
stock. Master plan definition
request. Master plan
modification request.

Tentative master plan
(product configuration,
quantity to produce,
estimated production
date).

New product
configuration.

P6 Client order scheduling order.
Lot manufacturing order.

Client order
scheduling simulation.
Manufactured lot

The order cannot be
manufactured. The lot
cannot be
manufactured. New
factory floor
configuration.

8.1 Requirements 155

Table 8.2 Operation conditions – (cont.)

Process Input Output Change/Failure

P6.1 Scheduling definition request.
Scheduling modification
request.

New schedule.
Modified schedule

The schedule can not
be defined. The
schedule cannot be
modified.

P6.2 Lot manufacturing order Manufactured lot. Factory floor failure
(machine, resource,
product). New
machine, resource or
product.

Kiln Change the temperature kiln
zone request. Roller speed
change request.

Temperature modified.
Roller speed modified.

Kiln component
failure. Input/output
kiln sub-systems
synchronization
problem.

8.1.6 Goals

The HMS goals are:

• To coordinated the KCG ceramic tile company’s activities.
• To integrate business processes 3, 4, 5, 6, 7 and 8 in Fig. 8.2.
• To minimize master-plan-based scheduling and to maximize on-demand manu-

facturing.
• To make KCG’s manufacturing process more flexible with regards to resource

and work-order changes.
• To automate manufacturing control.
• Ability to response to mechanical or factory control failures.
• To allow human intervention in the controlling and aiding processes.
• To optimize KCG’s client response speeds.

156 8 Case Study

8.2 Analysis

In this section we present the different analysis models obtained from applying the
analysis activities to the case study. The goal of the analysis stage is to identify the
holons that make up the system and to provide an initial holon specification. This is
a top-down, iterative and incremental stage.

8.2.1 Iteration 1

In the first iteration the manufacturing system is decomposed into a HMS, in which
the constituent entities cooperate in cooperation domains in order to fulfill the sys-
tem goals. In order to identify these cooperation domains/scenarios, activities A1,
A2, A3 and A4 are applied. The HMS-UC guidelines (Table 6.3) of the complex ac-
tivity determine use cases (Chap. 6) are also used. The products of these activities
are shown in Table 8.3 and Fig. 8.4.

Table 8.3 Iteration 1, system goals

ID Goal

1 To coordinate the manufacturing activities of ceramics companies.

2 To automate the raw material warehouse management process.

3 To automate the finished product warehouse management process.

4 To supply an online recommendation to the shop/warehouse assistant about the delivery date
of a client order.

5 To recommend raw-material purchase orders to the purchase department.

6 To optimize KCG’s response speed to clients.

7 To recommend a master plan to the Production Manager.

8 To minimize master-plan-based scheduling and maximize on-demand manufacturing.

9 To automate scheduling and rescheduling of the manufacturing processes.

10 To automate manufacturing control.

11 To integrate scheduling and rescheduling with the factory control.

12 To allow human intervention in the controlling and aiding processes.

Table 8.3 summarizes the goals identified using HMS-UC guidelines 1 to 6 from
Chap. 6. From these goals and HMS-UC guidelines 7 to 13, we have specified the
cooperation domains to fulfill them (Fig. 8.4). We have identified 10 use cases. In
the following activities of the analysis stage the system goals are associated with the
use case managers (Fig. 8.5). The use case will be decomposed in the next iterations.

8.2 Analysis 157

Manage the coordination
of the manufacturing

companies

Raw Material
Warehouse Management

Finished Product
Warehouse Management

Find out client
order delivery date

Master Plan
definition

Manufacturing
Schedule Definition

Manufacturing
Schedule modification

Manufacturing
control

Manage the coordination
of scheduling and

manufacturing

Goals 1 and 12

Goal 2

Goal 3

Goals 4, 6 and 12

Goals 7 and 12

Goals 11 and 12

Goals 10 and 12

Goals 8, 9 and 12

Raw Material Order
Definition Goals 5 and 12

Fig. 8.4 Iteration 1, use case diagram

The next step in the analysis stage is the specify use cases (Chap. 6). The roles
assignment to the use case managers (activity A5) can be seen in Fig. 8.5. This

Master Plan
Assistant

Purchase Assistant

Raw Material Warehouse
Manager

Finished Product
Warehouse Manager

Production
Manager

Scheduling
Manager

Manufacturing
Manager

Responsible

Responsible

Responsible

Responsible
Responsible

Responsible

Responsible

Responsible

Responsible

AGOClient-
Server

AGOSubordination

AGOSubordination

AGOClient-
Server

AGOClient-Server

Ceramic Companies
Manager

Responsible

AGOSubordination

AGOClient
-Server

AGOClient-Server
AGOClient-Server

AGOClient-Server

Raw Material
Warehouse Management

Finished Product
Warehouse Management

Find out client
order delivery date

Raw Material Order
Definition

Master Plan
definition

Manufacturing
Schedule Definition

Manufacturing
Schedule modification

Manufacturing
control

Sale
Assistant

AGOClient-Server

Manage the coordination
of scheduling and

manufacturing

Manage the coordination
of the manufacturing

companies

Fig. 8.5 Iteration 1, organization diagram

158 8 Case Study

figure also models the social relations among the roles of the organization (activity
A6). These relations (derived from the requirements document) are of AGOClient-
Server type. This is so because an information or service request between two roles
is required (for example, purchase assistant and production manager). The relation
is of AGOSubordination whenever there is one manager role and one subordinated
role (for example, production manager and scheduling manager).

Apart from the organization diagrams, activity A6 produces interaction diagrams
(Fig. 8.6) in which the communication needs among the HMS roles are specified.

Purchase
Assistant

Raw Material
Warehouse

Manager

IStart ICooperate

Scheduling
Manager

Raw Material
Warehouse

Manager

IStart

Raw Material
Warehouse

Manager

IStart

Scheduling
Manager

IStart

Manufacturing
Manager

Finished Products
Warehouse Manager

IStart

Finished Product
Warehouse

Manager

Manufacturing
Manager

Master Plan
Assistant

Scheduling
Manager

IStart

Production
Manager

Scheduling
Manager

Manufacturing
Manager

IStart

Ceramic
Companies
Manager Production

Manager

IStart

Production
ManagerSale Assistant

IStart

Query Warehouse
Status

Coordinate
Manufacturing

coordination

cooperation

Report product
entering warehouse

cooperation

Query raw material
availability date

cooperation

Lot Scheduling
Simulation

cooperation

Coordinate
companies

coordination

Request Plan
feasibility

cooperation

Query free space
Warehouse
availability

cooperation

Request Raw
Material

cooperation

IStart
IStart

ICooperate

ICooperate

ICooperate

ICooperate ICooperate

ICooperate

ICooperate

ICooperate

ICooperate

ICooperate

Fig. 8.6 Iteration 1, interaction diagram

We have identified the following interactions for the KCG HMS:

• Query Warehouse Status: The purchase assistant needs information on the raw
material stock, and to this end it starts a communication process with the raw
material warehouse manager. There is one manager for every warehouse.

• Request Raw Material: The manufacturing manager requests raw material for
the manufacturing process from the raw material warehouse manager.

• Query Raw Material Availability Date: In the use cases manufacturing sched-
ule definition and manufacturing schedule modification, the scheduling manager
needs information on the raw material required in order to manufacture a given
product. To this end, it queries the availability to the raw material warehouse
manager. The master plan assistant can also initiate this interaction in order to
get information for the definition of the master plan.

• Report Products entering Warehouse: In this interaction the manufacturing man-
ager informs the finished product warehouse manager that there is a given prod-
uct quantity entering the warehouse.

8.2 Analysis 159

• Coordinate Manufacturing: The production manager initiates an interaction with
the scheduling manager and the manufacturing manager in order to coordinate
their activities in the production process.

• Query Free Space Warehouse Availability: In order to define or modify a manu-
facturing schedule, the scheduling manager needs to know the free space avail-
ability in the warehouses. This information is supplied by the finished product
warehouse manager. The master plan assistant can also initiate this interaction
in order to get information for the definition of the master plan.

• Request Plan Feasibility: The master plan assistant before communicating the
master plan to the production manager, requests the feasibility plan from the
scheduling manager. The scheduling manager has the up-to-date knowledge on
factory capacity.

• Coordinate Companies: This interaction is executed in order to fulfill the goal
to coordinate the manufacturing activities of ceramics companies. The ceramic
company manager coordinates this interaction. This interaction starts a coordina-

Purchase Assistant
Raw Material
Warehouse

Manager

Scheduling
Manager Manufacturing

Manager

Finished Product
Warehouse Manager

Master Plan
Assistant

Production
Manager

Sale Assistant

A

Lot Scheduling

A

Get Demand
Forecast

A

Get Free Space
Warehouse Availability

A

Get Raw Material
Availability Date

WFResponsible

WFResponsible

WFResponsible

WFResponsible

A

Report Master Plan

WFResponsible

A

Report Purchase
Order

A

Get Free Space
Warehouse Availability

A

Get Estimated Raw Material
out of stock date

A

Get suppliers time
to service

WFResponsibleWFResponsible WFResponsible

WFResponsible
A

Define Purchase Order

WFResponsible

A

Register material output

A

Register material
input

A

Get Raw Material
localization

A

Forecast raw material
out of stock date

WFResponsible

WFResponsible

A

Get Manufacturing Order

A

Get Manufacturing
Simulation Order

WFResponsibleWFResponsibleWFResponsible

WFResponsible Ceramic
Companies

Manager

A

Find out Coordination
need

A
Send Manufacturing
Request to Ceramic

Company
A

Send Manufacturing Simulation
Request

A

Report results to
Shop Assistant

WFResponsible
WFResponsible

A

Define Schedule

A

Modify Schedule

WFResponsible

WFResponsible

A

Register product
output

A

Register product input A

Calculate free-space
availability

A

Calculate product
availability

WFResponsible

WFResponsible

A

Start Schedule

A

Determine resource
status

A
Control

Manufacturing
A

Get Raw Material

A

Send Finished Product to
WarehouseWFResponsible

WFResponsible
WFResponsible

WFResponsible

Fig. 8.7 Iteration 1, abstract tasks in the organization diagram

160 8 Case Study

tion process among the different production managers of the ceramic companies
of KCG.

• Simulate Lot Scheduling: The sales assistant cooperates with the production
manager in order to get information on the feasible date for a client order de-
livery.

Activity A7 produces the organization diagram of Fig. 8.7. In this figure the
role’s abstract tasks for implementing the use cases are modeled. In Fig. 8.8 we can
see the tasks and goals diagram produced by activity A8. In this diagram the abstract
tasks associated with the system goals are depicted. The dependencies among the
goals are also shown.

The next step in the analysis stage is the complex identify holons task (Chap.
6). In this step the system holons are identified, the roles are associated to these
holons and a first holon specification is produced. Figure 8.9 shows an organization

A

Schedule Lot

A

Get Free-Space Warehouse
Availability

A

Report Master Plan

A

Report Purchase
Order

A

Get Estimated Raw
Material Out of stock

date

A

Define Purchase Order

A

Register Material output

A

Register
Material input

A

Get Raw Material
Localization

A

Get Estimated Raw
Material out of stock date

A

Figure out Coordination
needsA

Send Manufacturing Order to
Ceramic Company

A

Report Results to Shop
Assistant

A

Define Schedule

A

Modify Schedule

A

Register Product output

A

Register Product input
A

Calculate free-space
availability

A

Calculate product
availability

A

Start Schedule

A

Determine resource
status

A
Control

Manufacturing

A

To Manage Raw
Material Warehouse

GTAffect
GTAffect

GTAffect

GTAffect

A

To Recommend
Purchase order

GTAffect

A

To Find out Purchase
need

GTAffect

A

Help in the Purchase
process

GTDecomposeAnd

A

To Coordinate
Manfucturing

Company Activities

GTAffect

A

To help the Shop
Assistant

A

To optimize the KCG
response speed to

client

GTAffect

GTAffect

GTAffect

A

Send Manufacturing
Simulation Order

A

To minimize Master
Plan base scheduling

A

To Control the
Factory

A

To schedule

A

To Recommend Master
Plan

GTAffect

GTAffect

GTAffect

GTAffect

GTAffect

GTAffect

GTAffect

GTAffect

A

To Manage Finished
Product Warehouse

GTAffect
GTAffect

GTAffect

GTAffect

A

To ensure
product quality

A

To Control the
Factory

A

To Schedule
A

To coordinate
Manufacturing Company

Activities
GTDependAnd

GTAffect

Fig. 8.8 Iteration 1, tasks and goals diagram

8.2 Analysis 161

Sales Assistant

Purchase
Assistant

Raw Material
Warehouse

Manager Finished Product
Warehouse

Production
Manager

Scheduling
Manager

Manufacturing
Manager

Ceramic
Company
Manager

KCG HMSA

Purchase
Holon

A

Factory
Holon

A

Sales
Holon

A

KCG
Holon

A

Raw Material
Warehouse Holon

A

Finished Product
Warehouse Holon

A

Scheduling
Holon

A

Scheduling
Holon

A

Production
Holon

A

Master Plan
Holon

A

Ceramic Product
Holon

A

Order Simulation Holon

A

Client Order
Holon

Master Plan
Assistant

OContainA-Agent OContainA-Agent

OContainA-Agent

OContieneA-Agente

OContainA-Agent

OContainA-Agent
OContainA-Agent

Play

Play

Juega

Play

Play

Play

Play

Play

Play

Fig. 8.9 Iteration 1, abstract agents and the organization diagram

diagram with the holons identified in activity A9 using the PROSA guidelines (Chap.
6).

The holons we have identified for the KCG HMS are:

• Purchase Holon: A resource abstract agent with the processing capacity to define
a raw material purchase order. In the holarchy of Fig. 8.7 it plays the purchase
assistant role.

• Raw Material Warehouse Holon: A resource abstract agent with the processing
capacity to manage the raw material warehouse. In the holarchy of Fig. 8.7 it
plays the raw material warehouse manager role.

• Finished Product Warehouse Holon: A resource abstract agent with the process-
ing capability to manage the finished product warehouse. It plays the finished
product warehouse manager role.

• Factory Holon: A resource abstract agent that provides manufacturing capacity.
It plays the manufacturing manager role.

• Scheduling Holon: A resource abstract agent with computing capabilities to
schedule manufacturing lots. It plays the scheduling manager role.

• Sales Holon: A resource abstract agent with the processing capability to manage
the shop sales and direct sales from warehouses. It is also in charge of getting the
date for a client order delivery. It plays the sales assistant role.

• Production Holon: A staff abstract agent in charge of managing the interaction
between the scheduling holon and the factory holon. It plays the production man-
ager role. There is a production holon for every ceramics company.

• KCG Holon: A staff abstract agent in charge of managing the KCG holarchy. It
manages the interaction among all the holarchy holons and plays the ceramics
company manager role.

162 8 Case Study

• Client Order Holon: A work-order abstract agent that is created in the sales pro-
cess. It is processed by the production manager using KCG’s factory resources.

• Simulation Order Holon: A work-order abstract agent that is created in the sales
process when there is no product stock. This work order is processed by the
scheduling manager.

• Ceramic Product Holon: A product abstract agent that maintains the design and
specification data of a given ceramic product.

• Master Plan Holon: A product abstract agent that stores the master plan defini-
tion of the ceramic company to which it belongs.

When the holarchy holons are identified we have to complete an initial specifi-
cation of these holons. This is done in activity A10. Figure 8.10 shows the agent
diagram for the factory holon. We have assigned to it the goals and tasks associated
with the manufacturing manager role. Moreover, following the PROSA guidelines,
we have identified the new goals and tasks. Its information structure is also specified
in terms of abstract beliefs.

A

Factory
Holon

A

Execute Schedule

A

Get resource status

A
Control Manufacturing

Process

A

To control factory

A

Get Raw Material

A

Send Finished Product to
warehouse

A
Accept Production

Order

A
Abort Manufacturing

Process

A
Resume Manufacturing

Process
A

Pause Manufacturing
Process

AResponsible AResponsible

AResponsible

AResponsible

AResponsible

AResponsible

AResponsible

AResponsible
AResponsible

GTPursue

A

To optimize
production

GTPursueA

To cooperate with
Planning Holon

GTPursue

A

Products Catalog

A

Current Work Order

A

Available Factory
Resources

A

Work order and finished
lots registry

Information
Structure

A

AHaveEM

AContainE

AContainE

AContainE

AContainE

Production Manager

Play

Fig. 8.10 Iteration 1, agent diagram, factory holon

Figure 8.11 shows the agent diagram of the scheduling holon, while Fig. 8.12
shows the agent diagram for the order simulation holon.

