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Preface

Novel concepts in teaching stress the active role of the student in the acquisition
of competence. In this spirit, the Exam Survival Guide: Physical Chemistry was
developed as a supplemental offer primarily to students, but also to teachers. The
book presents more than 80 selected problems, some typical of physical chemistry
examinations; others, owing to their relative complexity, suitable for seminars with
the intention of reaching an in-depth understanding of the key topics in physical
chemistry. The solutions to the problems are presented in a more extensive way
compared with typical textbooks. Having worked out a solution independently,
the student is invited to follow the solution offered in the text. Alternatively, the
student can benefit from an solution, gain insight into solution strategies, methods
of calculus, and additional information that draws attention to some remarkable
points. The intention of the book is to encourage the reader to use paper, pencil,
and computer to cultivate problem-solving in physical chemistry.

Each chapter deals with a key topic and starts with a short survey of the theory
necessary to solve the problems. These basic concepts are not intended to replace the
contents of tried-and-tested textbooks. Instead, they serve as starting points around
which the topics of the exercises are developed. In addition, the book provides
an extensive appendix of the essential mathematics typical of physical chemistry
problems.

A first brief look through the chapters shows that the emphasis of this workbook
is on the application of mathematical methods in physicochemical contexts. In fact,
there are hardly any questions that can simply be answered by “yes” or “no.” The
Chapter 1 deals with the aspects of this kind of quantitative problem-solving and
provides a survey on the various topics, the level of difficulty, and hints on the
manifold cross-links among certain problems.

Although I am aware of the varying curricula and examination formats, the
different approaches that students develop during their career, the lively diversity
among students - hard workers, sophisticated thinkers, pragmatists, optimists, and
all the combinations in between - I hope this workbook is useful.

It is obvious that a book of this volume does not cover the entire field of
physical chemistry. To maintain a clear and compact form, I have omitted topics

vii
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that some readers perhaps feel are lacking. If you have any comments, questions, or

suggestions, or if you want to report errors, you are welcome to contact me under
jochen.vogt@ovgu.de.

Magdeburg, Germany Jochen Vogt
September 2016


jochen.vogt@ovgu.de
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Chapter 1
Quantitative Problem Solving in Physical
Chemistry

Abstract This introductory chapter develops and discusses a concept of mathe-
matically oriented problem-solving in physical chemistry. Based on a definition of
the scientific discipline physical chemistry, the basic skills needed for successful
problem-solving are identified. The concept of problem-solving is exemplified using
a sample problem text. Finally, an overview of the problems in the various chapters
is given, along with comments on the level of difficulty and thematic cross-links
among the various topics.

1.1 A Concept for Problem-Solving in Physical Chemistry

Physical chemistry is a scientific discipline that explores chemical topics using
physical theory and technique. This definition also explains the rather challenging
nature of the subject physical chemistry taught as part of university curricula. It
combines three basic skills that we must develop in the course of our studies.
First, we should have enough of a chemical background to understand the problem.
Second, we must know the fundamental laws of physics and we need to develop
some sense of the significance of fundamental physical quantities in chemical
contexts.! Third, we must be able to apply basic mathematical methods to work
out quantitative results.? Finally, experience including the ability of recognition is a
fourth necessary ingredient that considerably enhances our effectivity in problem-
solving. This is quite a lot. For the solution of a concrete, non-trivial problem of a
certain complexity, all these skills need to be combined to work out a solution.

In this introductory chapter, a short guide to dealing with physical chemistry
problems is offered to cultivate your problem-solving skills. It picks up on the
typical difficulties experienced by students that I have noticed over a period of

' An example of such a fundamental physical quantity is energy. Indeed, it is worth reflecting on
the significance of energy in conjunction with nearly all key topics, ranging from changes of state
(Chap. 3) to quantum mechanics and spectroscopy (Chaps. 9 and 10).

2In fact, mathematics has been called the language of physics [1]. A mathematical formulation of
a problem combines exactness with the complete refinement to the essential facts in a quantitative
manner.

© Springer International Publishing AG 2017 1
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2 1 Quantitative Problem Solving in Physical Chemistry

teaching of about 15 years at a faculty of engineering.* The scheme assumes a
problem of relatively high complexity that requires both logical linking of facts from
one or more contexts, along with the setup and execution of a mathematical solution.
The five different stages listed do not follow a strictly sequential scheme. Instead,
these stages are merely simultaneous intellectual activities that work together to find
the solution.

1. Read the problem text carefully.

(a) Which quantities are given?
(b) What is going to be calculated?
(c) Analyze the problem text with regard to special key words.

2. Use your experience to identify the essential issues.

(a) Relate the problem to a topic in physical chemistry.

(b) Identify matches with contents from lectures, seminars, and laboratories.

(c) Make a sketch that collects and illustrates the important facts.

(d) Narrow the problem down as far as possible to identify the essential issues
that are inevitable for the solution of the problem.

3. Assess the points you do not yet understand.

(a) Think pragmatically! Distinguish those details you consider crucial from
those that are merely decorative.

(b) If crucial details are lacking, reflect again on the essential issues that might be
missing.

(c) If you think that essential quantities are undefined in the problem text, will
these quantities be cancelled out at the stage of the mathematical solution?

(d) Based on your experience, reflect on the expected results.

(e) Be critical: are you convinced that you have found the correct approach?

4. Work out the solution—translate the problem into the language of mathe-
matics

(a) Write down the key equations on the basis of the essential issues identified.
(b) Reflect on potential technical difficulties, e.g., those related to undefined
quantities (see above).

5. Accomplish the solution

(a) Think pragmatically! Possible technical difficulties may be resolved by the
solution.

(b) If you have obtained results, assess their plausibility.

(c) Reflect again on the solution. Are you convinced that you have found the
correct solution?

3 An extensive analysis of such difficulties can be found in [2].
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As an example of a concrete problem text, consider Problem 3.13 on page 64.
The problem text is reproduced here and the quantities provided and sought, along
with the key-words according to points 1.a, 1.b, and 1.c, are highlighted:

At 293K , the vapor pressure of the solvent diethyl ether ( C;Hs5-O-C,Hs )
is 586hPa . After the addition of 20g of an unknown non-volatile
compound in 1kg diethyl ether, the vapor pressure reduces to

583hPa . Assume an ideal mixture of diethyl ether and the unknown
compound, for which an elementary analysis yields mass fractions
of 41.4% carbon, 5.5% hydrogen, 9.6% nitrogen, and 43.8% oxygen.

Determine the molar mass and the molecular formula of the unknown
compound.

Let us look at the various stages of this problem-solving scheme. Careful reading
of the text is important. We must analyze the problem with regard to the quantities
given and the quantities to be calculated. In preparation for stage 4, we should
assign a unique symbol to each quantity. Note that in many cases it is crucial to
distinguish between the initial value of a certain quantity and its value in the final
state, or the values that the quantity takes during an ongoing process. In the concrete
problem, we must distinguish between the vapor pressure of pure diethyl ether (a
common symbol would be p*), and its vapor pressure in the binary mixture (symbol
p). Moreover, it is crucial to define all quantities in the same system of units, usually
the SI system. Sometimes you need to convert some of the quantities (see Table A.2
in the appendix).

In the second stage, the essential issues, which are inevitable for the solution of
the problem, are identified. A first assignment of the problem to a general topic is
made based on the recognition of lecture content, seminar work, laboratory work,
etc. Quite often, we find such essential issues coded in key words appearing in
the problem text. In the concrete problem, such a key-word is the ideal mixture,
implying the application of Raoult’s law (Eq. (3.108) on page 54). Another essential
issue is stoichiometry and the definition of the mole fraction and molar mass. A
third ingredient is the fact that the solvent diethyl ether and the unknown compound
constitute a binary mixture—a point that is not explicitly stated in the problem text.
Sometimes, it is quite useful to make a sketch to collect and arrange such essential
issues visually, and to identify the logical links between them. This is especially true
for problems involving processes with an initial state and a final state.

Depending on your experience and the complexity of the problem, you will not
immediately identify the correct approach. In this case, it is important to assess the
points you do not yet understand (stage 3). Sometimes, it is good advice to think
pragmatically. For example, do not become intimidated by problem texts filled with
impressively long names of chemical compounds. Sometimes, you just need the
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molecular formula to determine a molar mass; in other cases, they can be replaced
altogether by shorter symbols. At the stage where you do not yet see through the
solution pathway, an detail that is lacking, such as an undefined quantity may be
canceled out in the calculation. However, it may also indicate that you have missed
something. Be hopeful and at the same time critical with the setup of your solution.

The next step is to write down the equations resulting from the list of essential
issues identified (stage 4). The more experience we have, the easier it is to transpose
the solution concept into a set of mathematical equations. In fact, at a level of
deeper understanding, the student’s conceptual view based on essential issues and
the mathematical formulation tend to merge. Also at this stage, we must be critical:
the appearance of undefined quantities in the equations, but also too many redundant
quantities, could indicate flaws in the approach and may force a reassessment. At
the last stage, where the solution has been found, you should check the plausibility
of your results. It is worth comparing the results with the initial estimations.
An approximate agreement within the same order of magnitude strengthens the
confidence with regard to the method of solution. Large differences, in contrast,
require critical reflection on the entire method of solution. In this case, it is a
good idea to consider possible technical errors first, e.g., arithmetic errors, such
as confusion of signs or the addition of quantities with different physical units.
Unexpected deviations in spite of a correct solution, in contrast, invite us to rethink
a topic from a new perspective. In fact, in this case, a problem can prove to be highly
useful to the individual student.

Note that not all problems collected in this book fit exactly into the scheme
proposed above. For example, there are numerous problems where we prove a
certain relationship before it is applied to a concrete case. Another popular category
of problems involves a graphical solution or, in some cases, a numerical treatment
using a computer.

1.2 Overview of Problems

In the following, the problems presented in the various chapters are listed.

Chapter 2: Stoichiometry and Chemical Reactions

Problem 2.1 Molar mass and molar volume 12
Problem 2.2 Stoichiometry of a combustion reaction 14
Problem 2.3 The limiting reactant 15

Chapter 3: Changes of State

Problem 3.1 Thermal state variables 20
Problem 3.2 Thermal expansion of condensed phases and gases 21
Problem 3.3 Perfect gas vs real gas 24



1.2 Overview of Problems

Problem 3.4
Problem 3.5
Problem 3.6
Problem 3.7
Problem 3.8

Problem 3.9
Problem 3.10
Problem 3.11

Problem 3.12
Problem 3.13
Problem 3.14
Problem 3.15

Van der Waals isotherms, Maxwell construction

Molar heat capacities of a van der Waals gas

Work and mechanical equilibrium

Adiabatic reversible expansion/compression

Entropy change and free expansion of a van der Waals
gas

Reversible and irreversible adiabatic expansion

Vapor pressure of a pure substance

Molar Gibbs free energies of solids and gases, conversion
of graphite to diamond

Ideal solutions

Vapor pressure reduction

Spontaneous freezing of supercooled water

Freezing of atmospheric water droplets to cubic or hexag-
onal ice

Chapter 4: Thermochemistry

Problem 4.1
Problem 4.2
Problem 4.3

Combustion enthalpies
Solvation enthalpy
Ellingham diagram

Chapter 5: Chemical Equilibrium

Problem 5.1
Problem 5.2
Problem 5.3
Problem 5.4
Problem 5.5
Problem 5.6
Problem 5.7
Problem 5.8
Problem 5.9
Problem 5.10

Br; decay

Equilibrium in parallel reactions I

Equilibrium in parallel reactions 11

Water-gas shift reaction

Dehydrogenation of methanol

Temperature dependence of equilibrium constants
Determination of reaction enthalpy and reaction entropy
A simple model of acid rain

CO, dissolution in a closed bottle of water

Dissociation of trichloroacetic acid

Chapter 6: Chemical Kinetics

Problem 6.1
Problem 6.2
Problem 6.3
Problem 6.4
Problem 6.5
Problem 6.6
Problem 6.7

Reaction order and half-life

First order decay

Methane decay

Kinetic look at chemical equilibrium
Competing reactions

Oscillating chemical reactions I
Oscillating chemical reactions II

26
35
37
39
43

46
54
59

62
64
66
68

74
77
79

87
91
93
97
100
103
106
109
111
115

122
125
127
130
134
138
142



1 Quantitative Problem Solving in Physical Chemistry

Chapter 7: Kinetic Theory

Problem 7.1
Problem 7.2
Problem 7.3
Problem 7.4
Problem 7.5
Problem 7.6

Maxwell-Boltzmann distribution I
Maxwell-Boltzmann distribution II

Relative velocity of two particles

Collision rates in a helium-xenon gas mixture
Gas effusion

Film growth

Chapter 8: Statistical Thermodynamics

Problem 8.1
Problem 8.2
Problem 8.3
Problem 8.4
Problem 8.5
Problem 8.6
Problem 8.7
Problem 8.8

Conformational entropy and protein structure
Mixing of gases

A simple model of diffusion

Surface diffusion

Derivation of Boltzmann distribution
Entropy of monatomic gases

Heat capacity of multilevel systems

Schottky anomaly

Chapter 9: Quantum Mechanics and Electronic Structure

Problem 9.1
Problem 9.2
Problem 9.3
Problem 9.4
Problem 9.5
Problem 9.6
Problem 9.7
Problem 9.8
Problem 9.9
Problem 9.10
Problem 9.11
Problem 9.12
Problem 9.13
Problem 9.14
Problem 9.15
Problem 9.16
Problem 9.17
Problem 9.18

Derivation of the average oscillator energy
The zero point energy

Electron impact heating

Photoelectric effect

Lithium atom and quantum defect
Schrddinger equation

Wave packets and uncertainty principle
Gaussian wave packet propagation
Conservation of the norm of the wave function
Operators |

Operators 11

Quantization: the electron on a ring

Electronic excitation of the benzene molecule
Hydrogen first wave function

Hydrogen problem applied to semiconductor technology
Variational method

The quantum double well

The chemical bond

151
154
159
163
166
172

179
181
185
192
195
199
202
206

221
223
224
226
227
231
234
238
241
244
248
253
255
257
260
262
272
281
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Chapter 10: Spectroscopy

Problem 10.1 Units of measurement in spectroscopy 299
Problem 10.2 Doppler broadening of spectral lines 302
Problem 10.3 UV absorption of proteins 307
Problem 10.4 HCN molecular structure 309
Problem 10.5 Asymmetric top rotation spectra 313
Problem 10.6 IR spectra of diatomics I 319
Problem 10.7 IR spectra of diatomics 11 325
Problem 10.8 Vibrational modes of polyatomic molecules 334
Problem 10.9 Influence of nuclear spin statistics 340
Problem 10.10  LASER-I 345
Problem 10.11  LASER-II 352

The order of topics in this workbook roughly follows the way in which physical
chemistry is presented in contemporary textbooks. Stoichiometry (Chap.2) is the
natural starting point of any quantitative treatment in general chemistry. Moreover,
stoichiometry is a prerequisite for the understanding of fields such as chemical
equilibrium (Chap.5) and chemical kinetics (Chap. 6). The attentive reader will
notice that certain concepts such as the extent of reaction introduced in Chap. 2, are
systematically used in the subsequent chapters.* In this sense, the arrangement of
problems has an intrinsic order. But this should by no means prevent the reader from
entering into the problems at an arbitrary point. In a few cases where the solution of
a problem assumes that the reader has dealt with the preliminary contents of other
problems, this is explicitly noted.

Concerning the complexity of the problems, the level of difficulty gradually
increases from chapter to chapter, not only from a mathematical, but also from a
conceptual point of view. Concerning mathematics and the methods of solution,
the attentive reader will notice interesting parallels. A prime example is the set of
problems dealing with oscillating chemical reactions (Problems 6.6 and 6.7) in the
chapter on reaction kinetics on the one hand, and the set of problems dealing with
LASER operation in Chap. 10 (spectroscopy) on the other.’ Seemingly an accidental
mathematical conformity at first sight, these similarities reveal a hidden relationship
with regard to interaction in complex systems that the reader might discover.®

“In my experience, many students are reserved in using the extent of reaction in concrete problems.
Not appearing explicitly in any fundamental laws such as the law of mass action, it seems somehow
dispensable. In fact, it is possible to work out a correct solution without using it explicitly. However,
this requires an intellectual effort that unconsciously achieves the same purpose as the conscious
use of this concept would do systematically.