8.2 Analysis 163

A

Scheduling
Holon

A

Define Schedule

A

Modify Schedule

A

To Minimize the master-
plan-based scheduling

A

To Schedule

A

To cooperate with the
Factory Holon

A

To Optimize the line
capacity

A

To minimize changing
lot activities

A

Accept Simulation
Order

A

Accept Scheduling
Order

Information
Structure

A

AHaveEM

A

Scheduling order
catalog

A

Current Scheduling
orders

A

Register Schedules

A

Current Simulation
Oders

AContainE AContainE AContainE

AResponsible

AResponsible

AResponsible

AResponsible

GTPursue

GTPursue

GTPursue

GTPursue

Fig. 8.11 Iteration 1, agent diagram, scheduling holon

A

Order Simulation Holon

A

Abort Simulation
Order

A

Resume
Simulation Order

A

Start Simulation
Order

A

Get Schedule for order

A

To get delivery date near
to the requested dateA

To get the delivery date
[Temporal constraint < 10 min]

Information
Structure

A

AHaveEM

A

Order Status

A

Processing Time

AContainE

AContainE

AResponsible

AResponsible

A

Pause Simulation
Order

AResponsible
GTPursue

Fig. 8.12 Iteration 1, agent diagram, order simulation holon

The goal of activity A11 is to specify the interactions identified in activity A6.
Figure 8.13 shows the specification of the interaction request raw material. In this
figure we can see the goals that the different interacting roles fulfill, the interchanged
messages, and the message sequences.

In Fig. 8.14 we can see the simulate lot scheduling interaction that has a tempo-
ral constraint on the maximum duration of the interaction. The maximum time the
sales assistant has to get a response from the production manager is 10 minutes.
This constraint is translated into temporal conditions associated with the interaction
messages. Moreover, the simulation order holon can be seen as the manager to ob-
tain a feasible date for the client order delivery. The structure of this interaction is
derived from PROSA guideline number 26 (Chap. 6).

164 8 Case Study

A
To get Raw

Material

WFPursue

Raw Material WareHouse
Manager

Production
Manager

A

To Cooperate with
Production Manager

WFPursue

Request type and quantity
of raw material

Request Accepted

Request Rejected

Request Processed

New Request

UIStart

UIStart

UIStart

UIStart
UICooperate

Request type and quantity
of raw material

Request Accepted Request Processed

Request Rejected New Request

UIPrecede

UIPrecede UIPrecede

UIPrecede
UIPrecede

UICooperate

UICooperate

UICooperate

Fig. 8.13 Iteration 1, interaction diagram, request raw material

UIPrecede

Scheduling
Manager

Production
ManagerSales Assistant

A

To help the shop
assistant

A

To cooperate with Sales
Assistant

A

To Optimize the KCG
response speed to client

Request Simulation

GTPursue

GTPursue

GTPursue

GTPursue

GTPursue

The request was not
accepted

New Request

UIStart

UIStart

UIStart

UIStart

UIStart

UIStart
UICooperate

The request was
accepted

UICooperate

UICooperate

UICooperate

Send Simulation
Order

Request Simulation Send Simulation
Order

The request was ot
acceptedNew Request

Manufacturing date

The order cannot be
scheduled for the requested

date

UIPrecede UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

(T-T0)<10min

T0
(T-T0)<10min

A

Simulation Order Holon

UICooperate
Activate

Simulatio

Manufacturing
Date

Report
Result

UIStart

UICooperate
UIStart

UIColabora

UIStart

Activate
Simulation

Report
result

UIPrecede
The request was

accepted

The order cannot
be scheduled for

the requested
date

Fig. 8.14 Iteration 1, interaction diagram, simulate lot scheduling interaction

8.2 Analysis 165

The new interactions identified in activity A12 deal with PROSA guidelines 26
and 28. These guidelines help the engineer to identify interactions related to the
PROSA reference architecture. In Fig. 8.15 we can see the interaction to process a
manufacturing order. The client manufacturing order is received by the sales assis-
tant and communicates the order to the ceramics company manager. The ceramics
company manager determines the company in which the order will be processed.
The ceramics company manager sends a message to the production manager in or-
der to report the entrance of the new manufacturing order. The production manager
activates a client order holon in order to manage the order manufacturing process.
When the production manager receives the message manufacturing request from
the client order holon, it informs the scheduling manager and the factory manager
that the client order holon will start to interact with them.

Production
Manager

Scheduling
Manager

Manufacturing
Manager

A

Ceramic
Product Holon

A

Client Order
Holon

Sale Assistant

Activate Order Request Product
Characteristics

Inform Product
Characteristics

Request
Manufacturing

Ceramic Company
Manager

Manufactuing
Order Processing

Processed
Order

Report New Order Holon

Request Order
Sequencing

Query Factory Status Request Manufacturing
Order Processing

Request Product
Characteristics

UIStart

UIStart

UIStart

UIStart

UIStart

UIInicia
UIStart

UIStart

Inform Product
Characteristics

UIStart

UIStart

UIStart

UIStart

UIStart UIStart

UIStart

UIStart

UICooperateUICooperate

UICooperate

UIColabora

UIColabora

UICooperate

UICooperate

UICooperate

UICooperate

UICooperate

UICooperate

UICooperate

UICooperate

Report Manufacturing
Order

Order
Accepted

Order
Rejected

New Order

UICooperate

Fig. 8.15 Iteration 1, interaction diagram, manufacturing order processing interaction

The next activity in the holons specification is activity A13. In activity A13 the
engineer has to refine the tasks and goals model (Chap. 6). To do this the engineer
may use the PROSA guidelines 14 to 17.

Figure 8.16 shows the decomposition of the goals and the identified relations
among the goals and tasks of the factory holon. Figure 8.17 shows the task and

166 8 Case Study

A

Execute Schedule

A

Get Resource Status

A
Control

Manufacturing

A

To Control the
Factory

A

Get Raw Material

A

Send Finshed
Product to

Warehouse

A
Accept

Manufacturing Order

A

Abort Manufacturing A

Resume Manufacturing
A

Pause Manufacturing

A

To Optimize
Production

A

To cooperate with
Scheduling Holon

A

To Maximize
resource usage

A

To Minimize changing
lot times

A

To Minimize raw
material lost

A

To minimize finished
product factory exit time

GTDecomposeAnd

GTAffect

GTAffect
GTAffect

GTAffect

GTAffect

GTAffect
GTAffectGTAffect

GTAffect

GTAffect

GTAffect GTAffect

GTAffect

Fig. 8.16 Iteration 1, tasks and goals diagram, tasks and goals of the factory holon

belief relations of the factory holon. In this initial analysis stage the identified rela-
tions among goals, tasks and beliefs are of the GTAffect type (Chap. 5). This is so
because in the initial phases there is not sufficient knowledge about the specialized
types of relations (GTCreate, GTDestroy, GTModify, GTFail, GTSatisfy). On the
other hand, Fig. 8.18 shows the decomposition of the sales holon task, get client
order delivery date. In this figure it can be seen that the task is decomposed into get
warehouse availability and get date by simulation. The first task is used to calculate
the delivery date whenever the requested product is in stock. The second task is ex-
ecuted when there is no product availability in warehouses and the lot scheduling
simulation interaction (Fig. 8.6) has to be initiated in order to forecast a feasible
delivery date. The get client order delivery date task has a temporal constraint on its

A

Product Catalog

A

Current Work Order

A

Available Factory
Resources

A

Work order and finished
lot registry

A

Execute Schedule

A

Get Resource Status

A

Control Manufacturing

A
Accept Manufacturing

Order

A

Abort Manufacturing

A

Pause Manufacturing

GTAffect

GTAffect

GTAffect

A
Resume

Manufacturing

GTAffect

GTAffect

GTAffect

GTAffect

GTAffect

GTAffect

GTAffect

Fig. 8.17 Iteration 1, tasks and goals diagram, tasks and beliefs of the factory holon

8.2 Analysis 167

A

Get Client Order Delivery
Date

A

Get Warehouse
Availability

A

Get Date by Simulation

A

Optimize KCG client response
speed

A

To assist the shop assistant

GTAffect

GTAffect

WFDecompose

Maximum
deadline = 10 min

Lot Scheduling
Simulation

IPursue

IPursue

Fig. 8.18 Iteration 1, tasks and goals diagram, task temporal features

maximum deadline. This constraint is passed on to the sub-tasks and the interaction
(Fig. 8.14) which is activated from the get date by simulation task.

In order to finish the first iteration of the analysis stage we have to specify the
environment relations (Chap. 6). This complex task is decomposed into activities
A14, A15 and A16. These activities determine the external events that affect the sys-
tem execution, applications and resources with that the system has to work. Figure
8.19 shows the external events4 that may affect the sale holon and the raw material
warehouse holon. The applications are also depicted. BD sale and BD warehouse
are databases with which the sales holon and the raw material warehouse holon
have to interact. These databases are applications that are being used in the KCG
company.

A

Sales
Holon

A

Raw Material
Warehouse

New Client Order Entrance
Order

Product, Quantity, Date
EPerceive

Raw Material Entrance
Raw Material

Raw Material, Supplier,
Quantity, Date

EPerceive

Sale BD Warehouse BDEPerceive EPerceive

Palet

EResourcePertain

Fig. 8.19 Iteration 1, environment diagram, applications and events associated with the sales holon
and the raw material warehouse holon

At this point iteration 1 is completed, so we have to decide whether to execute
another analysis iteration. In order to do this we have to analyze the identified holons
and decide, based on the requirement document, what the advantages are of decom-
posing one or more holons. Table 8.4 summarizes this analysis. In the new iteration
we have to apply the different analysis activities to every non-atomic holon of iter-
ation 1.

4 At this abstraction level of the KCG HMS, no external resource identified has temporal features.
In lower abstraction levels the event temporal constraints will probably be identified. In this case,
the bottom-up process of the design stage will propagate them to all of the system abstraction
levels.

168 8 Case Study

Table 8.4 Holons of iteration 1
Agent Atomic Comments

Raw-material warehouse holon No There are several warehouses of raw material and
there are several processes and resources to control
in a warehouse.

Purchase holon No In order to assist the purchasing process purchase dis-
tributed information is required.

KCG holon Yes The coordinating functions that implement this holon
are not complex and can be controlled by a single
agent.

Client order holon No The client order can be decomposed into parts that
can be processed in different KCG factories.

Production holon Yes The coordinating functions that implement this holon
are not complex and can be controlled by a single
agent.

Factory holon No The factory has a set of resources and processes to
control. Moreover, it can be organized in different
ways.

Ceramic product holon No There is a ceramic product catalog and every product
has its own different features.

Scheduling holon No In the scheduling process there are several processes
and resources to control.

Simulation order holon Yes The simulation order is not decomposed into parts or
sub-orders.

Master plan holon Yes The master plan is not decomposed into sub-plans.

Planning holon Yes The planning algorithm that implements this holon is
centralized.

Finished product warehouse
holon

No There are several finished product warehouses and in
a warehouse there are several products and resources.

Sales holon No Sales are executed in different stores and this process
manages a set of processes that are executed in a dis-
tributed fashion.

8.2.2 Iteration 2

Every non-atomic holon of the previous iteration is transformed into an organization
(or MAS). In This way all the t abstract entities that were associated to the holon are
transformed into group entities (Chap. 5). The requirements of every organization
are defined in the requirements document and the analysis models of the previous
iteration. In the following paragraphs we illustrate the products of every iteration 2
analysis activity for the scheduling and factory holarchies.

8.2 Analysis 169

Define
Manufacturing Schedule

Accept Scheduling
Order Create Schedule

Modify
Manufacturing Schedule

Find out
Modification Need Modify Schedule

Determine Master
Plan Feasibility

Accept Simulation
Order

Simulate Scheduling

Scheduling
Manager

Schedule Creation
Manager

Schedule
Modification Manager

Simulation Order
Holon

Responsible Responsible

Responsible

Responsible Responsible

Responsible

Plan Manager

Responsible

A

To Minimize master-
plan-based
scheduling

A

To Schedule

A

To Optimize
Lot Capacity

A

To Minimize Lot
Changing

A

To Schedule

A

To Optimize
Line Capacity

A

To Minimize Lot
Changing

A

To cooperate
with the Master
Plan Manager

To get Delivery
date close to the
requested date

To get delivery date
[Temporal constraint < 10min]

A

To Manage
Scheduling

A

To Cooperate with the
Factory Manager

WFPursue

WFPursue

WFPursue WFPursue
WFPursue

WFPursue
WFPursue

WFPursue

WFPursue

WFPursue

Fig. 8.20 Iteration 2, use cases, holons and goals of the scheduling holarchy

Figure 8.20 shows the use cases identified in the scheduling holarchy. The re-
sponsible role of every use case and the goals associated with the role are also de-
picted. On the other hand, Fig. 8.21 shows the use case diagram for the factory hol-
archy. In Fig. 8.20 we can see that the use cases define manufacturing schedule and
modify manufacturing schedule identified in the previous iteration have been refined
into simpler use cases. Moreover, we have identified new use cases in order to spec-
ify the task sequences that have to be executed in the scheduling holarchy. These use
cases are accept simulation order, simulate scheduling, and determine master plan
feasibility. In this figure we can also see the roles of the holarchy that are responsible
for executing the use cases. The scheduling manager is responsible for coordinating
the holarchy members, and it tries to manage scheduling and to cooperate with the
factory manager. The scheduling manager has to accept scheduling order, accept
simulation order and find out modification needs. In the scheduling processing sce-
narios we have identified the schedule creation manager and schedule modification
manager roles. These two roles are associated with most of the holarchy goals. The
simulation order holon (atomic holon) takes part in this holarchy and is responsi-
ble for the simulate scheduling use case. This holon is responsible for obtaining the
available resources of the scheduling holarchy in order to process the simulation.

Figure 8.21 depicts the different use cases that have to be executed in the factory
holarchy. We have decomposed the control manufacturing processuse case of itera-
tion 1 in the get resource status and determine product status use cases. Moreover,
we have identified new use cases in the holarchy. The manufacture use case and
its decomposition are derived from the requirements document. The use cases that

170 8 Case Study

Control
Manufacturing Process

Determine Product
Status

Get Resource Status

Get Raw Material
Start

Manufacturing Order
Accept

Manufacturing Order

Adjust Line Change Lot

Perform Resource
Maintenance

To Press

To Dry

To FireTo Glaze

To Classify

To Package

Send Finished
Product to Warehouse

Manufacture

Maintenance
ManagerFactory Manager

Procurement
Manager

Press Manager

Drying Manager

Glazing Manager Kiln Manager

Classification
Manager

Manufacturing
Order

A

To Control
Factory

A

To Cooperate with
Planning Holon

A

To Maximize
resource usage

A

To minimize
changing lot times

A

To Minimize Raw
Material lost

A

To Minimize fiished
product factory exit time

A

To Interact with
workers

A

To Maximize
resource usage

A

To Maximize
resource usage

A

To Minimize Raw
Material lost

A

To Minimize raw
material waiting times

A

To Process the Order

A

To Assure the Product
Quality

Responsible

Responsible
Responsible Responsible

Responsible

Responsable

Responsible

Responsible

Responsible Responsible

Responsible

WFPursue

WFPursue

WFPursue

WFPursue

WFPursueWFPursueWFPursue

WFPursue

WFPursue

WFPursue

WFPursue

WFPursue Responsible

WFPursue WFPursue

WFPursue

Responsible

Fig. 8.21 Iteration 2, use cases, holons and goals of the factory holarchy

make up the manufacture use case represent all the steps for manufacture of ceramic
tiles. The goals of the press use case are to maximize the resource usage and to in-
teract with the workers. The second goal is derived from the requirement document,
in which it is specified that, due to the physical and mechanical characteristics of the
tile-pressing process, the press machine must be operated by workers. To this end
the press manager has to be modeled as a controlling and a decision-making help
interface with the press workers. The factory manager manages the holarchy and is
the interface entity with other holarchies. The manufacturing order role manages a
given manufacturing order process. This role has the following goals: to process the
order and to assure product quality. The maintenance manager is in charge of the
factory lot-changing activities: adjust line, change lot, and perform resource main-
tenance tasks. The procurement manager controls the raw-material procurement
process.