SIn fact, for the numerical solution of the laser equations in Problem 10.11, you can use the
computer code of Problem 6.7, with only small modifications.

5The present book can, of course, only draw the reader’s attention to such points without analyzing
the relationships in full detail, as has been done by Hermann Haken [3].
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In Chap. 9 dealing with quantum mechanics, problems highlighting some rather
abstract aspects of quantum mechanics, such as operator algebra, were included, for
several reasons. First, the interpretation of quantum mechanics raises interesting
discussions in seminars. Second, operator algebra in quantum mechanics is a
powerful method of producing results with sometimes surprisingly sparse efforts.’
Third, graduate students starting to listen to specialized conference talks, e.g., in
spectroscopy, will experience the necessity of being familiar with these methods for
their future scientific work.

References

1. Cullerne JP, Machacek A (2008) The language of physics—a foundation for university study.
Oxford University Press, Oxford

2. Bodner GM, Herron JD (2003) Problem solving in chemistry. In: Gilbert JK, De Jong O, Justi R,
Treagust DF, Van Driel JH (eds) Chemical education: towards research-based training. Springer,
Berlin

3. Haken H (2004) Synergetics. Springer, Heidelberg

7 An instructive example is the solution of the quantum double well problem (Problem 9.17) for
which the energy levels can be calculated with arbitrary precision without solving one single
integral explicitly.



Chapter 2
Stoichiometry and Chemical Reactions

Abstract Stoichiometry deals quantitatively with the conversion of substances in
the course of a chemical reaction. In this short chapter, we make ourselves familiar
with the definition of some important quantities concerning chemical reactions.
We use them throughout this book, as stoichiometric considerations are applied
in virtually all problems dealing with chemical reactions such as thermochemistry
(Chap.4) or chemical kinetics (Chap.6). The problems presented in this chapter
deal with elementary applications of stoichiometry.

2.1 Basic Concepts

2.1.1 Chemical Reactions

One of the milestones in the development of chemistry is the discovery by John
Dalton that during a chemical reaction the number of the elementary parts of an
element, which he called atoms, is unchanged. Atoms are neither consumed nor
created in a chemical reaction. Instead, a chemical reaction can be characterized by
arearrangement or exchange of atoms among various molecular entities. A concrete
example is the water—gas shift reaction

CO(g) + H,0(g) = CO,(g) + Ha(g). (2.1

As the number of molecules on the right and on the left is the same, the total
number of molecules during this reaction is unchanged. Next, consider the ammonia
synthesis reaction

Na(g) + 3Ha(g) = 2NH3(g) 2.2)

Here, the number of molecules on the left is twice the number of molecules on
the right. As a consequence, characteristic of a synthesis reaction, the total number
of molecules in the reactor decreases as this reaction proceeds. Finally, consider the
dissociation of (NO;); in the gas phase,

(NO2)2(g) = 2NOa2(g). (2.3)

© Springer International Publishing AG 2017 9
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10 2 Stoichiometry and Chemical Reactions

Here, the total number of molecules increases as the reaction proceeds, typical of
a dissociation reaction. These examples show that the number of molecules is not
necessarily constant in the course of a chemical reaction.

A substance on the left hand side is called an educt or reactant. The number
of molecules of a reactant generally decreases in the course of a chemical reaction.
In contrast, a substance on the right hand side, is called a product. The number of
molecules of a product increases as the reaction proceeds.

The most general formulation of a chemical reaction, which we refer to
throughout this book, is as follows:

DX, =0 (2.4)
J

The index J counts reactants and products denoted by the symbol X;. The
coefficients v; are called stoichiometric numbers. Note that the stoichiometric
numbers of the reactant are negative, whereas those of the products are positive. As
an example, the ammonia synthesis reaction Eq. (2.2) can be rewritten as follows:

2NH3 — N»(g) — 3Ha(g) =0 (2.5)

In order to quantify the number of molecules and its changes, the SI unit mole
has been defined:

The SI unit mole is the amount of substance of a system containing as many
elementary units as there are carbon atoms in exactly 0.012 kg of carbon-12.
1 mole of particles is Ny = 6.02214129(27) x 10> mol~', the Avogadro
constant.

It is essential to realize that in the course of a chemical reaction, the mole
numbers of the various substances change in a specific manner. To describe this
quantitatively, the extent of reaction, £, is introduced. This quantity enables the
changes in the amounts of reactants and products to be expressed as a function of
time:

ny(t) = nf + v, §(1) (2.6)

Here, n,(f) is the amount of X; at time #, and n9 is its initial value. Note
that because the definition of the stoichiometric numbers of the reactants is to be
negative, the amount of reactant decreases, whereas the amount of product increases
in a chemical reaction. Furthermore, as the number of moles of any substance is
always positive, the reaction comes to an end, if one of the reactants |v, | reaches
ng. In general, all but one of the reactants is present in excess, and one reactant is
the limiting reactant.
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The definition of & does not refer to a specific substance: a differential change in
the extent of reaction is given by

_ dnJ(t) _ dnJ/(t) _
B Vy B vy B

d§ Q2.7)

Another important quantity that characterizes the composition of a system, is the
mole fraction x;:

(2.8)

Note that the sum of all mole fractions in a system is 1. Similarly, the
concentration c; of a species is defined as

2.9

where V is the system volume.

2.1.2 Molar Mass and Molar Volume

In laboratory work, the determination of the amount of a chemical compound is
often based on weighing, i.e., the determination of its mass. Characteristic of each
element is its atomic mass, which is tabulated in the periodic system of elements
(PSE, also called periodic table of elements, see appendix Sect. A.4). As the mass
of a molecular compound is a very good approximation of the sum of the atomic
masses constituting one molecular unit, the molar mass M of each compound can be
deduced using the PSE. The number of moles of an arbitrary amount of a chemical
compound with mass m is then

n= (2.10)

Because a pure material is characterized by a unique density p, the molar volume
v of the material is given by

M
v=" . @2.11)

he)
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The molar volumes of substances in the solid and in the liquid state are generally
neglected in favor of the molar volumes of substances in the gaseous state. The
relation among pressure p, volume V, and temperature 7 is established by the
equation of state. For gases, the equation of state of the perfect gas,

[ pV =nRT, ] (2.12)

is in many problems a reasonable approximation. R = 8.314462J K~' mol~! is the
molar gas constant. At atmospheric pressure and a temperature of 298 K, the molar
volume of a perfect gas is about 24.8 1.

2.2 Problems

An additional problem directly related to stoichiometry is Problem 3.13 on page 64.

Problem 2.1 (Molar Mass and Molar Volume) At a temperature of
293K and atmospheric pressure, the density of sodium chloride is 0 =
2.165gcm™3. Use the periodic table of elements and determine the molar
mass and the molar volume of NaCl. Calculate the nearest neighbor distance
d in the rocksalt lattice (see Fig.2.1).

Solution 2.1 The solution to this problem illustrates the amount of substance of a
well-known material: sodium chloride. At first we shall determine its molar mass
and its molar volume. From the periodic table of elements we take the atomic
weights of sodium and chlorine, My, = 22.990 gmol™' and M¢; = 35.453 gmol ™!,
respectively. Thus, the molar mass of NaCl is the sum of these atomic weights:
Myacl = My, + Mcy = 58.443 gmol ™.

To determine the molar volume v of NaCl, we use the definition of the density as

def m _ Myaci

mass per volume (see Eq. (2.1D)): 0 = |, = 77

Hence,

M
v =" _26.994 cm?mol™. (2.13)
0

Thus, according to our result, one mole of NaCl has the volume of a cube of
about 3.0 cm in edge length.

Next, from our result on v, we shall determine the nearest neighbor distance of
Na and ClI in the rocksalt lattice shown in Fig.2.1. The crystal structure of NaCl
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11 29 || 17 3545

Na

Sodium

Fig. 2.1 Left: the NaCl crystal lattice. Right: cards with the atomic weights for the elements
sodium and chlorine, taken from the periodic systems of the elements (see Sect. A.4)

is well-known from X-ray crystallography experiments, and the nearest-neighbor
distance can be measured with great precision. However, just with our result of
the molar volume of NaCl, we can determine d: one mole of NaCl corresponds to
N4 = 6.022 x 10?* NaCl formula units. Hence, the volume occupied by one formula
unit NaCl is

VNaCl = ]\'; = 4.44825 x 1072 cm® = 4.4825 x 107 m’. (2.14)
A

There are several possibilities for relating the volume per formula unit to the
crystal structure shown in Fig.2.1. The shaded cube has a volume Vi, = &.
This cube has four chloride ions and four sodium ions at its corners. However, we
must bear in mind that each ion is shared by eight neighboring cubes joining at

the respective ionic site. Thus, each of the cubes contains 4= é sodium ions, and

8
g = ; chloride ions, i.e., 0.5 NaCl formula units. Hence, Ve = d° = ; VNacl, and
thus

1
1 3
d= (2 VNaCl) =282x10"""m. (2.15)

This result is very close to the result obtained in X-ray diffraction experi-
ments [1].
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Problem 2.2 (Stoichiometry of a Combustion Reaction) After the com-
bustion of 10.000 g of pure vanadium in an oxygen atmosphere, the reaction
product has a mass of 17.852g. Write down the reaction equation for the
combustion of vanadium.

23 s004
A\

Vanadium

Fig. 2.2 Cards for the elements vanadium and oxygen in the periodic system of the elements (see
Sect. A.4)

Solution 2.2 A simple experiment that does not require a complex setup is the
determination of the stoichiometric composition of a metal oxide after it has been
formed by combustion in an oxygen atmosphere. All that is needed is a laboratory
weighing scale. In our problem, the mass of the reactant, pure vanadium, is my =
10.000 g. The mass of the reaction product, vanadium oxide, is moyige = 17.852¢.
We determine its stoichiometric formula and the corresponding reaction. We start
with the general reaction

XV + ; 0, > V.0, (2.16)

and we need to determine x and y. First, we evaluate the amount of vanadium we
have used. According to the PSE, the molar mass of vanadium is 50.942 g mol™!.
Thus, ny = A’% = 0.1963 mol (Fig.2.2).

The reaction product has a higher mass than the reactant. The reason is the
oxygen, which has been incorporated during the combustion. The mass of the
oxygen is therefore merely the difference moxiqe —mv. Hence, the amount of oxygen
is

mo _ Mmy.o, — My 7.852¢g

nO: =

Iy M = 15.999 ¢ = 0.4908 mol. 2.17)
O 0 . mol

The ratio between oxygen and vanadium is thus ng:ny = 0.4908:0.1963 = 5:2.
Therefore x = 2 and y = 5 and the reaction sought is

5
2V + 0, = V205 (2.18)
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Problem 2.3 (The Limiting Reactant) At 1,000K and a pressure of 5 MPa,
a tank with 500dm? containing TiCly(g) is connected to another tank with
1,000 dm? filled with CH4(g). Given a complete stoichiometric conversion of
these gases into solid TiC(s) and HCI(g), calculate the residual pressure after
the reaction and the mass of TiC formed. Assume perfect gas behavior of all
gaseous substances. Ignore the volume of the solid reaction product.

Amount of substance n (mol)

1500 + |- TiCl
--=- CH, .
1200 + |- - - Hel '
—TiC P
I 1
900 + P :
// 3 final
e :g
600 ~-—._ .- |
300+ - el
[ e 1
ob— ... ]
—f——+ f——t——F— ; t
0 50 100 150 200 250 300 350

Extent of reaction & (mol)

Fig. 2.3 Amounts of substances as a function of ¢ for reaction Eq. (2.19). TiCl, limits the reaction

at £final = 300.7 mol

Solution 2.3 This exercise deals with a chemical reaction that comes to an
end when one of the educts is completely consumed. Initially, at a temperature
T =1,000K and a pressure of pO =5 MPa, the tank with the volume V| = 0.5m?
contains TiCls(g), the other tank with the volume V, = 1 m? contains CH4(g). We
need to formulate the conversion reaction to TiC(s) and HCI(g) :

TiCli(g) + CH4(g) —> TiC(s) + 4 HCI(g)

(2.19)
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Next, we calculate the initial mole numbers of these reactants assuming perfect
gas behavior (Eq. (2.12)):

%

iy, = RT‘ =300.7 mol (2.20)
0
%

nly, = pRT2 = 601.4mol 2.21)

As there is an excess of methane, TiCly limits the reaction. What does this mean?
In our problem, the final extent of reaction according to Eq. (2.6) is £1! = n0TiC14
when all TiCly is consumed. The situation is illustrated in Fig. 2.3. The amounts of
CH,4, HCI, and TiC can be obtained at £1 using Eq. (2.6): There will be ng'l‘fi =
ey, —§™ = 300.7 mol of methane left in the reaction volume V; + V5. Moreover,
nindl = 0 4 4£final = 1,202.8 mol, and nic = 0 + £ = 300.7 mol.

We calculate the final pressure

final __ final final RT

P = (nfd + ndi) Vit V) = 8.3 MPa. (2.22)

The molar mass of TiC is Myic = 59.9¢g mol~!. Hence, at the end of the reaction,

the mass of the solid reaction product TiC is mifa' = Mric x nfifd = 18.0kg.

Reference

1. Bragg WH, Bragg WL (1915) X rays and crystal structure. Bell, London



Chapter 3
Changes of State

Abstract Thermodynamicsis introduced as a quantitative method of characterizing
the changes of state of systems. The topic is subdivided in three categories. Problems
dealing with thermal state variables and equations of state are found in Sect. 3.2,
along with a compact summary of essential theory. Problems focusing on the caloric
state variables are discussed in Sect. 3.3, again preceded by a summary of basic
concepts. Finally, a set of problems dealing with heterogeneous systems, phase
transitions, and mixtures is presented in Sect. 3.4.

This chapter deals with a field in physical chemistry that offers a direct approach
from our every-day viewpoint: changes in state. A walk through a winter landscape
may stir deep feelings in us about the beauty of nature in its entirety, but it may also
be a good starting point for developing conceptions about processes in nature and
their origin. If we look, for example, at a foggy lake in winter with ice cakes floating
downstream, we see water in its different forms: water as a liquid, as vapor, or as ice.
The melting of a snow-flake on a warm surface, or the vaporization of a rain drop are
concrete examples of changes of state. But even a change in pressure, temperature,
or volume is a change of state. Thermodynamics is the result of human reflection
about such processes, and it provides the necessary concepts for understanding the
general principles behind them, such as the phase diagram of a substance, which
relates its states of aggregation to pressure and temperature (Fig. 3.1).

3.1 Systems

For the analysis of processes in nature, it is indispensable to subdivide the consid-
ered totality of interacting matter into parts. Typically, we are only interested in the
evolution of a certain amount of matter, clearly distinguished by the environment,
the surroundings. Usually, the properties of the surroundings are not well-known,
but neglecting them completely would be too crude an approximation. Therefore,
the concept of the system is introduced, which can be subdivided into subsystems,
separated by well-defined boundaries. A system that exchanges neither matter
nor heat with its surroundings is called an isolated system. A system that only
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SC

Pressure -

gaseous

Temperature To

Fig. 3.1 Schematic phase diagram of a pure substance near the triple point (7') with coexistence
lines of solid and liquid, gas and liquid, gas and solid. C is the critical point. SC marks the
supercritical phase

exchanges heat with its surroundings is called a closed system. An open system
exchanges both heat and matter with its surroundings. A chemical system usually
contains a very large number of atoms or molecules, to the order of 10%. On a
macroscopic scale, one is primarily interested in only a few state variables, which
result as the average of the movement of all the interacting atoms and molecules
constituting the system. Intensive quantities characterizing a system do not depend
on the size of the system, whereas extensive quantities do. Extensive properties of
subsystems are additive. Note that for extensive quantities such as the volume V,
capital letters are used in general. Lower case letters are reserved for the related
(intensive) molar quantity, e.g., the molar volume v.

3.2 Equation of State, Thermal State Variables

The thermal state variables are the temperature 7, the pressure p, and the volume
V of the system consisting of a certain amount of substance n. There is always an
equation of state

f(p,V,T,n) =0 (3.1
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that links these three thermal state variables. If the system under consideration is a
perfect gas, the equation of state is

(3.2)

with the molar gas constant R = 8.3144621(75)J K~ mol~'. The concept of the
perfect gas assumes the particles to be point masses without extension, and the
model neglects all intermolecular interactions.

Another well-known equation of state is the one proposed by van der Waals:

2
(p + avnz ) (V — nb) = nRT (3.3)

It contains two model parameters, a and b, which can be fitted for each substance
to experimental p—V-T data. To some extent, the van der Waals model involves the
existence of the critical point and a possible coexistence of condensed phase and
gas phase, but it is of limited accuracy (see also Problem 3.4).

The virial equation for 1 mole of substance relates pressure p, temperature 7,
and the molar volume v in the following way:

pv_,  BD  Cm)

RT v v2 (34)

It has the advantage of directly linking the p—V-T behavior of a substance
to intermolecular interaction. The second virial coefficient B is a temperature-
dependent quantity, which is related to pair interaction between molecules, the third
virial coefficient C is related to interaction among three molecules, etc.

In the course of a change of state of the system, the thermal state variables are
subject to changes. A change in volume, for example, results as a consequence of
changes in pressure and temperature:

IV IV
= T .
dv (8T)pd +(ap)po 3.5)

Given a specific equation of state, the differential quotients themselves can be
determined. Moreover, especially in the case of condensed phases, they can be
expressed by important material properties such as the isobaric thermal expansion
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coefficient,
1 /0V
o= 3.6)
var/,
or the isothermal compressibility
1 [0V
K = (3.7)
V\adp /s

Thermodynamics is able to derive relations between material properties such as
a and k without assuming any microscopic theory of matter (see Problem 3.1). Note
that a material property in general depends on the temperature or pressure.

3.2.1 Problems

Problem 3.1 (Thermal State Variables)

a. For an arbitrary isochoric change of state, show that the following equation
holds:

(ar)v =T @Vip), T« G:8)

b. For an arbitrary change of state, show that the following relation holds

d(InV) = adl —kdp 3.9)

Solution 3.1 In this problem, we use the concept of the total differential to
show some useful relations. It is worth mentioning that thermodynamics does
not necessarily assume a microscopic theory of matter that would allow the
prediction of material properties such as the compressibility of a substance or
its expansion coefficient. Nevertheless, thermodynamics allows the formulation of
relations between such material properties. One example is Eq. (3.8).

To show Eq.(3.8) in subproblem (a), we consider the total differential of the
volume, which is zero for an isochoric change of state:

aV JV
isochoric < dV = ( ) dT + ( ) dp =0 (3.10)
ar J, p )7
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BV) (8 V)
& dTl = — dp; dV =20 (3.11)
(3T » op )1
av
dp (aT)p
=— 3.12
g (dT)V () (312)
o Jr
As (see Sect. A.3.5.3 in the appendix)
dp(T.V)\ _ (9p(T.V) .
dT v oT v '

we have thus shown Eq. (3.8). For the proof of Eq. (3.9) in subproblem (b), we start
again with the total differential of the volume (Eq. (3.5)), and divide by V:

av av
dv = ( ) daT + ( ) dp (3.14)
ar J, p )7
av 1 /0V 1 [0V
= dr d 3.15
<y V(BT),, +V(3p)Tp (3-15)
With the definition of « (Eq. (3.6)) and « (Eq. (3.7)), we have

dv
&, = oadl —kdp (3.16)

& d(InV) = adT —kdp (3.17)

which is what was to be shown.

Problem 3.2 (Thermal Expansion of Condensed Phases and Gases) The
thermal expansion coefficient of liquid water is @ = 20.0 x 107> K™!, and its
compressibility is k = 0.5 x 107 Pa™".

Use Eqgs. (3.8) and (3.9) to calculate

a. The change in volume of 1 dm? water being heated from 25 °C up to 50°C
at atmospheric pressure.

b. The pressure exerted on the walls of a closed container of a volume of
1 dm?, which is heated to 50 °C after it was completely filled with water at
100,000 Pa and 25 °C.

c. The thermal expansion coefficient o of a perfect gas at 25°C, and the
compressibility « of a perfect gas at 100,000 Pa.
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(a) p=const.

(b) V =const.

25°C %
i?l

Fig. 3.2 (a) Thermal expansion of water at a constant pressure. (b) Heating of water at a constant
volume causes an increase in pressure

Solution 3.2 Taking liquid water as an example of a condensed phase, we examine
the effects of thermal expansion and compressibility in comparison with perfect gas
behavior.

In subproblem (a) we calculate the change in volume of water, heated at an
atmospheric pressure from 77 = 298.15 to T, = 323.15K. This is the situation
in which we heat water in an open cooking pot, as shown in Fig.3.2a. In our
experience, the effect of thermal expansion is small. We adopt Eq. (3.9) for the case
of constant pressure (dp = 0) and obtain

d(InV) = adT

What comes next is the necessary integration step

1nV2 T2
/ dlnV =« / ar
InVy T,

Here, we assume that the material property « is independent of temperature
within the range T to 75. The rules for logarithms (see appendix Sect. A.3.3) allow
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us to evaluate the integrals in the following way:
Vs
InV,—InV; =1n v =ua(Tr,—T)) & V, =V exp(a(T, — T1))
1

Vo =Vy exp(a(T> — T1)) = 1dm’exp (20.0 x 10K~ x 25K) = 1.005dm’

Hence, the sought change in volume upon heating is only V, — V; = 0.005 dm?.

Subproblem (b) deals with the case of heating liquid water at a constant volume
(Fig.3.2b). Although we have seen that the effect of thermal expansion is only small
for condensed phases, heating the latter at a constant volume can involve enormous
changes in pressure, as we will see. We start with Eq. (3.8)

d
P :a & dp:adT; V = const.
T/, « K

Integration within the limits p; = 100,000Pa at 77 = 298.15K and p,—the
sought pressure at 7, = 323.15K—yields

D2 T
/ @:“/ dT.
Pl K- Jr

We obtain

+ (T —T)) = 100000Pa + 20 0K 5K = 10.1MP
= —T) = 100, a X = 10. a
pr=prv AT A 0.5x 10~9Pa~"

Hence, the pressure increases by a factor of 100. To avoid such drastic pressure
changes, technical closed water circuits, such as domestic central heating systems,
are equipped with an expansion tank.

Finally, we calculate o and « for a perfect gas in subproblem (c). From Eq. (3.2)
we obtain by differentiation

(8V) __nR (8V) __nRT
aT » p op ) P’

We take these derivatives and obtain from Egs. (3.6) and (3.7) after resubstitution

of V.="f
P
1 [0V p nR 1
o = = =
V\adr J, nRT p T
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and
1 0V RT 1
V\dp /; nRT p? p
Thus, for a perfect gas, the expansion coefficient is & = 3.35 x 103 K™!

at 298.15K, and the compressibility is k = 1.0 x 107> Pa~! at 100,000 Pa.
Gases have a much larger thermal expansion coefficient than condensed phases,
which, in addition, strongly depend on temperature. Gases also have a much higher
compressibility than condensed phases: if you keep the outlet of a bicycle tire
inflator shut, you can compress the air a small amount. However, human forces
are not able to do the same with liquid water.

Problem 3.3 (Perfect Gas vs Real Gas) A high-pressure gas cell for laser
spectroscopy experiments is filled with pure methane. At a temperature of
300K, the pressure is 6 MPa.

a. Determine the gas density in molcm™3

CH,.

b. At 300K, the second virial coefficient of methane is —42.23 cm® mol ™.
Determine the gas density in the cell. Judging from your results, is the real
gas behavior of CH, under the given conditions dominated more by the
repulsive or by the attractive part of the intermolecular interaction?

c. To obtain accurate results, the third virial must generally be included in
the calculation. For methane at 300 K, its value is 2,410 cm® mol~2. Use an
iterative procedure or a cubic equation solver to determine the gas density
in the cell.

, assuming perfect gas behavior of

Solution 3.3 This is a practical problem from the laboratory: the determination of
the gas density from a simple measurement of pressure and temperature. For such
applications, the model of the perfect gas gives only an approximate result, but it
is easy to handle. For the solution of subproblem (a) we start with Eq. (3.2) and
obtain the gas density in question

"y = P 2405% 103 molem™3, (3.18)
RT

or 1.445 x 10?! particles per cm®. Note that the gas density is simply the inverse of
the molar volume.

In subproblem (b) we use the virial equation Eq. (3.4), but we only consider the
second virial coefficient, which is related to pair interactions between molecules.
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Hence, we obtain

This can be written as a quadratic equation
P v2—v—B =0,
RT
with the two solutions
4pB
1+ \/ L+ %r
2p

RT

V12 =

The solution with the negative sign yields a vanishing molar volume in the limit
B — 0. It is thus not meaningful in the sense of our problem. The solution with
the positive sign yields a molar volume of 368.0 cm?® mol~'. Hence, the gas density

under consideration of the second virial coefficient is 2.717 x 102 molcm™ or

1.636 x 102! particles per cm®.

To discover whether or not the repulsive or attractive nature of the intermolecular
interaction is more important under the given conditions, we compare the molar
volumes that we have calculated: if molecular interactions are neglected, i.e., in the
approximation of the perfect gas, we obtain v = 415.8 cm® mol~' from Eq. (3.18).
If we take molecular interactions into account by considering the second virial
coefficient, we obtain a smaller value of 368.0 cm® mol~'. Imagine for a moment
that we were able to switch the molecular interaction on and off. If we were to
switch it off, a constant number of molecules would fill a larger volume. Then, if
we were to switch it on again, the molar volume would shrink, i.e., the average
distance between the molecules would be smaller. Thus, we conclude that under the
chosen conditions, the molecular interaction among methane molecules is attractive,
not repulsive. It is convenient to define the so-called compression factor z = 2;,
which is less than 1 if attractive interactions are dominant, exactly 1 for vanishing
interactions, and greater than 1 if repulsive interactions are dominant.

In subproblem (c) we include the third virial coefficient in the calculation:

RT B C
p= (1 + 7+ 2) (3.19)
v v v

Note that the sum in the bracket is simply the compression factor z. Because
an analytic solution is tedious, we determine the molar volume iteratively. System-
atically, this could be done using Newton’s method (see appendix Sect. A.3.19).
But even a trial and error procedure starting from the best guess value v =
368 cm® mol™! yields the result with just five functional evaluations of Eq.(3.19),
as demonstrated in Table 3.1.
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Table 3.1 Iterative

>4 v (em®mol™) z p (MPa) Deviation (MPa)
determination of the molar
volume of methane based on 368 0.90304  6.121 +0.121
the virial equation 380 0.90556 5.944 —0.056
375 0.90452  6.017 +0.017
377 0.90490 5.987 —0.013
376 0.90473  6.002 +0.002

Hence, the molar volume of methane is 376 cm? mol~!, determined with an accu-
racy of 1.cm?® mol™'. Our final result for the gas density is 2.660 x 1073 molcm ™.
It is instructive to compare our results with experimental values for methane
under these conditions. The true experimental molar volume of methane at 300 K
and 0.6 MPa is 376.2cm’®mol™! [1], and the experimental compression factor is
0.90496. This shows that at a moderate pressure of 6 MPa, the inclusion of the third
virial coefficient is sufficient for an accurate description of the p—V-T behavior
of methane. Omission of the third virial coefficient, however, consistent with the
neglect of three body interactions, gives a result that deviates by about 2% from the
experimental value.

Problem 3.4 (Van der Waals Isotherms, Maxwell Construction) The crit-
ical temperature of nitrogen N, is 126.1K, and the critical pressure is
35 bar.

a. Plot the van der Waals isotherms of nitrogen at 100, 126, 150, and 300 K.
b. Apply the Maxwell construction to the 100 K isotherm to obtain the vapor
pressure of N, predicted by the van der Waals model.

Solution 3.4 This exercise deals with the van der Waals model of real gases, which
to some extent is capable of explaining the coexistence of the gas phase with a
condensed phase and the critical point (see Fig.3.1). How good is the van der
Waals model in predicting such properties in a concrete example? Before we move
on to the solution, we recall the qualitative behavior of the pressure as a function
of volume under isothermal conditions below the critical temperature where gas
liquefaction is possible. Consider a gas in a sealed vessel (Fig.3.3). By means
of a moveable piston, the gas is more and more compressed, and the pressure
increases. If the volume goes below a certain value, the gas is partially liquefied,
and coexistence of the gas and the liquid is observed. Under these conditions, the
pressure within the vessel is the vapor pressure p, of the substance. If the gas
is completely liquefied, the pressure increases considerably, because a condensed
phase is barely compressible (see Problem 3.2).
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P=py p>py

Fig. 3.3 The different stages of gas liquefaction at constant temperature

Moving on to the solution of the subproblem (a), we use Eq. (3.3) to obtain the
relation

RT
Py = - . (3.20)

—b 2
for 1 mol of nitrogen, for which we shall plot isotherms at 100, 126, 150, and 300 K.
At a constant temperature, Eq. (3.20) is the mathematical representation of a van
der Waals isotherm. It has a pole for v = b, and thus involves a finite volume of
the molecules. The two parameters a and b need to be determined from the critical
data of nitrogen, the critical temperature 7, = 126.1K, and the critical pressure
provided p. = 3.5 MPa (Fig. 3.1). Above the critical temperature, no coexistence of
the gas phase and the liquid phase is possible, and a supercritical phase is formed.
The relation between the critical data and the van der Waals parameters is obtained
from the analysis of the critical isotherm, p(v) = ®T¢ — o>+ The textbook result is

v—b
8
= °¢ (3.21)
27Rb
a
. = 3.22
Pe= hopo (3.22)
Division of these equations yields
RT, _ _
b= = 3.744 x 107> m* mol ™"
8pe
and
27RT.b 6 12
a= = 0.133 Pam” mol™~.

8
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Fig. 3.4 Van der Waals isotherms of N, at various temperatures. C is the critical point

The van der Waals isotherms, computed with these values for the temperatures
in question are shown in Fig.3.4. The 126K isotherm is the critical isotherm. It
has the critical point as an inflection point." The isotherms at 150 and 300K show
monotonic behavior. The 100 K isotherm has a minimum and a maximum, which
does not reflect the real behavior of a gas described above.

To obtain a more realistic description within the van der Waals model, the
Maxwell construction shall be applied in subproblem (b). It is illustrated in
Fig. 3.5, where the 100K isotherm is again shown. The horizontal line intersecting
the isotherm at the three points A, B, and C indicates a certain constant pressure
D, which within the model will be interpreted as the vapor pressure p, at the given
temperature, if the enclosed area between A and B has the same absolute value as
the enclosed area between B and C. Mathematically, these areas are related to the

integrals

Y8 (" RT a
Was = — ,—p)dv (3.23)
A v—>b v
.(A.35).Eq. (A3 -b _
Eq. (A35).Eq.(A37) RTIn vp n a a — A(vp — v)
Vg — b Up VA
and

ve RT —b
WBC:/ ( - az —p) dv=RTIn '° + 4 —p(vc —vg)
VB v—>b v vg—>b Ve Up

(3.24)

The sum W = Wyp 4+ Wpc is the work done in a cycle starting at A along the van
der Waals isotherm to the point C, and back on the constant pressure line p(v) = p
to point A. For reasonable values of p, Wyp takes negative values, whereas Wyp is

I'The condition of the inflection point to have vanishing first and second derivatives of the function
p(v) yields the relations between the van der Waals parameters a and b on the one hand, and the
critical data p,, T., and v, on the other hand.
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p (MPa)

0.2 04 06
v (10°m*mol)

Fig. 3.5 Maxwell construction of the vapor pressure of nitrogen at 100 K. The curved line is the
van der Waals isotherm at this temperature, the horizontal dashed line p = const. marks the
coexistence of liquid and gas, if the enclosed areas between the intersecting points A and B, and B
and C take the same value

positive, and our task is to find p, which is consistent with vanishing work done in
this virtual thermodynamic cycle. The problem is complicated by the fact that the
determination of the intersection points v4, vp, and v¢ for a given value p cannot
be done analytically. Using an iterative procedure, we obtain p = 1.2843 MPa. The
related intersection points are v4 = 0.57509 x 10~*m?®mol™!, vz = 0.13679 x
1072 m3 mol™!, and ve = 0.49053 x 1073 m3 mol~!. Wy is —0.1086 x 10°J, and
Wse = 0.1086 x 103 J. Thus, for a temperature of 100K, the van der Waals model
predicts the vapor pressure of nitrogen to be p, = 1.28 MPa. It is instructive to
compare this value with the experimental value taken from the literature [2], which
is 0.76 MPa. We conclude that the van der Waals model only gives an approximate
quantitative prediction of the vapor pressure of nitrogen.