Figure 8.22 shows the product of the specify use case realization task for the fac-
tory holarchy. In this figure we can see the tasks and goals associated to the factory
holarchy roles. The factory manager has the goal to cooperate with the scheduling

8.2 Analysis 171

Maintenance
Manager

Factory Manager

Procurement
Manager

Press Manager

Drying Manager Glazing Manager
Kiln Manager

Classification
Manager

Manufacturing
Order

A

Make Finished
Product Lot

A

Send Lot to Finished
Product Warehouse

A
Accept

Manufacturing Order

A

Execute Schedule

A

Get Resource status

A
Control

Manufacturing

A

Get Raw Material

A
Abort

Manufacturing
A

Resume ManufacturingA

Pause Manufacturing

A
Start Manufacturing

Order

GTDecompose A
Find Out Raw Material

Need

A
Determine Product

Status

GTDecomposeOr

WFResponsible

WFResponsible

WFResponsible

WFResponsible
WFResponsible

WFResponsible

WFResponsible

A

Control Kiln

A

Maintain Resource

A

Change Press

A

Adjust Line

WFResponsible

WFResponsible

WFResponsible

A

Show Data to Worker

A

Get Data from Worker

A

Control Dryer

A
Control Glazing

Line

A
Control

Classification

A
Control

Packaging

A

Find Out Line
Adjustment Need

WFResponsible

WFResponsible

A

To Control the
Factory

A

To Cooperate with
the Scheduling holon

A

To Minimize Changing
Lot Time

A

To Minimize Raw
Material Lost

A

To Minimize the Finished
Product Factory Exit time

A

To Interact
with Workers

A

To Minimize Raw
Material Lost

A

To Minimize the Raw
Material waiting time

A

To Process Order

A

To Assure the Product
Quality

A

Accept Work
A

Accept Work

A

Accept Work

A
Accept
Work

WFResponsible
WFResponsible WFResponsible WFResponsible

GTAffect

GTAffect

GTAffect

GTAffect

GTAffect

GTAffect

GTAffect

A

To Maximize
Resource Usage

A

To Maximize
Resource Usage

A

To Maximize
Resource Usage

A

To Minimize Raw
Material Lost

A

To Minimize Raw
Material Lost

GTAffectGTAffectGTAffect GTAffect GTAffect

GTAffect
GTAffectGTAffect

GTAffect

GTAffect

GTAffect

GTAffect

A

Accept Work

WFResponsible

GTAffect

GTAffect

A

Request Schedule
Modification

WFResponsible

GTAffect

Fig. 8.22 Iteration 2, tasks and goals of the factory holarchy roles

holon, and the tasks accept manufacturing order, execute schedule, send finished
product to warehouse and get resource status. The execute schedule task is decom-
posed into a set of instances of the start manufacturing order task due to the fact
that a schedule is a set of manufacturing lots, and there is an order for each lot. The
control manufacturing task is decomposed into abort manufacturing, pause manu-
facturing, resume manufacturing and determine product status. The role responsible
for this task is the manufacturing order. The procurement manager fulfills the goal
to minimize raw-material waiting time, to do so it is responsible of the tasks find
out raw-material needs and get raw material. The different managers of the factory
floor sections (kiln, drying, glazing, pressing and classification) implement the tasks
for controlling the resources and the tasks to accept work in order to fulfill the goal
to maximize the resource usage. In the controlling tasks, apart from trying to min-

172 8 Case Study

imize the raw-material loss, the goal to minimize the changing lot time also has to
be fulfilled. The section manager is in charge of the lot-changing resource tuning,
except the press machines that are the responsibility of the maintenance manager.
The classification manager is in charge of the find out the line adjustment needs
task. All of the section controlling tasks fulfill the goal to assure product quality.

Figure 8.23 depicts the tasks and goals associated to the roles of the scheduling
holarchy.

Scheduling
Manager

Schedule Creation
Manager Schedule Modification

Manager

Simulation Order
Holon

Plan Manager

A

To Schedule

A

To Optimize Line
Capacity

A

To Minimize lot
changing

A

To Schedule

A

To Optimize Line
Capacity

A

To Minimize Lot
changing

A

To cooperate
with the Master
Plan Manager

To Get Delivery date
close to requested date

To Get Delivery Date
[Temporal constraint < 10min]

A

Define Schedule
A

Modify Schedule

A

Accept Scheduling
Order

A

Accept Simulation
Order

A

Accept Schedule
Modification Order

A

Verify Plan with Factory
Plan capacity

A

Accept Plan Revision
Request

To Execute
Simulation

Pause Simulation
Order

Resume
Simulation Order

Start Simulation
Order

Abort Simulation
Order

GTDecomposeAnd

A

Find out
Activities

A
Assign

Resources to
Activities

GTDecomposeAnd

A

Get Schedule
Execution Status

A

Find Out
Activities

A
Assign

Resources to
Activities

GTDecomposeAnd

GTAffect

GTAffect GTAffect

GTAffect

GTAffect

GTAffect

GTAffect
GTAffect

GTAffect

GTAffect

GTAffect

WFResponsible WFResponsible

WFResponsible

WFResponsible

WFResponsible

WFResponsible

WFResponsible

WFResponsible

A

To Manage
Scheduling

Fig. 8.23 Iteration 2, tasks and goals of the scheduling holarchy roles

In the next task of the analysis stage we have to identify the holons of the hol-
archy that is being analyzed. Some of these holons, the simulation order holon for
example, had already been identified in the previous iteration. In this task we make
use of the PROSA guidelines. In the factory holarchy we have applied physical and
functional decomposition to discover which holon it is made up of. Thus, we have
a set of holons for the different factory resources and the information processing
that controls them, and another set of holons for management activities, specialized
knowledge and process information management. For the scheduling holarchy, on
the other hand, we have applied the functional decomposition. Figure 8.24 shows the
roles assigned to the abstract agents of the factory holarchy, while Fig. 8.25 shows
an organization diagram for the scheduling holarchy.

8.2 Analysis 173

Maintenance
Manager

Factory
Manager

Procurement
Manager

Pressing
Manager

Drying
Manager

Glazing
Manager

Kiln Manager
Classification

Manager
Manufacturing

Order

A

Manufacturing
Manager

Holon
Factory

A

Pressing and
Glazing
Holon

A

Kiln Holon

A

Classification
Holon

A

Manufacturing
Order Holon

A

Kiln Warehouse
Holon

A

Classification
Warehouse

Holon

A

Maintenance
Holon

A

Procurement
Holon

A

Product HolonOContainA-Agent

OContainA-Agent

OContainA-Agent

OContainA-Agent

OContainA-Agent
Play

Play

Play

Play
Play

Play Play Play

Play

Manufacturing
ManagerPlay

Fig. 8.24 Iteration 2, organizational structure of the factory holarchy

Scheduling

Scheduling
Manager

Schedule Creation
Manager Schedule Modification

Manager

Simulation Order
Holon

Plan Manager

A

Product HolonA

Schedule
Creation Order

Holon

A

Schedule
Modification
Order Holon

A

Scheduler Holon

A

Scheduling
Manager Holon

Scheduling Manager

OContainA-Agent

OContainA-Agent

OContainA-Agent
OContainA-Agent

Play
Play

Play

Play Play

Fig. 8.25 Iteration 2, organizational structure of the scheduling holarchy

In Fig. 8.24 we can see the factory holarchy and its holons. These holons are:

• Manufacturing Manager Holon: This holon plays the factory manager role, man-
ages the whole factory and interacts with the scheduling manager of the schedul-
ing holarchy and the production manager.

• Pressing and Glazing Holon: Plays the pressing manager, drying manager and
glazing manager roles. It is in charge of the management of the factory floor
glazing line, and the different press machines in the factory. Every press machine
will be controlled by one worker to which this holon will provide the press-
related data. The details of the press holon will be studied in the next analysis
iteration.

• Kiln Holon: Plays the kiln manager role and manages the tile firing process.
• Classification Holon: This holon plays the classification role and manages the

tile classification process. It is also responsible for finding out the factory floor

174 8 Case Study

resource adjustment needs when a changing lot is started. The management of the
packaging process of the finished and classified product is also the responsibility
of the classification holon.

• Maintenance Holon: It plays the maintenance manager role and manages the re-
source maintenance process whenever a resource failure occurs. It also makes
requests to the maintenance workers for lot-changing activities in the press ma-
chines.

• Procurement Holon: This holon plays the procurement manager role and is in
charge of the raw material procurement process when there is a factory floor
raw-material need.

• Classification Warehouse Holon: Between the pressing/glazing lines and the
kilns there is a temporary warehouse for the kiln input. This holon manages the
available free space, the input and output of the product to the warehouse, and
the means of transporting the product to the warehouse.

• Manufacturing Order Holon: Plays the manufacturing order role and is in charge
of getting a manufacturing lot produced.

• Product Holon: This holon stores the information related to the manufacturing
activities required for a product, product quality, product features, etc. In the
factory holarchy it is used to find out the product quality requirements in the
lot-changing activities, and as a sample in the classification process.

• Resource Maintenance Order Holon: This holon represents the resource mainte-
nance activity requests and is in charge of getting these activities executed.

When all of the holarchy holons are identified we have to complete their spec-
ification. To this end we build an agent diagram for every holon. In this activity
we use the requirements document and the analysis models produced in the previ-
ous iteration. Figure 8.26 shows the manufacturing order holon, its tasks, goals and
associated mental entities.

8.2 Analysis 175

A

Find out Resource
Status

A

Control Manufacturing

A

Abort Manufacturing

A

Resume Manufacturing

A

Pause Manufacturing

A
Determine Product

Status
A

To Control
Manufacturing

A

Manufacturing
Order Holon

A

To Process the Order

A

To Assure Product
Quality

A

Get Resource

GTDecomposeOr
AResponsible

AResponsible

GTPursue

GTPursue
GTPursue

Information
Structure

A

AHaveEM

A

Order Status

A

Used Resources

AContainE

AContainE

A

Available Resources
A

Product, Quantity,
Quality Required

A

Deadline Date

AContainE AContainE

Fig. 8.26 Iteration 2, agent diagram of the manufacturing order holon

A

Accept Scheduling
Order

A
Execute

Schedule
Creation

A

Find out
Activities

A
Assign

Resources to
Activities

Shedule Creation Order
Entrance

Order
Product, Quantity,
Delivery Date

WFConsume

A

Schedule
Creation Order

Holon

Activate Schedule
Creation HolonWFProduce

A

Scheduling
Manager Holon

WFResponsible WFConnect
WFResponsible

WFConnect

WFResponsible

Request Product
Specification

WFProduce

Get Resource Assignment

WFProduce
A

Schedule
Creation Order

Holon

WFResponsible

A

Communicate
Schedule

A

Schedule
Creation Order

Holon

WFResponsible

A

Product
Holon

A

Scheduler
Holon

IStart

IStart

IStart

ICooperate
ICooperate

ICooperate

WFConnectWFConnect

ICooperate
Manufacturing

Manager

Fig. 8.27 Iteration 2, work flow for processing a scheduling order

In order to create a schedule, in the scheduling holarchy, a set of tasks must be
executed. These tasks define the work flow from the schedule creation request en-
trance event until the production manager is informed of the defined schedule. When
the production manager receives the new schedule it communicates with the man-
ufacturing manager in order to request it to start the manufacturing process. Figure
8.27 shows this work flow in the scheduling holarchy, while Fig. 8.28 shows the
associated work flow for processing a manufacturing order in the factory holarchy.

In the lot changing the line adjustment processes are executed. This process con-
sists of the complete manufacturing of a sample lot. The produced product is an-
alyzed in order to determine the adjustment activities required for quality assur-
ance. When the quality obtained does not satisfy the quality required the adjustment
process is initiated in order to tune the resources to get the desired product qual-
ity. Figure 8.29 shows the adjust lines interaction. Every resource holon executes

176 8 Case Study

WFConnect

Manufacturing Order
Entrance

Order

Schedule

A

Make Finished
Product Lot

A

Send Finished Product to
Warehouse

A
Accept

Manufacturing Order

A
Start Manufacturing

Order

A

Control Kiln

A

Control Dryer

A
Control Glazing

Line

A

Control Packaging

A

Accept Work

A

Accept Work

A

Accept Work

A
Accept
Work

A

Show Data to
Worker

A

Get Data from
Worker

A

Accept Work

A

Control Dryer

A

Accept Work

WFConsume

A

Manufacturing
Manager Holon

WFResponsible

Activate Schedule
Creation Order Holon

WFProduce

A

Manufacturing
Order Holon

IStart ICooperate

WFResponsible

WFResponsible
WFResponsible

WFResponsible

WFResponsible

A

Kiln Holon

A

Holón
Clasificación

A
Control

Classification
A

Manufacturing
Manager Holon

WFResponsible

WFResponsible

WFResponsible
WFResponsible

WFConnect WFConnect

WFConnect
WFConnect

WFConnect

WFConnect

WFConnect

WFConnect
WFConnect

WFConnect

WFConnect

WFConnect

WFConnect

WFConnect

WFConnect

WFConnect

WFResponsible

WFResponsible

A

Pressing and
Glazing Holon

Fig. 8.28 Iteration 2, work flow for processing a manufacturing order

Resource
Adjusted

A

Find Out Line
Adjustment Need

Adjust Lines

WFProduce

A

Classification
Holon

WFResponsible IStart A

Pressing and
Glazing Holon

A

Kiln Holon

A

Maintenance
Holon

A

Product
Holon

ICooperate

A

Classification
Holon

Adjust Resources

A

Manufacturing
Order Holon

ICooperate

Pause
Manufacturing

A

Manufacturing
Order Holon A

Pressing and
Glazing Holon

A

Maintenance
Holon

UIStart

UIStart

UIStart

UICooperate

UICooperate

UICooperate

UICooperate

ICooperate

UIStart

UICooperate

Resume
ManufacturingUIStart

UICooperate
A

Product
Holon

Quality Required

UICooperate
UIStart

UIStart

A

Kiln Holon

UIStart

Pause
Manufacturing

Fig. 8.29 Iteration 2, adjust lines interaction

8.2 Analysis 177

A

Product Holon

A

Scheduling
Manager Holon

Product Design DB

Simulation Order Entrance
Order

Product, Quantity, Date

EPerceive

Scheduling Order Entrance

Order
Product, Quantity,
Delivery Date

EPerceive

Schedule DB

EPerceive

EApplication
Pertain

Fig. 8.30 Iteration 2, environment diagram of the scheduling holarchy

communicating the adjustment activity order to the press workers and to receiving
confirmation from the workers when they are finished.

The factory holarchy works with the applications and external (non-autonomous)
resources that are depicted in Fig. 8.30. Figure 8.31 shows the environment diagram
of the scheduling holarchy.

Manufacturing Order
Entrance

Order

Schedule

A

Manufacturing
Manager Holon

EPerceive

A

Procurement
Holon

A

Product
Holon

Product Design DBEPerceive

Glaze

Clay

Engobe

Gas

EResourcePertain EResourcePertain

EResourcePertainEResourcePertain

Fig. 8.31 Iteration 2, Environment Diagram of the Factory holarchy

At this point, iteration 2 is finished for the scheduling and factory holarchies, and
we have to decide whether to apply another analysis stage iteration. To this end we
study every identified holon to find out the convenience of decomposing some of
these holons. Table 8.5 summarizes this analysis.

the required adjustment activities. The pressing and glazing holon is in charge of

178 8 Case Study

Table 8.5 Holons of iteration 2 from the scheduling and factory holarchies

Agent Atomic Comments

Scheduling manager holon Yes The coordination function that implements this holon
is not complex and can be controlled by a single
agent.

Schedule creation order holon Yes The scheduling order is not decomposed into parts.

Schedule modification order
holon

Yes The scheduling modification order is not decomposed
into parts.

Scheduler holon Yes Offers processing capability to assign tasks to factory
resources (scheduling algorithms).

Product i holon Yes The ceramic product is not decomposed into sub-
products.

Simulation order holon Yes In the previous iteration it was decided not to decom-
pose it further.

Manufacturing manager holon Yes The coordination function that implements this holon
is not complex and can be controlled by a single
agent.

Pressing and glazing holon No Controls and manages several resources and pro-
cesses.

Kiln warehouse holon No Controls and manages several resources and pro-
cesses.

Kiln holon No Controls and manages several resources and pro-
cesses.

Classification warehouse holon No Controls and manages several resources and pro-
cesses.

Classification holon No Controls and manages several resources and pro-
cesses.

Manufacturing order holon Yes The manufacturing order is not decomposed into
parts.

Maintenance holon No Controls and manages several resources and pro-
cesses.

Procurement holon Yes Its functions can be implemented by a single agent.

8.2 Analysis 179

8.2.3 Iteration 3

In the previous section we illustrated iteration 2 of the analysis stage for the schedul-
ing and factory holarchies. In this section we continue with the analysis of the non-
atomic holons in Table 8.5. These holons are from the factory holarchy.

Figure 8.32 shows the use cases, the responsible roles and the goals of the press-
ing and glazing holarchy. The use cases are derived from the requirements document
and the study of the previous iteration. In this figure we can see that the use cases
that deal with the management of the holarchy are the responsibility of the pressing
and glazing manager. The use cases that deal with the manufacturing of particular
instances of a product are the responsibility of the manufacturing order role. The
same structure is repeated in the kiln, classification, maintenance, kiln warehouse,
and classification warehouse holarchies. Nevertheless, these holarchy functions are
adapted to the particular resource types of each factory floor section.