3.3 Caloric State Variables, Entropy

In addition to the thermal state variables, the caloric state variables are of funda-
mental importance for the change of state of a system. According to the universal
principle of potential energy minimization, any mechanical system left to itself tends
to reduce its potential energy and thus its ability to do work. On the other hand, if
the system is driven by external forces, work can be transferred to energy or to heat,
or vice versa. There are, of course, many important technical applications for this,
including heat engines, refrigerators, energy storage, and energy conversion.

There is a second universal principle based on the state variable entropy and
the second law of thermodynamics, which predicts the direction of spontaneous
processes.



30 3 Changes of State
3.3.1 Internal Energy, Work, and Enthalpy

The internal energy U corresponds to the sum of all kinetic and potential energy
of the atoms and molecules of a system. Energy, defined as the ability of an object
or a system to do work, changes, if work is done. By this, a change of a system’s
internal energy, dU, may be related to a certain amount of work §W done by it.
Less obviously, there is also a change in internal energy, if an amount of heat §Q is
transferred from or to the system:

[ dU = 80 + §W ] (3.25)

This is the First law of thermodynamics. If a system undergoes a change of
state without the transfer of heat to the surroundings, the process is called adiabatic.
In contrast, if the temperature is constant during the change of state, it is called
isothermal. If work is done during a change of state under isothermal conditions,
there is usually a transfer of heat with the surroundings.

As a state variable, the value of the internal energy depends on other state
variables, e.g., on T and V, but not on the way in which the system reached this
state. This is expressed by the symbol dU for the total differential, in contrast to the
infinitesimal changes in heat and work, which generally do depend on the way in
which a change of state is performed.

Again, a change in the internal energy of a system depends on its material
properties. If U is assumed as a function of temperature and volume,2 U = U (T,V),
the total differential can be written:

dU = oy dT + v dav (3.26)
~\oar )/, v ), '
The derivative
iU
Cy = 3.27
v ( o )v (3.27)

is called the constant volume heat capacity of the system. The derivative

= (a U) (3.28)
T

av

2Because there is always an equation of state that relates p, T, and V, it does not make sense to
assume U to be a function of all thermal state variables.
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is called the internal pressure. As a result of the assumption of non-interacting
point masses, the model of the perfect gas does not involve any dependence of the
internal energy on system volume. Hence, its internal pressure is zero and internal
energy depends only on temperature. In contrast, there is nonzero internal pressure
in the model of van der Waals.

Based on the mechanical definition of work related to force F and distance s,
dW = Fds, in addition to the definition of pressure p = i as the quotient of force
F acting on an area A, the work done on a system upon a change in volume from V;
to V, is defined as

\%]
W= —/ pdVv (3.29)
\%

1

If W is negative, work is done by the system at the expense of its internal energy
or the transfer of heat according to Eq. (3.25). If W is positive, work is done to the
system.

As the internal energy is the sum of all kinetic and potential energy among the
atoms and molecules that constitute a system, the amount of energy needed to create
this system at a certain temperature is U. If the system has a certain volume V,
an additional amount of work pV is necessary to give it room by displacing the
surroundings at an external pressure p. Hence, the work necessary to create a system
and give it room is the enthalpy,

[ H=U-+pV. ] (3.30)

The differential
dH =dU+d(pV) =80 —pdV+pdV+Vdp =60+ Vdp

Shows the practical importance of the enthalpy: The heat §Q,, which is exchanged by
a system with its surroundings at a constant pressure (dp = 0), directly corresponds
to the change in enthalpy: 6Q, = dH. Similarly, the heat §Qy exchanged under
isochoric conditions (dV = 0) corresponds to the change in internal energy:
8Qv = dU. The two situations are illustrated in Fig.3.6. Thus, the measurement
of transferred heats in calorimetric experiments gives direct access to changes in U
and H.
From the total differential of the enthalpy

a = (P2 ar 1 (2H) 4 (3.31)
—\or ), ap ), T ‘
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p=const. V=const.

Fig. 3.6 Heat transfer of a system undergoing a change of state with its surroundings. Under
isobaric conditions (left), the transferred heat corresponds to the change in enthalpy. Under
isochoric conditions (right), the transferred heat corresponds to the change in internal energy

the isobaric heat capacity

IH
C, = ( o7 ),, (3.32)

is derived as a further material property.

3.3.2 Reversible and Irreversible Changes of State, the Second
Law and Entropy

The first law of thermodynamics alone leaves a wealth of observations unexplained.
One example is the transfer of heat. If two subsystems at different temperatures
are brought into contact with each other, heat is always transferred from the
subsystem at a higher temperature to the subsystem at a lower temperature, until the
temperature of the two subsystems are equal. The reverse process is not observed
spontaneously, although, using a cooling machine, for example, it is possible
to transfer heat from a system at a lower temperature to a system at a higher
temperature, at the expense of doing work. A spontaneous heat transfer from a
hot object to a cold one is a typical example of an irreversible process. Another
example is the spontaneous expansion of a gas. For example, consider a perfect gas:
if its internal energy does not depend on volume, for what reason does it tend to
expand freely into the whole accessible volume? Again, at the expense of doing
work, the spontaneous free expansion of a perfect gas can be reversed by a process
of compression.
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It is the merit of Clausius to have figured out another state variable that can be
used to predict the direction of a spontaneous change of state: the entropy S of a
system. According to Clausius, entropy is defined by

_ 8Qrev
T

das (3.33)

where §Q,., is the infinitesimal heat transferred reversibly to a system at a
temperature 7.

According to the Second law of thermodynamics, the entropy in an isolated
system tends toward a maximum:

ds >0 (3.34)

In the limiting case of a reversible process, AS = 0. At this point, it is worth
noting that the calculation of AS in an irreversible process requires the consideration
of a reversible equivalent thermodynamic process. For n moles of a perfect gas
undergoing a change of state either from a temperature 77 to 75, from a volume
Vi to V,, or from pressure p; to p,, the change in entropy is

T V. T
AS =nc, lnT2+annV2 =nc,In 2—annp2 (3.35)
1

1 T, )2

where ¢, is the constant volume molar heat capacity, and ¢, is the isobaric molar
heat capacity of the perfect gas. A similar equation also holds for a van der Waals
gas (see Problem 3.8). The inspection of Eq. (3.35), although strictly only valid for
a perfect gas, is the key to a general understanding of the direction of irreversible
processes: the entropy of a gas increases, if V, > V|, because in this case In KT > 0.
This is the explanation for the above- mentioned spontaneous free expansion of
gases.

3.3.3 Adiabatic Changes of State of a Perfect Gas

If a perfect gas undergoes an adiabatic reversible change of state, pressure,
temperature, and volume change according to Poisson’s equations:

[ piVi =p V) ] (3.36)
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v =1V (3.37)
T =p T (3.38)
where y = Z” is the heat capacity ratio. Equation (3.37) will be derived in

Problem 3.9.

3.3.4 The Thermodynamic Potentials

Apart from the internal energy and enthalpy, there are two further essential caloric
quantities, the Gibbs free energy

[ G=H-TS, ] (3.39)

and Helmholtz free energy

A=U-TS. (3.40)

The definition of the free energies is that A and G are Minimized, either because
of H and U being minimized or because of the entropy S being maximized. In
that sense, the two above-mentioned principles energy minimization and entropy
maximization are combined into one. It can be shown that there is another condition
for the direction of a spontaneous change of a system: at constant pressure and
temperature, the direction of spontaneous change of a system is such that G is
minimized:

dG,r <0 (3.41)
At a constant volume and temperature, A is minimized:
dAyr <0 (3.42)

If a process is reversible, dG, 7 = 0 or dAy r = 0 respectively. These relations
are not restricted to isolated systems, they hold for each subsystem separately.
Further analysis shows that the Gibbs free energy G is the maximum non-expansion
work that can be obtained from a closed system at a constant pressure and
temperature. Similarly, A is the maximum work that can be done by a closed system.



3.3 Caloric State Variables, Entropy 35

Table 3.2 Compilation of thermodynamic potentials

Thermodynamic potential Natural variables Differential

Internal energy U S,V dU =TdS—pdV
Enthalpy H = U + pV S.p dH =TdS+ Vdp
Free energy A = U — TS T,V dA = —SdT —pdV
Free enthalpy G = H — TS T,p dG = —SdT + Vdp

The thermodynamic potentials U, H, A, and G are summarized in Table 3.2 along
with their natural variables.

The thermodynamic potentials, in combination with the Schwarz integrability
condition for state functions, provide the extremely useful Maxwell relations
among thermodynamic state functions:

2 2

aasalif B aavgjs < (gg);—(ig)v (3.43)
2 2

(), e
2 2

srav = avar © (), = (o), (3.45)
2 2

(), o

3.3.5 Problems

Problem 3.5 (Molar Heat Capacities of a van der Waals Gas)
Derive an expression for ¢, — ¢, for a van der Waals gas.

Solution 3.5 This exercise is an instructive example of how relations between
material properties can be derived using the thermodynamic schemes of calculation.
Before we start, we recall the textbook result for the difference in molar heat
capacities ¢, and ¢, of a perfect gas:

¢p—cy =R (3.47)
For a van der Waals gas, we expect a similar expression to hold that contains the two

van der Waals parameters a and b. Moreover, we expect that the sought expression
is identical to Eq.(3.47) in the limit a — 0 and b — 0. We start our derivation
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considering the first law (Eq. (3.25)) for 1 mol of a substance, according to which
8g, = du + pdv is the transferred heat at a constant pressure.> Using the total
differential for the molar internal energy (cf. Eq. (3.26)), this can be written as

i 9
Sqp = (a;) dr + (BZ)T dv + pdv

The first term on the right-hand side contains the constant volume heat capacity
(see Eq. (3.27)). Hence,

du v
8q, = ¢, dT drT,
w=car+| (o), +] (or),

and thus, introducing the constant pressure heat capacity ¢, dT = 8¢,

¢ =cy+ [(2:)T+p:| (g;) . (3.48)
P

The expression in square brackets containing the internal pressure can be
simplified by considering:

9
Tds = du+pdv = ¢, dT + [(a“) +p:| dv. (3.49)
v/r

Here, we have considered once more the total differential for the molar internal
energy using the expression from Table 3.2 with the molar entropy s and the molar
volume v as natural variables. Therefore,

du _ ds) Eq.(.45 ap
), o= (), Gr), o

follows, where we have made use of one of the Maxwell relations. Thus, Eq. (3.48)

simplifies to
d 0
cp=co+ T (3;) (a;) (3.51)
v P

So far, our intermediate result (3.51) is general, as we have not yet specified

an equation of state to replace the derivatives of the thermal state variables. Using

Eq. (3.20), it is straightforward to get (g;’) = ® . However, (5

evaluated directly, as the van der Waals equation (3.20) cannot be solved for v. The

) cannot be
p

3For the use of lower letters for molar quantities, see Sect. 3.1.
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trick is to consider the total differential dp, which is zero at a constant pressure:
dp L0= (a”) dT + (g{)’) dv. Therefore,
v T

aT
d
B e
T

follows, and moreover

ap 2
Eq.(3.51) (BT)U _ R
cp—Cy = T o\ 1_2a(v—h)2 (3.53)
w )y RT3

As expected above, our result agrees with the expression for a perfect gas, if we
set the van der Waals parameters at zero. Moreover, ¢, — ¢, — R for v — oo, i.e,,
for a dilute van der Waals gas, the difference ¢, — ¢, is the same as for a perfect gas.

Problem 3.6 (Work and Mechanical Equilibrium) A gas cylinder with a
total volume of V = 1dm? is divided initially by a movable piston into two
equal volumes, V4 and V3. V3, contains argon at 1 bar, V), is filled with neon
at 3 bar. Assume perfect gas behavior for both gases and isothermal conditions
at T = 298 K.

a. Explain why the system is not in mechanical equilibrium and calculate the
volume of both gases after the piston has reached its equilibrium position.

b. For both gases, determine the expansion/compression work if the piston
moves reversibly into its equilibrium position.

Solution 3.6 This problem deals with the case of an isothermal change of state
of a system of two perfect gases, separated from each other. The initial situation
is depicted in Fig.3.7. In subproblem (a) we explain why the system is not in
mechanical equilibrium. The latter is established, if the net force acting on the piston
is zero. The force F, = —F; e, is directed downward (in a negative z-direction),
Fi; = +Fe, points upward in a positive z-direction. Because the initial pressures
are different, p%, # p¥.. we can prove that there is a net force acting on the piston
with area A:

F=F +F,=p Ae,—pl.Ae,= (X, —pR)Ae, # 0 (3.54)

Hence, mechanical equilibrium is not established, and the piston moves in the
direction that increases the volume filled with neon, until the pressure in both
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Fig. 3.7 Isothermal expansion of neon and compression of argon, separated by a piston that is free
to move in a z direction. Mechanical equilibrium is established, if the forces acting on the piston
balance each other

volumes is the same:

PNe = Par (3.55)

This is the condition for mechanical equilibrium that we use to calculate the final
volumes of the two perfect gases:

nNeRT ! nArRT

VNe VAr

We make use of the fact that the total volume V = Vj, 4+ Vi of the gases is
unchanged if the piston moves, and, moreover, nxe = 3n4,. Hence the condition for
mechanical equilibrium is simplified to

3 1
V=Va  Var

which can be solved for Va,: the result is V, = Z = 0.25dm’. Accordingly,
VNe = 3‘:/ = 0.75dm>. We note that the equilibrium pressure on both sides of the
piston is 2 bar, i.e., the average of the initial pressures.

In subproblem (b) we calculate the work done by the expansion of neon and
the compression of argon. We make use of Eq. (3.29) and consider that the piston
moves reversibly, i.e., at each of its positions, the pressure can be calculated by the
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equation of state: pne = "P"flfT, and pa, = ""*}fTi
VNe dV V
0 0 Ne
Wxe = —nneRT / =—PreVre In
v, V VRe

1 0.75
Wxe = —3 x 10° Pa x . 1072 m? In 05 = 6087

Var qv Va,
War = —naRT =-—pX Vi n
A N /V,‘ir V pAr Ar Vgr

5 1 3 3, 025
War =—1x10 Pax2x10 m‘lno5 = +34.7]

Consistent with the compression of argon, the work done on argon, Wy, is
positive. Accordingly, Wy, is negative.

At the end of this problem it is worth reflecting on the significance of mechanical
equilibrium in the context of thermodynamics. Although we are dealing with
changes of state, we usually characterize these changes by an initial state, a
final state, and perhaps intermediate states. Even if these states are not states of
thermodynamic equilibrium, they may still be states of mechanical equilibrium in
which the mechanical forces are balanced exactly. We deal with an example in
Problem 3.7. Furthermore, mechanical equilibrium is a precondition for thermody-
namic equilibrium.* Therefore, states of mechanical equilibrium are, for example,
important for the discussion of reversible and irreversible changes of state. An
example is presented in Problem 3.9.

Problem 3.7 (Adiabatic Reversible Expansion/Compression)

A gas cylinder with a total volume of V = 1dm? is divided initially by a
movable piston into two equal volumes, Vgr and Vge. Vgr contains argon
at 1 bar, Vge is filled with neon at 3 bar. Assume perfect gas behavior for
both gases. The initial temperature of the two gases is 7° = 298 K. Assume
adiabatic conditions, i.e., that no heat is exchanged, neither between the gases,
nor between the gases and the surroundings. For both gases, the constant

volume heat capacity is ¢, = ;R

a. Calculate the volume, the temperature, and the pressure of both gases, after
the piston has moved reversibly into its equilibrium position.

b. Calculate the work and the change in entropy for both gases.

c. What is the temperature of the gases and the entropy change if the piston
is suddenly removed?

4Thermodynamic equilibrium between two systems involves thermal, mechanical, and also
chemical equilibrium.
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Solution 3.7 This problem is an extension of Problem 3.6. Starting from the same
initial conditions (see Fig. 3.7), we calculate the volume of the two gases, neon and
argon, separated by a piston, if the latter moves reversibly and adiabatically instead
of isothermally into its equilibrium position. What is different? If no heat exchange
occurs, neon does expansion work at the expense of losing internal energy, and
cools down. Conversely, argon, which is compressed, heats up. Hence, the final
temperature of both gases is different. Furthermore, we cannot assume that the
final equilibrium pressure on both sides of the piston will be the average of the
initial values, as in Problem 3.6. Our solution is again based on the condition for
mechanical equilibrium, Eq. (3.55), but we use Eq.(3.36) for reversible adiabatic
changes of state:

pONe VI(\)I;}/ = PNe VI)\/Ie (356)
P VAT = par Vi, (3.57)

y = Z = ;g = g is the heat capacity ratio. Thus, by using Eq. (3.55), the condition

is

0 0y 0 y/0v
DPNe VNe ! DPar VAr

y y
VNe VAr
Because VJ, = V9, and V = Vi, + Ve, we can eliminate Va,:

Pe _ P
Vf\/le V- Wne)

This expression can be solved for Vye:

e )7 ;
P ;3 35 3
e =V 7 = 1ldm , = 0.66dm"
0 1
1 + (1;1(28)}/ + 35

Thus, Var = V — Ve = 0.34dm>. Neon expands, but the final volume is smaller
for adiabatic conditions than in the isothermal case treated in Problem 3.6a. The
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equilibrium pressure on both sides of the piston is

VO Y
Par = P (VAr) = 1.8932 bar,

Ar

the same pressure is obtained for pne. Note that the equilibrium pressure differs
from our result for the isothermal case (Problem 3.6). Finally, we calculate the
temperature of both gases using the equation of state for the perfect gas, and the
initial temperature 7° = 298 K:

% v v
Ty. = PN ;e - l’fevoNe - pge N0 — 247.9K
TiNe pI\I';Tg\'e R Pne VNe
%
Tae = DA UAT0 = 384.7K
pAr Ar

As expected, neon has cooled down after its expansion, and the compressed argon
has heated up markedly.

In subproblem (b) we shall calculate the work and the change in entropy for
both gases. For an adiabatic change of state, the work can be calculated from the
first law (Eq. (3.25) ) with the assumption §Q = 0. Therefore,

_ PheVRe 3R

Wie = AUne = nxe ¢y (Te — The) = R10. o (Tne — Te) = —37.87
Ne

and

_ PaVa: 3R

War = AUpr = nar ¢y (TAr - Tgr) RTgr 2

(Tar — T3,) = +21.87

The total work done is therefore W = Wyxe + Wa, = 161J, which will be
further discussed below. The entropy change in the gases, undergoing an adiabatic
reversible change of state, is zero: ASne = 0, ASar = 0.

In subproblem (c) the piston is suddenly removed from its equilibrium position,
as indicated in Fig. 3.8. The gases spontaneously expand into the whole volume V,
which is an irreversible process.’ In addition, there is an equilibration of temperature
by a transfer of heat from argon at 384.7K to neon at 247.9K. We determine
the final temperature of the gases after equilibration, and, in addition, the entropy
changes involved with this irreversible process. In the first step, we calculate the
final temperature 7T in two ways. The first method is to regard the determination of
the final temperature as a problem of heat transfer: as no heat is exchanged with the

SFor a rather elementary analysis of the mixing of gases based on statistics, see Problem 8.2.



42 3 Changes of State

Fig. 3.8 Free expansion of neon and argon after removal of the piston

surroundings,
One + Qar = NNeCy (Tf - TNe) + narCy (Tf - TAr) =0
We solve for Ty and obtain

ET rTr 3T Tr
7y = e Nt mactar et Ia_ ges 1k (3.58)
nNe + NAr 4

We note that the number of moles of neon and argon can be calculated from
the initial conditions, nx, = * %;02’ = 0.02018 mol, and nne = 3na;, because
PRe = 3p%, According to Eq.(3.58) Ty is 15.9K smaller than 7°, the initial
temperature of the two gases, before the piston went into its position of mechanical
equilibrium. Did we expect this? To check our result, we calculate Ty in a second
way, using an argument of energy conservation. Between the initial state of the
gases at temperature 7° = 298K and the final state at Ty, the above calculated
work involved with the movement of the piston was W = 16J. No further was
done, because, after the piston was removed, the expansion of the gases was a
free expansion. As there was no heat transfer with the surroundings, we did indeed
expect a cooling of the gases in the final state by

w 16]

AT = =
(nar +nxe) ¢y 0.08072 mol x 12.4718 TK~ ! mol™!

= 15.9K,
(3.59)
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and thus 7y = T0 — AT = 282.1K, i.e., the same result as above. Finally, we can
calculate the entropy change in the gases using Eq. (3.35):

T, 1%

ASxe = nne ey In ) +nRIn = 0.308 T K" mol™! (3.60)
TNe VNe
T v

ASpr = narcy In - +nRIn =0.103JK ™" mol™! (3.61)
TAr VAr

As expected, the mixing of the gases leads to an increase in their entropy,
emphasizing the irreversible nature of this process.

Problem 3.8 (Entropy Change and Free Expansion of a van der Waals
Gas)

Initially, at a temperature 77 and a molar volume v;, a van der Waals gas
undergoes a change of state to the final temperature 7, and the molar volume
vy. The van der Waals gas is characterized by the two parameters a and b (cf.

Eq.(3.3)).

a. Show that the change in molar entropy is

Tz V) — b
As=c,In - +Rln (3.62)
Tl V1 — b

b. A volume of 1dm? is partitioned by a wall into two equal parts, one con-
taining 1 mol xenon (van der Waals parameters a = 4.250 dm® bar mol >
and b = 0.0511dm?®mol™"), the other part being evacuated. Calculate
the change in the entropy of xenon after the wall is removed and the gas
undergoes a free expansion under isothermal conditions (7 = 298.15K).
Also, calculate the change in entropy of the surroundings.

Solution 3.8 Sometimes it is quite difficult to deal with entropy changes in the
correct way. An instructive case is the free expansion of a perfect gas. The movement
of individual gas particles is completely uncorrelated, and in a process of diffusion,®
the entirely accessible volume rapidly filled by the gas. This is an example of an
irreversible process. From the atomistic point of view, the uncorrelated movement
of non-interacting particles leaves a probability of finding all the particles back in
the initial volume, which is so small, that it never happens in practice. Students
frequently think that they have figured out a contradiction between the irreversible
nature of the free expansion and the fact that there is no heat transfer with the
surroundings. They argue that according to the Clausius equation, Eq. (3.33), the

%A simple model of diffusion is treated in Problem 8.3.
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entropy change should then be zero, and thus the expansion should be reversible.
Of course, they overlook the fact that the application of Eq. (3.33) assumes that the
heat is exchanged in a reversible process, which is not the case. The reason for the
zero heat transfer in the case of a free expansion of a perfect gas is the absence of
intermolecular interaction, equivalent to the fact that the internal energy of a perfect
gas is only a function of temperature, not of volume.

An even more puzzling case is the free expansion of a van der Waals gas,
which we deal with in this problem. Here, we have to take molecular interaction
into account, which, during expansion must be overcome. Thus, under isothermal
conditions, if the gas is in thermal contact with the surroundings, there will be a
small heat transfer; thus, there will also be a change in entropy of the surroundings.

In subproblem (a) we derive a general formula for the molar entropy change in
a van der Waals gas undergoing a change of state. Equation (3.62) is analogous to
Eq. (3.35), which is valid for a perfect gas. Our derivation starts with Eq. (3.26). If
we consider 1 mol of substance,

du = ¢, dT + Il dv, (3.63)

where [T is the internal pressure. Equating the last expression to du = T ds — p dv,
we obtain

ar 1
ds = ¢, T + T 1 + p) dv. (3.64)

Exploiting Eq. (3.50) in Problem 3.5 and the van der Waals equation of state
Eq. (3.3), we can evaluate the bracket term and obtain

d. a1 + k d (3.65)
= Cy V. .
= T v—>b

Finally, integration of the latter equation proves Eq. (3.62):

52 T qr w4
As :/ ds:cv/ +R/ v (3.66)
s1 T T v1 v — b
T2 Uy — b
=, 1 R1 . 3.67
¢y In T, +RIn o —b (3.67)

This equation is very similar to the corresponding expression for a perfect gas
(Eq. (3.35)). Interestingly, the change in molar entropy of a van der Waals gas does
not depend on the van der Waals parameter a or on the internal pressure /7, which
according to Egs. (3.50) and (3.3), is given by

m=1( M _ Mo e_a (3.68)
- \oar ), Py T v T2 T ’
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Equation (3.66) can be generalized for arbitrary mole numbers:

T Vy — nb
AS=nc,In > +RIn 2~ "7,
Tl Vl—nb

(3.69)

In subproblem (b) we calculate the change in entropy AS for n = 1mol
xenon with a = 4.250dm®barmol™ and b = 0.0511dm>mol™!. The initial
and final volume is V; = 0.5dm? and V, = 1dm? respectively. In SI units,
a = 0.4250m®Pamol™2 and b = 5.11 x 107> m*mol~!. Using Eq. (3.69), the
entropy change in the gas due to the isothermal expansion is

Vo —nb
ASge = nR1 3.70
gas = NR1In Vi —nb (3.70)
1073 —5.11 x 105
— 1mol x 8.3145TK " mol~! In x 3.71)
0.5% 10~3 — 5.1 x 10-5
= +6.223JK . (3.72)

As expected, the entropy of the gas increases upon expansion, for a van der Waals
gas as well. For comparison, the corresponding result for a perfect gas (Eq. (3.35))
would have been +5.763J K~!'. Now, we are interested in the entropy change in
the surroundings associated with this process, ASg,. As discussed above, there is
a low heat transfer from the surroundings to the gas upon expansion, resulting in a
negative Asg,r. However, is it correct to use the Clausius equation (3.33) and write

A surr
ASqur = QT (3.73)

at this point? Above, we have mentioned the significance of a heat transfer in a
reversible process as a requirement for using the Clausius equation, but here, we
assume the expansion of our van der Waals gas to be irreversible. Therefore, how
can we justify Eq.(3.73)? Consider the surroundings as a system that is so large
that the small heat transfer AQq, does not change the system temperature. The
entropy change in the surroundings only depends on the amount of heat transferred.
We could construct an alternative reversible thermodynamic process in a system in
contact with the surroundings, leading to just the same heat transfer and thus to the
same change in entropy of the surroundings. Hence, regarding the entropy change of
the surroundings, it does not matter if the van der Waals gas undergoes a reversible
or an irreversible change of state, as long as only the same heat is transferred. Next,
we calculate AQgur = —AQg,s on the basis of the first law Eq. (3.25). Because in a
free expansion, no work is done by the gas, AQg,s corresponds to the change in its
internal energy, AQgs = AUgy. As T = const.,

U, as 2
AUy = ( 3;) AV =Madv = ”zfz av (3.74)
T
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After a step of integration, we obtain

AUy = an? (Vll _ Vlz) (3.75)

= 0.4250 ( ! — ! ) J (3.76)
0.5x103 1073

= +425]. (3.77)

Thus, following our above argument,

ASsurr — Aqurr — __Aans _ 425]

=— = —1.425TK " i
T T 298.15K >J (3.78)

Hence, the total entropy change in the total system constituted by the surround-
ings and the van der Waals gas is AS = ASgys + ASqur = +4.798 TK~ 1,

Problem 3.9 (Reversible and Irreversible Adiabatic Expansion)

A cylinder with a movable piston is filled with 2 mol of a perfect gas. The
initial volume is 10 dm?3, the initial temperature is 7 = 320K. The constant
volume molar heat capacity of the gas is 25JK~' mol™!. Then, the gas
expands adiabatically against a constant external pressure of 10° Pa, until
mechanical equilibrium is established.

a. Calculate the final temperature and volume assuming an irreversible
expansion of the gas.

b. Calculate the final temperature and volume in the case of a reversible
expansion.

c. Calculate explicitly the entropy change in the gas, both for reversible and
for irreversible expansion.

Solution 3.9 This exercise deals with adiabatic changes of state of a perfect gas
and the differences between reversible and irreversible processes. Initially locked,
a moveable piston limits the volume of the gas to V; = 0.01 m>. The perfect
gas within the cylinder is thermally isolated from the surroundings, i.e., no heat
transfer is possible. Using the equation of state (Eq.(3.2)), we can calculate the
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Fig. 3.9 Adiabatic irreversible expansion of a perfect gas, initiated by removing a mass from the
piston. Upon expansion, the temperature of the gas is reduced

initial pressure within the cylinder,

pP1 = Vi .
_ 2mol x 8.3145J K 'mol™! x 320K (3.80)
0.0l m~!
= 532,128 Pa (3.81)

As this initial pressure is larger than the external pressure of p., = 10° Pa, the gas
expands adiabatically as soon as the piston is unlocked. Hence, work is done upon
expansion, and, according to the first law (Eq. (3.25)) and the adiabatic condition
8Q = 0, the amount of work done by the gas is balanced by a reduction in its internal
energy, which in turn is a function of temperature. Thus, we expect a cooling of the
gas during expansion.

In subproblem (a) we assume an irreversible expansion. Experimentally, this
could be realized by removing a single piece of mass from the top of the piston,
for example, as illustrated in Fig.3.9. The piston then expands immediately into
its equilibrium position, which is characterized by a final pressure p» = pex. To
calculate the final temperature 7, and final volume V, of the gas, we use the first
law’ (Eq. (3.25)) with the adiabatic condition §Q = 0:

dU =nc,dT = —p dV (3.82)

"Note that we cannot use Poisson’s equation here, because the latter assumes a reversible adiabatic
change of state.
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We assume that work is done by the piston moving against the constant external
pressure. We discuss this below in more detail. After an integration step, we obtain

ncy (TZ - Tl) = —Pex (VZ - Vl)

This expression contains two unknowns, 7, and V,. We can eliminate V, using
the equation of state, p,V, = nRT,. After solving for 7>, we obtain the result

_ p2Vi+ne,Th

T, = 3.83
2 n (e +R) (3.83)
_100,000Pa x 0.01 m?* 4+ 2mol x 25JK~" mol ™" x 320K 3.84)
B 2mol x (25TK~mol™" + 8.3145J K~ mol™") '
= 255.14K (3.85)
The final volume is
RT,  2mol x 8.3145J K~ mol™" x 255.14K
y, = M2 2moix mot =X —0.0424m>  (3.86)

D2 100,000 Pa

As expected, the gas has cooled down from 320 to about 255 K during expansion.
The work is best calculated from this temperature difference,

W =nc, (To —Ty) = —3243J. (3.87)

Before discussing these results, we move on to subproblem (b), where reversible
adiabatic expansion is assumed. How could we at least approximately realize
this experimentally? We can obtain quasi reversible processing in a step-by-step
procedure, by removing small pieces of mass one by one from the piston, as
illustrated in Fig. 3.10. With the limit of arbitrarily small differential masses dm,
we would obtain reversible expansion. We check this by recalling the difference
between an irreversible and a reversible change of state: if a process is irreversible,
then the initial state can only be re-established by doing work. If we look at Fig. 3.9,
this corresponds to lifting the single mass upward back onto the piston by doing
linear work. The piston then moves down until the initial state is reached. In contrast,
as illustrated in Fig. 3.10, we could simply establish the initial state by putting the
small mass pieces back on the piston one by one—without doing linear work. A
second intuitive criterion of reversibility is time invariance. If we record a movie of
the quasi-reversible expansion in Fig.3.10 and run the movie in reverse, we could
simply see a physically meaningful process: pieces of mass are taken back onto
the piston, and the piston moves gradually down step by step, i.e., the reversible
compression of the gas. In contrast, a movie of the process illustrated in Fig.3.9
run backward would show a physically absurd scene: a gas does not spontaneously
reduce its volume and heat up!
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Fig. 3.10 Adiabatic quasi reversible expansion of a perfect gas by removing several small pieces
of mass from the piston. In each of the intermediate steps, the gas takes different values of pressure
and temperature

In the course of the reversible adiabatic expansion, the gas is permanently in
a state of equilibrium, i.e., the thermal state variables are related to each other
according to the equation of state: the more the piston moves up and the volume
increases, the pressure is gradually reduced according to p = ”IéT. If we take this
into account, the application of the first law gives

RT dTr dv
dU=nc,dT =-"""av & ¢, =—R (3.88)
Vv T Vv
After integration,
L2 dar V2 av T 1%
cv/ :—R/ S cyln >=RIn | (3.89)
T, T \4 14 Tl 2
and consideration of Eq. (3.47), one of Poisson’s equations follows:
T o\
e (3.90)
T, Vi

where y = E”. These equations need to be used to calculate the final volume and
temperature after the reversible expansion:

! 0.75042
ex 100,000 P
V= v, (%) =o0.01m® a =0.0351 m* (3.91)
P 532,128 Pa
V. 100,000 P 0.0351 m?
T, = P2 ax T =21084K (3.92)
nR 2mol x 8.3145J K~ mol
Finally, the work done by the gas is
W =nc, (T, —T\) = —5458] (3.93)
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In subproblem (c) we deal with entropies and calculate them explicitly. We
expect AS.y = 0 for the case of the reversible adiabatic expansion, and ASjey >
0 for the irreversible adiabatic expansion, consistent with the second law and
Eq. (3.34). We bear in mind that the entropy of a gas increases upon expansion,
but it decreases if its temperature is reduced. Thus, there are two competing effects
that govern the total change in entropy. We start with Eq. (3.35), first dealing with
the case of the irreversible adiabatic expansion, and use the results for V, and T,
from subproblem (a):

T V.
AS =nc, In 2+nR1n 2
T Vi

255.14K
320K
0.0424 m?
4 2mol x 8.3145TK " mol~" In m
0.01 m3

=—1133JK ' +24.02JK™' = +12.7JK! (3.94)

=2mol x 25T K 'mol™! In

For the reversible adiabatic condition, we could proceed in the same way.
However, starting with Eq. (3.35) and by using Eq. (3.37), we can generally prove
that the entropy change in the gas is zero in the case of an adiabatic reversible
expansion:

T V
AS=nc, In 2+nR1n 2
Ty Vi

v\ V.
= ncy ln(vz) —}—annV2
1 1

1%
=n(c,(1—k)+R)In >
Vi

=0 (3.95)
1

= n(cv—cp—i—cp—cv) In

In the special case of an adiabatic reversible expansion, the entropy increase
due to expansion is exactly balanced by the entropy decrease due to temperature
reduction.