Change Lot

Adjust Lines
ManufactureFind out resource

status

Input Raw Material
to Resource Finish Lot

Send Product to
Kiln Warehouse

Resource Failure

Pressing and
Glazing Manager

Manufacturing
Order

AGOClient-Server

Responsible Responsible

Responsible Responsible

ResponsibleResponsible

Responsible

A

To Minimize Lot
Changing Time

A

To Interact with
workers

A

To Maximize
resource usage

A

To Minimize Raw
Material Loss To Process OrderA

To Assure Product
QualityWFPursue

WFPursue

WFPursue
WFPursue

Fig. 8.32 Iteration 3, use cases, goals and roles of the pressing and glazing holarchy

In order to implement the uses cases of the holarchy, the responsible holons have
to get the manufacturing resources and try to execute work flows with these resource
holons. Figure 8.33 shows the organization diagram of the Pressing and Glazing ho-
larchy. In this diagram we can see the holarchy holons, and the work flows that are
executed to fulfill the holarchy goals. The holarchy formation work flow implements
the task sequence to form a resource holons group that will process a manufactur-
ing order. The locate resource work flow is used to locate the glazing and engobe
resources on the line. This work flow is also used by the manufacturing order holon
to send the manufacturing schedule to every resource holon. The adjust lines work
flow implements the task sequence that are executed for the process of lot chang-
ing. The stop, pause, and resume work flows represent the management tasks of the
pressing and glazing process. The change resource work flow models the tasks that
are executed when a resource fails and it has to be changed by another resource in

180 8 Case Study

Pressing and
Manager

Manufacturing
Order

Pressing
and Glazing

Holarchy
Formation

Locate
Resource

Adjust
Lines

Press

Glaze

Dry

Pause

Resume

Stop
Change

Resource

A

Press i
Holon

Glaze i
Holon

A

Engobe i Holon

A

Dryer i Holon

A
Conveyor Belt i

Holon

A

Manufacturing
Order Holon

Pressing and
Manager Holon

A

Play

Play

OHaveWF

OHaveWF

OHaveWF

OHaveWF

OHaveWF

OHaveWF

Product
Holon

OContainA-Agent

Fig. 8.33 Iteration 3, holons and work flows of the pressing and glazing holarchy

order to continue processing the order. On the other hand, the press, glaze and dry
work flows represent the task sequences for the physical processing itself.

Figure 8.34 shows the specification of the work flow holarchy formation for the
pressing and glazing holarchy. Similar work flows are repeated for the kiln, classifi-
cation, and maintenance holarchies, when the manufacturing order holon searches

WFConnect

Start group formation

Manufacturing
Order Holon

WFResponsible Report resource needed

IStart

ICooperate

A

Report group need to
Resource

WFProduce
WFResponsible

WFConnect
Report new Work-

order Holon
WFConnect

IStart

A

Press i Holon

Glaze i Holon

A

Dryer i Holon

A

Conveyor Belt i
Holon

A

ICooperate

ICooperate

ICooperate

Get type of needed
resource

WFConnect

Send resource call A

Evaluate Proposal

A

Accept call

Select ResourceReport Selection

WFResponsible

WFConnect

WFConnect

WFConnectWFConnect

WFResponsible

WFResponsible

WFResponsible

Get Resources
WFProduce

A

Pressing and Glazing
Holon

Fig. 8.34 Iteration 3, holarchy formation work flow of the pressing and glazing holarchy

8.2 Analysis 181

Manufacturing
Order Holon

A

Press i Holon

Glaze i Holon

A

Engobe i Holon

A

Dryer i Holon

A

Conveyor Belt i
Holon

A

A

Pressing and Glazing
Manager Holon

Proposal(task,
time period)UIStart

UICooperate

UICooperate

A

Evaluate Proposal

A
Accept Call

Select Resource

Report Slection

Report
Response

UIStart
UICooperate

Accept

UIStart

UICooperate

UICooperate

T < TI

T < TI

T < TI

TI is the schedule start time
T is the current time

Fig. 8.35 Iteration 3, get resources interaction of the pressing and glazing holarchy

for resources to process the order. The holarchy formation work flow starts with the
start group formation task of the manufacturing order holon. This task produces the
report resource needed interaction via which the manufacturing order holon com-
municates the resource interaction required to process the order to the pressing and
glazing manager holon. The next task in the work flow is the pressing and glazing
manager holon responsibility. The task is report group need to resource. This task
produces the report new work-order holon interaction. In this interaction the press-
ing and glazing manager holon notifies the resource holons that the manufacturing
order holon will be the order processing manager. The manufacturing order holon is
in charge of finding out the types of resources needed, in order to send resource call
by means of the get resources interaction (see Fig. 8.35). The evaluate proposal and
accept call tasks are executed by the resource holons in order to cooperate with the
manufacturing order holon. The select resource and report selection tasks complete
the holarchy formation work flow.

Fig. 8.36 Iteration 3, inter-
action for the locate resource
work flow specification

Manufacturing
Order Holon

Glaze i Holon

A

Engobe i Holon

A
Go to Location(line,

point)

Location reached

Schedule for
resource

UICooperate

A

Go to Destination

UICooperate

UICooperate

UIStart

UIStart

UIStart

T < TI

T < TI

TI is the schedule start time
T is the current time

Find out Resource
Location

182 8 Case Study

Figure 8.36 shows the specification of the locate resource work flow, while Fig.
8.37 shows the glaze work flow.

Manufacturing
Order Holon

Glaze i Holon

A

Engobe i Holon

A

Start
Glazing

Adjusted Glaze Line

WFConsume

A

Detect Tile and
Apply Glaze

WFResponsible

WFResponsible

A

Detect Tile and
Apply Engobe

WFConnect
WFResponsable

A

Glaze and
Quantity Glaze

Tile
WFConsume

WFProduce

WFResponsible A

Engobe
and

Quantity

Engobe

Tile
WFProduce

WFConsume

Conveyor Belt i
Holon

A

A

Product and
Conveyor Belt

speed

A

Move Conveyor
Belt

WFConnect

WFConnect

WFResponsible

WFConsume

Fig. 8.37 Iteration 3, glaze work flow of the pressing and glazing holarchy

Find out Resource
status

Control
Manufacturing

Abort
Manufacturing

Resume
Manufacturing

Pause
Manufacturing

Determine
Product Status

To Control
Manufacturing

Manufacturing
Order Holon

To Process
Order

To Assure Product
Quality

Get Resource

GTDecomposeOr
AResponsible

GTPursue

GTPursue GTPursue

Information
Structure

AHaveEMAContainE

AContainE

Products, Quantity,
Quality Required

AContainE
AContainE

Find out Resource
Location

Select ResorceReport
Selection

Find out resource
types needed

GTDecomposeAnd

Start
Manufacturing

Report New
Resource

AResponsible

Glaze Line
AdjustedDelivery

Date

Available
Resources

Used
Resources

Order
Status

AContainE

Start Group
Formation

Send resource
calls

Fig. 8.38 Iteration 3, agent diagram of the manufacturing order holon

Figure 8.38 shows the agent diagram of the manufacturing order holon that has
been extended with new tasks in the current interaction. Figure 8.39 shows the task
decomposition of the start manufacturing and resume manufacturing tasks.

8.2 Analysis 183

Start
Glazing

Start Manufacturing

Report Start
Pressing

Start
Drying Start Firing Start

Classification
Start

Packaging

GTDecomposeOr

Resume
Glazing

Resume Manufacturing

Resume
Drying

Resume
Firing

Resume
Classification

Resume
Packaging

GTDecomposeOr

Report Resume
Pressing

Fig. 8.39 Iteration 3, task decomposition of the manufacturing order holon

In Fig. 8.40 we can see the agent model of the kiln i holon. On a factory floor
there could be kilns made by different manufacturers and so with different hardware
controllers. Here, we illustrate the agent model of a continuous roller kiln. The tasks
assigned to the kiln i holon have to deal with its structure. Therefore, we have a
zone temperature regulation task, a read thermostat task. The regulate the Roller
speed task to control the tile exposure time in each kiln zone, and the synchronize
roller speed with the input and output system. The figure also shows the temporal
constraints of the tasks and goals. Moreover, we can see the information mental
entities of the kiln i holon for executing its tasks and fulfilling its goals.

A

To Maximize
resource usage

A

To Minimize Raw
Material Lost

A

To Assure Product
Quality

Kiln i Holon

A

A

Regulate Zone
Temperature

A

Control Burners

A

Read Thermostat

A

Control Extractors

A

Regulate Roller speedA

Redirect heat to zone

A

Synchronize Roller speed with
input and output system

A

Kiln Zones A
Security

Temperature

A

To Maintain Security
Levels

A

Kiln Status

A

Product in Kiln

A
Current roller

speed

Information
Structure

GTPursue

GTPursue AResponsible
AResponsible

AResponsible

AResponsible

AHaveEM

AContieneE AContieneE

Hard, Periodic

Hard, Periodic

Hard, Periodic

Hard

Fig. 8.40 Iteration 3, agent diagram of the kiln i holon

At this point iteration 3 is completed for the pressing and glazing, kiln, kiln
warehouse, classification warehouse, classification, and maintenance holarchies.
We have to decide whether to apply another analysis stage iteration. To this end
we study every identified holon and find out the advisability of decomposing some
of these holons. Tables 8.6 and 8.7 summarize this analysis.

184 8 Case Study

Table 8.6 Holons of iteration 3 from the pressing and glazing, kiln, kiln warehouse, classification
warehouse, classification and maintenance holarchies – Part 1

Agent Atomic Comments

Scheduling manager holon Yes The coordination functions that implements this
holon are not complex and can be controlled by a sin-
gle agent.

Press i holon Yes Implements worker interface functions. These func-
tions are not complex and can be controlled by a sin-
gle agent.

Dryer i holon Yes The dryer control is managed by a non-complex cen-
tral hardware module and can be implemented by a
single agent.

Engobe i holon Yes The engobe machine control is managed by a non-
complex central hardware module and can be imple-
mented by a single agent.

Glaze i holon Yes The glaze machine control is managed by a non-
complex central hardware module and can be imple-
mented by a single agent.

AGV i holon Yes The AGV control functions are not decomposed into
sub-functions.

Conveyor belt i holon Yes The conveyor-belt controlling mechanism is imple-
mented into a single hardware controller.

Kiln i holon No The kiln is managed from a single central controlling
unit.

Kiln warehouse i holon Yes The coordination function that implements this holon
is not complex and can be controlled by a single
agent.

Classification i holon Yes The controller of the artificial vision classification
machine is managed by a unique process.

Classification warehouse i
holon

Yes The coordination function that implements this holon
is not complex and can be controlled by a single
agent.

Packaging i holon Yes A single processor moves and controls the packaging
robot arms.

Pressing and glazing manager i
holon

Yes The coordination function that implements this holon
is not complex and can be controlled by a single
agent.

Kiln manager i holon Yes The coordination function that implements this holon
is not complex and can be controlled by a single
agent.

8.3 Design 185

Table 8.7 Holons of iteration 3 from the pressing and glazing, kiln, kiln warehouse, classification
warehouse, classification and maintenance holarchies – Part 2

Agent Atomic Comments

Classification manager i holon Yes The coordination function that implements this holon
is not complex and can be controlled by a single
agent.

Resource maintenance order i
holon

Yes A maintenance order is not decomposed into parts.

Maintenance manager i holon Yes The coordination function that implements this holon
is not complex and can be controlled by a single
agent.

Product i holon Yes In previous iterations it was decided not to decom-
pose it.

Manufacturing order holon Yes In previous iterations it was decided not to decom-
pose it.

The analysis stage is completed because there is no new iteration required. In the
following section the design stage of the Ceramic Tile Factory is presented.

8.3 Design

In this section we present the different design models produced by the ANEMONA
design activities applied to the KCG case study. The goal of the holon design stage
is to define the system architecture. The ANEMONA design stage has two major
phases. In the first phase the analysis models of the analysis stage are completed
with design details (Sect. 8.3.1). In the second phase the implementation platform
features are specified (Sect. 8.3.2).

8.3.1 Holons Specification

In this section we show the diagrams produced in the design activities of the refine
holons specification task. This phase starts with the atomic holons identified in the
analysis stage, and gradually completes the specification of the higher level holons
(bottom-up process).

The set of recursion level-0 holons, identified in the analysis models, are shown
in Tables 8.8 and 8.9. In the first design iteration we complete the specification of
the agent model, the tasks and goals model and the environment model. Figure 8.41
shows agent diagrams of the manufacturing order holon. In these diagrams we can
see the different mental states of the holon at different execution times. The mental

186 8 Case Study

Table 8.8 KCG atomic holons – Part 1
Holon Holarchy

Raw material DB manager holon Raw material warehouse management

Material output order holon Raw material warehouse management

Material input order holon Raw material warehouse management

Raw material warehouse holon Raw material warehouse management

Clay silo holon Raw material warehouse management

Clay warehouse holon Raw material warehouse management

Spray dryer holon Raw material warehouse management

Purchase data manager holon Purchase assistance

Raw material order holon Purchase assistance

KCG holon Ceramic company coordination management

Client order part holon Manufacturing order processing, and master planning

Production holon Production coordination management, ceramic com-
pany coordination management, production order
simulation, and manufacturing order processing

Manufacturing manager holon Production coordination management, factory, pro-
duction order simulation

Press i holon Factory

Dryer i holon Factory

Engobe i holon Factory

Glaze i holon Factory

AGV i holon Factory

Conveyor belt i holon Factory

Kiln i holon Factory

Kiln warehouse i holon Factory

Classification i holon Factory

Classification warehouse i holon Factory

Packager i holon Factory

Pressing and glazing manager i holon Factory

Kiln manager i holon Factory

Classification manager i holon Factory

Resource maintenance order holon Factory

Maintenance manager i holon Factory

8.3 Design 187

Table 8.9 KCG atomic holons – Part 2
Holon Holarchy

Procurement manager holon Factory

Manufacturing order holon Factory

Product i holon Scheduling, and factory

Schedule creation order holon Scheduling

Scheduling manager holon Scheduling

Schedule modification order holon Scheduling

Scheduler i holon Scheduling

Simulation order holon Order simulation, and sale assistance

Master plan holon Master planning

Planning holon Master planning

Finished product DB manager holon Finished product warehouse

Finished product output order holon Finished product warehouse

Finished product input order holon Finished product warehouse

Finished product warehouse manager
holon

Finished product warehouse

Transportation unit i holon Finished product warehouse

Sale DB manager holon Sales assistance

Sale order holon Sales assistance

states of these diagrams represent the information knowledge and goals that make
the manufacturing order holon execute tasks.

AHaveEM

AContainE

Product, quantity,
quality: Schedule

WFResponsible

Manufacturing
Order Holon

To Process Order

GTPursue

Manufacturing
Order Holon

Manufacturing
Start

Group Formation
Start

Start Group
Formation

Available Resources:
Located

Product, quantity,
quality: Schedule

AHaveEM
AContainE

Start
Manufacturing To Process

Order

WFResponsible GTPursue

Manufacturing
Execution

Product, quantity,
quality: Schedule

Order Status:
Initiated

Used
Resources

To Control
Manufacturing

To Assure
Product Quality

GTPursue

GTPursue

Manufacturing
Order Holon

AContainE

AHaveEM Determine
Product Status

WFResponsible

AContainE

Lines
Adjusted

Order Status:
Non initiated

Order Status:
Non initiated

Fig. 8.41 Design, agent diagram of the manufacturing order holon

188 8 Case Study

Figure 8.42 shows an agent diagram for the kiln i holon. In this diagram we
can see the mental state normal functioning, in which the kiln i holon is in charge
of executing the temperature control tasks for the different kiln zones. These tasks
are: read thermostat, regulate zone temperature, control extractor and control burn-
ers. We can also see the task’s temporal constraints, which are hard, real-time and
periodic.

Kiln i Holon

Normal
Functioning

Current Temperature <
Security Temperature

Kil Status: firing tiles

Product in Kiln

Control
Burners

Read Thermostat AContainE

AContainE

AContainE

ATieneEM

Regulate Zone
Temperature

Regulate Roller speed

Control Extractor

Hard, Periodic,
Period = 100 ns,

wcet = 10 ns

Hard

Hard, Periodic,
Period = 10 ns,

wcet = 5 ns

Hard, Periodic,
Period = 1000 ns,

wcet = 50 ns

Hard, Periodic,
Period = 10 ns,

wcet = 5 ns

Hard, Periodic,
Period = 50 ns,

wcet = 25 ns

To Minimize Raw
Material Lost

To Assure Product
Quality

To Maintain Security
Level

GTPursue

GTPursue
GTPursueWFResponsible

WFResponsible

Fig. 8.42 Design, agent diagram of the kiln i holon

Figure 8.43 shows a tasks and goals diagrams of the kiln i holon. In this diagram
we can see the relationship of the tasks and goals with the mental entities.