A summary of the results of this exercise can be found in Table 3.3 and Fig. 3.11.

Table 3.3 Comparison of reversible and irreversible expansion with regard to the final volume
and gas temperature, expansion work, and entropy change

Final temperature (K) ~ Final volume (m®) W (J) ASJK™hH
Reversible expansion ~ 210.84 0.0351 —5458 0
Irreversible expansion ~ 255.14 0.0424 —3243 4127
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Fig. 3.11 p-V diagram of | |
the adiabatic expansion. Point 0.6+
A is the initial state, B the
final state of the reversible
(isentropic) expansion, C is
the final state of the
irreversible case
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0.0 T T
0.00 0.02 0.04
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In the isentropic, reversible adiabatic case more work is done upon expansion,
consistent with stronger cooling of the gas and a smaller final volume. Thus, the
final state variables of the gas do not coincide. This is also seen in the p—V diagram
of the expansion in Fig. 3.11. The curve marks the reversible (isentropic) expansion,
ending in the final state at point B. For each point between the initial and final
volumes, the pressure of the gas is precisely defined according to the adiabatic line,
which we could reconstruct by removing a series of infinitesimally small masses
from the top of the piston, as outlined above. In contrast, the irreversible expansion
lacks any intermediate states. In the p—V diagram, this case is only characterized by
the two points A and C of the initial and final state.

3.4 Heterogeneous Systems and Phase Transitions

Heterogeneous systems are formed by substances in two or more different states of
aggregation. To describe changes in such systems, the thermodynamic potentials in
Table 3.2 are augmented by the dependency on the amount of substance of each
species, and thus on the composition of the system:

dU =TdS—pdV + ) p;dn; (3.96)
J
dH =TdS+ Vdp+ Y dn (3.97)
J
dA = —SdT —pdV + ) pdn (3.98)
J
dG = —SdT + Vdp+ Y p;dn; (3.99)

J

The chemical potential y; of a substance in a special phase is the amount of
Gibbs free energy the system gains, if dn; mol of substance are added at constant
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pressure and temperature:

G
W= (an) (3.100)
] p.T.{ni}

Moreover, using the Euler equation U = 7S — pV + } ., w;n; it can be shown
that

G=>Y wn. (3.101)
J

i.e., the Gibbs free energy of a system is the sum of the chemical potentials of
all substances in their various phases, weighted with their respective amounts of
substance. The conditions for the direction of a spontaneous change, Eqgs. (3.41)
and (3.42), in addition to the above equations, are the basis for the description of
heterogeneous systems, including phase diagrams and, moreover, the phenomena
related to the mixing of substances, the colligative properties: osmotic pressure,
vapor pressure reduction, the increase in the boiling point, and the lowering of the
freezing point.

The coexistence lines in a phase diagram (see Fig.3.1) are characterized by a
reversible exchange of atoms or molecules between two different phases, e.g., the
liquid phase and the gas phase. Because AG = AH — TAS = 0 in this case,
the molar entropy change involved with such a phase transition on a point of the
coexistence line is

Ah
Asy = T“, (3.102)

where Ahy is the respective molar transition enthalpy, e.g., the molar heat of
vaporization. On the coexistence lines, the chemical potentials in two phases are
equal. This condition is sufficient to deduce the coexistence lines in the phase
diagram of a pure substance (Fig. 3.1). The Clapeyron equation

dp _ Asy

= 3.103
dT Avy ( )

provides the gradient of a coexistence line on the p—T diagram, where Avy, is the
change in the molar volume involved with the phase transition. For the special cases
of a gas-liquid or a gas-solid phase transition, two approximations are frequently
made: (1) The gas-phase is described by the equation of state for a perfect gas



3.4 Heterogeneous Systems and Phase Transitions 53

(Eq. (3.2)). (2) The molar volume of the condensed phase is neglected over the molar
volume of the gas phase. In this case, Eq. (3.103) together with Eq. (3.102) can be
used to derive the Clausius-Clapeyron equation (see Problem 3.10a)

dlnp _ Ahy

T RT2 (3.104)

3.4.1 The Standard State

As material properties, transition enthalpies and entropies are quantities that depend
on both temperature and pressure. For their tabulation it is convenient to define a
suitable standard state of a substance:

The standard state of a substance is the state in which it is stable at a pressure
of p© = 10° Pa.

The value of a material property at standard pressure is indicated by the
superscript ©. Note that this standard state is not the only standard state used in
physical chemistry. Moreover, a reference temperature of 7 = 298.15K is usually
chosen to tabulate these material properties.

3.4.2 Real and Ideal Mixtures

A heterogeneous system may contain more than one component, e.g., mixtures
constituting a liquid phase, or a gas phase. If two substances A and B constitute a
binary mixture, their chemical potentials change relative to the respective standard
chemical potentials. In the gas phase assuming perfect gas behavior,

pa=ng +RTIn "2, (3.105)
p

An idea of how this relation can be derived gives the solution to Problem 3.11b.
In the liquid phase, the respective expression is

[ia = ph + RT In as (3.106)

where the ay is the activity of substance A in solution, and ) is the chemical
potential of the pure substance A. The symbol x now refers to a new standard state
of a pure substance, which is also called Raoult’s law standard state. The activity of
A is defined via its partial pressure p5 over the solution, related to the vapor pressure
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of the pure substance, p}:

an="% (3.107)

Pa

It is important to understand that the activity is a property of the solution, but it
is determined indirectly by the partial pressure in the gas phase above the solution
in chemical equilibrium, where the chemical potential in the solution and in the gas
phase are equal. For a real solution, the activity may depend on the composition
of the solution in a complicated way. In the limiting case of an ideal solution, the
activity corresponds to the mole fraction: ay = x4, and the partial pressure of A can
be calculated using Raoult’s law:

[ PA = XA DA ] (3.108)

In general, the relation between activity and mole fraction is

[ aa = XA YA, ] (3.109)

where y, is the activity coefficient of A.

3.4.3 Problems

Problem 3.10 (Vapor Pressure of a Pure Substance)
The vapor pressure of ethylamine (CH3—CH,-NH;) was measured as a
function of temperature:

T (K) 250.25 259.25 267.55 278.95
p (kPa) 14.83 2440 37.57 64.17

a. Derive the Clausius—Clapeyron equation Eq. (3.104) from the condition of
equal chemical potentials in the liquid and the gas phase.

b. Determine the molar heat of vaporization, the molar entropy of vaporiza-
tion, and the standard boiling point of ethylamine, assuming ideal behavior
in the gas phase.

(continued)
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Problem 3.10 (continued)

c. Two identical vessels with a volume of 1 dm? are filled with 5 and 10 g of
ethylamine respectively. Then, the vessels are sealed and heated to 333 K.
Calculate the internal pressure of the two vessels.

Solution 3.10 If a liquid is held in a closed vessel, it forms a gas phase above
its surface, even if the vessel was initially evacuated. We have dealt with this
coexistence of liquid and gas phase already in Problem 3.4, where we investigated
the use of the van der Waals equation of state to estimate the vapor pressure of a gas
at a given temperature. Now, we will deal with the phenomenon of vapor pressure
from a different point of view: energetics. A molecule in a liquid is exerted to a much
stronger intermolecular attractive interaction than in the gas phase. Thus, why does
it leave the liquid phase at all, if it takes heat to bring it into the gas phase? From the
viewpoint of thermodynamics, the answer is entropy. The entropy of a substance in
the gaseous state is generally higher than in a condensed phase, implying a positive
entropy of vaporization, ASy,,. The gain in entropy favors the transition into the
gaseous state, and with increasing temperature, this effect becomes increasingly
important, consistent with a lowering of the Gibbs free energy of vaporization,
AGyyp = AHyp — T ASygp. If at constant pressure and temperature there is an
equilibrium between molecules leaving the gas phase and those entering the gas
phase, the phase transition is reversible, consistent with a change in the system’s
Gibbs free energy being zero (see Eq. (3.41)). Hence, using Eq. (3.99),

dG = Mgas dngas + Miig dnliq =0 (3.110)

As dng,s = —dnyg, the condition of reversibility requires equal chemical
potentials in the gas phase and the liquid phase:

! !
dG = (:“gas - :uliq) dngs =0 & lgs = Hiig 3.111)

Based on the equality of the chemical potentials, we derive the coexistence
line between vapor and liquid in subproblem (a). Starting with a point on the
coexistence line at a given pressure and temperature, p and 7, we consider the
chemical potentials of the vapor and the liquid at p + dp and T + dT7, still on the
coexistence line:

Weas(p +dp. T+ dT) = piig(p + dp. T + dT) (3.112)

We can expand these chemical potentials into a power series and consider only
the linear terms,

3 3 u;
u,-(p+dp,T+dT)=u,-(p,T)+( “) dp+( “) AT +---  (3.113)
o Jr a J,
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Using the definition of the chemical potential Eq.(3.100) and the relations

(337(5 )p = —S and (%S)T =V, the differential quotients (%’;”)T and (%’}“)p are

identified as the negative (partial) molar entropy s; and the (partial) molar volume v;
of the substance in phase i respectively. Thus,

pi(p+dp. T +dT) = pi(p.T) + vidp — s;dT + -+,

and as we may consider the chemical potentials of the vapor and the liquid phase to
be equal at p + dp and T + dT as well,

Hgas(ps T)+ Ugas dp — Seas dT = Mliq(ps T)+ Vliq dp — Sliq dT
and thus, because foas(p, T) = fiiq(p, T),

dp  Seas —Sliq _ ASvap Eq.3.102) Ahygp

= (3.114)

dT Vgas — Vlig Avygp T Avyyp

We have now derived the Clapeyron equation. Next, we make the approximation

Avygp X Vggs, 1.€., we neglect the molar volume of the liquid over the molar volume

of the gas phase, which is reasonable at moderate pressures. Moreover, assuming

pe.rfe.:ct gas behavi.or, We Ca EXPIess Vgas = Ii)T by the equation of state. Inserting
this into the Clausius equation, we obtain:

dp _pAhay dp _ Ayl
dT ~ RT? p RT?

Here, we have arrived at the Clausius-Clapeyron equation because ‘jﬁ’ =d Inp.
We go one step further and integrate the last expression, assuming that the
molar heat of vaporization is independent of temperature and takes the value of

the standard molar heat of vaporization, Ahveap. ‘We obtain

AR B
In p”e =T (T_l — 78 1) (3.115)

As a consequence, if the molar heat of vaporization is known and one point on
the coexistence line, e.g., the standard boiling point, the vapor pressure at any given
temperature can be determined. Moreover, because the standard molar entropy of

o
vaporization is Asveap = AThé“’ as a special case of Eq. (3.102), we obtain
b
AhS AsS
n P T T (3.116)

p° R R
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Fig. 3.12 Graphical determination of the enthalpy and entropy of vaporization from vapor
pressure variation with temperature according to Eq. (3.116)

We can use this relation to determine Ah‘ip and As‘ip and the standard boiling

point of ethylamine, as we do in subproblem (b). Therefore, we plot In ’:Q against
the reciprocal temperature, as shown in Fig. 3.12. If Ah‘%p and Asveap are constant
over the temperature range of tabulated data, then a linear behavior can be expected.
Inspection of the diagram shows that this seems to be the case. A linear regression
provides the axis intercept and the inclination of the best-fit line:

Ay _ 12.33 As© = 102.5JK "mol™!
R < Svap = . mo
ARG, |
o = 3566K & Ahg, =29.7kimol”

Note that in general, Ahy,, and Asy,, will depend markedly on temperature, if
the examined temperature interval is sufficiently large. The standard boiling point
can be determined in two different ways. The simplest way is based on Eq. (3.102)
and yields

AhS
TS = N 289.3K. (3.117)
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The alternative way is based on the analysis of Fig. 3.12. Because at Tbe the vapor

. . . -1
pressure is only p©, the best-fit line intersects the line In £ = 0 at () = =

0.003458 K~!. We therefore obtain Tbe = 289.2 K. The discrepancy of 0.1 K can be
explained by the statistical and systematic uncertainties in the experimental vapor
pressure data. In subproblem (c¢) we calculate the pressure within two identical
vessels, which at 7 = 333K contain 5 and 10 g of ethylamine respectively. This
question challenges the student’s ability to assess whether under given conditions
a system is a homogeneous system or a heterogeneous system. The molar mass of
ethylamine is M = 45 gmol™'. Thus, the first vessel contains an amount of

5¢

= 45 . 0.1 mol. (3.118)
gmo

nj

The second vessel is filled with 10 g of ethylamine, which corresponds to n, =
0.2mol. Next, we calculate the vapor pressure of ethylamine at 7 = 333K using
our results from subproblem (a). Apparently, the vapor pressure is

(T) = p®ex A (3.119)
Pvap =p p R T T;,e .
1 1
= 100,000 Pa x exp [ —3566 - (3.120)
333 289.3
= 504,000 Pa (3.121)

If ethylamine in the vessel is present as a liquid phase coexisting with a gas phase,
i.e., as a heterogeneous system, then the inner pressure of the vessel will be this
vapor pressure of about 5bar. Here, however, we have also take the possibility
into account that the amount of ethylamine might be insufficient to establish the
coexistence of liquid and vapor. If we assume that gaseous ethylamine is a perfect
gas, then the nominal gas phase pressure at a given amount of substance and
temperature according to the equation of state is

mRT _ 0.1mol x 8.3145J K™ mol™' x 333K

v N = 308,000 Pa < pyup(T).

P =

(3.122)

As a consequence, the 5 g of ethylamine in the first vessel is present in the gaseous
state. This is also illustrated in Fig. 3.13, where the coexistence line between vapor
and liquid is shown in a p—T diagram. The point p; resides in the area below the
coexistence line, i.e., in the area of gaseous ethylamine. The pressure within the
vessel is thus p; = 3.08 bar
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Fig. 3.13 Coexistence line py,p(T) of gaseous and liquid ethylamine (solid line) according to
Eq. (3.119). The dashed lines indicate the nominal gas pressure of 5 g (p;) and 10 g (p,) ethylamine
in the vessel according to the perfect gas equation of state. At T = 333K, py > pysp > pi

In contrast, a vessel containing 10 g of ethylamine would have a nominal gas
pressure

mRT _ 0.2mol x 8.3145J K~"mol~' x 333K

v 0t = 616,000 Pa > pp(T).

(3.123)

P2 =

as also shown in Fig. 3.13. Therefore, a fraction of ethylamine condenses and forms
a liquid phase coexisting with gaseous ethylamine. In this case, the pressure within
the vessel is thus the vapor pressure py,p = 5.04 bar.

Problem 3.11 (Molar Gibbs Free Energies of Solids and Gases, Conver-
sion of Graphite to Diamond)

At 298 K the molar standard Gibbs free energy of graphite is zero, whereas the
corresponding value for diamond is +2.9kJmol™'. The densities of graphite
and diamond are 2.3 and 3.5 g cm ™ respectively.

(continued)
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Problem 3.11 (continued)

a. For both forms of carbon, calculate the molar Gibbs free energy of
formation at a pressure of 10bar and 298 K. Assume that diamond and
graphite are incompressible solids.

b. At 298K, the molar standard Gibbs free energy of gaseous CO, is
—394.4kJmol™'. Assume perfect gas behavior and calculate the molar
Gibbs free energy of formation of CO,(g) at a pressure of 10bar. What
do you conclude concerning the pressure dependence of the free Gibbs
energy of gaseous and condensed phases?

c. Calculate the minimum pressure, at which diamond is the stable form of
carbon.

Solution 3.11 In this exercise, we deal with the relative stability of two forms of
carbon, diamond and graphite. We deal with the relationship between the Gibbs free
energy of a substance as a function of pressure, its structure, and the phase diagram.

Graphite is the stable form of carbon under normal atmospheric pressure. As an
element in its standard state, by definition, its standard molar Gibbs free energy of
formation is zero.® Diamond, however, can be formed if a high pressure is exerted
on carbon. Its crystal structure is more compact and thus its density is higher than
that of graphite.

In subproblem (a), we seek the function g(p) of diamond and graphite and we
treat them as incompressible solids. From Eq. (3.99),

(ag) - (3.124)
dp T

where v is the molar volume, which is related to the density p and the molar mass
M: p =" Integration yields

P
g(p) = g(p9)+v/ dp = g(p®)+v(p—p°) = g(p9)+M(p—p9) (3.125)
PO P

For graphite with g(p€) = 0 and p = 2300kg m—3, the molar free Gibbs energy
takes a value of

12 x 10~ kgmol™!

10°Pa) = 0
g(107Pa) =0+ 0 kgm-3

(10°—10%) Pa = +4.7Jmol™".  (3.126)

For diamond with g(p®) = 2900J mol~!, we obtain a value of 2903.1J mol~!.

8See the definition of the enthalpy of formation in Sect. 4.1.1 at page 71.
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Table 3.4 Molar Gibbs free energies of graphite, diamond, and CO, at standard pressure and at
p=10°Pa

Substance State 2(p®) g(10° Pa) Ag

C (Graphite) Solid 0 +4.7x 1073 +4.7x 1073
C (Diamond) Solid +2.9000 +2.9031 +3.1x 1073
CO, Gaseous —394.4 —388.7 +5.7

All values are given in kJ mol™!

In subproblem (b) we consider the function g(p) for CO, treated as a perfect
gas:

14
g(p) =g(pe)+/ v(p)dp (3.127)
p@

Using the equation of state, v(p) = IET.

P od
8(p) =g(p9)+RT/ P — ¢(p®) + RTn pe (3.128)

e P p
For CO, with g© = —394.4kJmol~!, we obtain a value of g(10°Pa) =

—388.7kImol™!. In Table 3.4, all results are summarized:

Although the molar Gibbs free energy of solids changes only weakly to the order
of a few Jmol~! under a moderate change in pressure, the Gibbs free energy of a
perfect gas changes markedly to the order of several kI mol~!. This general trend
allows a different treatment of gases and condensed phases in the thermodynamic
characterization of the chemical equilibrium in Chap. 4.

In subproblem (c) we calculate the pressure at which diamond becomes the
stable form of carbon. Looking at our tabulated results, we recognize that the
molar Gibbs free energy of diamond increases slightly more weakly than that of
graphite, if the pressure is increased. Thus, at a certain pressure p.q, the molar Gibbs
free energies of diamond and graphite are equal. For p > p.q, diamond becomes
the stable form of carbon, indicated by the lower value of g(p). The situation is
illustrated in the schematic phase diagram in Fig. 3.14. To evaluate p.y, we use our
above results and consider the transition

graphite — diamond  |Ag(p) = gdiamond(P) — Zeraphite (P)

with the change in molar Gibbs free energy

A2(P) = 85umond — aaphite T AV (P — ), (3.129)
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Fig. 3.14 Schematic phase A
diagram of carbon with the p e
phase boundary between
graphite and diamond
Ag(p) <0
€q Ag(peg) =0

pe

Ag(p©) = +2.9 k) mol?

graphite

and the change in molar volume Av = Vgiamond —Veraphite- With the different densities
of diamond and carbon given, we obtain

M M
Av = —
Pdiamond pgraphite
-3 -1 1 1 31,61
=12 x 107 kg mol - m’ kg
3500 2300

=—-1.79 % 107° m? mol™"

On the coexistence line between diamond and graphite, i.e., at p = peg, the
transition between the two carbon phases is reversible. Therefore, the molar Gibbs

free energy of the phase transition is zero: Ag = 0. In this special case, Eq. (3.129)
yields

pPAv—Ag®  10°Pax (=1.79 x 107®m*mol ") — 2900 J mol ™"

Peq = Av (—1.79 x 10~ m3 mol™")

and our result for peq is 1.62 GPa. Experimentally, the transition from graphite to
diamond is observed at pressures above 2 GPa.

Problem 3.12 (Ideal Solutions)

The main components of liquid petroleum gas (LPG) are propane and
butane in seasonally varying compositions. Assuming that propane and butane
constitute an ideal mixture, calculate the maximum acceptable mole fraction

(continued)
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Problem 3.12 (continued)

of propane, for which at a temperature of 50 °C the internal pressure of a
tank containing LPG does not exceed a value of 12 bar. The molar standard
heats of vaporization of pure propane and butane are 19.0 and 22.4 kJ mol™!
respectively. The standard boiling points of propane and butane are 231.1 and
272.7 K respectively.

Fig. 3.15 A tank containing
a binary solution of a more
volatile substance indicated
by white balls, and a less
volatile species (blue balls),
which is in excess. In the gas
phase, the more volatile
component is enriched

Solution 3.12 In middle Europe, the summer composition of LPG fuels is about
40 mass-% propane and 60 mass-% n-butane, and vice versa in winter. At the
filling station, a compressor has to work against the tank internal pressure. Hence, to
guarantee successful filling, the internal pressure should not exceed the maximum
pressure of the compressor, pmsx = 12bar in this problem. In summer, the
temperature of a car tank may easily reach 50 °C. At this temperature, the vapor
pressure of pure butane and propane is calculated using the Clausius Clapeyron law

(Eq. (3.115)). For butane, with ARG, 1,1, = 22.4 kI mol™" and 7). = 272.7K
ARS, 1 1
* o vap, butane
=p exp|— - = 4.74 bar.
pB d p ( R ( T Tbe butane
For propane with Ahveap’ butane = 19-0kJmol~! and bemane = 231.1K, avalue of

16.94 bar results. Consistent with the higher enthalpy of vaporization and the lower
standard boiling temperature, propane is more volatile than butane. The situation is
illustrated in Fig. 3.15. Propane (C3Hg) and n-butane (C4H ) are hydrocarbons with
similar chemical properties. The assumption of an ideal mixture is thus reasonable
and justifies the application of Raoult’s law (Eq. (3.108)), by which we calculate the
total pressure in the gas phase

P = Xppp +Xppp (3.130)
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For p = pmax and xg = 1 — xp, we obtain an expression for the maximum
acceptable mole fraction of propane:

. :pmax—pg: 12 —-4.74 0595
P opr—py  1694—474

Hence, at least in summer, the fraction of propane should not exceed 60%. From
this result, and the molar masses of propane and butane (44.1 and 58.1 gmol ™), the
maximum acceptable mass fraction of propane is 53%.

Problem 3.13 (Vapor Pressure Reduction)

At 293K, the vapor pressure of the solvent diethyl ether (C,Hs—O-C,Hs5)
is 586 hPa. After the addition of 20 g of an unknown nonvolatile compound
in 1kg of diethyl ether, the vapor pressure is reduced to 583 hPa. Assume
an ideal mixture of diethyl ether and the unknown compound, for which an
elementary analysis yields mass fractions of 41.4% carbon, 5.5% hydrogen,
9.6% nitrogen, and 43.8% oxygen. Determine the molar mass and the
molecular formula of the unknown compound.

Solution 3.13 The lowering of the vapor pressure of a solvent in the mixture
with another substance is one of four colligative properties.” These are used in
analytics to determine the molar mass of a solute. Combined with results from an
elementary analysis providing the relative abundances of chemical elements, the
molecular formula of an unknown compound can be determined. In this problem,
we consider mx = 20 g of an unknown compound (denoted X), which is dissolved
inmp = 1000 g diethyl ether. This causes a lowering of the vapor pressure of diethyl
ether from pf; = 586hPa to pp = 583 hPa. Moreover, elementary analysis of X
yields mass fractions fc = 0.414 for carbon, fiy = 0.055 for hydrogen, fx = 0.096
for nitrogen, and fo = 0.438 for oxygen. We determine the molar mass and the
molecular formula. As stated in the text of the problem, the unknown substance X
and the solvent are assumed to constitute an ideal binary mixture. We can thus use
Raoult’s law Eq. (3.108) to obtain the mole fraction of diethyl ether:

pp _ 583hPa

= = = 0.99488 (3.131)
p  586hPa

AD

The mole fraction for X results from the condition

xp +xx = 1. (3.132)

9The other colligative properties are the elevation of the boiling point, the depression of the freezing
point, and osmotic pressure.
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Thus,
xx=1—xp=512x1073. (3.133)

Using the definition of the mole fraction in Eq. (2.8) at page 11 we obtain

x= X (3.134)
nx + np

where nx and np are the amounts of X and diethyl ether respectively. We can solve
this equation for the value of X:

XX XX mp
np =

(3.135)

nx =
I—XX

~ xp Mp
Here, we have expressed np using the given mass of the solvent and its molar
mass, Mp = 74gmol™!, determined from the given molecular formula of diethyl
ether. If we combine
mx

= 3.136
np M ( )

with Eq. (3.135), we obtain an expression for the molar mass of X:

Mp  20g  0.99488
My =my PP = 8 x T4gmol™! = 288 gmol™!.  (3.137)
xxmp  1000g5.12 x 103

The given mass fractions of the elements can now be exploited to determine the
molecular formula of the unknown substance: if Z¢ is the number of carbon atoms
in X and Mc = 12 gmol™! is the elemental atomic weight of carbon, the following
relation holds:

ZcMe = foMx. (3.138)

As a consequence, the number of carbons is

Myx 288
Zc = =0414 =99~ 10. 3.139
c=Jfc Mc 12 ( )
In the same way, we obtain
M 288
Zu=fu. ~=005"" =158 ~ 16, (3.140)
My 1

Zo =AM 200067 = 197~ 2, (3.141)
My 14
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Myx 288
Zo = = 0.438 =79~ 8. 3.142
0 foMO 16 ( )

We therefore conclude that the molecular formula of the unknown compound is
CioH16N2Os.

Problem 3.14 (Spontaneous Freezing of Supercooled Water)

Using the second law of thermodynamics, show that the freezing of 1 mol of
liquid water at a temperature of 250K is a spontaneous change of state. The
standard molar heat of fusion is 6.008 kJ mol™!, and the constant pressure
molar heat capacities of liquid water and ice are 75.3 and 37.7J K™ mol™!.

Solution 3.14 According to the second law, a change of state in an isolated system
is spontaneous, if the total entropy change is positive. To apply the second law, we
calculate the entropy change involved with the freezing of supercooled water and
thereby show that this process is indeed spontaneous. This can be quite tedious,
because upon the process of freezing, the supercooled water exchanges heat with
the surroundings. Our analysis of entropy changes thus has to include not only the
entropy change of the water, but also the entropy change of the surroundings:

AS = ASwater + ASsurroundings (3143)

Moreover, the application of the Clausius formula Eq. (3.33) requires reversible
heat transfers: for the calculation of AS, we therefore have to replace the direct
freezing at 250K by (a) the heating of the supercooled water to the standard
temperature of fusion Tfe , (b) the reversible freezing of the water at Te, and (c) the

cooling of the frozen ice from Tfe to 250K, as outlined in Fig. 3.16. The property
of entropy to be a state function guarantees that the sum of entropy changes in the
steps (a), (b), and (c) in Fig.3.16 corresponds to the entropy change of the entire
irreversible process, indicated as the dashed line in Fig.3.16. For n = 1 mol, the
entropy change of water is

1 pe(liq)dT —nAhS 250K 1y o (ice) dT
ASwater:/ pllia)dl _n A% +/ plice)dT (3.144)
2 T,

50K r TP o r

The first integral corresponds to the virtual entropy change of heating the water
from the temperature 7; = 250K to Tfe . The second term is the entropy change
involved with the reversible freezing of water at Tfe, according to Eq. (3.102). The
negative sign takes into account that the latent heat of freezing is the negative of the
given molar heat of fusion, AA® = 6008 Jmol~!. The third term, finally, gives the

entropy change of cooling the frozen ice from Tfe to 250 K. After the evaluation of
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Fig. 3.16 Temperature dependence of the entropy of liquid water and ice as a function of
temperature (schematic). The entropy change involved with the freezing of supercooled water at
250K (dashed line) is the same as the alternative route (solid line) consisting of heating of liquid
water to the standard temperature of fusion at 273.15 K (a), reversible freezing (), and cooling the
ice down to 250K (¢)

the integrals,

. 7}9 n Ahfe . T,
ASyater = ncp(liq.) In T, - Tfe + ncy(ice) In Tfe (3.145)
= +6.669JK™! —21.995JK™! —3.339JK™". (3.146)

As expected from the diagram in Fig.3.16, ASyaer corresponding to the dif-
ference in Syaer between point 4 and point 1 is negative. Next, we focus on the
entropy changes in the surroundings involved with steps a, b, and ¢ respectively.
We presume that the surroundings constitute a huge heat reservoir, so that arbitrary
amounts of heat can be exchanged with the surroundings without a change in its
temperature, which is 77 = 250 K. Then, we can calculate the entropy changes of
the surroundings, as we have done in Problem 3.8 (Eq. (3.73)) and obtain

ne,(liqQ) (TP —T))  nAh?  ncylice)(T) — Tp)
Bl T o T T
=—6.973JK ! +24.032JK™! +3.491JK™! (3.148)

ASsurroundings = (3.147)

The first term corresponds to the entropy change of the surroundings, if the heat
n cp(liq.)(Y“fe — T1) necessary to heat the liquid water to Tfe is transferred from the
surroundings to the water in step (a). The second term is the gain of entropy if the
latent heat released by the water upon freezing is transferred to the surroundings in
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step (b). The third term, finally, is the gain of entropy of the surroundings due to the
heat released by the frozen ice when it is cooled back to the lower temperature 7.
Thus, summing up all entropy changes using Eq. (3.143), we obtain an increase in
total entropy of AS = +1.885JK™!. Using the second law, we conclude that the
cooling of supercooled water at 250 K is a spontaneous process.

Problem 3.15 (Freezing of Atmospheric Water Droplets to Cubic
or Hexagonal Ice)
The molar Gibbs free energy of a substance with a surface area A is

g=h—Ts+yA (3.149)

where s and s are the molar enthalpy and entropy respectively, and y is
the surface tension or surface energy. Consider small water droplets of
supercooled atmospheric water at a temperature of 200 K. Calculate the range
of droplet radii for which freezing to cubic ice is thermodynamically favorable
over freezing to hexagonal ice. For both forms of ice, assume a density of
0.93 gcm_3, and hcypic — Phexagonal = 357 mol~!. The surface energies are
Veubic = 22mJ m~2 and Vhexagonal = 31 mJ m™2 respectively. Assume equal
molar entropies of cubic and hexagonal ice. (Literature reference: G. P. Johari,
J. Chem. Phys. 122, 194504 (2005).)