To Maximize
resource usage

To Mnimize Raw
Material Lost To Assure Product

Quality

Regulate Zone
Temperature

Control Burners

Read Thermostat

Control Extractor
Regulate roller

speed

Redirect Heat to
Zone

Kiln zones

Security
Temperature

To Maintain Security
Level

Kiln Status

Product in Kiln

Current Roller
speed

Synchronize roller speed
with input and output

system

GTSatisfy
GTSatisfy

GTSatisfy
GTSatisfy

GTSatisfy

GTSatisfy

GTSatisfy

GTSatisfy

GTSatisfy

GTSatisfy

Accept call

GTSatisfy

GTSatisfy

Kiln zones

Security
Temperature

Products to Fire

GTCrea

WFConsume

GTModify

GTModify

WFConsume

WFConsume

Kiln Status
GTModify

WFConsume

WFConsume

Kiln Status

GTModify

Fig. 8.43 Design, tasks and goals diagram of the kiln i holon

8.3 Design 189

In Fig. 8.44 we can see the environment diagram of the kiln i holon. The external
events that the holon perceives are stop order entrance and product entrance. The
first event is the worker manual stop order. The second event has real-time charac-
teristics.

Fig. 8.44 Design, environ-
ment diagram of the kiln i
holon

Gas
Stop Order Entrance

Worker Order Kiln i Holon

EPerceiveNotification
EResourcePertainA

Product Entrance

Input data

Product

EPerceiveSample

Periodic, 10 ns

When the design models for the atomic holons are completed, the same steps have
to be repeated for the holons of recursion level 1. By studying the analysis models
we know that the holons of recursion level 1 are: client order holon, ceramic product
holon, pressing and glazing holon, kiln warehouse holon, kiln holon, classification
warehouse holon, and maintenance holon.

The client order holon represents a client order that can be divided into several
parts or manufacturing order holons. These manufacturing orders can be executed
in different KCG ceramic company factory floors (where the execution of an order
is decided by the KCG holon). The manufacturing order holon represents the order
part in the scheduling and the factory holarchies. Every manufacturing order holon
is responsible for its own processing and one of them will be responsible for regis-

Control
ManufacturingFind out resource

status

Abort
Manufacturing

Resume
Manufacturing

Pause
Manufacturing

Determine
Product Status

Get Resource

GTDecomposeOr

Find out Resource
Location

Select
Resource

Report Selection Find out resource type
required

GTDecomposeAnd

Start
Manufacturing

Report new
resource

Start Group
Formation

Send call to
resource

Process
Order

Report Order
Procesed Find Out Manufacturing

Order Status

WFContainTask

WFContainTask

WFContainTask

WFContainTask

Register Order
Status

WFContainTask

Start
Glazing

Start Manufacturing

Report Start
Pressing

Start
Drying Start Firing Start

Classification

GTDecomposeOr

Resume
Glazing

Resume Manufacturing

Resume
Drying

Resume
Firing

Resume
Classification

Resume
Packaging

GTDecomposeOr

Report Resume
Pressing

Start
Packaging

Fig. 8.45 Design, tasks and goals diagram of the client order holon

190 8 Case Study

tering the time in which the client order is completed (that is, all the manufacturing
orders that have been processed). Figure 8.45 shows the tasks and goals diagram of
the client order holon. On the other hand, Fig. 8.46 shows the interaction among the
manufacturing order holons of a client order for registering its processing status. In
this diagram we can see the order manager and the order part roles.

Manufacturing
Order Holon

Manufacturing
Order Holon

Order
Manager Order Part

Finished
Order

Current
Status

UIStart

UIStart

UIStart

UICooperate

UICooperate

Report Order
Processed

Find out Manufacturing
Order Status

Play Play

Order
Status

query-ref

inform-ref

inform

Register Order
Status

UICooperate

Fig. 8.46 Design, interaction diagram of the client order holon

The pressing and glazing holon represents the manufacturing process part for
pressing, glazing and drying of ceramic tiles. The holons of this holarchy are the
pressing and glazing manager holon, the resource holons of the pressing and glaz-
ing lines (see Fig. 8.33), and the manufacturing order holon. The interface of the
pressing and glazing holon (tasks and goals) is depicted in Fig. 8.47. In this dia-
gram we can see the decomposition of abstract tasks in terms of work flows and
tasks of its constituent holons.

A

Control Dryer

A

Show Data to workers

A

Get data from workers

A

Control Glazing
Line

Find out
Resource

Status

Press
Glaze

Dry

Pause

Resume Stop

Find Out
Resource

Status

Pause

Resume

Stop

Start Glazing
Detect Tile and

Apply Glaze
Detect Tile and
Apply Engobe

Move
conveyor Belt

Request Start
Pressing

Request
change Press

Read Worker
Data Start

Drying
Detect

Humidity level

WFDecompose
WFDecompose

WFDecompose
WFDecompose

WFDecomposeWFDecompose

WFDecompose

WFDecompose

A

To Minimize Raw
Material Loss

A

To Interact with
workers

A

To Maiximize
resource usage

A

To Assure Product
Quality

A

To Control
Pressing

and Glazing

A

To Minimize Raw
Material Loss

A

To Assure
Product Quality

A

To Maximize
resource usage

GTSatisfy
GTSatisfyGTSatisfy GTSatisfy GTSatisfy GTSatisfy

GTSatisfy A

To control
Pressing and

Glazing

Fig. 8.47 Design, tasks and goals diagram of the pressing and glazing holon

8.3 Design 191

We have to complete all of the internal interactions of the recursion level 1
holons. Figure 8.48 shows an interaction diagram for the pressing and glazing
holon. In this figure we can see the interaction units and their execution sequence
for the resource location interaction. Similarly, all of the interactions of the holarchy
have to be completed with this information.

Fig. 8.48 Design, interaction
diagram of the pressing and
glazing holon

Manufacturing
Order Holon

Glaze i Holon

Engobe i Holon

Go to Location(line,
point)

Location Reached

Resource Schedule

UICooperate
Go to

Destination

UICooperate

UICooperate

UIStart

UIStart

UIStart

T < TI

T < TI

TI is the schedule start time
T is the current time

Find out Resource
Location

inform

inform

inform

Go to Location(line, point)

inform

Location Reached

inform

Resource Schedule

inform

UIPrecede UIPrecede

Figure 8.49 shows an organization diagram of the pressing and glazing holon
with the social relations refined to subordinated relations and client–server relations.

Press i Holon

Glaze i Holon

Engobe i Holon

Dryer i Holon

Conveyor Belt i
Holon

Manufacturing
Order Holon

Pressing and Glazing
Manager Holon

Product Holon

AGOSubordinate

AGOSubordinate

AGOSubordinate

AGOSubordinate

AGOClientServer

AGOClientServer

AGOClientServer

AGOClientServer

AGOClientServer

Fig. 8.49 Design, organization diagram of the pressing and glazing holon

Let’s assume we have completed the recursion level-1 holons specification, and
now we have to complete the design models for the holons of recursion level-2.
Studying the analysis models, the only recursion level-2 holon is the factory holon.

192 8 Case Study

Figure 8.50 shows the factory holon task decomposition in terms of the tasks of
its constituent holons, while Fig. 8.51 shows and adjustment line interaction for the
factory holon.

Get resource
state

A
Control

Manufacturing

A

To Control
Factory

Get raw material

Accept Work
Order

A

Abort Manufacturing

A

Resume Manufacturing

A

Pause Manufacturing

A

Production
Optimization

A

To Cooperate with
Planning Holon

To maximize
resource utilization

To minimize lot
changing time To minimize raw

material loss

To Minimize finished
product exit time from
factory to warehouse

GTDecomposeAnd

GTSatisfy
GTSatisfy

GTSatisfy

GTSatisfy

GTSatisfy

GTSatisfy

GTSatisfy

A
Control Drying

Process
A

Control Glazing
Line

A

Control Ovens

A
Control Classifying

Process

A
Control

Maintenance

WFDecompose
Start Schedule

Start Manufacturing
Order

Get
Resource

Process
Work Order

WFDecompose

GTSatisfy

GTSatisfy
GTSatisfy

A

Send finished
product to warehouse

Fig. 8.50 Design, tasks and goals diagram of the factory holon

Resume
Manufacturing

Resume
Manufacturing

Classification
Manager i

Holon

Adjust Resource

Pause
Manufacturing

Manufacturing
Order Holon

Pressing and
Glazing

Manager i
Holon

Kiln Manager i
Holon

Maintenance
Manager i Holon

UIStart

UICooperate

UICooperate

UICooperate

UICooperate

Resource
Adjusted

UIStart

UIStart

UICooperate

UICooperate

Product Holon

Required Quality

UICooperate

UIStart

UIStart
UIStart

Pause
Manufacturing Adjust Resource Quality Required Resource

Adjusted

UIStart
inform

inform

query

inform

inform

inform inform query inform inform

UIPrecede UIPrecede UIPrecede UIPrecede

UICooperate

Fig. 8.51 Design, interaction diagram of the factory holon

8.3 Design 193

Figure 8.52 shows the social relations among the holons of the factory holon
holarchy. These relations are defined by studying the interactions identified in the
analysis stage using the PROSA guidelines.

Factory
Manager Holon

A

Pressing and
Glazing
Holon
A

Kiln Holon

A

Classification
Holon

Work Order
Holon

A

Kiln Warehouse
Holon

A

Classification
Warehouse

Holon

A

Maintenance
Holon

A

Supplying Holon

Product Holon

AGOSubordination

AGOSubordination

AGOSubordination

AGOSubordination

AGOSubordination

AGOSubordination

AGOSubordination

AGOSubordination

AGOClientServer

AGOClientServer

AGOClientServer

AGOCliente
Servidor

Fig. 8.52 Design, organization diagram of the factory holon

In the analysis models of the previous section we can see that the holons of
recursion level-3 are: raw material warehouse holon, finished product warehouse
holon, and scheduling holon. The scheduling holon has recursion level-3 because
the factory holon (of level-2) takes part in this holarchy. The other holons of the
scheduling holarchy are atomic holons. We have to refine the interactions in which
the factory holon participates. Figure 8.53 shows the interaction to assign tasks to
resources in which the manufacturing manager cooperates with the factory floor
status data.

Schedule
Creation Order

Holon
Scheduler Holon

Manufacturing
Manager Holon

Product i
Holon

Resource Type

query

Forecasted
Status

inform

Resource Status

query

Resource Assigned(resource,
start time, end time)

inform

UIStart

UIStart

UIStart

UIStart

UIStart

UICooperate

UICooperate

UICooperate
UICooperate

UICooperateAssign Resource(tasks,
start time, end time)

request

Assign Resource(tasks,
start time, end time)

request

Resource
Type

query

Resource
Status

query

Forecasted
Status

inform

Resource Assigned(resource,
start time, end time)

inform

UIPrecede

UIPrecede UIPrecede

UIPrecede

Fig. 8.53 Design, interaction diagram of the scheduling holon

194 8 Case Study

To Assist the Shop
Assistant To cooperate with the

Sales Assistant

To Optimize the KCG
response speed to client

Simulation Request
GTPursue

GTPursue

GTPursue

GTPursue

GTPursue

Simulation Refused

Schedule not
feasible

New Request

UIStart
UIStart

UIStart

UIStart

UIStart

UICooperate
Simulation Accepted

UICooperate

UICooperate

UICooperate

Send Simulation
Order

Simulation
Request

Send Simulation
Order

Simulation Refused New Request

Production Date

Schedule not
feasible

UIPrecede UIPrecede

UIPrecede

UIPrecede

UIPrecede

UIPrecede

(T-T0)<10min

T0

(T-T0)<10min

Simulation
Order Holon

UICooperateActivate
Simulation

Production
Date

Simulation
Result

UIStart

UICooperate

UIStartUICooperate

UIStart

Activate
Simulation

Simulation
Result

UIPrecede
UIPrecede

Simulation
Accepted

Sale DB
Manager Holon

Scheduling
Manager Holon

Production
Holon

propose

request

request
inform inform

inform

accept

reject-proposal

propose

propose request

propose reject-proposal

request inform

inform

inform

accept

Fig. 8.54 Design, interaction diagram to process a simulation order

Product i
Holon

Manufacturing
Order Holon

Activate Order Request Product
Characteristics

Inform Product
Characteristics

Request Production

Process
Manufacturing Order

Order
Processed

Inform new Order Holon

Request Order
Scheduling

Query Factory Status Quest Order
Manufacturing

Request Product
Characteristics

UIStart

UIStart

UIStart

UIStart

UIStart
UIStart

UIStart

Inform Product
Characteristics

UIStart

UIStart

UIStart

UIInicia

UIStart UIStart

UIStart

UIStart

UIcooperate

UIcooperate

UIcooperate

UIColabora

UIColabora
UIColabora

UIcooperate

UIcooperate

UIcooperate

UIcooperate

UIcooperate

UIcooperate

UIcooperate

Communicate
Manufacturing Order

Order
Accepted

Order
Refused

New Order

Sale DB
Manager Holon

KCG Holon

Production Holon

Manufacturing
Manager Holon

Scheduling
Manager Holon

propose

accept

reject-proposal

propose

UIcooperate
informrequest

request

UIcooperate
request

inform

request
request

request

inform

request

inform

request

Fig. 8.55 Design, interaction diagram to process a client order

8.3 Design 195

Finally, the holons of recursion level-4 are the purchase holon and the sales
holon, because both of them participates in the scheduling holon. In Fig. 8.54 we can
see the interaction diagram for the simulation order processing. Figure 8.55 shows
the interaction diagram of KCG for processing a client order.

8.3.2 System Architecture

In this section we present the last phase of the ANEMONA design stage. The goal
of this phase is to build the system architecture with the implementation platform
details. To this end we use the JADE and functional block guidelines (Chap. 6).

Table 8.10 KCG identified agent platforms

Platform Agents

KCG group Factory

Sale i KCG holon, production holon, purchase information management holon,
raw material order holon, master plan holon, product i holon, and planning
holon.

Scheduling i Sale DB manager holon, sale order holon.

Factory i Manufacturing manager holon, press i holon, dryer i holon, engobe i holon,
glaze i holon, AGV i holon, conveyor belt i holon, kiln i holon, kiln ware-
house i holon, classification i holon, classification warehouse i holon, pack-
ager i holon, pressing and glazing manager holon, kiln manager holon, clas-
sification manager holon, maintenance order holon, maintenance manager i
holon, procurement holon, manufacturing order holon, and product i holon.

Raw material i Raw material DB manager holon, material output order holon, material
input order holon, raw material warehouse manager holon, clay silo holon,
spray dryer holon.

Finished product i Finished product DB manager holon, finished product output order holon,
finished product input order holon, finished product warehouse manager
holon, transportation unit i holon.

The first decision in this phase is to find out how the agent platforms are dis-
tributed. Using JADE guidelines 1 to 4 and the requirements document, we have
defined the platforms list of Table 8.10. KCG group is the management platform
of KCG. Sale i represents the agent platform that executes in each KCG store or
warehouse and is in charge of the sales processes. Scheduling i is the platform for
the scheduling management in a ceramic company. Factory i is the platform for the
manufacturing management of every factory floor. Raw material i is the platform
for the management of raw material in a given raw material warehouse. Finished
product i is the platform for the finished product warehouse management.

196 8 Case Study

The next step in the definition of the system architecture is to complete the JADE
agent templates using JADE guidelines 5 to 12. Figure 8.56 shows the JADE agent
template of the simulation order holon.

Fig. 8.56 System architec-
ture, JADE agent template of
the simulation order holon

JADE Agent
Template

1. Agent
ID

3. Services

3.1. Name 3.2. Type
Activate Simulation

Simulation Data Initialization

Simulation Data Modification

Report Simulation Results

external

external

external

external

4. Behaviors

4.1. Name 4.2. Type

Simulation Initialization

Simulation Controlling

Sequential

Sequential

4.3. Implemented Services

Activate Simulation
Simulation Data Initialization
Simulation Data Modification

Start Simulation
Pause Simulation
Resume Simulation
Stop Simulation

5. Ontology

5.1. Name 5.2. Base Ontology

Order

Scheduler

Sale Assistant

Simulation Result

6. Communication

6.1. Message 6.2. Type
Activate Simulation

Report Results

Send Simul. Order

Production Date

Simulation Order
Unfeasible

request

inform

request

agree

agree

6.3. Interaction
Scheduling Simul

Scheduling Simul

Scheduling Simul

Scheduling Simul

Scheduling Simul

6.4. Participation Type
Cooperator

Initiator

Initiator

Cooperator

Cooperator

2. Platform

5.3. Schemas
Client, Product, Quantity,
Date

Scheduler ID

Sale Assistant ID

Date, Ceramic Company

No
7. Does it have a physical processing
part?

Simulation Order
Holon

Scheduling KT, WD, MT

Simulation Ending Sequential Report Simulation Result

8.3 Design 197

For every holon with a physical processing part we have to complete its function
block interface specification. Figure 8.57 shows the specification of the physical
processing part of the conveyor belt i holon task: divert tile to conveyor belt. In this
figure we can also see the diverter function block diagram.5 Figure 8.58 shows the
informal algorithm specification of the diverter controller inputs and outputs.6

Fig. 8.57 System architec-
ture, function block interface
specification of the task divert
tile to conveyor belt

Function Block Interface
Specification

Agent ID

Normal Operation Sequence

Agent Platform

Resource Behavior
Command

2ns

FB template code

Abnormal Operation Sequence

Actuator Sensor Output Time

3ns
1ns
1ns

Agent Task

Conveyor Belt
Holon Factory KT, WD, MT

Divert Tile to BeltHC2

Incoming Tile detected
Target Belt detected
Connect Belts
Tile in target Belt

INIT

E_SEN_IN SEN_INSTOPPER_OUT E_SET_STOPPER
E_SEND_STR A_ID

SEN_OUT_STRAIGHTE_SEND_STR
E_RECV_ID NEW_ID

Can’t connect belts
Stop source belt
Connect Belts
Tile in target Belt

Incoming Tile detected
Target Belt detected

Function Block Diagram

INIT
E_SEN_IN
E_SEN_OUT_STRAIGHT
E_SENOUT_SIDE
E_RECV_ID
E_SET_LUT

INITO
E_SET_STOPPER

E_SET_DIVERTER
E_SEND_STR

E_SEND_SIDE

SEN_IN
SEN_OUT_STRAIGHT
SEN_OUT_SIDE
NEW_ID
LUT_ENTRY
LUT_NEW_VAL

STOPPER_IN
STOPPER_OUT

DIVERTER
A_ID

DIVERTER_CONTROLLER

EVENT
EVENT
EVENT
EVENT

EVENT
EVENT
EVENT
EVENT

EVENT

EVENT
EVENT
EVENT
EVENT
EVENT
EVENT

EVENT
EVENT
EVENT
EVENT
EVENT
EVENT

The UML deployment diagram [105] of Fig. 8.59 shows the KT factory agent
platform and its network. In this diagram we can see the JADE agents’ assignment
to the network nodes. The holons with a physical processing part will have their
function blocks in the same physical device, while the information processing part
(JADE agent) will be in the network node of Fig. 8.59. On every agent platform of
the KCG HMS there is a server and all of the platform servers are connected to each
other.

5 IEC-61499 Specification of the DIV ERT ER BC440 : BC440 device.
6 The syntax used in the algorithm specification is the IEC-61499-1.

198 8 Case Study

FUNCTION_BLOCK DIVERTER_CONTROLLER (* Controls the diverter functionality *))

EVENT_INPUT

 INIT; (* init request *)

 E_SEN_IN WITH SEN_IN; (* the input tyle sensor has changed *)

 E_SEN_OUT_STRAIGHT WITH SEN_OUT_STRAIGHT; (* the frontal tile proximity sensor has changed *)

 E_SEN_OUT_SIDE WITH SEN_OUT_SIDE; (* the lateral tile proximity sensor has changed *)

 E_RECV_ID WITH NEW_ID; (* a tile is being received from the previous station *)

 E_SET_LUT WITH LUT_ENTRY,LUT_NEW_VAL; (* changing line request *)

END_EVENT

EVENT_OUTPUT

 INITO; (* init confirmation *)

 E_SET_STOPPER WITH STOPPER_IN,STOPPER_OUT; (* set the stop tile actuator *)

 E_SET_DIVERTER WITH DIVERTER; (* set the divert tile actuator *)

 E_SEND_STR WITH A_ID; (* send the tile ID to the next frontal station *)

 E_SEND_SIDE WITH A_ID; (* send the tile ID to the next lateral station *)

END_EVENT

VAR_INPUT

 SEN_IN : BOOL; (* tile input sensor *)

 SEN_OUT_STRAIGHT : BOOL; (* frontal proximity tile sensor*)

 SEN_OUT_SIDE : BOOL; (*lateral proximity tile sensor*)

 NEW_ID : SINT; (*tile id that has left the station*)

 LUT_ENTRY : SINT; (*list entry*)

 LUT_NEW_VAL : BOOL; (*the value to insert in the list*)

END_VAR

VAR_OUTPUT

 STOPPER_IN : BOOL; (* extension value of the stop tile sensor *)

 STOPPER_OUT : BOOL; (* contension value of the stop tile sensor *)

 DIVERTER : BOOL; (*diverter actuator value;0:=front; 1:=lateral *)

 A_ID : SINT; (*the ID of the tile which is being processed in the diverter station *)

END_VAR

FBS

 DIV_LOGIC : DIVERTER_LOGIC;

 FIFO : FIFO_SINT;

 LUT : BOOL_LUT;

 SWITCH : E_SWITCH;

END_FBS

EVENT_CONNECTIONS

 INIT TO FIFO.INIT ;

 FIFO.INITO TO LUT.INIT ;

 LUT.INITO TO INITO ;

 DIV_LOGIC.E_CALCDIV TO FIFO.POP ;

 FIFO.POPED TO LUT.REQ ;

 LUT.CNF TO E_SET_DIVERTER ;

 LUT.CNF TO DIV_LOGIC.E_DIV_SET ;

 DIV_LOGIC.E_STOPPER_IN TO E_SET_STOPPER ;

 DIV_LOGIC.E_SEND_ID TO SWITCH.EI ;

 SWITCH.EO0 TO E_SEND_STR ;

 SWITCH.EO1 TO E_SEND_SIDE ;

 E_SEN_IN TO DIV_LOGIC.E_SEN_IN ;

 E_SEN_OUT_STRAIGHT TO DIV_LOGIC.E_SEN_OUT_STRAIGHT ;

 E_SEN_OUT_SIDE TO DIV_LOGIC.E_SEN_OUT_SIDE ;

 E_RECV_ID TO FIFO.ADD ;

 E_SET_LUT TO LUT.SETENTRY ;

END_CONNECTIONS

DATA_CONNECTIONS

 1 TO FIFO.QI ;

 FIFO.QO TO LUT.QI ;

 10 TO LUT.TABLESIZE ;

 FIFO.TOPPOP TO LUT.ENTRY ;

 FIFO.TOPPOP TO A_ID ;

 DIV_LOGIC.STOPPER_IN TO STOPPER_IN ;

 DIV_LOGIC.STOPPER_OUT TO STOPPER_OUT ;

 LUT.VAL TO DIVERTER ;

 LUT.VAL TO SWITCH.G ;

 SEN_IN TO DIV_LOGIC.SEN_IN ;

 SEN_OUT_STRAIGHT TO DIV_LOGIC.SEN_OUT_STRAIGHT ;

 SEN_OUT_SIDE TO DIV_LOGIC.SEN_OUT_SIDE ;

 NEW_ID TO FIFO.NEWVAL ;

 LUT_ENTRY TO LUT.NEWPOS ;

 LUT_NEW_VAL TO LUT.NEWVAL ;

END_CONNECTIONS

END_FUNCTION_BLOCK

Fig. 8.58 System architecture, specification of the diverter controller inputs and outputs

8.3 Design 199

F
ig

.
8.

59
Sy

st
em

ar
ch

it
ec

-
tu

re
,d

ep
lo

ym
en

t
di

ag
ra

m
of

th
e

fa
ct

or
y

ag
en

tp
la

tf
or

m

K
T

Fa
ct

or
y

M
an

uf
ac

tu
rin

g
M

an
ag

er
 H

ol
on

P
ro

du
ct

 i
H

ol
on

P
re

ss
 i

H
ol

on

D
ry

er
 i

H
ol

on

E
ng

ob
e

i H
ol

on

G
la

ze
 i

H
ol

on

A
G

V
 i

H
ol

on

Ki
ln

 i
H

ol
on

K
iln

 W
ar

eh
ou

se
 H

ol
on

C
la

ss
ifi

ca
tio

n
W

ar
eh

ou
se

 H
ol

on

P
re

ss
in

g
an

d
G

la
zi

ng
 M

an
ag

er
 H

ol
on

K
iln

 M
an

ag
er

 H
ol

on

C
la

ss
ifi

ca
tio

n
M

an
ag

er
 H

ol
on

C
la

ss
ifi

ca
tio

n
H

ol
on

M
an

uf
ac

tu
rin

g
O

rd
er

 H
ol

on

P
ro

cu
re

m
en

t M
an

ag
er

 H
ol

on

N
od

e
G

la
zi

ng

1

M
ai

nt
en

an
ce

 M
an

ag
er

 H
ol

on

N
od

e
M

ai
nt

en
an

ce

N
od

e
C

la
ss

ifi
ca

tio
n

i

N
od

e
K

iln
 1

N
od

e
Ki

ln
 2

N
od

e
K

iln

W
ar

eh
ou

se

N
od

e
C

la
ss

ifi
ca

tio
n

W
ar

eh
ou

se

1

n 1 n

1

n

1
1

1
1

1

1
1

n

1
1

1

n 1
1

1
n

1

1

1
1

1

1

1

1

1

1

N
od

e
A

G
V

 i
1

1

1

1

1 1
1

1

11

M
ai

nt
en

an
ce

 O
rd

er
 H

ol
on

1

n

+11

+n*+11 +n1

N
od

e
G

la
zi

ng

3N
od

e
G

la
zi

ng

2P
re

ss
 i

W
or

ke
r

In
te

rfa
ce

K
T

S
er

ve
r1

n

200 8 Case Study

8.4 Conclusions

In this chapter we have presented a case study from a ceramic tile factory. In this
case study we have demonstrated ANEMONA’s applicability to a real industrial case
study. We have presented the analysis and design of a HMS for the management of
several business and production processes of a group of ceramics companies. The
development of the HMS by abstraction levels, guided by the abstract agent notion
and the ANEMONA guidelines, help the software engineer to focus on the important
features and requirements of the problems. Therefore, HMS development is a simple
incremental process of identification and specification of holons.

Chapter 9
Conclusions

This book presented ANEMONA a multi-agent methodology for holonic manu-
facturing systems (HMS). ANEMONA is a methodology based on HMS modeling
requirements. Its central modeling element is the abstract agent notion with a mixed
top-down and bottom-up process for HMS development. ANEMONA helps the soft-
ware engineer with clear and specific HMS modeling guidelines. This chapter con-
cludes the book by reviewing its content and pointing to possible future works.

9.1 Review

First, Part I set the background for this book by reviewing the state-of-the-art in
Holonic Manufacturing Systems (Chap. 2) and introducing the abstract agent notion
(Chap. 3).

In Chap. 2 we presented and analyzed the state-of-the-art in HMS. We attempted
to provide a global overview of the field, presenting the different studies devel-
oped in the areas of: architecture (Sect. 2.3.1), holons interconnection (Sect. 2.3.2),
holons operation (Sect. 2.3.3), holonic control (Sect. 2.3.4), and methods for HMS
development (Sect. 2.3.5). The more active fields are those related to developing
holonic control systems. From these developments we can conclude that, currently,
multi-agent system technology is the tool most used for developing HMS. Never-
theless, there is very little work on methods for HMS development.

In Chap. 3 we studied the differences among the holon and the agent paradigms.
From this study we have concluded that the most important difference is the holon
recursiveness feature. This characteristic makes the holon a very useful modeling
entity because it simplifies the complex system modeling. This is so because it ab-
stracts away from the less important requirements of inner holonic structures when
analyzing a given cooperation or interaction problem. We have defined the abstract
agent notion in order to have recursive agents that can be used in the analysis and
design phases of HMS development. The abstract agent notion helps in the defi-

201

202 9 Conclusions

nition of a HMS methodology with a “uniformity of concepts” because the same
modeling notion can be used from the HMS analysis to its implementation.

Part II was the central contribution of this book. It was organized into three
chapters. Its goal was to present the HMS development problem and to detail the
ANEMONA methodology.

Chapter 4 presented the HMS development requirements and analyzed state-of-
the-art methods from the HMS research field, multi-agent systems methodologies
and enterprise modeling techniques. All of the requirements presented in this chap-
ter are specific to HMS. The methods from the HMS field are still in a developmen-
tal state and so are incomplete and immature. Therefore we must look for mature,
robust methods and with some evidence of application. MAS methods may seem
suitable for several reasons: several studies exist, many of which are for general pur-
poses, and there is a reduced group specific for the manufacturing domain. Agent
technology is the HMS implementation tool most used. Finally, the area of enter-
prise modeling offers interesting studies and proposals for the standardization of
notation for the modeling of the business processes of a company. With these three
groups: HMS methods, MAS methods and enterprise modeling, we carry out a com-
parison study based on HMS modeling requirements. From this study the need to
develop a complete methodology for HMS that deals with all of these requirements
was evident.

In Chap. 5 we presented the ANEMONA notation. Its central modeling entity
is the abstract agent notion in Chap. 3. In ANEMONA the HMS is divided into
different views of the system. These views build up the complete HMS analysis
and design specification. They are: the agent model, which is concerned with the
functionality of each abstract agent, responsibilities and capabilities; the organiza-
tion model, which describes how system components (abstract agents, roles, re-
sources, and applications) are grouped together; the interaction model, which ad-
dresses the exchange of information or requests between abstract agents; the envi-
ronment model, which defines the non-autonomous entities with which the abstract
agents interacts; the task and goal model that describes the relationships among
goals and tasks, goal structures, and task structures.

In Chap. 6 the ANEMONA development process was explained. The develop-
ment process details how the different ANEMONA models are built and the step-
by-step activities and tasks to develop the HMS. This process is a mixed top-down
and bottom-up approach. The aim of the analysis phase is to provide high-level HMS
specifications from the problem requirements, which are specified by the client/user
and that can be updated at any development stage. The analysis adopts a top-down
recursive approach. One advantage of a recursive analysis is that its results, i.e., the
analysis models, provide a set of elementary elements and assembling rules. The
next step in the development process is the holon design stage, which is a bottom-
up process to produce the system architecture from the analysis models of the previ-
ous stage. The aim of the holons implementation stage is to produce an executable
code for the setup and configuration stage. Finally, maintenances functions are exe-

9.2 Future Work 203

cuted at the operation and maintenance stage. Our approach provides HMS-specific
guidelines to help the designer in every step of development.

A software engineer who follows the ANEMONA method is able to develop a
holonic manufacturing system using multi-agent system technology from the begin-
ning. This is so thanks to the abstract agent notion (Chap. 3). Moreover, the guide-
lines provided by ANEMONA help the software engineer to identify and specify all
of the possible flexible cooperation scenarios and agent features in order to fulfill the
manufacturing system requirements. The ANEMONA methodology, is appropriate
for the domain of intelligent manufacturing systems and sufficiently prescriptive for
a software engineer with minimal training in multi-agent technology.

In Part III of the book an evaluation discussion was presented in Chap. 7 and a
complete case study was shown in Chap. 8.

In Chap. 7 we presented an evaluation discussion on ANEMONA’s applicability
to intelligent manufacturing problems. We also argued that ANEMONA is suffi-
ciently prescriptive for a software engineer with minimal training in multi-agent
technology. These claims are supported by two real case studies evaluated by third
parties. The case studies were reviewed by: (i) software engineers from a manufac-
turing research and development institute with no prior experience in agent devel-
opment; (ii) students with minimal agent technology background, and; (iii) manu-
facturing engineers with minimal training in multi-agent technology. Moreover, we
argue that ANEMONA is more appropriate for intelligent manufacturing problems
than other existing (enterprise-based, agent-oriented, and holonic-based) methods
by highlighting the way in which the methodology overcomes the limitations of the
methodologies discussed in Chap. 4.

In Chap. 8 we presented a detailed case study from a ceramics tile factory. With
this case study we have shown the applicability of ANEMONA to a real industrial
case study. We have presented the analysis and design of a HMS for the management
of several business and production processes of a group of ceramics companies. The
development of the HMS by abstraction levels, guided by the abstract agent notion
and the ANEMONA guidelines, help the software engineer to focus on the important
features and requirements of the problems. In this way the HMS development is a
simple incremental process of identification and specification of holons.

9.2 Future Work

Despite the achievements of this book, there are still some issues left for future
work. This section points out the most important ones.

We are working on a CASE tool for the ANEMONA methodology that will sup-
port all of the development phases using abstraction levels. The tool will manage
the decomposition and composition processes in a semi-automatic way. We are ex-
tending the INGENIAS IDK [149], including similar techniques to the works of
[150, 151, 152]. For the implementation phase we will use the same technique used

204 9 Conclusions

in INGENIAS, adding a new module for the function block code generation. We
are also working on the definition of a module for design patterns and for reusing
parameterized holarchies, in order to define a holarchy library from previous devel-
opments.