Solution 3.15 Multi-phase systems necessarily have phase boundaries: surfaces.
As the chemical environment at an interface is generally different , the molecules
experience a different bonding at the interface compared with the bulk. As a
consequence, the total energy of a finite piece of matter also depends on its
surface area. The dependency of the thermodynamic potentials on the surface
area is considered via the surface energy y per unit area, equivalent to a surface
tension. For larger systems, surface effects on the thermodynamic properties can
often be neglected. However, for objects on the nano scale, such as the very small
atmospheric water droplets considered in this problem, the surface energy may
influence, among other things, the ice crystallization properties of such droplets.
From the viewpoint of thermodynamics, water crystallizes in the form that under
given conditions has the lower Gibbs free energy of formation. Presuming the same
molar entropy of cubic and hexagonal ice, water crystallizes as hexagonal ice if we
neglect the influence of the interface, because, as stated in the text of the problem, its
molar enthalpy is 35J mol~' smaller than that of cubic ice. Let us consider a water
droplet with a radius of 7, a volume V(r) = *7/3, a surface area A(r) = 47 12,
and mole number n(r) = A’; V(r). M = 18 gmol~! is the molar mass of water, and
p = 0.93gcm™ is the density. The Gibbs free energy of a droplet of hexagonal
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ice is
Ghexagonal () = 1(7) hexagonal — 1(7") T Shexagonal + Vhexagonal A (7) (3.150)
For a droplet of cubic ice of the same radius,
Geuvic (r) = n(r) heuvic — n(r) T Scubic + Veubic A(7) (3.151)

If the entropies of cubic and hexagonal ice are the same as stated above,

Geubic — Ghexagonal = n(r ) (hcubic - hhexagonal) + ()’cubic - yhexagonal) A(V )
(3.152)

__A4mp

IM }’3 (hcubic - hhexagonal) +4n r2 ()’cubic - )’hexagonal)

(3.153)

We use this expression to determine the critical radius at which cubic and
hexagonal water droplets of the same radius have the same Gibbs free energy

(chbic (rcril.) - Ghexagonal (rcrit.) = O)

_ 3M (chbic - Vhexagonal)

Fent, = (3.154)
ent P (hcubic - hhexagonal)
_ 3x18x 10_3k_gm01_1 (22-31) x 10_—3Jm—2 (3.155)
930 kg m=3 35T mol™!
=149x10"m (3.156)

The critical radius for a water droplet is only about 15nm. If r > rg., the
Gibbs free energy of hexagonal ice is lower than that of cubic ice, and the droplet
crystallizes in the hexagonal crystal structure. For r < rgj., thermodynamics
supports crystallization in the cubic form of ice.
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Chapter 4
Thermochemistry

Abstract Thermochemistry deals with the heat transferred or released by a system
during a change of its state or a chemical reaction. Calorimetry is an experimental
method for measuring such heat transfers. The reaction enthalpy, the reaction
entropy, and the Gibbs free energy of reaction are defined and related to the
molar standard enthalpies of formation and molar standard entropies of reactants
and products. The selection of problems in this chapter deals with key aspects of
thermochemistry, such as the determination of molar heat of formation. Problem 4.3
exemplifies the use of the Gibbs free energy of reaction as a criterion for the
occurrence of chemical processes.

4.1 Basic Concepts

It is assumed that the reader is familiar with stoichiometry and thermodynamics,
especially the use of caloric state variables, which were introduced in Chap. 3.
4.1.1 Enthalpies of Formation

To predict the enthalpy change of a system in the course of a chemical reaction,
textbooks introduce the molar enthalpy of formation 4y of a substance in a suitable
standard state.'

The molar standard enthalpy of formation Ahfe of a substance is the reaction
enthalpy by which it is formed from its elements under standard state
conditions.

Note that this definition implies that the standard enthalpy of the formation of
elements in their standard state is zero. In the same way, the standard molar Gibbs
free energy of formation of substances are defined and tabulated at a reference

!For the definition of the standard state see Sect. 3.4.1.
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temperature of 298.15 K. Tabulated standard molar entropies, however, are absolute
values.?

4.1.2 The Molar Reaction Enthalpy and the Molar Reaction
Entropy

Consider a chemical system before and after a reaction ) _, v;X; = 0. The enthalpy
change in the system H, is the difference in its enthalpy before and after the reaction
took place. Using the familiar concept of the extent of reaction £ introduced in
Chap. 2, the enthalpy change H,(§) is

Ho(8) =) (n) + vs€) Ahp(J) = n§ Ahy(J) =Y vE Ahy(J) (4.1)
J

J J

The molar reaction enthalpy is the change of H, with &:

Ah, = ;EH,@) =3 v Al() (42)
J

Note that unlike H,, the molar reaction enthalpy A#, is an intensive property (see
Sect. 3.1). Tabulated heats of formation refer to the standard state at the reference
temperature 298.15 K. The standard molar reaction enthalpy is thus

ARS =" v, AR (J) (4.3)
J

A process or chemical reaction characterized by Ak, > 0 is called endothermic.
In contrast, a process or reaction characterized by Ak, < 0 is called exothermic.
Similarly, the molar standard reaction entropy of this reaction is calculated from
the molar standard entropies of the reactants:

As® =) "v, AP () 4.4
J

The molar standard Gibbs free energy of reaction is calculated from the
standard free enthalpies of formation of the reactants or the values of Ah® and
As® at the reference temperature T,

2For the calculation of the absolute entropy of monatomic gases based on statistical thermodynam-
ics, see Problem 8.6.
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AgP(T) = ) v; AgP(J) = Ah? —TAs? (4.5)
J

A process or chemical reaction characterized by Ag, > 0 is called endergonic.
In contrast, a process or reaction characterized by Ag, < 0 is called exergonic.

4.1.3 Kirchhoff’s Law

In practice, chemical reactions take place under different conditions concerning
pressure and temperature. Based on Eq. (3.32) Kirchhoff’s law can be derived,
which allows the calculation of a reaction enthalpy at arbitrary temperature 7 from
the respective value at a reference temperature 7,:

T
Ah(T) = Ah(T,) + / vy cpy(T')dT'. (4.6)
T,

Similarly, using the relation dS = C";l " the reaction entropy at T is

T /
As (T) = As(T,) + / Z vy C””T(,T) ar’. 4.7
1z J

Note that these equations assume that no phase transition occurs in the temper-
ature range under consideration between the reference temperatures 7, and 7. In
Problem 3.14 we dealt with the entropy change in a case in which a phase transition
occurs.

4.1.4 Hess’s Law

As enthalpy is a state function, the change in enthalpy between an initial state and
a final state does not depend on the reaction pathway. This is the origin of Hess’s
law:

The total reaction enthalpy of a given chemical reaction does not depend on
the route taken. If a chemical reaction can be separated into several reaction
steps, the total reaction enthalpy is the sum of the reaction enthalpies of the
reaction steps.
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Hess’s law is useful to indirectly determine reaction enthalpies of reactions that
are otherwise not accessible by an experiment.

4.2 Problems

Additional problems related to thermochemistry can be found in Chap. 5 (chemical
equilibrium).

Problem 4.1 (Combustion Enthalpies) Isopropanol is produced by the
hydration of propene,

CH,CHCH;(g) + H>0(g) — CH;CHOHCH;(g) |ARS.  (4.8)

The following data are given: at 298.15 K, the molar standard heats of com-
bustion of propene and isopropanol are 2,040 and 2,006 kJ mol ™! respectively.
The constant pressure molar heat capacities of propene, isopropanol, and
water are 64, 86, and 34J K~ mol~! respectively.

a. Calculate the molar standard heat of reaction Eq.(4.8) at the reference
temperature 298.15 K.
b. Calculate Ah® at 550 K.

C A

Fig. 4.1 Hydration of propene to isopropanol (2-propanol)
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Solution 4.1 Combustion calorimetry offers the possibility of determining reaction
enthalpies indirectly using Hess’s law. In subproblem (a) we determine the molar
standard reaction enthalpy Ah® for the hydration of propene (Eq. (4.8), Fig.4.1)
from the given molar heats of combustion of the hydrocarbons propene and
isopropanol. Technically, this reaction is conducted in a reactor containing a suitable
catalyst. A direct determination of Ah® is hampered by the fact that parallel
reactions occur, e.g., the reaction to 1-propanol. Using Eq. (4.3) we write down an
expression for ARS,

AhS = AhP(C3HgO) — AP (C3Hg) — AhS (H,0) 4.9)

Next, we express the unknown molar enthalpies of formation occurring on the
right side using the given heats of combustion. Combustion means the complete
reaction of a substance with oxygen (see Problem 2.2 in Chap. 2). If the reactant is
a hydrocarbon, the combustion products are CO, and H,O. To exploit the heats of
combustion provided for propene and isopropanol (2-propanol), we must formulate
the equation for their combustion. In the case of propene, we have

9
CsHe + 202 — 3C0O, + 3H,0  |AKS(P) = —2040 kJmol™!. (4.10)
For isopropanol, we have
9
C3H30 + 2o2 — 3C0; + 4H,0  |AKRS(I) = —2006 kI mol . 4.11)

Be aware that combustion reactions are exothermic (AhCe negative), and the heat
released to the surroundings is thus positive. Using Eq. (4.3), we can set up two
equations that relate the molar combustion enthalpies of these substances to their
formation enthalpies. Note that gaseous O, is an element in its standard state. Its
enthalpy of formation is thus zero.

AhZ(P) = 3AhZ (H,0) + 3Ah? (CO,) — Ahg (C3Hy) (4.12)
AR (I) = 4AhP (H,0) + 3AhP (CO,) — A (C3HgO) (4.13)

If we now subtract Eq. (4.13) from Eq. (4.12), we obtain
AR (P) — AhS(I) = AhP (C3Hg0) — AhP (C3He) — AhP (H,0) (4.14)

By comparing this expression with Eq.(4.9), we see that the reaction enthalpy
sought is simply the difference in the combustion enthalpies:

AR® = ARS (P)—ARS (1) = (—2040+2006) kImol ™! = —34kImol™!  (4.15)
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An alternative solution is based on the graphical representation of the reactions
Egs. (4.8), (4.10), and (4.11) in a Born Haber cycle diagram, as illustrated in Fig. 4.2.
It is obvious that the reaction of propene and water can be realized by the exothermic
combustion of propene followed by the endothermic synthesis of three CO, and four
H,0O molecules to form isopropanol. According to Hess’s law (see Sect.4.1.4) the
total molar reaction enthalpy A#, is the sum of the molar reaction enthalpies in the
sequence of reaction steps, i.e., Ah.(P) and —Ah.(I), as indicated in the figure.

Fig. 4.2 Born Haber cycle 4

diagram for the hydration of

propene (schematic). The l

reaction of propene (C3Hg) T C;Hg+H,0 ”””’T’:’ N

and water to isopropanol
(C3H3O) is realized by the
combustion of propene
followed by the synthesis of
the combustion products to
form isopropanol

| An(P) [ -Ah (1)

Enthalpy

3C0,+4H,0

Moreover, the inspection of the Born Haber cycle in Fig. 4.2 reveals a typical dif-
ficulty of experimental calorimetry: accuracy. To obtain the standard molar heat of
reaction AhS sought, we must subtract comparatively large combustion enthalpies
and the result Ah® is smaller orders of magnitude. A precise measurement of heats
of combustion is thus the key to obtaining useful results. The goal is to achieve
chemical accuracy, which means that a heat of formation is determined with a
maximum uncertainty of 1 kcal mol™'.

The value for Ah® is valid for the reference temperature 7, = 298.15K.
In practice, the hydration of propene is conducted at a higher temperature. In
subproblem (b) we determine Ahxe at T, = 550K. This is an application of
Kirchhoff’s law (see Sect. 4.1.3). Moreover, this task is simplified by the fact that the
constant pressure molar heat capacities given are assumed to be constant over the
temperature range specified.’ Using Eq. (4.6) under special consideration of reaction

3 A problem with temperature-dependent heat capacities can be found in Chap. 5 (Problem 5.6).
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Eq. (4.8), the reaction enthalpy sought is

)
ARS(550K) = Ah®(298.15K) + / (¢p (C3Hs0) — ¢, (C3He) — ¢, (H20)) dT
Tr

= —34,000Jmol ™" + (86 — 64 — 34) JK~ ' mol™! (550 — 298.15) K
= —37kImol™! (4.16)

Problem 4.2 (Solvation Enthalpy)

a. Under standard conditions, 1g of LiCl powder is dissolved in 50ml of
water (Fig.4.3). As the solution is stirred, the temperature increases from
298 to 302.2K. The constant pressure molar heat capacity of water is
75.3J K~ mol~!. Estimate the molar standard heat of solvation of LiCl.
You may ignore the contribution of the dissolved LiCl to the heat capacity
of the solution. The density of water is 1 gml™".

b. In another experiment, 1 g KCI(s) is dissolved in the same amount of
water under the same conditions. A temperature reduction of 1.1 K was
measured. Determine the molar standard heat of solvation of KCI and
calculate the standard heat of formation of K¥(aq) relative to the value
of LiT, if the standard heats of formation for KC1 and LiCl are —436.7 and
—408.7 kJ mol ™! respectively.

Licl(s)

~ .

Fig. 4.3 A simple form of calorimetry to measure the heat of solvation of a salt

Solution 4.2 This problem deals with a very simple case of calorimetry. LiCl is an
ionic crystal and completely dissolves in water according to

LiCl(s) — Li*(aq) + Cl™(aq) |AKS,, (4.17)
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In subproblem (a) we determine the standard molar heat of solvation AhS, of
this reaction. We exploit the temperature change AT = +4.2K of the solution
and the molar heat capacity of the solvent water given. We notice that the increase
in temperature indicates that the dissolution of LiCl is an exothermic process.

Apparently, we ignore any heat transfer to the environment, i.e., the amount of heat
Q0 = C,AT (4.18)

involved with the temperature jump in the solution is directly related to the heat of
reaction. The heat capacity C, of the solution is approximately given by the heat
capacity of water. The amount of water is determined using the density p and the
molar mass My,o whichis 18 g mol ™!

my,0 pv

c = c =209.17JK! (4.19)
MHzO PO MHzO PO

Cp = nH,0CpH,0 =

As a consequence, the heat released by the reaction was
0 =1209.17JK ' x 42K = 878.51. (4.20)

To determine the molar heat of solvation, we need to know the amount of 1g
LiCl. From the periodic system, we take the atomic weights of Li and CI and
obtain the molar mass My c; = 42.39 gmol_l. Hence, the amount of 1g LiCl is

nuic =, 391;1 gl = 0.0236 mol. The molar standard heat of solvation is thus
ARGy, = ¢ = -37.2kImol”".

In the same way, we can proceed in subproblem (b), where the same experiment
leads to a temperature reduction of 1.1 K for the salt KCl, indicating an endothermic
reaction. The molar mass of KCl is Mgc; = 74.55¢ mol~! and 1 g of KCI thus
corresponds to an amount of ngc; = 0.0134 mol. A temperature reduction of 1.1 K
is consistent with a heat loss of Q = —230.0 J. The molar heat of solvation for KC1
is thus ARG, = € = +17.2 kI mol™".

The second part of the subproblem deals with the determination of heats of
formation from the calorimetric results obtained so far. Although it is principally not
possible to determine the absolute heat of formation of an ion in aqueous solution by
performing an experiment,* we can use Hess’ law and eliminate the unknown heat
of formation of chlorine, which is the anionic species occurring in both reactions:

LiCl(s) — Li*(aq) + Cl™(aq) |AKS, (LiCl)

solv

KCI(s) — K™ (aq) + CI™(aq) |AAS, (KCl)

solv

“Electrolyte solutions are electrically neutral, requiring at least two different kinds of charged
species in a calorimetric experiment.



4.2 Problems 79

Using Eq. (4.3), we write

AR

solv

AR

solv

(LiCl) = ARP(Li*) 4+ ARP(CI7) — A (LiCl) (4.21)
(KC) = AP (K*) + AhP (C17