Another important issue to work on is the application of ANEMONA to more real
industrial case studies. A continuous evaluation of the applicability of ANEMONA
to new application domains could prove very important, not only to measure the
ANEMONA’s features, but also to add new modeling guidelines in order to help the
software engineer in the development process.

The abstract agent notion is not only useful for HMS modeling but also for the
modeling of large-scale complex problems, in which it is neccesary to work in dif-
ferent abstraction levels. Studying the modifications or enhancements required in
order to adapt ANEMONA to those domains is a very interesting problem. An-
alyzing the modeling of norms, rules, open systems, etc. and how these features
are propagated to the different abstraction levels, are open research problems. The
definition of ANEMONA methodology fragments in order to connect its phases or
models to other method fragments is also a very interesting line of research [153].

References

[1] Shen W, Norrie DH. Agent-Based Systems for Intelligent Manufacturing: A State-of-the-
Art Survey. Knowledge and Information Systems, an International Journal. 1999;1(2):129–
156.

[2] Jin-Hai L, Anderson A, Harrison R. The evolution of agile manufacturing. Business Process
Management Journal. 2003;9:170–189.

[3] McFarlane DC, S B. Holonic Manufacturing Control: Rationales, Developments and Open
Issues. In: M DS, editor. Agent-Based Manufacturing. Advances in the Holonic Approach.
Berlin: Springer-Verlag; 2003. p. 301–326.

[4] HMS PR. HMS Requirements. http://hms.ifw.uni-hannover.de/: HMS Server; 1994.
[5] Wooldridge M, Jennings NR. Intelligent Agents – Theories, Architectures, and Languages.

vol. LNCS 890. Berlin: Springer-Verlag; 1995.
[6] Koestler A. The Ghost in the Machine. London: Arkana Books; 1971.
[7] Suda. Future Factory System Formulated in Japan. Techno Japan. 1989;22(10):15–25.
[8] Dilts DM, Boyd NP, Whorms HH. The Evolution of Control Architectures for Automated

Manufacturing Systems. Journal of Manufacturing Systems. 1991;10(1):79–93.
[9] Christensen J. HMS/FB Architecture and Its Implementation. In: Deen SM, editor. Agent-

Based Manufacturing. Advances in the Holonic Approach. Berlin: Springer-Verlag; 2003.
p. 53–88.

[10] Christensen J. Holonic Manufacturing Systems: Initial Architecture and Standards Direc-
tions. In: Proceedings of First European Conference on Holonic Manufacturing Systems,
European HMS Consortium. Hanover; 1994.

[11] Bussmann S. An Agent-Oriented Architecture for Holonic Manufacturing Control. Proc of
1st Int Workshop on Intelligent Manufacturing Systems, EPFL. 1998;p. 1–12.

[12] Fletcher M, Garcia-Herreros E, Chritensen JH, Deen SM, Mittmann R. An Open Architec-
ture for Holonic Cooperation and Autonomy. In: Proceedings of HoloMAS’2000. Green-
wich: IEEE Computer Society; 2000.

[13] Fletcher M, Brennan RW. Designing a holonic control system with IEC 61499 function
blocks. In: Proceedings of the International Conference on Intelligent Modeling and Con-
trol; 2001.

[14] IEC. International Electrotechnical Commission: Function Blocks, Part 1 – Architecture.
PAS 61499-1; 2000.

[15] IEC. International Electrotechnical Commission: Function Blocks, Part 1 – Software Tool
Requirenments.PAS 61499-2; 2001.

[16] Deen SM, Fletcher M. Temperature Equilibrium in Multi-Agent Manufacturing Systems.
In: Proceedings of the 11th International Workshop on Database and Expert Systems Ap-
plications. London: IEEE Computer Society; 2000. p. 259–270.

205

206 References

[17] Brennan RW, Norrie DH. From FMS to HMS. In: Deen SM, editor. Agent-Based Manu-
facturing: Advances in the Holonic Approach. Berlin: Springer-Verlag; 2003. p. 31–49.

[18] Brennan RW, Hall K, Mark V, Maturana FP, Norrie DH. A Real-Time Interface for Holonic
Control Devices. In: Mark V, McFarlane D, Valckenaers P, editors. Holonic and Multi-Agent
Systems for Manufacturing. vol. LNAI 2744. Berlin: Springer-Verlag; 2003. p. 25–34.

[19] Fischer K. An Agent-Based Approach to Holonic Manufacturing Systems. In: L M
Camarinha-Matos HA, v Marik, editors. Intelligent Systems for Manufacturing. Multi-
Agent Systems and Virtual Organisations. The Netherlands: Kluwer Academic Publishers;
1998. p. 3–12.

[20] Müller JP. The design of intelligent agents: a layered approach. In: LNAI 1177.
[21] FIPA Modeling TC. Agent Class Superstructure Metamodel – Working Documment.

httt://wwwaumlorg/auml/documments/. 2005.
[22] Maturana FP, Norrie DH. Distributed decision-making using the contract net within a me-

diator architecture. Decision Support Systems 20. 1997;p. 53–64.
[23] Van Brussel H, Wyns J, Valckenaers P, Bongaerts L, Peeters P. Reference Architecture for

Holonic Manufacturing Systems: PROSA. Computers In Industry. 1998;37:255–274.
[24] Hadeli S, Valckenaers P, Kollingbaum M, Van Brussel H. Multi-agent coordination and

control using stigmergy. Computers in Industry. 2004 January;53(1):75–96.
[25] Leitao P, Restivo F. Holonic Adactive Production Control Systems. In: Proceedings of

special session on Agent-based Intelligent Automation and Holonic Control Systems of the
28th Anual Conference of the IEEE Industrial Society. Sevilla; 2002. p. 2968–2973.

[26] Leitao P, Restivo F. Identification of ADACOR Holons for Manufacturing Control. In:
Proceedings of the 7th IFAC Workshop on Intelligent Manufacturing Systems. Budapest;
2003. p. 109–114.

[27] Chirn J, McFarlane DC. A Holonic Component-Based Architecture for Manufacturing Con-
trol Systems. In: Proceedings of MAS99. New Mexico; 1999.

[28] Gou L, Hasegawa T, Luh P, Tamura S, Oblak J. Holonic Planning and Scheduling for a
Robotic Assembly Testbed. In: Proceedings of the 4th Rensselaer International Conference
on Computer Integrated Manufacturing and Automation Technology. NY; 1994.

[29] Hasegawa T, Gou L, Tamura S, Luh PB, Oblak JM. Holonic Planning and Scheduling Ar-
chitecture for Manufacturing. In: Proceedings of the 2nd International Working Conference
on Cooperating Knowledge-based Systems. Keele; 1994.

[30] Deen SM. Cooperation issues in Holonic Manufacturing Systems. Information Infrastruc-
ture Systens for Manufacturing. 1993;B-14:401–412.

[31] Deen SM. A cooperation framework for holonic interactions in manufacturing. In Proceed-
ings of the Second International Working Conference on Cooperating Knowledge Based
Systems (CKBS’94). 1994.

[32] Biswas G, Sugato B, Saad A. Holonic Planning and Scheduling for Assembly Tasks. In:
TR CIS-95-01, Center for Intelligent Systems, Vanderbilt University. Tennessee; 1995.

[33] Saad A, Biswas G, Kawamura K, Johnson ME, Salama A. Evaluation of Contract Net-
Based Heterarchical Scheduling for Flexible Manufacturing Systems. In: Proceedings of
the 1995 International Joint Conference on Artificial Intelligence (IJCAI’95). Montreal;
1995. p. 310–321.

[34] Gou L, Luh P, Kyoya Y. Holonic Manufacturing Scheduling: architecture, cooperation,
mechanism, and implementation. Computers in Industry. 1998;37:213–231.

[35] Ramos C. A holonic approach for task scheduling in manufacturing systems. In: Proceed-
ings of IEEE Conference on Robotics and Automation. Minneapolis; 1996. p. 2511–2516.

[36] Sugimura N, Hiroi M, Moriwaki T, Hozumi K. A study on holonic scheduling for manufac-
turing systems of composite parts. In: Proceedings of Japan/USA Symposium on Flexible
Manufacturing. Boston; 1996. p. 1407–1410.

[37] Marcus A, Kis Vancza T, Monostori L. A market approach to holonic manufacturing. An-
nals of CIRP. 1996;45:433–436.

[38] Heikkila T, Jarviluoma M, Hasemann J. Holonic Control of a Manufacturing Robot Cell.
VTT Automation; 1995.

References 207

[39] Heikkila T, Jarviluoma M, Juntunen T. Holonic Control for Manufacturing Systems: Design
of a Manufacturing Robot Cell. Integrated Computer Aided Engineering. 1997;4:202–218.

[40] Ng A, Yeung R, Cheung E. HSCS – the design of a holonic shopfloor control system.
In: Proceedings of IEEE Conference on Emerging technologies and Factory Automation.
Hawaii; 1996. p. 179–185.

[41] Agre J, Elsley G, McFarlane D, Cheng J, Gunn B. Holonic Control of Cooling Control
System. In: Proceedings of Rensselaer Manufacturing Conference. NY, USA; 1994.

[42] McFarlane DC. Holonic Manufacturing Systems in Continuos Processing: Concepts and
Control Requirements. In: Proceedings of ASI 95. Portugal; 1995.

[43] Brown J, McCarragher B. Maintenance resource allocation using decentralised cooperative
control. ANU; 1998.

[44] Bongaerts LB, Valckenaers VH, Peeters P. Reactive Scheduling in Holonic Manufactur-
ing Systems: Architecture, Dynamic Model and Cooperation Strategy. In: Proceedings of
the Advanced Summer Institute of the Network of Excellence on Intelligent Control and
Integrated Manufactruing Systems; 1997.

[45] Zhang H, Norrie DH. Autonomous Control for Open Manufacturing Systems. In: Proceed-
ings of IPMM99. Hawaii; 1999.

[46] Zweben M, Fox M. Intelligent Scheduling. San Francisco: Morgan Kaufman; 1994.
[47] Prosser P, Buchanan I. Intelligent Scheduling: past, present and future. Intelligent Systems

Engineering. 1994;3(2):67–78.
[48] Duffie N, Prabhu V. Real-time distributed scheduling of heterarchical manufacturing sys-

tems. Journal of Manufacturing Systems. 1994;13(2):94–107.
[49] Lin GYJ, Solberg JJ. Autonomous Control for Open Manufacturing Systems. In: Joshi S,

Smith J, editors. Computer Control of Flexible Manufacturing Systems. NY: Chapman &
Hall; 1994. p. 169–206.

[50] Gayed N, Jarvis D, Jarvis J. A Strategy for the Migration of Existing Manufacturing Sys-
tems to Holonic Systems. In: Proceedings of IEEE International Conference on Systems,
Man and Cybernetics. San Diego; 1998. p. 319–324.

[51] Valckenaers P, Van Brusel H, Bongaerts L, Bonneville F. Programming, Scheduling and
Control of Flexible Assembly Systems. Computers in Industry. 1995;26:209–218.

[52] Bengoa A. An Aproach to Holonic Components in Control of Machine Tools. Annals of
CIRP. 1996;45(1).

[53] Rannanjarvi L, Heikkila T. Software Development for Holonic Manufacturing Systems.
Computers in Industry. 1998;37(3):233–253.

[54] Tanaya P, Detand J, Kruth J. Holonic Machine Controller: A Study and Implmentation of
Holonic Behaviour to Current NC Controller. Computers in Industry. 1997;33:325–333.

[55] Tanaya P, Detand J, Kruth J, Valckenaers P. Object-Oriented Execution Model For a Ma-
chine Controller Holon. European Journal of Control. 1998;4(4):345–361.

[56] Zhang H, Norrie DH. Holonic Control at the Production and Controller Levels. In: Pro-
ceedings of IMS99. Leuven; 1999.

[57] Leitao P, Restivo F. An Approach to the Formal Specification of Holonic Control Systems.
In: Mark V, McFarlane D, Valckenaers P, editors. Holonic and Multi-Agent Systems for
Manufacturing. vol. LNAI 2744. Berlin: Springer-Verlag; 2003. p. 59–70.

[58] Fischer K, Schillo M, Siekmann J. Holonic Multiagent Systems: A Foundation fo Organisa-
tion of Multiagent Systems. In: Mark V, McFarlane D, Valckenaers P, editors. Holonic and
Multi-Agent Systems for Manufacturing. vol. LNAI 2744. Springer-Verlag; 2003. p. 71–80.

[59] Giret A, Botti V. Holons and Agents. Journal of Intelligent Manufacturing. 2004;15:645–
659.

[60] Giret A, Botti V. Towards an Abstract Recursive Agent. Integrated Computer-Aided Engi-
neering. 2004;11(2):165–177.

[61] Nwana HS. Software Agents: An Overview. Intelligent Systems Research AA&T, BT
Laboratories. 1996.

208 References

[62] Franklin S, Graesser A. It is an agent, or just a Program?: A Taxonomy for Autonomous
Agents. In: Proceedings of the Third International Workshop on Agent Theories, Architec-
tures, and Languages. München: Springer-Verlag; 1996.

[63] Austin JL. How to Do Things With Words. Cambridge: Harvard University Press; 1975.
[64] Finin T, Fritzson R, McKay D, McEntire R. KQML as an Agent Communication Lan-

guage. In: Proceedings of the 3rd International Conference on Information and Knowledge
Management CIKM’94. Gaithersburg, Maryland: ACM Press; 1994. p. 456–463.

[65] FIPA. Arcol. Foundation for Intelligent Physical Agents. http://wwwfipaorg/. 2002.
[66] W3C. XML. World-Wide Web Consortium XML. http://www.w3.org/. World-Wide Web

Consortium XML. http://www.w3.org/; 2002.
[67] OHare GPM, Jennings NR. Foundation of Distributed Artificial Intelligence. USA: John

Wiley & Sons; 1996.
[68] Huhns MN, Singh MP. Readings in Agents. USA: Morgan Kaufman Publishing; 1998.
[69] Brennan RW, Norrie DH. Agents, Holons and Functions Blocks: Distributed Intelligent

Control in Manufacturing. Journal of Applied Systems Studies Special Issue on Industrial
Applications of Multi-Agent and Holonic Systems. 2001;2(1):1–19.

[70] Russell S, Norvig P. Artificial Intelligence: A Modern Approach. Englewood Cliffs, New
Jersey: Prentice Hall; 1995.

[71] Galliers JR. A Theoretical Framework for Computer Models of Cooperative Dialogue,
Acknowledging Multi-Agent Conflict. Open University. UK; 1988.

[72] Sen S, Weiss G. Learning in multi-agent systems. In: Weiss G, editor. Multi-Agent Systems:
A modern Approach to Distributed AI. Cambridge, MA: MIT Press; 1999. p. 259–298.

[73] Shen W, Maturana F, Norrie DH. Learning in Agent-Based Manufacturing Systems. In:
Proceedings of AI & Manufacturing Research Planning Workshop. Albuquerque, NM: The
AAAI Press; 1998. p. 177–183.

[74] Vigna G. Mobile Agents and Security. vol. LNCS 1419. Berlin: Springer-Verlag; 1998.
[75] Fletcher M, Deen MS. Fault-tolerant holonic manufacturing systems. Concurrency and

Computation: Practice and Experience. 2001;13(1):43–70.
[76] Gasser L. Boundaries, Identity and Aggregation: Plurality Issues in Multi-Agent Systems.

In: Werner E, Demazeau Y, editors. Decentralized A.I.-3. Kaiserslauten: Elsevier; 1992. p.
199–213.

[77] Occello M. Towards a Recursive Generic Agent Model. In Proceedings of International
Joint Conference on Artificial Intelligence. 2000.

[78] Gmytrasiewics PJ, Durfee EH. A rigorous, operational formalization of recursive model-
ing. In: Proceedings of the First International Conference on Multi-Agent Systems. San
Francisco; 1995. p. 125–132.

[79] Tambe M. Recursive agent and agent-group tracking in a real-time dynamic environment.
In: Lesser V, Gasser L, editors. Proceedings of the First International Conference on Multia-
gent Systems (ICMAS’95). San Francisco: AAAI Press; 1995. p. 368–375. Available from:
citeseer.nj.nec.com/tambe95recursive.html.

[80] Parunak VD, Odell J. Representing Social Structures in UML. In: M Wooldridge GW,
Ciancarini P, editors. In Agent-Oriented Software Engineering II.

[81] Bussmann S, Jennings N, Wooldridge M. Multiagent Systems for Manufacturing Control.
A design Methodology. Berlin: Springer-Verlag; 2004.

[82] Lin GYJ, Solberg JJ. Integrated Shop Floor Control Using Autonomous Agents. IIE Trans-
actions: Design and Manufacturing. 1992;26(3):57–71.

[83] Parunak VD. Manufacturing Experience with the Contract Net. In: Huhns MN, editor.
Distributed Artificial Intelligence. London: Pitman; 1987. p. 285–310.

[84] Cutkosky MR, Engelmore RS, Fikes RE, Genesereth MR, Gruber TR, Mark WS, et al.
PACT: An Experiment in Integrating Concurrent Engineering Systems. IEEE Computer.
1993;26(1):28–37.

[85] Peng Y, Finin T, Labrou Y, Chu B, Long J, Tolone WJ, et al. A Multi-Agent System for
Enterprise Integration. In: Proceedings of PAAM’98. London; 1998.

References 209

[86] Maturana F, Norrie D. Multi-Agent Mediator Architecture for Distributed manufacturing.
Journal of Intelligent Manufacturing. 1996;7:257–270.

[87] Cockburn D, Jennings N. ARCHON: A DAI system for industrial applications. In: OHare
G, Jennings N, editors. Foundations of Distributed Artificial Intelligence. NY: Wiley; 1999.
p. 319–344.

[88] Monceyron E, Barthes J. Architecture for ICAD systems: an example form harbor design.
Revue Sciences et Techniques de la Conception. 1992;1(1):49–68.

[89] Fischer K. Agent-Based Design of Holonic Manufacturing Systems. Journal of Robotics
and Autonomous Systems. 1999;27(1-2):3–13.

[90] Kinny D, Georgeff M. Modelling and Design of Multi-Agent Systems. In: Proceedings of
the 4th International Workshop on Intelligent Agents IV, Agent Theories, Architectures and
Language. London: Springer-Verlag; 1997.

[91] Georgeff M, Rao A. BDI agents: From theory to practice. In: Proceedings of the First
International Conference on Multi-Agents Systems (ICMAS-95). San Francisco; 1995.

[92] Burmeister B. Models and methodologies for agentoriented analysis and design. DFKI;
1996.

[93] Iglesias C, Garijo M, Gonzalez JC, Velasco JR. Analysis and design of multi agent systems
using MAS-CommonKADS. In: Singh RA M P, Wooldridge MJ, editors. Intelligent Agentd
IV. LNAI 1365. München: Springer-Verlag; 1998.

[94] Schreiber G. Knowledge Engineering & Management: The CommonKADS Methodology.
Massachusetts: MIT Press; 1999.

[95] Wooldridge M, Jennings NR, Kinny D. The Gaia Methodology for Agent-Oriented Analisys
and Design. Journal of Autonomous Agents and Multi-Agent Systems. 2000;3(3):285–312.

[96] Zambonelli F, Jennings NR, Wooldridge M. Developing Multiagent Systems: the Gaia
Methodology. ACM Transactions on Software Engineering and Methodology (TOSEM).
2003;12(3):317–370.

[97] Juan T, Pierce A, Sterling L. Roadmap: Extending the GAIA methodology for complex
open systems. In: The First International Joint Conference on Autonomous Agents and
Multiagent Systems. Bologna: ACM Press; 2002. p. 3–10.

[98] Lind J. MASSIVE: Software Engineering for Multi-agent Systems. DFKI; 1999.
[99] Mylopoulos J, Kolp M, Castro J. UML for agent-oriented software development: The TRO-

POS proposal. In: Proceedings of the 4th Int. Conf. on th Unified Modeling Language
UML’01. Toronto; 2001.

[100] Yu E. Modelling Strategic Relationships for Process Reengineering. Department of Com-
puter Science. University of Toronto. Canada; 1996.

[101] Wood MF. Multiagent Systems Engineering: A Methodology for Analysis and Design of
Multiagent Systems. Air Force Institute of Technology. Ohio; 2000.

[102] Robinson DJ. A Component Based Approach to Agent Specification. School of Engineer-
ing. Air Force Institute of Technology; 2000.

[103] EURESCOM. MESSAGE: Methodology for engineering systems of software agents. Initial
methodology. EURESCOM; 2000.

[104] EURESCOM. MESSAGE: Methodology for engineering systems of software agents (Fi-
nal). EURESCOM; 2001.

[105] Jacobson I, Booch G, Rumbaugh J. The Unified Software Development Process. USA:
Addison Wesley; 1999.

[106] EURESCOM. Final guidelines for the identification of relevant problem areas where agent
technology is appropiate. EURESCOM; 2001.

[107] Caire G, Leal F, Chainho P, Evans R, Garijo F, Gomez-Sanz J, et al. In: Agent Oriented
Analysis using MESSAGE/UML. vol. 2222 - LNCS. Berlin: Springer-Verlag; 2001. p. 119–
135.

[108] Julian VJ. RT-MESSAGE: Desarrollo de Sistemas Multiagente de Tiempo Real. Universi-
dad Politcnica de Valencia. Departamento de Sistemas Informticos y Computacin; 2002.

[109] Soler J, Julian V, Rebollo M, Carrascosa C, Botti V. Towards a real-time MAS architecture.
In: Proceedings of Challenges in Open Agent Systems. AAMAS’02. Bologna; 2002.

210 References

[110] Botti V, Carrascosa C, Julian V, Soler J. Modelling agents in hard real-time environments.
In: MAAMAW’99. vol. 1647 - LNAI. Berlin: Springer-Verlag; 1999. p. 63–76.

[111] Gomez JJ. Modelado de Sistemas Multi-agente. Universidad Complutense de Madrid.
Facultad de Informtica; 2002.

[112] Moulin B, Brassard M. A scenario-based design method and an environment for the devel-
opment of multiagent systems. In: Zhang C, Lukose D, editors. Distributed Artificial Intel-
ligence – Architecture and Modelling. vol. 1087 - LNAI. London: Springer-Verlag; 1996. p.
216–232.

[113] Padgham L, Winikoff W. Prometheus: A methodology for developing intelligent agents. In:
Proceedings of the Third International Workshop on Agent-Oriented Software Engineering,
at AAMAS 2002. Bologna; 2002. p. 135–145.

[114] Elammari M, Lalonde W. An agent-oriented methodology: high-level and intermediate
models. In: Proceedings of First Bi-Conference. Workshop on Agent-Oriented Information
Systems (AOIS’99). Heidelberg; 1999.

[115] Buhr RJA. Use case maps as architectural entities for complex systems. IEEE Transactions
on Software Engineering. 1998;24(12):1131–1155.

[116] Miles S, Joy M, Luck M. Designing agent-oriented systems by analysing agent interactions.
In: Ciancarini P, Wooldridge M, editors. Agent-Oriented Software Engineering. vol. 1657 -
LNAI. NY: Springer-Verlag; 2001. p. 171–183.

[117] Collinot A, Drogoul A, Benhamou P. Agent-oriented design of soccer robot team. In:
Proceedings of the Second International Conference on Multi Agent Systems (ICMAS’96).
USA: AAAI Press; 1996. p. 41–47.

[118] Dignum V, Meyer J, Weigand H, Dignum F. An Organization-oriented Model for Agent
Societies. In: Lindemann D, Moldt M, Paolucci B, Yu, editors. International Workshop on
Regulated Agent-Based Social Systems: Theory and Applications (RASTA’02). Bologna;
2002. p. 31–50.

[119] Dellarocas C, Klein M. Civil agent societies: Tools for inventing open agent-mediated elec-
tronic marketplaces. In: ACM Conference on Electronic Commerce (EC-99) (at IJCAI’99).
Stockholm; 1999.

[120] Kendall EA, Malkoun MT, Jiang CH. A methodology for developing agent based systems.
In: Zhang C, Lukose D, editors. Distributed Artificial Intelligence – Architecture and Mod-
elling. vol. 1087 - LNAI. Berlin: Springer-Verlag; 1996. p. 85–99.

[121] Jacobson I. Object-Oriented Software Engineering: A Use Case Driven Approach. USA:
Addison Wesley; 1992.

[122] IDEF. IDEF Family of Methods. http://www.idef.com/; 2004.
[123] Rao AS, Georgeff MP. An abstract architecture for rational agents. In: Proceedings of the

Third International Conference on Principles of Knowledge Representation and Reasoning.
Massachusetts; 1992. p. 439–449.

[124] Wooldridge M. Agent-Based Software Enginnering. In: IEEE Proceedings of Software
Engineering. vol. 14. London; 1997. p. 26–37.

[125] Ritter A, Baum W, Hopf M, Westkamper E. Agentification for production systems. In:
Second International Workshop on Integration of Specification Techniques for Applications
in Engineering. Grenoble; 2002.

[126] Colombo AW, Neubert R, Sussmann B. A coloured Petri net-based approach towards a
formal specification of agent-controlled production systems. In: Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics. Tunisia; 2002.

[127] Feldmann K, Colombo AW. Material flow and control sequence specification of flexible
production systems using coloured Petri nets. International Journal of Advanced Manufac-
turing Technology. 1998;14:760–774.

[128] Vernadat FB. Enterprise modeling and integration: principles and applications. London:
Chapman & Hall; 1996.

[129] ESPRIT. CIMOSA: Open Systen Architecture for CIM. vol. 1 of Research Reports ESPRIT,
Project 688/5288 AMICE. AMICE EC, editor. Springer-Verlag; 1993.

References 211

[130] UEML. Unified Entreprize Modelling Language. http://www.ueml.org/. Unified Entreprize
Modelling Language. http://www.ueml.org/; 2003.

[131] Doumeingts G. GRAI grid decisional modelling. In: Bernus P, editor. Handbook on Archi-
tecture of Information System. Berlin: Springer-Verlag; 1998. p. 313–337.

[132] Spur G, Mertins K, Jochem R. In: Integrated Enterprise Modelling. Berlin: Beuth Verlag
GmbH; 1996.

[133] ARIS. ARIS. http://www.aris.com/; 2004.
[134] OMG OMG. Software Process Engineering Metamodel Specification Version 1.0.

http://wwwomgorg/docs/formal/02-11-14pdf. 2002.
[135] Pavon J, Gomez JJ. Agent Oriented Software Engineering with INGENIAS. In: V Marik

MP J Müller, editor. Proceedings of the 3rd International Central and Eastern European Con-
ference on Multi-Agent Systems (CEEMAS 2003): Multi-Agent Systems and Applications
II, LNAI 2691. Berlin: Springer-Verlag; 2003. p. 394–403.

[136] Julian V, Botti V. Developing real-time multiagent systems. Integrated Computer-Aided
Engineering. 2004;11:135–149.

[137] OMG OMG. UML. Unified Modeling Language. http://wwwumlorg/. 2005.
[138] Lyytinen KS, Rossi M. METAEDIT+ – A Fully Configurable Multi User and Multi Tool

CASE and CAME Environment. In: Advanced Information Systems Engineering. LCNS
1080. Berlin: Springer-Verlag; 1996.

[139] OMG OMG. MOF. Meta Object Facility. http://wwwomgorg/technology/documents/for-
mal/mofhtm. 2004.

[140] Groover MP. Automation, Production Systems, and Computer Integrated Manufacturing.
Prentice Hall: Englewood Cliffs, NY; 1987.

[141] Hitomi K. Analysis and design of manufacturing systems. In: Kusiak A, editor. Handbook
of DEsign, Manufacturing and Automation. John Wiley & Sons: New York; 1994. p. 405–
433.

[142] Demarco T, Plauger PJ. Structured Analysis and System Specification. New Jersey:
Prentice-Hall; 1979.

[143] Castillo I, Smith JS. Formal modelling methodologies for control of manufacturing cells:
survey and comparison. Journal of Manufacturing Systems. 2002;21(1):40–57.

[144] Murata T. Petri nets: properties, analysis, and applications. In: Proceedings of the IEEE.
vol. 77; 1989. p. 541–580.

[145] Bellifemine F, Poggi A, Rimassa G. Developing multi-agent systems with JADE. In: Intel-
ligent Agents VII. Ed. Castelfranchi, C. and Lesperance, Y. LNCS 1571. London: Springer-
Verlag; 2001. p. 89–103.

[146] JADE. Java Agent DEvelopment Framework. http://jadetilabcom/. 2005.
[147] McFarlane DC, Kollingbaum M, Matson J, Valckenaers P. Development of algorithms for

agent-oriented control of manufacturing flow shops. In: Proceedings of the IEEE Interna-
tional Conference on Systems, Man and Cybernetics. Tucson; 2001.

[148] Garcia MA, Valero S, Argente F, Giret A, Julian V. A FAST method to achieve Flexible
Production Programming Systems. IEEE Transactions on Systems, Man, and Cybernetics–
Part C: Applications and Reviews. 2008;38(2):242–252.

[149] Grasia. INGENIAS IDE. http://ingenias.sourceforge.net/; 2005.
[150] MacMAS. MaCMAS. http://www.tdg-seville.info/joaquinp/MaCMAS/index.htm; 2005.
[151] Peña J, Corchuelo R, Arjona JL. Towards Interaction Protocol Operations for Large Multi-

agent Systems. In: Proceedings of the Second International Workshop on Formal Ap-
proaches to Agent-Based Systems. vol. LNCS 2699. Berlin: Springer-Verlag; 2002. p. 79–
91.

[152] Peña J, Corchuelo R, Arjona JL. A Top Down Approach for MAS Protocol Descriptions.
In: Proceedings of the ACM Symposium on Applied Computing SAC’03. Florida: ACM;
2003. p. 45–50.

[153] FIPA Methodology TC. FIPA Methodology Technical Committee. http://wwwfipaorg/ ac-
tivities/methodologyhtml. 2005.

Index

abstract agent, 32, 63
abstract belief, 65
abstract goal, 64
abstract task, 65
abstraction level, 33
AContainE relation, 68
activity, 92
adaptability, 22
agent, 7, 21, 64
agent model, 66
agent-based manufacturing system, 7
aggregation relation, 61
AGOClientServer relation, 86
AGOConditionalSubordination relation, 86
AGONotConditionalSubordination relation, 86
AGOSubordination relation, 86
application, 65
AResponsible relation, 68, 85
association relation, 61
autonomy, 10, 21, 23

belief, 64
benevolence, 22, 29
bifurcate relation, 82
business process, 94

concurrent relation, 82
cooperation, 10, 26
cooperation domain, 12

development process, 91
device controlling, 19
distributed intelligent manufacturing, 7
divide and conquer, 2
document, 92

enterprise modeling, 53

environment model, 83
environment resource, 83
EPerceive relation, 84
EResourceBelongsTo relation, 83
event, 66

function block guidelines, 128
functional decomposition, 43, 107

goal, 64, 95
goal-type property, 71
group belief, 65
group goal, 64
GTAffect relation, 72
GTCreate relation, 73
GTDecompose relation, 76
GTDecomposeAnd relation, 76
GTDecomposeOr relation, 76
GTDepend relation, 76
GTDependAnd relation, 76
GTDependOr relation, 76
GTDestroy relation, 73
GTFail relation, 73
GTModify relation, 73
GTPursue relation, 79, 85
GTPursues relation, 67
GTSatisfy relation, 73
guidance, 92

heterarchical control system, 7
HMS-UC guidelines, 102
holarchy, 8, 10
holon, 8, 10
holonic manufacturing system, 9, 10

ICooperate relation, 79
information processing part, 11, 30

213

214 Index

inheritance relation, 61
Intelligent Manufacturing Systems, 8
interaction, 65
interaction model, 78
interaction scenario, 78
interaction specification, 82
interaction unit, 65, 81
IPursue relation, 79
IStart relation, 79

JADE agent template, 127
JADE guidelines, 125, 126
job-shop control, 19

learning, 28

max-deadline property, 70, 71
mental attitude, 28
mental state, 64
metamodel, 60
mobility, 22, 29
model, 92
multi-agent system, 7, 22, 32

OContainA-Agent relation, 85
openness, 26
operation condition, 95
organization, 64
organization model, 84
organization structure, 85
organizational chart, 94

periodic property, 70
phase, 92
physical decomposition, 42, 107
physical processing part, 10, 30
play relation, 67
precede relation, 82
pro-active, 21
pro-active behavior, 78
pro-activeness, 22
pro-activity, 24
process, 92
process package, 92
process role, 92
product holon, 17
PROSA, 17

PROSA guidelines, 110–112

rationality, 21, 27
reactive, 21
reactive behavior, 78
reactivity, 21, 23
real-time goal, 71
real-time task, 70
recursion level, 33
recursiveness, 29, 30
resource, 66
resource holon, 17
role, 63

scheduling, 19
sociability, 25
social, 21
social ability, 21
SPEM, 91
staff holon, 17
system scope, 94

task, 65
task specification, 73
task-type property, 70
task/goal model, 70

UICooperate relation, 81
UIIteration relation, 82
UIStart relation, 81

veracity, 22

WFConnect relation, 88
WFConsume relation, 73, 88
WFDecompose relation, 75, 76, 85
WFProduce relation, 73, 88
WFPursue relation, 79
WFResponsible relation, 69
WFUse relation, 73, 88
work definition, 92
work flow, 65, 88
work product, 92
work-order execution, 19
work-order holon, 17
work-order programming, 19

	front-matter.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	back-matter.pdf

